• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2_priv.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
56 
57 STATIC int
58 xlog_find_zeroed(
59 	struct xlog	*,
60 	xfs_daddr_t	*);
61 STATIC int
62 xlog_clear_stale_blocks(
63 	struct xlog	*,
64 	xfs_lsn_t);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_recover_check_summary(
68 	struct xlog *);
69 #else
70 #define	xlog_recover_check_summary(log)
71 #endif
72 
73 /*
74  * This structure is used during recovery to record the buf log items which
75  * have been canceled and should not be replayed.
76  */
77 struct xfs_buf_cancel {
78 	xfs_daddr_t		bc_blkno;
79 	uint			bc_len;
80 	int			bc_refcount;
81 	struct list_head	bc_list;
82 };
83 
84 /*
85  * Sector aligned buffer routines for buffer create/read/write/access
86  */
87 
88 /*
89  * Verify the given count of basic blocks is valid number of blocks
90  * to specify for an operation involving the given XFS log buffer.
91  * Returns nonzero if the count is valid, 0 otherwise.
92  */
93 
94 static inline int
xlog_buf_bbcount_valid(struct xlog * log,int bbcount)95 xlog_buf_bbcount_valid(
96 	struct xlog	*log,
97 	int		bbcount)
98 {
99 	return bbcount > 0 && bbcount <= log->l_logBBsize;
100 }
101 
102 /*
103  * Allocate a buffer to hold log data.  The buffer needs to be able
104  * to map to a range of nbblks basic blocks at any valid (basic
105  * block) offset within the log.
106  */
107 STATIC xfs_buf_t *
xlog_get_bp(struct xlog * log,int nbblks)108 xlog_get_bp(
109 	struct xlog	*log,
110 	int		nbblks)
111 {
112 	struct xfs_buf	*bp;
113 
114 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 			nbblks);
117 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 		return NULL;
119 	}
120 
121 	/*
122 	 * We do log I/O in units of log sectors (a power-of-2
123 	 * multiple of the basic block size), so we round up the
124 	 * requested size to accommodate the basic blocks required
125 	 * for complete log sectors.
126 	 *
127 	 * In addition, the buffer may be used for a non-sector-
128 	 * aligned block offset, in which case an I/O of the
129 	 * requested size could extend beyond the end of the
130 	 * buffer.  If the requested size is only 1 basic block it
131 	 * will never straddle a sector boundary, so this won't be
132 	 * an issue.  Nor will this be a problem if the log I/O is
133 	 * done in basic blocks (sector size 1).  But otherwise we
134 	 * extend the buffer by one extra log sector to ensure
135 	 * there's space to accommodate this possibility.
136 	 */
137 	if (nbblks > 1 && log->l_sectBBsize > 1)
138 		nbblks += log->l_sectBBsize;
139 	nbblks = round_up(nbblks, log->l_sectBBsize);
140 
141 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 	if (bp)
143 		xfs_buf_unlock(bp);
144 	return bp;
145 }
146 
147 STATIC void
xlog_put_bp(xfs_buf_t * bp)148 xlog_put_bp(
149 	xfs_buf_t	*bp)
150 {
151 	xfs_buf_free(bp);
152 }
153 
154 /*
155  * Return the address of the start of the given block number's data
156  * in a log buffer.  The buffer covers a log sector-aligned region.
157  */
158 STATIC xfs_caddr_t
xlog_align(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)159 xlog_align(
160 	struct xlog	*log,
161 	xfs_daddr_t	blk_no,
162 	int		nbblks,
163 	struct xfs_buf	*bp)
164 {
165 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
166 
167 	ASSERT(offset + nbblks <= bp->b_length);
168 	return bp->b_addr + BBTOB(offset);
169 }
170 
171 
172 /*
173  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
174  */
175 STATIC int
xlog_bread_noalign(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)176 xlog_bread_noalign(
177 	struct xlog	*log,
178 	xfs_daddr_t	blk_no,
179 	int		nbblks,
180 	struct xfs_buf	*bp)
181 {
182 	int		error;
183 
184 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 			nbblks);
187 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 		return EFSCORRUPTED;
189 	}
190 
191 	blk_no = round_down(blk_no, log->l_sectBBsize);
192 	nbblks = round_up(nbblks, log->l_sectBBsize);
193 
194 	ASSERT(nbblks > 0);
195 	ASSERT(nbblks <= bp->b_length);
196 
197 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 	XFS_BUF_READ(bp);
199 	bp->b_io_length = nbblks;
200 	bp->b_error = 0;
201 
202 	xfsbdstrat(log->l_mp, bp);
203 	error = xfs_buf_iowait(bp);
204 	if (error)
205 		xfs_buf_ioerror_alert(bp, __func__);
206 	return error;
207 }
208 
209 STATIC int
xlog_bread(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,xfs_caddr_t * offset)210 xlog_bread(
211 	struct xlog	*log,
212 	xfs_daddr_t	blk_no,
213 	int		nbblks,
214 	struct xfs_buf	*bp,
215 	xfs_caddr_t	*offset)
216 {
217 	int		error;
218 
219 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 	if (error)
221 		return error;
222 
223 	*offset = xlog_align(log, blk_no, nbblks, bp);
224 	return 0;
225 }
226 
227 /*
228  * Read at an offset into the buffer. Returns with the buffer in it's original
229  * state regardless of the result of the read.
230  */
231 STATIC int
xlog_bread_offset(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,xfs_caddr_t offset)232 xlog_bread_offset(
233 	struct xlog	*log,
234 	xfs_daddr_t	blk_no,		/* block to read from */
235 	int		nbblks,		/* blocks to read */
236 	struct xfs_buf	*bp,
237 	xfs_caddr_t	offset)
238 {
239 	xfs_caddr_t	orig_offset = bp->b_addr;
240 	int		orig_len = BBTOB(bp->b_length);
241 	int		error, error2;
242 
243 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
244 	if (error)
245 		return error;
246 
247 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
248 
249 	/* must reset buffer pointer even on error */
250 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
251 	if (error)
252 		return error;
253 	return error2;
254 }
255 
256 /*
257  * Write out the buffer at the given block for the given number of blocks.
258  * The buffer is kept locked across the write and is returned locked.
259  * This can only be used for synchronous log writes.
260  */
261 STATIC int
xlog_bwrite(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)262 xlog_bwrite(
263 	struct xlog	*log,
264 	xfs_daddr_t	blk_no,
265 	int		nbblks,
266 	struct xfs_buf	*bp)
267 {
268 	int		error;
269 
270 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
271 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
272 			nbblks);
273 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
274 		return EFSCORRUPTED;
275 	}
276 
277 	blk_no = round_down(blk_no, log->l_sectBBsize);
278 	nbblks = round_up(nbblks, log->l_sectBBsize);
279 
280 	ASSERT(nbblks > 0);
281 	ASSERT(nbblks <= bp->b_length);
282 
283 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 	XFS_BUF_ZEROFLAGS(bp);
285 	xfs_buf_hold(bp);
286 	xfs_buf_lock(bp);
287 	bp->b_io_length = nbblks;
288 	bp->b_error = 0;
289 
290 	error = xfs_bwrite(bp);
291 	if (error)
292 		xfs_buf_ioerror_alert(bp, __func__);
293 	xfs_buf_relse(bp);
294 	return error;
295 }
296 
297 #ifdef DEBUG
298 /*
299  * dump debug superblock and log record information
300  */
301 STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)302 xlog_header_check_dump(
303 	xfs_mount_t		*mp,
304 	xlog_rec_header_t	*head)
305 {
306 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d\n",
307 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
308 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d\n",
309 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
310 }
311 #else
312 #define xlog_header_check_dump(mp, head)
313 #endif
314 
315 /*
316  * check log record header for recovery
317  */
318 STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)319 xlog_header_check_recover(
320 	xfs_mount_t		*mp,
321 	xlog_rec_header_t	*head)
322 {
323 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
324 
325 	/*
326 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 	 * a dirty log created in IRIX.
329 	 */
330 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
331 		xfs_warn(mp,
332 	"dirty log written in incompatible format - can't recover");
333 		xlog_header_check_dump(mp, head);
334 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 				 XFS_ERRLEVEL_HIGH, mp);
336 		return XFS_ERROR(EFSCORRUPTED);
337 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
338 		xfs_warn(mp,
339 	"dirty log entry has mismatched uuid - can't recover");
340 		xlog_header_check_dump(mp, head);
341 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 				 XFS_ERRLEVEL_HIGH, mp);
343 		return XFS_ERROR(EFSCORRUPTED);
344 	}
345 	return 0;
346 }
347 
348 /*
349  * read the head block of the log and check the header
350  */
351 STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)352 xlog_header_check_mount(
353 	xfs_mount_t		*mp,
354 	xlog_rec_header_t	*head)
355 {
356 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
357 
358 	if (uuid_is_nil(&head->h_fs_uuid)) {
359 		/*
360 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 		 * h_fs_uuid is nil, we assume this log was last mounted
362 		 * by IRIX and continue.
363 		 */
364 		xfs_warn(mp, "nil uuid in log - IRIX style log");
365 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
366 		xfs_warn(mp, "log has mismatched uuid - can't recover");
367 		xlog_header_check_dump(mp, head);
368 		XFS_ERROR_REPORT("xlog_header_check_mount",
369 				 XFS_ERRLEVEL_HIGH, mp);
370 		return XFS_ERROR(EFSCORRUPTED);
371 	}
372 	return 0;
373 }
374 
375 STATIC void
xlog_recover_iodone(struct xfs_buf * bp)376 xlog_recover_iodone(
377 	struct xfs_buf	*bp)
378 {
379 	if (bp->b_error) {
380 		/*
381 		 * We're not going to bother about retrying
382 		 * this during recovery. One strike!
383 		 */
384 		xfs_buf_ioerror_alert(bp, __func__);
385 		xfs_force_shutdown(bp->b_target->bt_mount,
386 					SHUTDOWN_META_IO_ERROR);
387 	}
388 	bp->b_iodone = NULL;
389 	xfs_buf_ioend(bp, 0);
390 }
391 
392 /*
393  * This routine finds (to an approximation) the first block in the physical
394  * log which contains the given cycle.  It uses a binary search algorithm.
395  * Note that the algorithm can not be perfect because the disk will not
396  * necessarily be perfect.
397  */
398 STATIC int
xlog_find_cycle_start(struct xlog * log,struct xfs_buf * bp,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)399 xlog_find_cycle_start(
400 	struct xlog	*log,
401 	struct xfs_buf	*bp,
402 	xfs_daddr_t	first_blk,
403 	xfs_daddr_t	*last_blk,
404 	uint		cycle)
405 {
406 	xfs_caddr_t	offset;
407 	xfs_daddr_t	mid_blk;
408 	xfs_daddr_t	end_blk;
409 	uint		mid_cycle;
410 	int		error;
411 
412 	end_blk = *last_blk;
413 	mid_blk = BLK_AVG(first_blk, end_blk);
414 	while (mid_blk != first_blk && mid_blk != end_blk) {
415 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 		if (error)
417 			return error;
418 		mid_cycle = xlog_get_cycle(offset);
419 		if (mid_cycle == cycle)
420 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
421 		else
422 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 		mid_blk = BLK_AVG(first_blk, end_blk);
424 	}
425 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
427 
428 	*last_blk = end_blk;
429 
430 	return 0;
431 }
432 
433 /*
434  * Check that a range of blocks does not contain stop_on_cycle_no.
435  * Fill in *new_blk with the block offset where such a block is
436  * found, or with -1 (an invalid block number) if there is no such
437  * block in the range.  The scan needs to occur from front to back
438  * and the pointer into the region must be updated since a later
439  * routine will need to perform another test.
440  */
441 STATIC int
xlog_find_verify_cycle(struct xlog * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)442 xlog_find_verify_cycle(
443 	struct xlog	*log,
444 	xfs_daddr_t	start_blk,
445 	int		nbblks,
446 	uint		stop_on_cycle_no,
447 	xfs_daddr_t	*new_blk)
448 {
449 	xfs_daddr_t	i, j;
450 	uint		cycle;
451 	xfs_buf_t	*bp;
452 	xfs_daddr_t	bufblks;
453 	xfs_caddr_t	buf = NULL;
454 	int		error = 0;
455 
456 	/*
457 	 * Greedily allocate a buffer big enough to handle the full
458 	 * range of basic blocks we'll be examining.  If that fails,
459 	 * try a smaller size.  We need to be able to read at least
460 	 * a log sector, or we're out of luck.
461 	 */
462 	bufblks = 1 << ffs(nbblks);
463 	while (bufblks > log->l_logBBsize)
464 		bufblks >>= 1;
465 	while (!(bp = xlog_get_bp(log, bufblks))) {
466 		bufblks >>= 1;
467 		if (bufblks < log->l_sectBBsize)
468 			return ENOMEM;
469 	}
470 
471 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 		int	bcount;
473 
474 		bcount = min(bufblks, (start_blk + nbblks - i));
475 
476 		error = xlog_bread(log, i, bcount, bp, &buf);
477 		if (error)
478 			goto out;
479 
480 		for (j = 0; j < bcount; j++) {
481 			cycle = xlog_get_cycle(buf);
482 			if (cycle == stop_on_cycle_no) {
483 				*new_blk = i+j;
484 				goto out;
485 			}
486 
487 			buf += BBSIZE;
488 		}
489 	}
490 
491 	*new_blk = -1;
492 
493 out:
494 	xlog_put_bp(bp);
495 	return error;
496 }
497 
498 /*
499  * Potentially backup over partial log record write.
500  *
501  * In the typical case, last_blk is the number of the block directly after
502  * a good log record.  Therefore, we subtract one to get the block number
503  * of the last block in the given buffer.  extra_bblks contains the number
504  * of blocks we would have read on a previous read.  This happens when the
505  * last log record is split over the end of the physical log.
506  *
507  * extra_bblks is the number of blocks potentially verified on a previous
508  * call to this routine.
509  */
510 STATIC int
xlog_find_verify_log_record(struct xlog * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)511 xlog_find_verify_log_record(
512 	struct xlog		*log,
513 	xfs_daddr_t		start_blk,
514 	xfs_daddr_t		*last_blk,
515 	int			extra_bblks)
516 {
517 	xfs_daddr_t		i;
518 	xfs_buf_t		*bp;
519 	xfs_caddr_t		offset = NULL;
520 	xlog_rec_header_t	*head = NULL;
521 	int			error = 0;
522 	int			smallmem = 0;
523 	int			num_blks = *last_blk - start_blk;
524 	int			xhdrs;
525 
526 	ASSERT(start_blk != 0 || *last_blk != start_blk);
527 
528 	if (!(bp = xlog_get_bp(log, num_blks))) {
529 		if (!(bp = xlog_get_bp(log, 1)))
530 			return ENOMEM;
531 		smallmem = 1;
532 	} else {
533 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 		if (error)
535 			goto out;
536 		offset += ((num_blks - 1) << BBSHIFT);
537 	}
538 
539 	for (i = (*last_blk) - 1; i >= 0; i--) {
540 		if (i < start_blk) {
541 			/* valid log record not found */
542 			xfs_warn(log->l_mp,
543 		"Log inconsistent (didn't find previous header)");
544 			ASSERT(0);
545 			error = XFS_ERROR(EIO);
546 			goto out;
547 		}
548 
549 		if (smallmem) {
550 			error = xlog_bread(log, i, 1, bp, &offset);
551 			if (error)
552 				goto out;
553 		}
554 
555 		head = (xlog_rec_header_t *)offset;
556 
557 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
558 			break;
559 
560 		if (!smallmem)
561 			offset -= BBSIZE;
562 	}
563 
564 	/*
565 	 * We hit the beginning of the physical log & still no header.  Return
566 	 * to caller.  If caller can handle a return of -1, then this routine
567 	 * will be called again for the end of the physical log.
568 	 */
569 	if (i == -1) {
570 		error = -1;
571 		goto out;
572 	}
573 
574 	/*
575 	 * We have the final block of the good log (the first block
576 	 * of the log record _before_ the head. So we check the uuid.
577 	 */
578 	if ((error = xlog_header_check_mount(log->l_mp, head)))
579 		goto out;
580 
581 	/*
582 	 * We may have found a log record header before we expected one.
583 	 * last_blk will be the 1st block # with a given cycle #.  We may end
584 	 * up reading an entire log record.  In this case, we don't want to
585 	 * reset last_blk.  Only when last_blk points in the middle of a log
586 	 * record do we update last_blk.
587 	 */
588 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
589 		uint	h_size = be32_to_cpu(head->h_size);
590 
591 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 			xhdrs++;
594 	} else {
595 		xhdrs = 1;
596 	}
597 
598 	if (*last_blk - i + extra_bblks !=
599 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
600 		*last_blk = i;
601 
602 out:
603 	xlog_put_bp(bp);
604 	return error;
605 }
606 
607 /*
608  * Head is defined to be the point of the log where the next log write
609  * write could go.  This means that incomplete LR writes at the end are
610  * eliminated when calculating the head.  We aren't guaranteed that previous
611  * LR have complete transactions.  We only know that a cycle number of
612  * current cycle number -1 won't be present in the log if we start writing
613  * from our current block number.
614  *
615  * last_blk contains the block number of the first block with a given
616  * cycle number.
617  *
618  * Return: zero if normal, non-zero if error.
619  */
620 STATIC int
xlog_find_head(struct xlog * log,xfs_daddr_t * return_head_blk)621 xlog_find_head(
622 	struct xlog	*log,
623 	xfs_daddr_t	*return_head_blk)
624 {
625 	xfs_buf_t	*bp;
626 	xfs_caddr_t	offset;
627 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
628 	int		num_scan_bblks;
629 	uint		first_half_cycle, last_half_cycle;
630 	uint		stop_on_cycle;
631 	int		error, log_bbnum = log->l_logBBsize;
632 
633 	/* Is the end of the log device zeroed? */
634 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 		*return_head_blk = first_blk;
636 
637 		/* Is the whole lot zeroed? */
638 		if (!first_blk) {
639 			/* Linux XFS shouldn't generate totally zeroed logs -
640 			 * mkfs etc write a dummy unmount record to a fresh
641 			 * log so we can store the uuid in there
642 			 */
643 			xfs_warn(log->l_mp, "totally zeroed log");
644 		}
645 
646 		return 0;
647 	} else if (error) {
648 		xfs_warn(log->l_mp, "empty log check failed");
649 		return error;
650 	}
651 
652 	first_blk = 0;			/* get cycle # of 1st block */
653 	bp = xlog_get_bp(log, 1);
654 	if (!bp)
655 		return ENOMEM;
656 
657 	error = xlog_bread(log, 0, 1, bp, &offset);
658 	if (error)
659 		goto bp_err;
660 
661 	first_half_cycle = xlog_get_cycle(offset);
662 
663 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
664 	error = xlog_bread(log, last_blk, 1, bp, &offset);
665 	if (error)
666 		goto bp_err;
667 
668 	last_half_cycle = xlog_get_cycle(offset);
669 	ASSERT(last_half_cycle != 0);
670 
671 	/*
672 	 * If the 1st half cycle number is equal to the last half cycle number,
673 	 * then the entire log is stamped with the same cycle number.  In this
674 	 * case, head_blk can't be set to zero (which makes sense).  The below
675 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
676 	 * we set it to log_bbnum which is an invalid block number, but this
677 	 * value makes the math correct.  If head_blk doesn't changed through
678 	 * all the tests below, *head_blk is set to zero at the very end rather
679 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
680 	 * in a circular file.
681 	 */
682 	if (first_half_cycle == last_half_cycle) {
683 		/*
684 		 * In this case we believe that the entire log should have
685 		 * cycle number last_half_cycle.  We need to scan backwards
686 		 * from the end verifying that there are no holes still
687 		 * containing last_half_cycle - 1.  If we find such a hole,
688 		 * then the start of that hole will be the new head.  The
689 		 * simple case looks like
690 		 *        x | x ... | x - 1 | x
691 		 * Another case that fits this picture would be
692 		 *        x | x + 1 | x ... | x
693 		 * In this case the head really is somewhere at the end of the
694 		 * log, as one of the latest writes at the beginning was
695 		 * incomplete.
696 		 * One more case is
697 		 *        x | x + 1 | x ... | x - 1 | x
698 		 * This is really the combination of the above two cases, and
699 		 * the head has to end up at the start of the x-1 hole at the
700 		 * end of the log.
701 		 *
702 		 * In the 256k log case, we will read from the beginning to the
703 		 * end of the log and search for cycle numbers equal to x-1.
704 		 * We don't worry about the x+1 blocks that we encounter,
705 		 * because we know that they cannot be the head since the log
706 		 * started with x.
707 		 */
708 		head_blk = log_bbnum;
709 		stop_on_cycle = last_half_cycle - 1;
710 	} else {
711 		/*
712 		 * In this case we want to find the first block with cycle
713 		 * number matching last_half_cycle.  We expect the log to be
714 		 * some variation on
715 		 *        x + 1 ... | x ... | x
716 		 * The first block with cycle number x (last_half_cycle) will
717 		 * be where the new head belongs.  First we do a binary search
718 		 * for the first occurrence of last_half_cycle.  The binary
719 		 * search may not be totally accurate, so then we scan back
720 		 * from there looking for occurrences of last_half_cycle before
721 		 * us.  If that backwards scan wraps around the beginning of
722 		 * the log, then we look for occurrences of last_half_cycle - 1
723 		 * at the end of the log.  The cases we're looking for look
724 		 * like
725 		 *                               v binary search stopped here
726 		 *        x + 1 ... | x | x + 1 | x ... | x
727 		 *                   ^ but we want to locate this spot
728 		 * or
729 		 *        <---------> less than scan distance
730 		 *        x + 1 ... | x ... | x - 1 | x
731 		 *                           ^ we want to locate this spot
732 		 */
733 		stop_on_cycle = last_half_cycle;
734 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 						&head_blk, last_half_cycle)))
736 			goto bp_err;
737 	}
738 
739 	/*
740 	 * Now validate the answer.  Scan back some number of maximum possible
741 	 * blocks and make sure each one has the expected cycle number.  The
742 	 * maximum is determined by the total possible amount of buffering
743 	 * in the in-core log.  The following number can be made tighter if
744 	 * we actually look at the block size of the filesystem.
745 	 */
746 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 	if (head_blk >= num_scan_bblks) {
748 		/*
749 		 * We are guaranteed that the entire check can be performed
750 		 * in one buffer.
751 		 */
752 		start_blk = head_blk - num_scan_bblks;
753 		if ((error = xlog_find_verify_cycle(log,
754 						start_blk, num_scan_bblks,
755 						stop_on_cycle, &new_blk)))
756 			goto bp_err;
757 		if (new_blk != -1)
758 			head_blk = new_blk;
759 	} else {		/* need to read 2 parts of log */
760 		/*
761 		 * We are going to scan backwards in the log in two parts.
762 		 * First we scan the physical end of the log.  In this part
763 		 * of the log, we are looking for blocks with cycle number
764 		 * last_half_cycle - 1.
765 		 * If we find one, then we know that the log starts there, as
766 		 * we've found a hole that didn't get written in going around
767 		 * the end of the physical log.  The simple case for this is
768 		 *        x + 1 ... | x ... | x - 1 | x
769 		 *        <---------> less than scan distance
770 		 * If all of the blocks at the end of the log have cycle number
771 		 * last_half_cycle, then we check the blocks at the start of
772 		 * the log looking for occurrences of last_half_cycle.  If we
773 		 * find one, then our current estimate for the location of the
774 		 * first occurrence of last_half_cycle is wrong and we move
775 		 * back to the hole we've found.  This case looks like
776 		 *        x + 1 ... | x | x + 1 | x ...
777 		 *                               ^ binary search stopped here
778 		 * Another case we need to handle that only occurs in 256k
779 		 * logs is
780 		 *        x + 1 ... | x ... | x+1 | x ...
781 		 *                   ^ binary search stops here
782 		 * In a 256k log, the scan at the end of the log will see the
783 		 * x + 1 blocks.  We need to skip past those since that is
784 		 * certainly not the head of the log.  By searching for
785 		 * last_half_cycle-1 we accomplish that.
786 		 */
787 		ASSERT(head_blk <= INT_MAX &&
788 			(xfs_daddr_t) num_scan_bblks >= head_blk);
789 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
790 		if ((error = xlog_find_verify_cycle(log, start_blk,
791 					num_scan_bblks - (int)head_blk,
792 					(stop_on_cycle - 1), &new_blk)))
793 			goto bp_err;
794 		if (new_blk != -1) {
795 			head_blk = new_blk;
796 			goto validate_head;
797 		}
798 
799 		/*
800 		 * Scan beginning of log now.  The last part of the physical
801 		 * log is good.  This scan needs to verify that it doesn't find
802 		 * the last_half_cycle.
803 		 */
804 		start_blk = 0;
805 		ASSERT(head_blk <= INT_MAX);
806 		if ((error = xlog_find_verify_cycle(log,
807 					start_blk, (int)head_blk,
808 					stop_on_cycle, &new_blk)))
809 			goto bp_err;
810 		if (new_blk != -1)
811 			head_blk = new_blk;
812 	}
813 
814 validate_head:
815 	/*
816 	 * Now we need to make sure head_blk is not pointing to a block in
817 	 * the middle of a log record.
818 	 */
819 	num_scan_bblks = XLOG_REC_SHIFT(log);
820 	if (head_blk >= num_scan_bblks) {
821 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
822 
823 		/* start ptr at last block ptr before head_blk */
824 		if ((error = xlog_find_verify_log_record(log, start_blk,
825 							&head_blk, 0)) == -1) {
826 			error = XFS_ERROR(EIO);
827 			goto bp_err;
828 		} else if (error)
829 			goto bp_err;
830 	} else {
831 		start_blk = 0;
832 		ASSERT(head_blk <= INT_MAX);
833 		if ((error = xlog_find_verify_log_record(log, start_blk,
834 							&head_blk, 0)) == -1) {
835 			/* We hit the beginning of the log during our search */
836 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 			new_blk = log_bbnum;
838 			ASSERT(start_blk <= INT_MAX &&
839 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
840 			ASSERT(head_blk <= INT_MAX);
841 			if ((error = xlog_find_verify_log_record(log,
842 							start_blk, &new_blk,
843 							(int)head_blk)) == -1) {
844 				error = XFS_ERROR(EIO);
845 				goto bp_err;
846 			} else if (error)
847 				goto bp_err;
848 			if (new_blk != log_bbnum)
849 				head_blk = new_blk;
850 		} else if (error)
851 			goto bp_err;
852 	}
853 
854 	xlog_put_bp(bp);
855 	if (head_blk == log_bbnum)
856 		*return_head_blk = 0;
857 	else
858 		*return_head_blk = head_blk;
859 	/*
860 	 * When returning here, we have a good block number.  Bad block
861 	 * means that during a previous crash, we didn't have a clean break
862 	 * from cycle number N to cycle number N-1.  In this case, we need
863 	 * to find the first block with cycle number N-1.
864 	 */
865 	return 0;
866 
867  bp_err:
868 	xlog_put_bp(bp);
869 
870 	if (error)
871 		xfs_warn(log->l_mp, "failed to find log head");
872 	return error;
873 }
874 
875 /*
876  * Find the sync block number or the tail of the log.
877  *
878  * This will be the block number of the last record to have its
879  * associated buffers synced to disk.  Every log record header has
880  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
881  * to get a sync block number.  The only concern is to figure out which
882  * log record header to believe.
883  *
884  * The following algorithm uses the log record header with the largest
885  * lsn.  The entire log record does not need to be valid.  We only care
886  * that the header is valid.
887  *
888  * We could speed up search by using current head_blk buffer, but it is not
889  * available.
890  */
891 STATIC int
xlog_find_tail(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)892 xlog_find_tail(
893 	struct xlog		*log,
894 	xfs_daddr_t		*head_blk,
895 	xfs_daddr_t		*tail_blk)
896 {
897 	xlog_rec_header_t	*rhead;
898 	xlog_op_header_t	*op_head;
899 	xfs_caddr_t		offset = NULL;
900 	xfs_buf_t		*bp;
901 	int			error, i, found;
902 	xfs_daddr_t		umount_data_blk;
903 	xfs_daddr_t		after_umount_blk;
904 	xfs_lsn_t		tail_lsn;
905 	int			hblks;
906 
907 	found = 0;
908 
909 	/*
910 	 * Find previous log record
911 	 */
912 	if ((error = xlog_find_head(log, head_blk)))
913 		return error;
914 
915 	bp = xlog_get_bp(log, 1);
916 	if (!bp)
917 		return ENOMEM;
918 	if (*head_blk == 0) {				/* special case */
919 		error = xlog_bread(log, 0, 1, bp, &offset);
920 		if (error)
921 			goto done;
922 
923 		if (xlog_get_cycle(offset) == 0) {
924 			*tail_blk = 0;
925 			/* leave all other log inited values alone */
926 			goto done;
927 		}
928 	}
929 
930 	/*
931 	 * Search backwards looking for log record header block
932 	 */
933 	ASSERT(*head_blk < INT_MAX);
934 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
935 		error = xlog_bread(log, i, 1, bp, &offset);
936 		if (error)
937 			goto done;
938 
939 		if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
940 			found = 1;
941 			break;
942 		}
943 	}
944 	/*
945 	 * If we haven't found the log record header block, start looking
946 	 * again from the end of the physical log.  XXXmiken: There should be
947 	 * a check here to make sure we didn't search more than N blocks in
948 	 * the previous code.
949 	 */
950 	if (!found) {
951 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
952 			error = xlog_bread(log, i, 1, bp, &offset);
953 			if (error)
954 				goto done;
955 
956 			if (*(__be32 *)offset ==
957 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
958 				found = 2;
959 				break;
960 			}
961 		}
962 	}
963 	if (!found) {
964 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
965 		ASSERT(0);
966 		return XFS_ERROR(EIO);
967 	}
968 
969 	/* find blk_no of tail of log */
970 	rhead = (xlog_rec_header_t *)offset;
971 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
972 
973 	/*
974 	 * Reset log values according to the state of the log when we
975 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
976 	 * one because the next write starts a new cycle rather than
977 	 * continuing the cycle of the last good log record.  At this
978 	 * point we have guaranteed that all partial log records have been
979 	 * accounted for.  Therefore, we know that the last good log record
980 	 * written was complete and ended exactly on the end boundary
981 	 * of the physical log.
982 	 */
983 	log->l_prev_block = i;
984 	log->l_curr_block = (int)*head_blk;
985 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
986 	if (found == 2)
987 		log->l_curr_cycle++;
988 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
989 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
990 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
991 					BBTOB(log->l_curr_block));
992 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
993 					BBTOB(log->l_curr_block));
994 
995 	/*
996 	 * Look for unmount record.  If we find it, then we know there
997 	 * was a clean unmount.  Since 'i' could be the last block in
998 	 * the physical log, we convert to a log block before comparing
999 	 * to the head_blk.
1000 	 *
1001 	 * Save the current tail lsn to use to pass to
1002 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
1003 	 * unmount record if there is one, so we pass the lsn of the
1004 	 * unmount record rather than the block after it.
1005 	 */
1006 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1007 		int	h_size = be32_to_cpu(rhead->h_size);
1008 		int	h_version = be32_to_cpu(rhead->h_version);
1009 
1010 		if ((h_version & XLOG_VERSION_2) &&
1011 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 				hblks++;
1015 		} else {
1016 			hblks = 1;
1017 		}
1018 	} else {
1019 		hblks = 1;
1020 	}
1021 	after_umount_blk = (i + hblks + (int)
1022 		BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1023 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1024 	if (*head_blk == after_umount_blk &&
1025 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1026 		umount_data_blk = (i + hblks) % log->l_logBBsize;
1027 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 		if (error)
1029 			goto done;
1030 
1031 		op_head = (xlog_op_header_t *)offset;
1032 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 			/*
1034 			 * Set tail and last sync so that newly written
1035 			 * log records will point recovery to after the
1036 			 * current unmount record.
1037 			 */
1038 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 					log->l_curr_cycle, after_umount_blk);
1040 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 					log->l_curr_cycle, after_umount_blk);
1042 			*tail_blk = after_umount_blk;
1043 
1044 			/*
1045 			 * Note that the unmount was clean. If the unmount
1046 			 * was not clean, we need to know this to rebuild the
1047 			 * superblock counters from the perag headers if we
1048 			 * have a filesystem using non-persistent counters.
1049 			 */
1050 			log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * Make sure that there are no blocks in front of the head
1056 	 * with the same cycle number as the head.  This can happen
1057 	 * because we allow multiple outstanding log writes concurrently,
1058 	 * and the later writes might make it out before earlier ones.
1059 	 *
1060 	 * We use the lsn from before modifying it so that we'll never
1061 	 * overwrite the unmount record after a clean unmount.
1062 	 *
1063 	 * Do this only if we are going to recover the filesystem
1064 	 *
1065 	 * NOTE: This used to say "if (!readonly)"
1066 	 * However on Linux, we can & do recover a read-only filesystem.
1067 	 * We only skip recovery if NORECOVERY is specified on mount,
1068 	 * in which case we would not be here.
1069 	 *
1070 	 * But... if the -device- itself is readonly, just skip this.
1071 	 * We can't recover this device anyway, so it won't matter.
1072 	 */
1073 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1074 		error = xlog_clear_stale_blocks(log, tail_lsn);
1075 
1076 done:
1077 	xlog_put_bp(bp);
1078 
1079 	if (error)
1080 		xfs_warn(log->l_mp, "failed to locate log tail");
1081 	return error;
1082 }
1083 
1084 /*
1085  * Is the log zeroed at all?
1086  *
1087  * The last binary search should be changed to perform an X block read
1088  * once X becomes small enough.  You can then search linearly through
1089  * the X blocks.  This will cut down on the number of reads we need to do.
1090  *
1091  * If the log is partially zeroed, this routine will pass back the blkno
1092  * of the first block with cycle number 0.  It won't have a complete LR
1093  * preceding it.
1094  *
1095  * Return:
1096  *	0  => the log is completely written to
1097  *	-1 => use *blk_no as the first block of the log
1098  *	>0 => error has occurred
1099  */
1100 STATIC int
xlog_find_zeroed(struct xlog * log,xfs_daddr_t * blk_no)1101 xlog_find_zeroed(
1102 	struct xlog	*log,
1103 	xfs_daddr_t	*blk_no)
1104 {
1105 	xfs_buf_t	*bp;
1106 	xfs_caddr_t	offset;
1107 	uint	        first_cycle, last_cycle;
1108 	xfs_daddr_t	new_blk, last_blk, start_blk;
1109 	xfs_daddr_t     num_scan_bblks;
1110 	int	        error, log_bbnum = log->l_logBBsize;
1111 
1112 	*blk_no = 0;
1113 
1114 	/* check totally zeroed log */
1115 	bp = xlog_get_bp(log, 1);
1116 	if (!bp)
1117 		return ENOMEM;
1118 	error = xlog_bread(log, 0, 1, bp, &offset);
1119 	if (error)
1120 		goto bp_err;
1121 
1122 	first_cycle = xlog_get_cycle(offset);
1123 	if (first_cycle == 0) {		/* completely zeroed log */
1124 		*blk_no = 0;
1125 		xlog_put_bp(bp);
1126 		return -1;
1127 	}
1128 
1129 	/* check partially zeroed log */
1130 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 	if (error)
1132 		goto bp_err;
1133 
1134 	last_cycle = xlog_get_cycle(offset);
1135 	if (last_cycle != 0) {		/* log completely written to */
1136 		xlog_put_bp(bp);
1137 		return 0;
1138 	} else if (first_cycle != 1) {
1139 		/*
1140 		 * If the cycle of the last block is zero, the cycle of
1141 		 * the first block must be 1. If it's not, maybe we're
1142 		 * not looking at a log... Bail out.
1143 		 */
1144 		xfs_warn(log->l_mp,
1145 			"Log inconsistent or not a log (last==0, first!=1)");
1146 		return XFS_ERROR(EINVAL);
1147 	}
1148 
1149 	/* we have a partially zeroed log */
1150 	last_blk = log_bbnum-1;
1151 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1152 		goto bp_err;
1153 
1154 	/*
1155 	 * Validate the answer.  Because there is no way to guarantee that
1156 	 * the entire log is made up of log records which are the same size,
1157 	 * we scan over the defined maximum blocks.  At this point, the maximum
1158 	 * is not chosen to mean anything special.   XXXmiken
1159 	 */
1160 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1161 	ASSERT(num_scan_bblks <= INT_MAX);
1162 
1163 	if (last_blk < num_scan_bblks)
1164 		num_scan_bblks = last_blk;
1165 	start_blk = last_blk - num_scan_bblks;
1166 
1167 	/*
1168 	 * We search for any instances of cycle number 0 that occur before
1169 	 * our current estimate of the head.  What we're trying to detect is
1170 	 *        1 ... | 0 | 1 | 0...
1171 	 *                       ^ binary search ends here
1172 	 */
1173 	if ((error = xlog_find_verify_cycle(log, start_blk,
1174 					 (int)num_scan_bblks, 0, &new_blk)))
1175 		goto bp_err;
1176 	if (new_blk != -1)
1177 		last_blk = new_blk;
1178 
1179 	/*
1180 	 * Potentially backup over partial log record write.  We don't need
1181 	 * to search the end of the log because we know it is zero.
1182 	 */
1183 	if ((error = xlog_find_verify_log_record(log, start_blk,
1184 				&last_blk, 0)) == -1) {
1185 	    error = XFS_ERROR(EIO);
1186 	    goto bp_err;
1187 	} else if (error)
1188 	    goto bp_err;
1189 
1190 	*blk_no = last_blk;
1191 bp_err:
1192 	xlog_put_bp(bp);
1193 	if (error)
1194 		return error;
1195 	return -1;
1196 }
1197 
1198 /*
1199  * These are simple subroutines used by xlog_clear_stale_blocks() below
1200  * to initialize a buffer full of empty log record headers and write
1201  * them into the log.
1202  */
1203 STATIC void
xlog_add_record(struct xlog * log,xfs_caddr_t buf,int cycle,int block,int tail_cycle,int tail_block)1204 xlog_add_record(
1205 	struct xlog		*log,
1206 	xfs_caddr_t		buf,
1207 	int			cycle,
1208 	int			block,
1209 	int			tail_cycle,
1210 	int			tail_block)
1211 {
1212 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1213 
1214 	memset(buf, 0, BBSIZE);
1215 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 	recp->h_cycle = cpu_to_be32(cycle);
1217 	recp->h_version = cpu_to_be32(
1218 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1222 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223 }
1224 
1225 STATIC int
xlog_write_log_records(struct xlog * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1226 xlog_write_log_records(
1227 	struct xlog	*log,
1228 	int		cycle,
1229 	int		start_block,
1230 	int		blocks,
1231 	int		tail_cycle,
1232 	int		tail_block)
1233 {
1234 	xfs_caddr_t	offset;
1235 	xfs_buf_t	*bp;
1236 	int		balign, ealign;
1237 	int		sectbb = log->l_sectBBsize;
1238 	int		end_block = start_block + blocks;
1239 	int		bufblks;
1240 	int		error = 0;
1241 	int		i, j = 0;
1242 
1243 	/*
1244 	 * Greedily allocate a buffer big enough to handle the full
1245 	 * range of basic blocks to be written.  If that fails, try
1246 	 * a smaller size.  We need to be able to write at least a
1247 	 * log sector, or we're out of luck.
1248 	 */
1249 	bufblks = 1 << ffs(blocks);
1250 	while (bufblks > log->l_logBBsize)
1251 		bufblks >>= 1;
1252 	while (!(bp = xlog_get_bp(log, bufblks))) {
1253 		bufblks >>= 1;
1254 		if (bufblks < sectbb)
1255 			return ENOMEM;
1256 	}
1257 
1258 	/* We may need to do a read at the start to fill in part of
1259 	 * the buffer in the starting sector not covered by the first
1260 	 * write below.
1261 	 */
1262 	balign = round_down(start_block, sectbb);
1263 	if (balign != start_block) {
1264 		error = xlog_bread_noalign(log, start_block, 1, bp);
1265 		if (error)
1266 			goto out_put_bp;
1267 
1268 		j = start_block - balign;
1269 	}
1270 
1271 	for (i = start_block; i < end_block; i += bufblks) {
1272 		int		bcount, endcount;
1273 
1274 		bcount = min(bufblks, end_block - start_block);
1275 		endcount = bcount - j;
1276 
1277 		/* We may need to do a read at the end to fill in part of
1278 		 * the buffer in the final sector not covered by the write.
1279 		 * If this is the same sector as the above read, skip it.
1280 		 */
1281 		ealign = round_down(end_block, sectbb);
1282 		if (j == 0 && (start_block + endcount > ealign)) {
1283 			offset = bp->b_addr + BBTOB(ealign - start_block);
1284 			error = xlog_bread_offset(log, ealign, sectbb,
1285 							bp, offset);
1286 			if (error)
1287 				break;
1288 
1289 		}
1290 
1291 		offset = xlog_align(log, start_block, endcount, bp);
1292 		for (; j < endcount; j++) {
1293 			xlog_add_record(log, offset, cycle, i+j,
1294 					tail_cycle, tail_block);
1295 			offset += BBSIZE;
1296 		}
1297 		error = xlog_bwrite(log, start_block, endcount, bp);
1298 		if (error)
1299 			break;
1300 		start_block += endcount;
1301 		j = 0;
1302 	}
1303 
1304  out_put_bp:
1305 	xlog_put_bp(bp);
1306 	return error;
1307 }
1308 
1309 /*
1310  * This routine is called to blow away any incomplete log writes out
1311  * in front of the log head.  We do this so that we won't become confused
1312  * if we come up, write only a little bit more, and then crash again.
1313  * If we leave the partial log records out there, this situation could
1314  * cause us to think those partial writes are valid blocks since they
1315  * have the current cycle number.  We get rid of them by overwriting them
1316  * with empty log records with the old cycle number rather than the
1317  * current one.
1318  *
1319  * The tail lsn is passed in rather than taken from
1320  * the log so that we will not write over the unmount record after a
1321  * clean unmount in a 512 block log.  Doing so would leave the log without
1322  * any valid log records in it until a new one was written.  If we crashed
1323  * during that time we would not be able to recover.
1324  */
1325 STATIC int
xlog_clear_stale_blocks(struct xlog * log,xfs_lsn_t tail_lsn)1326 xlog_clear_stale_blocks(
1327 	struct xlog	*log,
1328 	xfs_lsn_t	tail_lsn)
1329 {
1330 	int		tail_cycle, head_cycle;
1331 	int		tail_block, head_block;
1332 	int		tail_distance, max_distance;
1333 	int		distance;
1334 	int		error;
1335 
1336 	tail_cycle = CYCLE_LSN(tail_lsn);
1337 	tail_block = BLOCK_LSN(tail_lsn);
1338 	head_cycle = log->l_curr_cycle;
1339 	head_block = log->l_curr_block;
1340 
1341 	/*
1342 	 * Figure out the distance between the new head of the log
1343 	 * and the tail.  We want to write over any blocks beyond the
1344 	 * head that we may have written just before the crash, but
1345 	 * we don't want to overwrite the tail of the log.
1346 	 */
1347 	if (head_cycle == tail_cycle) {
1348 		/*
1349 		 * The tail is behind the head in the physical log,
1350 		 * so the distance from the head to the tail is the
1351 		 * distance from the head to the end of the log plus
1352 		 * the distance from the beginning of the log to the
1353 		 * tail.
1354 		 */
1355 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 					 XFS_ERRLEVEL_LOW, log->l_mp);
1358 			return XFS_ERROR(EFSCORRUPTED);
1359 		}
1360 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 	} else {
1362 		/*
1363 		 * The head is behind the tail in the physical log,
1364 		 * so the distance from the head to the tail is just
1365 		 * the tail block minus the head block.
1366 		 */
1367 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 					 XFS_ERRLEVEL_LOW, log->l_mp);
1370 			return XFS_ERROR(EFSCORRUPTED);
1371 		}
1372 		tail_distance = tail_block - head_block;
1373 	}
1374 
1375 	/*
1376 	 * If the head is right up against the tail, we can't clear
1377 	 * anything.
1378 	 */
1379 	if (tail_distance <= 0) {
1380 		ASSERT(tail_distance == 0);
1381 		return 0;
1382 	}
1383 
1384 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 	/*
1386 	 * Take the smaller of the maximum amount of outstanding I/O
1387 	 * we could have and the distance to the tail to clear out.
1388 	 * We take the smaller so that we don't overwrite the tail and
1389 	 * we don't waste all day writing from the head to the tail
1390 	 * for no reason.
1391 	 */
1392 	max_distance = MIN(max_distance, tail_distance);
1393 
1394 	if ((head_block + max_distance) <= log->l_logBBsize) {
1395 		/*
1396 		 * We can stomp all the blocks we need to without
1397 		 * wrapping around the end of the log.  Just do it
1398 		 * in a single write.  Use the cycle number of the
1399 		 * current cycle minus one so that the log will look like:
1400 		 *     n ... | n - 1 ...
1401 		 */
1402 		error = xlog_write_log_records(log, (head_cycle - 1),
1403 				head_block, max_distance, tail_cycle,
1404 				tail_block);
1405 		if (error)
1406 			return error;
1407 	} else {
1408 		/*
1409 		 * We need to wrap around the end of the physical log in
1410 		 * order to clear all the blocks.  Do it in two separate
1411 		 * I/Os.  The first write should be from the head to the
1412 		 * end of the physical log, and it should use the current
1413 		 * cycle number minus one just like above.
1414 		 */
1415 		distance = log->l_logBBsize - head_block;
1416 		error = xlog_write_log_records(log, (head_cycle - 1),
1417 				head_block, distance, tail_cycle,
1418 				tail_block);
1419 
1420 		if (error)
1421 			return error;
1422 
1423 		/*
1424 		 * Now write the blocks at the start of the physical log.
1425 		 * This writes the remainder of the blocks we want to clear.
1426 		 * It uses the current cycle number since we're now on the
1427 		 * same cycle as the head so that we get:
1428 		 *    n ... n ... | n - 1 ...
1429 		 *    ^^^^^ blocks we're writing
1430 		 */
1431 		distance = max_distance - (log->l_logBBsize - head_block);
1432 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 				tail_cycle, tail_block);
1434 		if (error)
1435 			return error;
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 /******************************************************************************
1442  *
1443  *		Log recover routines
1444  *
1445  ******************************************************************************
1446  */
1447 
1448 STATIC xlog_recover_t *
xlog_recover_find_tid(struct hlist_head * head,xlog_tid_t tid)1449 xlog_recover_find_tid(
1450 	struct hlist_head	*head,
1451 	xlog_tid_t		tid)
1452 {
1453 	xlog_recover_t		*trans;
1454 
1455 	hlist_for_each_entry(trans, head, r_list) {
1456 		if (trans->r_log_tid == tid)
1457 			return trans;
1458 	}
1459 	return NULL;
1460 }
1461 
1462 STATIC void
xlog_recover_new_tid(struct hlist_head * head,xlog_tid_t tid,xfs_lsn_t lsn)1463 xlog_recover_new_tid(
1464 	struct hlist_head	*head,
1465 	xlog_tid_t		tid,
1466 	xfs_lsn_t		lsn)
1467 {
1468 	xlog_recover_t		*trans;
1469 
1470 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 	trans->r_log_tid   = tid;
1472 	trans->r_lsn	   = lsn;
1473 	INIT_LIST_HEAD(&trans->r_itemq);
1474 
1475 	INIT_HLIST_NODE(&trans->r_list);
1476 	hlist_add_head(&trans->r_list, head);
1477 }
1478 
1479 STATIC void
xlog_recover_add_item(struct list_head * head)1480 xlog_recover_add_item(
1481 	struct list_head	*head)
1482 {
1483 	xlog_recover_item_t	*item;
1484 
1485 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1486 	INIT_LIST_HEAD(&item->ri_list);
1487 	list_add_tail(&item->ri_list, head);
1488 }
1489 
1490 STATIC int
xlog_recover_add_to_cont_trans(struct xlog * log,struct xlog_recover * trans,xfs_caddr_t dp,int len)1491 xlog_recover_add_to_cont_trans(
1492 	struct xlog		*log,
1493 	struct xlog_recover	*trans,
1494 	xfs_caddr_t		dp,
1495 	int			len)
1496 {
1497 	xlog_recover_item_t	*item;
1498 	xfs_caddr_t		ptr, old_ptr;
1499 	int			old_len;
1500 
1501 	if (list_empty(&trans->r_itemq)) {
1502 		/* finish copying rest of trans header */
1503 		xlog_recover_add_item(&trans->r_itemq);
1504 		ptr = (xfs_caddr_t) &trans->r_theader +
1505 				sizeof(xfs_trans_header_t) - len;
1506 		memcpy(ptr, dp, len); /* d, s, l */
1507 		return 0;
1508 	}
1509 	/* take the tail entry */
1510 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1511 
1512 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1514 
1515 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1516 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 	item->ri_buf[item->ri_cnt-1].i_len += len;
1518 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1519 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1520 	return 0;
1521 }
1522 
1523 /*
1524  * The next region to add is the start of a new region.  It could be
1525  * a whole region or it could be the first part of a new region.  Because
1526  * of this, the assumption here is that the type and size fields of all
1527  * format structures fit into the first 32 bits of the structure.
1528  *
1529  * This works because all regions must be 32 bit aligned.  Therefore, we
1530  * either have both fields or we have neither field.  In the case we have
1531  * neither field, the data part of the region is zero length.  We only have
1532  * a log_op_header and can throw away the header since a new one will appear
1533  * later.  If we have at least 4 bytes, then we can determine how many regions
1534  * will appear in the current log item.
1535  */
1536 STATIC int
xlog_recover_add_to_trans(struct xlog * log,struct xlog_recover * trans,xfs_caddr_t dp,int len)1537 xlog_recover_add_to_trans(
1538 	struct xlog		*log,
1539 	struct xlog_recover	*trans,
1540 	xfs_caddr_t		dp,
1541 	int			len)
1542 {
1543 	xfs_inode_log_format_t	*in_f;			/* any will do */
1544 	xlog_recover_item_t	*item;
1545 	xfs_caddr_t		ptr;
1546 
1547 	if (!len)
1548 		return 0;
1549 	if (list_empty(&trans->r_itemq)) {
1550 		/* we need to catch log corruptions here */
1551 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1552 			xfs_warn(log->l_mp, "%s: bad header magic number",
1553 				__func__);
1554 			ASSERT(0);
1555 			return XFS_ERROR(EIO);
1556 		}
1557 		if (len == sizeof(xfs_trans_header_t))
1558 			xlog_recover_add_item(&trans->r_itemq);
1559 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 		return 0;
1561 	}
1562 
1563 	ptr = kmem_alloc(len, KM_SLEEP);
1564 	memcpy(ptr, dp, len);
1565 	in_f = (xfs_inode_log_format_t *)ptr;
1566 
1567 	/* take the tail entry */
1568 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 	if (item->ri_total != 0 &&
1570 	     item->ri_total == item->ri_cnt) {
1571 		/* tail item is in use, get a new one */
1572 		xlog_recover_add_item(&trans->r_itemq);
1573 		item = list_entry(trans->r_itemq.prev,
1574 					xlog_recover_item_t, ri_list);
1575 	}
1576 
1577 	if (item->ri_total == 0) {		/* first region to be added */
1578 		if (in_f->ilf_size == 0 ||
1579 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1580 			xfs_warn(log->l_mp,
1581 		"bad number of regions (%d) in inode log format",
1582 				  in_f->ilf_size);
1583 			ASSERT(0);
1584 			return XFS_ERROR(EIO);
1585 		}
1586 
1587 		item->ri_total = in_f->ilf_size;
1588 		item->ri_buf =
1589 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 				    KM_SLEEP);
1591 	}
1592 	ASSERT(item->ri_total > item->ri_cnt);
1593 	/* Description region is ri_buf[0] */
1594 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 	item->ri_buf[item->ri_cnt].i_len  = len;
1596 	item->ri_cnt++;
1597 	trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Sort the log items in the transaction.
1603  *
1604  * The ordering constraints are defined by the inode allocation and unlink
1605  * behaviour. The rules are:
1606  *
1607  *	1. Every item is only logged once in a given transaction. Hence it
1608  *	   represents the last logged state of the item. Hence ordering is
1609  *	   dependent on the order in which operations need to be performed so
1610  *	   required initial conditions are always met.
1611  *
1612  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1613  *	   there's nothing to replay from them so we can simply cull them
1614  *	   from the transaction. However, we can't do that until after we've
1615  *	   replayed all the other items because they may be dependent on the
1616  *	   cancelled buffer and replaying the cancelled buffer can remove it
1617  *	   form the cancelled buffer table. Hence they have tobe done last.
1618  *
1619  *	3. Inode allocation buffers must be replayed before inode items that
1620  *	   read the buffer and replay changes into it.
1621  *
1622  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1623  *	   This ensures that inodes are completely flushed to the inode buffer
1624  *	   in a "free" state before we remove the unlinked inode list pointer.
1625  *
1626  * Hence the ordering needs to be inode allocation buffers first, inode items
1627  * second, inode unlink buffers third and cancelled buffers last.
1628  *
1629  * But there's a problem with that - we can't tell an inode allocation buffer
1630  * apart from a regular buffer, so we can't separate them. We can, however,
1631  * tell an inode unlink buffer from the others, and so we can separate them out
1632  * from all the other buffers and move them to last.
1633  *
1634  * Hence, 4 lists, in order from head to tail:
1635  * 	- buffer_list for all buffers except cancelled/inode unlink buffers
1636  * 	- item_list for all non-buffer items
1637  * 	- inode_buffer_list for inode unlink buffers
1638  * 	- cancel_list for the cancelled buffers
1639  */
1640 STATIC int
xlog_recover_reorder_trans(struct xlog * log,struct xlog_recover * trans,int pass)1641 xlog_recover_reorder_trans(
1642 	struct xlog		*log,
1643 	struct xlog_recover	*trans,
1644 	int			pass)
1645 {
1646 	xlog_recover_item_t	*item, *n;
1647 	LIST_HEAD(sort_list);
1648 	LIST_HEAD(cancel_list);
1649 	LIST_HEAD(buffer_list);
1650 	LIST_HEAD(inode_buffer_list);
1651 	LIST_HEAD(inode_list);
1652 
1653 	list_splice_init(&trans->r_itemq, &sort_list);
1654 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1655 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1656 
1657 		switch (ITEM_TYPE(item)) {
1658 		case XFS_LI_BUF:
1659 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1660 				trace_xfs_log_recover_item_reorder_head(log,
1661 							trans, item, pass);
1662 				list_move(&item->ri_list, &cancel_list);
1663 				break;
1664 			}
1665 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1666 				list_move(&item->ri_list, &inode_buffer_list);
1667 				break;
1668 			}
1669 			list_move_tail(&item->ri_list, &buffer_list);
1670 			break;
1671 		case XFS_LI_INODE:
1672 		case XFS_LI_DQUOT:
1673 		case XFS_LI_QUOTAOFF:
1674 		case XFS_LI_EFD:
1675 		case XFS_LI_EFI:
1676 			trace_xfs_log_recover_item_reorder_tail(log,
1677 							trans, item, pass);
1678 			list_move_tail(&item->ri_list, &inode_list);
1679 			break;
1680 		default:
1681 			xfs_warn(log->l_mp,
1682 				"%s: unrecognized type of log operation",
1683 				__func__);
1684 			ASSERT(0);
1685 			return XFS_ERROR(EIO);
1686 		}
1687 	}
1688 	ASSERT(list_empty(&sort_list));
1689 	if (!list_empty(&buffer_list))
1690 		list_splice(&buffer_list, &trans->r_itemq);
1691 	if (!list_empty(&inode_list))
1692 		list_splice_tail(&inode_list, &trans->r_itemq);
1693 	if (!list_empty(&inode_buffer_list))
1694 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1695 	if (!list_empty(&cancel_list))
1696 		list_splice_tail(&cancel_list, &trans->r_itemq);
1697 	return 0;
1698 }
1699 
1700 /*
1701  * Build up the table of buf cancel records so that we don't replay
1702  * cancelled data in the second pass.  For buffer records that are
1703  * not cancel records, there is nothing to do here so we just return.
1704  *
1705  * If we get a cancel record which is already in the table, this indicates
1706  * that the buffer was cancelled multiple times.  In order to ensure
1707  * that during pass 2 we keep the record in the table until we reach its
1708  * last occurrence in the log, we keep a reference count in the cancel
1709  * record in the table to tell us how many times we expect to see this
1710  * record during the second pass.
1711  */
1712 STATIC int
xlog_recover_buffer_pass1(struct xlog * log,struct xlog_recover_item * item)1713 xlog_recover_buffer_pass1(
1714 	struct xlog			*log,
1715 	struct xlog_recover_item	*item)
1716 {
1717 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1718 	struct list_head	*bucket;
1719 	struct xfs_buf_cancel	*bcp;
1720 
1721 	/*
1722 	 * If this isn't a cancel buffer item, then just return.
1723 	 */
1724 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1725 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1726 		return 0;
1727 	}
1728 
1729 	/*
1730 	 * Insert an xfs_buf_cancel record into the hash table of them.
1731 	 * If there is already an identical record, bump its reference count.
1732 	 */
1733 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1734 	list_for_each_entry(bcp, bucket, bc_list) {
1735 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1736 		    bcp->bc_len == buf_f->blf_len) {
1737 			bcp->bc_refcount++;
1738 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1739 			return 0;
1740 		}
1741 	}
1742 
1743 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1744 	bcp->bc_blkno = buf_f->blf_blkno;
1745 	bcp->bc_len = buf_f->blf_len;
1746 	bcp->bc_refcount = 1;
1747 	list_add_tail(&bcp->bc_list, bucket);
1748 
1749 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1750 	return 0;
1751 }
1752 
1753 /*
1754  * Check to see whether the buffer being recovered has a corresponding
1755  * entry in the buffer cancel record table.  If it does then return 1
1756  * so that it will be cancelled, otherwise return 0.  If the buffer is
1757  * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1758  * the refcount on the entry in the table and remove it from the table
1759  * if this is the last reference.
1760  *
1761  * We remove the cancel record from the table when we encounter its
1762  * last occurrence in the log so that if the same buffer is re-used
1763  * again after its last cancellation we actually replay the changes
1764  * made at that point.
1765  */
1766 STATIC int
xlog_check_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,ushort flags)1767 xlog_check_buffer_cancelled(
1768 	struct xlog		*log,
1769 	xfs_daddr_t		blkno,
1770 	uint			len,
1771 	ushort			flags)
1772 {
1773 	struct list_head	*bucket;
1774 	struct xfs_buf_cancel	*bcp;
1775 
1776 	if (log->l_buf_cancel_table == NULL) {
1777 		/*
1778 		 * There is nothing in the table built in pass one,
1779 		 * so this buffer must not be cancelled.
1780 		 */
1781 		ASSERT(!(flags & XFS_BLF_CANCEL));
1782 		return 0;
1783 	}
1784 
1785 	/*
1786 	 * Search for an entry in the  cancel table that matches our buffer.
1787 	 */
1788 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1789 	list_for_each_entry(bcp, bucket, bc_list) {
1790 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1791 			goto found;
1792 	}
1793 
1794 	/*
1795 	 * We didn't find a corresponding entry in the table, so return 0 so
1796 	 * that the buffer is NOT cancelled.
1797 	 */
1798 	ASSERT(!(flags & XFS_BLF_CANCEL));
1799 	return 0;
1800 
1801 found:
1802 	/*
1803 	 * We've go a match, so return 1 so that the recovery of this buffer
1804 	 * is cancelled.  If this buffer is actually a buffer cancel log
1805 	 * item, then decrement the refcount on the one in the table and
1806 	 * remove it if this is the last reference.
1807 	 */
1808 	if (flags & XFS_BLF_CANCEL) {
1809 		if (--bcp->bc_refcount == 0) {
1810 			list_del(&bcp->bc_list);
1811 			kmem_free(bcp);
1812 		}
1813 	}
1814 	return 1;
1815 }
1816 
1817 /*
1818  * Perform recovery for a buffer full of inodes.  In these buffers, the only
1819  * data which should be recovered is that which corresponds to the
1820  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1821  * data for the inodes is always logged through the inodes themselves rather
1822  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1823  *
1824  * The only time when buffers full of inodes are fully recovered is when the
1825  * buffer is full of newly allocated inodes.  In this case the buffer will
1826  * not be marked as an inode buffer and so will be sent to
1827  * xlog_recover_do_reg_buffer() below during recovery.
1828  */
1829 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)1830 xlog_recover_do_inode_buffer(
1831 	struct xfs_mount	*mp,
1832 	xlog_recover_item_t	*item,
1833 	struct xfs_buf		*bp,
1834 	xfs_buf_log_format_t	*buf_f)
1835 {
1836 	int			i;
1837 	int			item_index = 0;
1838 	int			bit = 0;
1839 	int			nbits = 0;
1840 	int			reg_buf_offset = 0;
1841 	int			reg_buf_bytes = 0;
1842 	int			next_unlinked_offset;
1843 	int			inodes_per_buf;
1844 	xfs_agino_t		*logged_nextp;
1845 	xfs_agino_t		*buffer_nextp;
1846 
1847 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1848 
1849 	/*
1850 	 * Post recovery validation only works properly on CRC enabled
1851 	 * filesystems.
1852 	 */
1853 	if (xfs_sb_version_hascrc(&mp->m_sb))
1854 		bp->b_ops = &xfs_inode_buf_ops;
1855 
1856 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1857 	for (i = 0; i < inodes_per_buf; i++) {
1858 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1859 			offsetof(xfs_dinode_t, di_next_unlinked);
1860 
1861 		while (next_unlinked_offset >=
1862 		       (reg_buf_offset + reg_buf_bytes)) {
1863 			/*
1864 			 * The next di_next_unlinked field is beyond
1865 			 * the current logged region.  Find the next
1866 			 * logged region that contains or is beyond
1867 			 * the current di_next_unlinked field.
1868 			 */
1869 			bit += nbits;
1870 			bit = xfs_next_bit(buf_f->blf_data_map,
1871 					   buf_f->blf_map_size, bit);
1872 
1873 			/*
1874 			 * If there are no more logged regions in the
1875 			 * buffer, then we're done.
1876 			 */
1877 			if (bit == -1)
1878 				return 0;
1879 
1880 			nbits = xfs_contig_bits(buf_f->blf_data_map,
1881 						buf_f->blf_map_size, bit);
1882 			ASSERT(nbits > 0);
1883 			reg_buf_offset = bit << XFS_BLF_SHIFT;
1884 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1885 			item_index++;
1886 		}
1887 
1888 		/*
1889 		 * If the current logged region starts after the current
1890 		 * di_next_unlinked field, then move on to the next
1891 		 * di_next_unlinked field.
1892 		 */
1893 		if (next_unlinked_offset < reg_buf_offset)
1894 			continue;
1895 
1896 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1897 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1898 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
1899 							BBTOB(bp->b_io_length));
1900 
1901 		/*
1902 		 * The current logged region contains a copy of the
1903 		 * current di_next_unlinked field.  Extract its value
1904 		 * and copy it to the buffer copy.
1905 		 */
1906 		logged_nextp = item->ri_buf[item_index].i_addr +
1907 				next_unlinked_offset - reg_buf_offset;
1908 		if (unlikely(*logged_nextp == 0)) {
1909 			xfs_alert(mp,
1910 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1911 		"Trying to replay bad (0) inode di_next_unlinked field.",
1912 				item, bp);
1913 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1914 					 XFS_ERRLEVEL_LOW, mp);
1915 			return XFS_ERROR(EFSCORRUPTED);
1916 		}
1917 
1918 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1919 					      next_unlinked_offset);
1920 		*buffer_nextp = *logged_nextp;
1921 
1922 		/*
1923 		 * If necessary, recalculate the CRC in the on-disk inode. We
1924 		 * have to leave the inode in a consistent state for whoever
1925 		 * reads it next....
1926 		 */
1927 		xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1928 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1929 
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Validate the recovered buffer is of the correct type and attach the
1937  * appropriate buffer operations to them for writeback. Magic numbers are in a
1938  * few places:
1939  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
1940  *	the first 32 bits of the buffer (most blocks),
1941  *	inside a struct xfs_da_blkinfo at the start of the buffer.
1942  */
1943 static void
xlog_recovery_validate_buf_type(struct xfs_mount * mp,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)1944 xlog_recovery_validate_buf_type(
1945 	struct xfs_mount	*mp,
1946 	struct xfs_buf		*bp,
1947 	xfs_buf_log_format_t	*buf_f)
1948 {
1949 	struct xfs_da_blkinfo	*info = bp->b_addr;
1950 	__uint32_t		magic32;
1951 	__uint16_t		magic16;
1952 	__uint16_t		magicda;
1953 
1954 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1955 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1956 	magicda = be16_to_cpu(info->magic);
1957 	switch (xfs_blft_from_flags(buf_f)) {
1958 	case XFS_BLFT_BTREE_BUF:
1959 		switch (magic32) {
1960 		case XFS_ABTB_CRC_MAGIC:
1961 		case XFS_ABTC_CRC_MAGIC:
1962 		case XFS_ABTB_MAGIC:
1963 		case XFS_ABTC_MAGIC:
1964 			bp->b_ops = &xfs_allocbt_buf_ops;
1965 			break;
1966 		case XFS_IBT_CRC_MAGIC:
1967 		case XFS_IBT_MAGIC:
1968 			bp->b_ops = &xfs_inobt_buf_ops;
1969 			break;
1970 		case XFS_BMAP_CRC_MAGIC:
1971 		case XFS_BMAP_MAGIC:
1972 			bp->b_ops = &xfs_bmbt_buf_ops;
1973 			break;
1974 		default:
1975 			xfs_warn(mp, "Bad btree block magic!");
1976 			ASSERT(0);
1977 			break;
1978 		}
1979 		break;
1980 	case XFS_BLFT_AGF_BUF:
1981 		if (magic32 != XFS_AGF_MAGIC) {
1982 			xfs_warn(mp, "Bad AGF block magic!");
1983 			ASSERT(0);
1984 			break;
1985 		}
1986 		bp->b_ops = &xfs_agf_buf_ops;
1987 		break;
1988 	case XFS_BLFT_AGFL_BUF:
1989 		if (!xfs_sb_version_hascrc(&mp->m_sb))
1990 			break;
1991 		if (magic32 != XFS_AGFL_MAGIC) {
1992 			xfs_warn(mp, "Bad AGFL block magic!");
1993 			ASSERT(0);
1994 			break;
1995 		}
1996 		bp->b_ops = &xfs_agfl_buf_ops;
1997 		break;
1998 	case XFS_BLFT_AGI_BUF:
1999 		if (magic32 != XFS_AGI_MAGIC) {
2000 			xfs_warn(mp, "Bad AGI block magic!");
2001 			ASSERT(0);
2002 			break;
2003 		}
2004 		bp->b_ops = &xfs_agi_buf_ops;
2005 		break;
2006 	case XFS_BLFT_UDQUOT_BUF:
2007 	case XFS_BLFT_PDQUOT_BUF:
2008 	case XFS_BLFT_GDQUOT_BUF:
2009 #ifdef CONFIG_XFS_QUOTA
2010 		if (magic16 != XFS_DQUOT_MAGIC) {
2011 			xfs_warn(mp, "Bad DQUOT block magic!");
2012 			ASSERT(0);
2013 			break;
2014 		}
2015 		bp->b_ops = &xfs_dquot_buf_ops;
2016 #else
2017 		xfs_alert(mp,
2018 	"Trying to recover dquots without QUOTA support built in!");
2019 		ASSERT(0);
2020 #endif
2021 		break;
2022 	case XFS_BLFT_DINO_BUF:
2023 		/*
2024 		 * we get here with inode allocation buffers, not buffers that
2025 		 * track unlinked list changes.
2026 		 */
2027 		if (magic16 != XFS_DINODE_MAGIC) {
2028 			xfs_warn(mp, "Bad INODE block magic!");
2029 			ASSERT(0);
2030 			break;
2031 		}
2032 		bp->b_ops = &xfs_inode_buf_ops;
2033 		break;
2034 	case XFS_BLFT_SYMLINK_BUF:
2035 		if (magic32 != XFS_SYMLINK_MAGIC) {
2036 			xfs_warn(mp, "Bad symlink block magic!");
2037 			ASSERT(0);
2038 			break;
2039 		}
2040 		bp->b_ops = &xfs_symlink_buf_ops;
2041 		break;
2042 	case XFS_BLFT_DIR_BLOCK_BUF:
2043 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2044 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2045 			xfs_warn(mp, "Bad dir block magic!");
2046 			ASSERT(0);
2047 			break;
2048 		}
2049 		bp->b_ops = &xfs_dir3_block_buf_ops;
2050 		break;
2051 	case XFS_BLFT_DIR_DATA_BUF:
2052 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2053 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2054 			xfs_warn(mp, "Bad dir data magic!");
2055 			ASSERT(0);
2056 			break;
2057 		}
2058 		bp->b_ops = &xfs_dir3_data_buf_ops;
2059 		break;
2060 	case XFS_BLFT_DIR_FREE_BUF:
2061 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2062 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2063 			xfs_warn(mp, "Bad dir3 free magic!");
2064 			ASSERT(0);
2065 			break;
2066 		}
2067 		bp->b_ops = &xfs_dir3_free_buf_ops;
2068 		break;
2069 	case XFS_BLFT_DIR_LEAF1_BUF:
2070 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2071 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2072 			xfs_warn(mp, "Bad dir leaf1 magic!");
2073 			ASSERT(0);
2074 			break;
2075 		}
2076 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2077 		break;
2078 	case XFS_BLFT_DIR_LEAFN_BUF:
2079 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2080 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2081 			xfs_warn(mp, "Bad dir leafn magic!");
2082 			ASSERT(0);
2083 			break;
2084 		}
2085 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2086 		break;
2087 	case XFS_BLFT_DA_NODE_BUF:
2088 		if (magicda != XFS_DA_NODE_MAGIC &&
2089 		    magicda != XFS_DA3_NODE_MAGIC) {
2090 			xfs_warn(mp, "Bad da node magic!");
2091 			ASSERT(0);
2092 			break;
2093 		}
2094 		bp->b_ops = &xfs_da3_node_buf_ops;
2095 		break;
2096 	case XFS_BLFT_ATTR_LEAF_BUF:
2097 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2098 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2099 			xfs_warn(mp, "Bad attr leaf magic!");
2100 			ASSERT(0);
2101 			break;
2102 		}
2103 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2104 		break;
2105 	case XFS_BLFT_ATTR_RMT_BUF:
2106 		if (!xfs_sb_version_hascrc(&mp->m_sb))
2107 			break;
2108 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2109 			xfs_warn(mp, "Bad attr remote magic!");
2110 			ASSERT(0);
2111 			break;
2112 		}
2113 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2114 		break;
2115 	case XFS_BLFT_SB_BUF:
2116 		if (magic32 != XFS_SB_MAGIC) {
2117 			xfs_warn(mp, "Bad SB block magic!");
2118 			ASSERT(0);
2119 			break;
2120 		}
2121 		bp->b_ops = &xfs_sb_buf_ops;
2122 		break;
2123 	default:
2124 		xfs_warn(mp, "Unknown buffer type %d!",
2125 			 xfs_blft_from_flags(buf_f));
2126 		break;
2127 	}
2128 }
2129 
2130 /*
2131  * Perform a 'normal' buffer recovery.  Each logged region of the
2132  * buffer should be copied over the corresponding region in the
2133  * given buffer.  The bitmap in the buf log format structure indicates
2134  * where to place the logged data.
2135  */
2136 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)2137 xlog_recover_do_reg_buffer(
2138 	struct xfs_mount	*mp,
2139 	xlog_recover_item_t	*item,
2140 	struct xfs_buf		*bp,
2141 	xfs_buf_log_format_t	*buf_f)
2142 {
2143 	int			i;
2144 	int			bit;
2145 	int			nbits;
2146 	int                     error;
2147 
2148 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2149 
2150 	bit = 0;
2151 	i = 1;  /* 0 is the buf format structure */
2152 	while (1) {
2153 		bit = xfs_next_bit(buf_f->blf_data_map,
2154 				   buf_f->blf_map_size, bit);
2155 		if (bit == -1)
2156 			break;
2157 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2158 					buf_f->blf_map_size, bit);
2159 		ASSERT(nbits > 0);
2160 		ASSERT(item->ri_buf[i].i_addr != NULL);
2161 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2162 		ASSERT(BBTOB(bp->b_io_length) >=
2163 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2164 
2165 		/*
2166 		 * The dirty regions logged in the buffer, even though
2167 		 * contiguous, may span multiple chunks. This is because the
2168 		 * dirty region may span a physical page boundary in a buffer
2169 		 * and hence be split into two separate vectors for writing into
2170 		 * the log. Hence we need to trim nbits back to the length of
2171 		 * the current region being copied out of the log.
2172 		 */
2173 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2174 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2175 
2176 		/*
2177 		 * Do a sanity check if this is a dquot buffer. Just checking
2178 		 * the first dquot in the buffer should do. XXXThis is
2179 		 * probably a good thing to do for other buf types also.
2180 		 */
2181 		error = 0;
2182 		if (buf_f->blf_flags &
2183 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2184 			if (item->ri_buf[i].i_addr == NULL) {
2185 				xfs_alert(mp,
2186 					"XFS: NULL dquot in %s.", __func__);
2187 				goto next;
2188 			}
2189 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2190 				xfs_alert(mp,
2191 					"XFS: dquot too small (%d) in %s.",
2192 					item->ri_buf[i].i_len, __func__);
2193 				goto next;
2194 			}
2195 			error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2196 					       -1, 0, XFS_QMOPT_DOWARN,
2197 					       "dquot_buf_recover");
2198 			if (error)
2199 				goto next;
2200 		}
2201 
2202 		memcpy(xfs_buf_offset(bp,
2203 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2204 			item->ri_buf[i].i_addr,		/* source */
2205 			nbits<<XFS_BLF_SHIFT);		/* length */
2206  next:
2207 		i++;
2208 		bit += nbits;
2209 	}
2210 
2211 	/* Shouldn't be any more regions */
2212 	ASSERT(i == item->ri_total);
2213 
2214 	/*
2215 	 * We can only do post recovery validation on items on CRC enabled
2216 	 * fielsystems as we need to know when the buffer was written to be able
2217 	 * to determine if we should have replayed the item. If we replay old
2218 	 * metadata over a newer buffer, then it will enter a temporarily
2219 	 * inconsistent state resulting in verification failures. Hence for now
2220 	 * just avoid the verification stage for non-crc filesystems
2221 	 */
2222 	if (xfs_sb_version_hascrc(&mp->m_sb))
2223 		xlog_recovery_validate_buf_type(mp, bp, buf_f);
2224 }
2225 
2226 /*
2227  * Do some primitive error checking on ondisk dquot data structures.
2228  */
2229 int
xfs_qm_dqcheck(struct xfs_mount * mp,xfs_disk_dquot_t * ddq,xfs_dqid_t id,uint type,uint flags,char * str)2230 xfs_qm_dqcheck(
2231 	struct xfs_mount *mp,
2232 	xfs_disk_dquot_t *ddq,
2233 	xfs_dqid_t	 id,
2234 	uint		 type,	  /* used only when IO_dorepair is true */
2235 	uint		 flags,
2236 	char		 *str)
2237 {
2238 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
2239 	int		errs = 0;
2240 
2241 	/*
2242 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
2243 	 * 1. If we crash while deleting the quotainode(s), and those blks got
2244 	 *    used for user data. This is because we take the path of regular
2245 	 *    file deletion; however, the size field of quotainodes is never
2246 	 *    updated, so all the tricks that we play in itruncate_finish
2247 	 *    don't quite matter.
2248 	 *
2249 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2250 	 *    But the allocation will be replayed so we'll end up with an
2251 	 *    uninitialized quota block.
2252 	 *
2253 	 * This is all fine; things are still consistent, and we haven't lost
2254 	 * any quota information. Just don't complain about bad dquot blks.
2255 	 */
2256 	if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2257 		if (flags & XFS_QMOPT_DOWARN)
2258 			xfs_alert(mp,
2259 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2260 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2261 		errs++;
2262 	}
2263 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2264 		if (flags & XFS_QMOPT_DOWARN)
2265 			xfs_alert(mp,
2266 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2267 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2268 		errs++;
2269 	}
2270 
2271 	if (ddq->d_flags != XFS_DQ_USER &&
2272 	    ddq->d_flags != XFS_DQ_PROJ &&
2273 	    ddq->d_flags != XFS_DQ_GROUP) {
2274 		if (flags & XFS_QMOPT_DOWARN)
2275 			xfs_alert(mp,
2276 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2277 			str, id, ddq->d_flags);
2278 		errs++;
2279 	}
2280 
2281 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2282 		if (flags & XFS_QMOPT_DOWARN)
2283 			xfs_alert(mp,
2284 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2285 			"0x%x expected, found id 0x%x",
2286 			str, ddq, id, be32_to_cpu(ddq->d_id));
2287 		errs++;
2288 	}
2289 
2290 	if (!errs && ddq->d_id) {
2291 		if (ddq->d_blk_softlimit &&
2292 		    be64_to_cpu(ddq->d_bcount) >
2293 				be64_to_cpu(ddq->d_blk_softlimit)) {
2294 			if (!ddq->d_btimer) {
2295 				if (flags & XFS_QMOPT_DOWARN)
2296 					xfs_alert(mp,
2297 			"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2298 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2299 				errs++;
2300 			}
2301 		}
2302 		if (ddq->d_ino_softlimit &&
2303 		    be64_to_cpu(ddq->d_icount) >
2304 				be64_to_cpu(ddq->d_ino_softlimit)) {
2305 			if (!ddq->d_itimer) {
2306 				if (flags & XFS_QMOPT_DOWARN)
2307 					xfs_alert(mp,
2308 			"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2309 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2310 				errs++;
2311 			}
2312 		}
2313 		if (ddq->d_rtb_softlimit &&
2314 		    be64_to_cpu(ddq->d_rtbcount) >
2315 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2316 			if (!ddq->d_rtbtimer) {
2317 				if (flags & XFS_QMOPT_DOWARN)
2318 					xfs_alert(mp,
2319 			"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2320 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2321 				errs++;
2322 			}
2323 		}
2324 	}
2325 
2326 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2327 		return errs;
2328 
2329 	if (flags & XFS_QMOPT_DOWARN)
2330 		xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2331 
2332 	/*
2333 	 * Typically, a repair is only requested by quotacheck.
2334 	 */
2335 	ASSERT(id != -1);
2336 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2337 	memset(d, 0, sizeof(xfs_dqblk_t));
2338 
2339 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2340 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2341 	d->dd_diskdq.d_flags = type;
2342 	d->dd_diskdq.d_id = cpu_to_be32(id);
2343 
2344 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2345 		uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2346 		xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2347 				 XFS_DQUOT_CRC_OFF);
2348 	}
2349 
2350 	return errs;
2351 }
2352 
2353 /*
2354  * Perform a dquot buffer recovery.
2355  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2356  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2357  * Else, treat it as a regular buffer and do recovery.
2358  */
2359 STATIC void
xlog_recover_do_dquot_buffer(struct xfs_mount * mp,struct xlog * log,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)2360 xlog_recover_do_dquot_buffer(
2361 	struct xfs_mount		*mp,
2362 	struct xlog			*log,
2363 	struct xlog_recover_item	*item,
2364 	struct xfs_buf			*bp,
2365 	struct xfs_buf_log_format	*buf_f)
2366 {
2367 	uint			type;
2368 
2369 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2370 
2371 	/*
2372 	 * Filesystems are required to send in quota flags at mount time.
2373 	 */
2374 	if (mp->m_qflags == 0) {
2375 		return;
2376 	}
2377 
2378 	type = 0;
2379 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2380 		type |= XFS_DQ_USER;
2381 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2382 		type |= XFS_DQ_PROJ;
2383 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2384 		type |= XFS_DQ_GROUP;
2385 	/*
2386 	 * This type of quotas was turned off, so ignore this buffer
2387 	 */
2388 	if (log->l_quotaoffs_flag & type)
2389 		return;
2390 
2391 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2392 }
2393 
2394 /*
2395  * This routine replays a modification made to a buffer at runtime.
2396  * There are actually two types of buffer, regular and inode, which
2397  * are handled differently.  Inode buffers are handled differently
2398  * in that we only recover a specific set of data from them, namely
2399  * the inode di_next_unlinked fields.  This is because all other inode
2400  * data is actually logged via inode records and any data we replay
2401  * here which overlaps that may be stale.
2402  *
2403  * When meta-data buffers are freed at run time we log a buffer item
2404  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2405  * of the buffer in the log should not be replayed at recovery time.
2406  * This is so that if the blocks covered by the buffer are reused for
2407  * file data before we crash we don't end up replaying old, freed
2408  * meta-data into a user's file.
2409  *
2410  * To handle the cancellation of buffer log items, we make two passes
2411  * over the log during recovery.  During the first we build a table of
2412  * those buffers which have been cancelled, and during the second we
2413  * only replay those buffers which do not have corresponding cancel
2414  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2415  * for more details on the implementation of the table of cancel records.
2416  */
2417 STATIC int
xlog_recover_buffer_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item)2418 xlog_recover_buffer_pass2(
2419 	struct xlog			*log,
2420 	struct list_head		*buffer_list,
2421 	struct xlog_recover_item	*item)
2422 {
2423 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2424 	xfs_mount_t		*mp = log->l_mp;
2425 	xfs_buf_t		*bp;
2426 	int			error;
2427 	uint			buf_flags;
2428 
2429 	/*
2430 	 * In this pass we only want to recover all the buffers which have
2431 	 * not been cancelled and are not cancellation buffers themselves.
2432 	 */
2433 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2434 			buf_f->blf_len, buf_f->blf_flags)) {
2435 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2436 		return 0;
2437 	}
2438 
2439 	trace_xfs_log_recover_buf_recover(log, buf_f);
2440 
2441 	buf_flags = 0;
2442 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2443 		buf_flags |= XBF_UNMAPPED;
2444 
2445 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2446 			  buf_flags, NULL);
2447 	if (!bp)
2448 		return XFS_ERROR(ENOMEM);
2449 	error = bp->b_error;
2450 	if (error) {
2451 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2452 		xfs_buf_relse(bp);
2453 		return error;
2454 	}
2455 
2456 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2457 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2458 	} else if (buf_f->blf_flags &
2459 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2460 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2461 	} else {
2462 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2463 	}
2464 	if (error)
2465 		return XFS_ERROR(error);
2466 
2467 	/*
2468 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2469 	 * slower when taking into account all the buffers to be flushed.
2470 	 *
2471 	 * Also make sure that only inode buffers with good sizes stay in
2472 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2473 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2474 	 * buffers in the log can be a different size if the log was generated
2475 	 * by an older kernel using unclustered inode buffers or a newer kernel
2476 	 * running with a different inode cluster size.  Regardless, if the
2477 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2478 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2479 	 * the buffer out of the buffer cache so that the buffer won't
2480 	 * overlap with future reads of those inodes.
2481 	 */
2482 	if (XFS_DINODE_MAGIC ==
2483 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2484 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2485 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2486 		xfs_buf_stale(bp);
2487 		error = xfs_bwrite(bp);
2488 	} else {
2489 		ASSERT(bp->b_target->bt_mount == mp);
2490 		bp->b_iodone = xlog_recover_iodone;
2491 		xfs_buf_delwri_queue(bp, buffer_list);
2492 	}
2493 
2494 	xfs_buf_relse(bp);
2495 	return error;
2496 }
2497 
2498 STATIC int
xlog_recover_inode_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item)2499 xlog_recover_inode_pass2(
2500 	struct xlog			*log,
2501 	struct list_head		*buffer_list,
2502 	struct xlog_recover_item	*item)
2503 {
2504 	xfs_inode_log_format_t	*in_f;
2505 	xfs_mount_t		*mp = log->l_mp;
2506 	xfs_buf_t		*bp;
2507 	xfs_dinode_t		*dip;
2508 	int			len;
2509 	xfs_caddr_t		src;
2510 	xfs_caddr_t		dest;
2511 	int			error;
2512 	int			attr_index;
2513 	uint			fields;
2514 	xfs_icdinode_t		*dicp;
2515 	uint			isize;
2516 	int			need_free = 0;
2517 
2518 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2519 		in_f = item->ri_buf[0].i_addr;
2520 	} else {
2521 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2522 		need_free = 1;
2523 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2524 		if (error)
2525 			goto error;
2526 	}
2527 
2528 	/*
2529 	 * Inode buffers can be freed, look out for it,
2530 	 * and do not replay the inode.
2531 	 */
2532 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2533 					in_f->ilf_len, 0)) {
2534 		error = 0;
2535 		trace_xfs_log_recover_inode_cancel(log, in_f);
2536 		goto error;
2537 	}
2538 	trace_xfs_log_recover_inode_recover(log, in_f);
2539 
2540 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2541 			  &xfs_inode_buf_ops);
2542 	if (!bp) {
2543 		error = ENOMEM;
2544 		goto error;
2545 	}
2546 	error = bp->b_error;
2547 	if (error) {
2548 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2549 		xfs_buf_relse(bp);
2550 		goto error;
2551 	}
2552 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2553 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2554 
2555 	/*
2556 	 * Make sure the place we're flushing out to really looks
2557 	 * like an inode!
2558 	 */
2559 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2560 		xfs_buf_relse(bp);
2561 		xfs_alert(mp,
2562 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2563 			__func__, dip, bp, in_f->ilf_ino);
2564 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2565 				 XFS_ERRLEVEL_LOW, mp);
2566 		error = EFSCORRUPTED;
2567 		goto error;
2568 	}
2569 	dicp = item->ri_buf[1].i_addr;
2570 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2571 		xfs_buf_relse(bp);
2572 		xfs_alert(mp,
2573 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2574 			__func__, item, in_f->ilf_ino);
2575 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2576 				 XFS_ERRLEVEL_LOW, mp);
2577 		error = EFSCORRUPTED;
2578 		goto error;
2579 	}
2580 
2581 	/* Skip replay when the on disk inode is newer than the log one */
2582 	if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2583 		/*
2584 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2585 		 * than smaller numbers
2586 		 */
2587 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2588 		    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2589 			/* do nothing */
2590 		} else {
2591 			xfs_buf_relse(bp);
2592 			trace_xfs_log_recover_inode_skip(log, in_f);
2593 			error = 0;
2594 			goto error;
2595 		}
2596 	}
2597 	/* Take the opportunity to reset the flush iteration count */
2598 	dicp->di_flushiter = 0;
2599 
2600 	if (unlikely(S_ISREG(dicp->di_mode))) {
2601 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2602 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2603 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2604 					 XFS_ERRLEVEL_LOW, mp, dicp);
2605 			xfs_buf_relse(bp);
2606 			xfs_alert(mp,
2607 		"%s: Bad regular inode log record, rec ptr 0x%p, "
2608 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2609 				__func__, item, dip, bp, in_f->ilf_ino);
2610 			error = EFSCORRUPTED;
2611 			goto error;
2612 		}
2613 	} else if (unlikely(S_ISDIR(dicp->di_mode))) {
2614 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2615 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2616 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2617 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2618 					     XFS_ERRLEVEL_LOW, mp, dicp);
2619 			xfs_buf_relse(bp);
2620 			xfs_alert(mp,
2621 		"%s: Bad dir inode log record, rec ptr 0x%p, "
2622 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2623 				__func__, item, dip, bp, in_f->ilf_ino);
2624 			error = EFSCORRUPTED;
2625 			goto error;
2626 		}
2627 	}
2628 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2629 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2630 				     XFS_ERRLEVEL_LOW, mp, dicp);
2631 		xfs_buf_relse(bp);
2632 		xfs_alert(mp,
2633 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2634 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2635 			__func__, item, dip, bp, in_f->ilf_ino,
2636 			dicp->di_nextents + dicp->di_anextents,
2637 			dicp->di_nblocks);
2638 		error = EFSCORRUPTED;
2639 		goto error;
2640 	}
2641 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2642 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2643 				     XFS_ERRLEVEL_LOW, mp, dicp);
2644 		xfs_buf_relse(bp);
2645 		xfs_alert(mp,
2646 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2647 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2648 			item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2649 		error = EFSCORRUPTED;
2650 		goto error;
2651 	}
2652 	isize = xfs_icdinode_size(dicp->di_version);
2653 	if (unlikely(item->ri_buf[1].i_len > isize)) {
2654 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2655 				     XFS_ERRLEVEL_LOW, mp, dicp);
2656 		xfs_buf_relse(bp);
2657 		xfs_alert(mp,
2658 			"%s: Bad inode log record length %d, rec ptr 0x%p",
2659 			__func__, item->ri_buf[1].i_len, item);
2660 		error = EFSCORRUPTED;
2661 		goto error;
2662 	}
2663 
2664 	/* The core is in in-core format */
2665 	xfs_dinode_to_disk(dip, dicp);
2666 
2667 	/* the rest is in on-disk format */
2668 	if (item->ri_buf[1].i_len > isize) {
2669 		memcpy((char *)dip + isize,
2670 			item->ri_buf[1].i_addr + isize,
2671 			item->ri_buf[1].i_len - isize);
2672 	}
2673 
2674 	fields = in_f->ilf_fields;
2675 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2676 	case XFS_ILOG_DEV:
2677 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2678 		break;
2679 	case XFS_ILOG_UUID:
2680 		memcpy(XFS_DFORK_DPTR(dip),
2681 		       &in_f->ilf_u.ilfu_uuid,
2682 		       sizeof(uuid_t));
2683 		break;
2684 	}
2685 
2686 	if (in_f->ilf_size == 2)
2687 		goto write_inode_buffer;
2688 	len = item->ri_buf[2].i_len;
2689 	src = item->ri_buf[2].i_addr;
2690 	ASSERT(in_f->ilf_size <= 4);
2691 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2692 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2693 	       (len == in_f->ilf_dsize));
2694 
2695 	switch (fields & XFS_ILOG_DFORK) {
2696 	case XFS_ILOG_DDATA:
2697 	case XFS_ILOG_DEXT:
2698 		memcpy(XFS_DFORK_DPTR(dip), src, len);
2699 		break;
2700 
2701 	case XFS_ILOG_DBROOT:
2702 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2703 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2704 				 XFS_DFORK_DSIZE(dip, mp));
2705 		break;
2706 
2707 	default:
2708 		/*
2709 		 * There are no data fork flags set.
2710 		 */
2711 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2712 		break;
2713 	}
2714 
2715 	/*
2716 	 * If we logged any attribute data, recover it.  There may or
2717 	 * may not have been any other non-core data logged in this
2718 	 * transaction.
2719 	 */
2720 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2721 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2722 			attr_index = 3;
2723 		} else {
2724 			attr_index = 2;
2725 		}
2726 		len = item->ri_buf[attr_index].i_len;
2727 		src = item->ri_buf[attr_index].i_addr;
2728 		ASSERT(len == in_f->ilf_asize);
2729 
2730 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2731 		case XFS_ILOG_ADATA:
2732 		case XFS_ILOG_AEXT:
2733 			dest = XFS_DFORK_APTR(dip);
2734 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2735 			memcpy(dest, src, len);
2736 			break;
2737 
2738 		case XFS_ILOG_ABROOT:
2739 			dest = XFS_DFORK_APTR(dip);
2740 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2741 					 len, (xfs_bmdr_block_t*)dest,
2742 					 XFS_DFORK_ASIZE(dip, mp));
2743 			break;
2744 
2745 		default:
2746 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2747 			ASSERT(0);
2748 			xfs_buf_relse(bp);
2749 			error = EIO;
2750 			goto error;
2751 		}
2752 	}
2753 
2754 write_inode_buffer:
2755 	/* re-generate the checksum. */
2756 	xfs_dinode_calc_crc(log->l_mp, dip);
2757 
2758 	ASSERT(bp->b_target->bt_mount == mp);
2759 	bp->b_iodone = xlog_recover_iodone;
2760 	xfs_buf_delwri_queue(bp, buffer_list);
2761 	xfs_buf_relse(bp);
2762 error:
2763 	if (need_free)
2764 		kmem_free(in_f);
2765 	return XFS_ERROR(error);
2766 }
2767 
2768 /*
2769  * Recover QUOTAOFF records. We simply make a note of it in the xlog
2770  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2771  * of that type.
2772  */
2773 STATIC int
xlog_recover_quotaoff_pass1(struct xlog * log,struct xlog_recover_item * item)2774 xlog_recover_quotaoff_pass1(
2775 	struct xlog			*log,
2776 	struct xlog_recover_item	*item)
2777 {
2778 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
2779 	ASSERT(qoff_f);
2780 
2781 	/*
2782 	 * The logitem format's flag tells us if this was user quotaoff,
2783 	 * group/project quotaoff or both.
2784 	 */
2785 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2786 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2787 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2788 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2789 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2790 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2791 
2792 	return (0);
2793 }
2794 
2795 /*
2796  * Recover a dquot record
2797  */
2798 STATIC int
xlog_recover_dquot_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item)2799 xlog_recover_dquot_pass2(
2800 	struct xlog			*log,
2801 	struct list_head		*buffer_list,
2802 	struct xlog_recover_item	*item)
2803 {
2804 	xfs_mount_t		*mp = log->l_mp;
2805 	xfs_buf_t		*bp;
2806 	struct xfs_disk_dquot	*ddq, *recddq;
2807 	int			error;
2808 	xfs_dq_logformat_t	*dq_f;
2809 	uint			type;
2810 
2811 
2812 	/*
2813 	 * Filesystems are required to send in quota flags at mount time.
2814 	 */
2815 	if (mp->m_qflags == 0)
2816 		return (0);
2817 
2818 	recddq = item->ri_buf[1].i_addr;
2819 	if (recddq == NULL) {
2820 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2821 		return XFS_ERROR(EIO);
2822 	}
2823 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2824 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2825 			item->ri_buf[1].i_len, __func__);
2826 		return XFS_ERROR(EIO);
2827 	}
2828 
2829 	/*
2830 	 * This type of quotas was turned off, so ignore this record.
2831 	 */
2832 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2833 	ASSERT(type);
2834 	if (log->l_quotaoffs_flag & type)
2835 		return (0);
2836 
2837 	/*
2838 	 * At this point we know that quota was _not_ turned off.
2839 	 * Since the mount flags are not indicating to us otherwise, this
2840 	 * must mean that quota is on, and the dquot needs to be replayed.
2841 	 * Remember that we may not have fully recovered the superblock yet,
2842 	 * so we can't do the usual trick of looking at the SB quota bits.
2843 	 *
2844 	 * The other possibility, of course, is that the quota subsystem was
2845 	 * removed since the last mount - ENOSYS.
2846 	 */
2847 	dq_f = item->ri_buf[0].i_addr;
2848 	ASSERT(dq_f);
2849 	error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2850 			   "xlog_recover_dquot_pass2 (log copy)");
2851 	if (error)
2852 		return XFS_ERROR(EIO);
2853 	ASSERT(dq_f->qlf_len == 1);
2854 
2855 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2856 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2857 				   NULL);
2858 	if (error)
2859 		return error;
2860 
2861 	ASSERT(bp);
2862 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2863 
2864 	/*
2865 	 * At least the magic num portion should be on disk because this
2866 	 * was among a chunk of dquots created earlier, and we did some
2867 	 * minimal initialization then.
2868 	 */
2869 	error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2870 			   "xlog_recover_dquot_pass2");
2871 	if (error) {
2872 		xfs_buf_relse(bp);
2873 		return XFS_ERROR(EIO);
2874 	}
2875 
2876 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2877 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2878 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2879 				 XFS_DQUOT_CRC_OFF);
2880 	}
2881 
2882 	ASSERT(dq_f->qlf_size == 2);
2883 	ASSERT(bp->b_target->bt_mount == mp);
2884 	bp->b_iodone = xlog_recover_iodone;
2885 	xfs_buf_delwri_queue(bp, buffer_list);
2886 	xfs_buf_relse(bp);
2887 
2888 	return (0);
2889 }
2890 
2891 /*
2892  * This routine is called to create an in-core extent free intent
2893  * item from the efi format structure which was logged on disk.
2894  * It allocates an in-core efi, copies the extents from the format
2895  * structure into it, and adds the efi to the AIL with the given
2896  * LSN.
2897  */
2898 STATIC int
xlog_recover_efi_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)2899 xlog_recover_efi_pass2(
2900 	struct xlog			*log,
2901 	struct xlog_recover_item	*item,
2902 	xfs_lsn_t			lsn)
2903 {
2904 	int			error;
2905 	xfs_mount_t		*mp = log->l_mp;
2906 	xfs_efi_log_item_t	*efip;
2907 	xfs_efi_log_format_t	*efi_formatp;
2908 
2909 	efi_formatp = item->ri_buf[0].i_addr;
2910 
2911 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2912 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2913 					 &(efip->efi_format)))) {
2914 		xfs_efi_item_free(efip);
2915 		return error;
2916 	}
2917 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2918 
2919 	spin_lock(&log->l_ailp->xa_lock);
2920 	/*
2921 	 * xfs_trans_ail_update() drops the AIL lock.
2922 	 */
2923 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2924 	return 0;
2925 }
2926 
2927 
2928 /*
2929  * This routine is called when an efd format structure is found in
2930  * a committed transaction in the log.  It's purpose is to cancel
2931  * the corresponding efi if it was still in the log.  To do this
2932  * it searches the AIL for the efi with an id equal to that in the
2933  * efd format structure.  If we find it, we remove the efi from the
2934  * AIL and free it.
2935  */
2936 STATIC int
xlog_recover_efd_pass2(struct xlog * log,struct xlog_recover_item * item)2937 xlog_recover_efd_pass2(
2938 	struct xlog			*log,
2939 	struct xlog_recover_item	*item)
2940 {
2941 	xfs_efd_log_format_t	*efd_formatp;
2942 	xfs_efi_log_item_t	*efip = NULL;
2943 	xfs_log_item_t		*lip;
2944 	__uint64_t		efi_id;
2945 	struct xfs_ail_cursor	cur;
2946 	struct xfs_ail		*ailp = log->l_ailp;
2947 
2948 	efd_formatp = item->ri_buf[0].i_addr;
2949 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2950 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2951 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2952 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2953 	efi_id = efd_formatp->efd_efi_id;
2954 
2955 	/*
2956 	 * Search for the efi with the id in the efd format structure
2957 	 * in the AIL.
2958 	 */
2959 	spin_lock(&ailp->xa_lock);
2960 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2961 	while (lip != NULL) {
2962 		if (lip->li_type == XFS_LI_EFI) {
2963 			efip = (xfs_efi_log_item_t *)lip;
2964 			if (efip->efi_format.efi_id == efi_id) {
2965 				/*
2966 				 * xfs_trans_ail_delete() drops the
2967 				 * AIL lock.
2968 				 */
2969 				xfs_trans_ail_delete(ailp, lip,
2970 						     SHUTDOWN_CORRUPT_INCORE);
2971 				xfs_efi_item_free(efip);
2972 				spin_lock(&ailp->xa_lock);
2973 				break;
2974 			}
2975 		}
2976 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2977 	}
2978 	xfs_trans_ail_cursor_done(ailp, &cur);
2979 	spin_unlock(&ailp->xa_lock);
2980 
2981 	return 0;
2982 }
2983 
2984 /*
2985  * Free up any resources allocated by the transaction
2986  *
2987  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2988  */
2989 STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)2990 xlog_recover_free_trans(
2991 	struct xlog_recover	*trans)
2992 {
2993 	xlog_recover_item_t	*item, *n;
2994 	int			i;
2995 
2996 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2997 		/* Free the regions in the item. */
2998 		list_del(&item->ri_list);
2999 		for (i = 0; i < item->ri_cnt; i++)
3000 			kmem_free(item->ri_buf[i].i_addr);
3001 		/* Free the item itself */
3002 		kmem_free(item->ri_buf);
3003 		kmem_free(item);
3004 	}
3005 	/* Free the transaction recover structure */
3006 	kmem_free(trans);
3007 }
3008 
3009 STATIC int
xlog_recover_commit_pass1(struct xlog * log,struct xlog_recover * trans,struct xlog_recover_item * item)3010 xlog_recover_commit_pass1(
3011 	struct xlog			*log,
3012 	struct xlog_recover		*trans,
3013 	struct xlog_recover_item	*item)
3014 {
3015 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3016 
3017 	switch (ITEM_TYPE(item)) {
3018 	case XFS_LI_BUF:
3019 		return xlog_recover_buffer_pass1(log, item);
3020 	case XFS_LI_QUOTAOFF:
3021 		return xlog_recover_quotaoff_pass1(log, item);
3022 	case XFS_LI_INODE:
3023 	case XFS_LI_EFI:
3024 	case XFS_LI_EFD:
3025 	case XFS_LI_DQUOT:
3026 		/* nothing to do in pass 1 */
3027 		return 0;
3028 	default:
3029 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3030 			__func__, ITEM_TYPE(item));
3031 		ASSERT(0);
3032 		return XFS_ERROR(EIO);
3033 	}
3034 }
3035 
3036 STATIC int
xlog_recover_commit_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct xlog_recover_item * item)3037 xlog_recover_commit_pass2(
3038 	struct xlog			*log,
3039 	struct xlog_recover		*trans,
3040 	struct list_head		*buffer_list,
3041 	struct xlog_recover_item	*item)
3042 {
3043 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3044 
3045 	switch (ITEM_TYPE(item)) {
3046 	case XFS_LI_BUF:
3047 		return xlog_recover_buffer_pass2(log, buffer_list, item);
3048 	case XFS_LI_INODE:
3049 		return xlog_recover_inode_pass2(log, buffer_list, item);
3050 	case XFS_LI_EFI:
3051 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3052 	case XFS_LI_EFD:
3053 		return xlog_recover_efd_pass2(log, item);
3054 	case XFS_LI_DQUOT:
3055 		return xlog_recover_dquot_pass2(log, buffer_list, item);
3056 	case XFS_LI_QUOTAOFF:
3057 		/* nothing to do in pass2 */
3058 		return 0;
3059 	default:
3060 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3061 			__func__, ITEM_TYPE(item));
3062 		ASSERT(0);
3063 		return XFS_ERROR(EIO);
3064 	}
3065 }
3066 
3067 /*
3068  * Perform the transaction.
3069  *
3070  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
3071  * EFIs and EFDs get queued up by adding entries into the AIL for them.
3072  */
3073 STATIC int
xlog_recover_commit_trans(struct xlog * log,struct xlog_recover * trans,int pass)3074 xlog_recover_commit_trans(
3075 	struct xlog		*log,
3076 	struct xlog_recover	*trans,
3077 	int			pass)
3078 {
3079 	int			error = 0, error2;
3080 	xlog_recover_item_t	*item;
3081 	LIST_HEAD		(buffer_list);
3082 
3083 	hlist_del(&trans->r_list);
3084 
3085 	error = xlog_recover_reorder_trans(log, trans, pass);
3086 	if (error)
3087 		return error;
3088 
3089 	list_for_each_entry(item, &trans->r_itemq, ri_list) {
3090 		switch (pass) {
3091 		case XLOG_RECOVER_PASS1:
3092 			error = xlog_recover_commit_pass1(log, trans, item);
3093 			break;
3094 		case XLOG_RECOVER_PASS2:
3095 			error = xlog_recover_commit_pass2(log, trans,
3096 							  &buffer_list, item);
3097 			break;
3098 		default:
3099 			ASSERT(0);
3100 		}
3101 
3102 		if (error)
3103 			goto out;
3104 	}
3105 
3106 	xlog_recover_free_trans(trans);
3107 
3108 out:
3109 	error2 = xfs_buf_delwri_submit(&buffer_list);
3110 	return error ? error : error2;
3111 }
3112 
3113 STATIC int
xlog_recover_unmount_trans(struct xlog * log,struct xlog_recover * trans)3114 xlog_recover_unmount_trans(
3115 	struct xlog		*log,
3116 	struct xlog_recover	*trans)
3117 {
3118 	/* Do nothing now */
3119 	xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3120 	return 0;
3121 }
3122 
3123 /*
3124  * There are two valid states of the r_state field.  0 indicates that the
3125  * transaction structure is in a normal state.  We have either seen the
3126  * start of the transaction or the last operation we added was not a partial
3127  * operation.  If the last operation we added to the transaction was a
3128  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3129  *
3130  * NOTE: skip LRs with 0 data length.
3131  */
3132 STATIC int
xlog_recover_process_data(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,xfs_caddr_t dp,int pass)3133 xlog_recover_process_data(
3134 	struct xlog		*log,
3135 	struct hlist_head	rhash[],
3136 	struct xlog_rec_header	*rhead,
3137 	xfs_caddr_t		dp,
3138 	int			pass)
3139 {
3140 	xfs_caddr_t		lp;
3141 	int			num_logops;
3142 	xlog_op_header_t	*ohead;
3143 	xlog_recover_t		*trans;
3144 	xlog_tid_t		tid;
3145 	int			error;
3146 	unsigned long		hash;
3147 	uint			flags;
3148 
3149 	lp = dp + be32_to_cpu(rhead->h_len);
3150 	num_logops = be32_to_cpu(rhead->h_num_logops);
3151 
3152 	/* check the log format matches our own - else we can't recover */
3153 	if (xlog_header_check_recover(log->l_mp, rhead))
3154 		return (XFS_ERROR(EIO));
3155 
3156 	while ((dp < lp) && num_logops) {
3157 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3158 		ohead = (xlog_op_header_t *)dp;
3159 		dp += sizeof(xlog_op_header_t);
3160 		if (ohead->oh_clientid != XFS_TRANSACTION &&
3161 		    ohead->oh_clientid != XFS_LOG) {
3162 			xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3163 					__func__, ohead->oh_clientid);
3164 			ASSERT(0);
3165 			return (XFS_ERROR(EIO));
3166 		}
3167 		tid = be32_to_cpu(ohead->oh_tid);
3168 		hash = XLOG_RHASH(tid);
3169 		trans = xlog_recover_find_tid(&rhash[hash], tid);
3170 		if (trans == NULL) {		   /* not found; add new tid */
3171 			if (ohead->oh_flags & XLOG_START_TRANS)
3172 				xlog_recover_new_tid(&rhash[hash], tid,
3173 					be64_to_cpu(rhead->h_lsn));
3174 		} else {
3175 			if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3176 				xfs_warn(log->l_mp, "%s: bad length 0x%x",
3177 					__func__, be32_to_cpu(ohead->oh_len));
3178 				WARN_ON(1);
3179 				return (XFS_ERROR(EIO));
3180 			}
3181 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
3182 			if (flags & XLOG_WAS_CONT_TRANS)
3183 				flags &= ~XLOG_CONTINUE_TRANS;
3184 			switch (flags) {
3185 			case XLOG_COMMIT_TRANS:
3186 				error = xlog_recover_commit_trans(log,
3187 								trans, pass);
3188 				break;
3189 			case XLOG_UNMOUNT_TRANS:
3190 				error = xlog_recover_unmount_trans(log, trans);
3191 				break;
3192 			case XLOG_WAS_CONT_TRANS:
3193 				error = xlog_recover_add_to_cont_trans(log,
3194 						trans, dp,
3195 						be32_to_cpu(ohead->oh_len));
3196 				break;
3197 			case XLOG_START_TRANS:
3198 				xfs_warn(log->l_mp, "%s: bad transaction",
3199 					__func__);
3200 				ASSERT(0);
3201 				error = XFS_ERROR(EIO);
3202 				break;
3203 			case 0:
3204 			case XLOG_CONTINUE_TRANS:
3205 				error = xlog_recover_add_to_trans(log, trans,
3206 						dp, be32_to_cpu(ohead->oh_len));
3207 				break;
3208 			default:
3209 				xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3210 					__func__, flags);
3211 				ASSERT(0);
3212 				error = XFS_ERROR(EIO);
3213 				break;
3214 			}
3215 			if (error)
3216 				return error;
3217 		}
3218 		dp += be32_to_cpu(ohead->oh_len);
3219 		num_logops--;
3220 	}
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Process an extent free intent item that was recovered from
3226  * the log.  We need to free the extents that it describes.
3227  */
3228 STATIC int
xlog_recover_process_efi(xfs_mount_t * mp,xfs_efi_log_item_t * efip)3229 xlog_recover_process_efi(
3230 	xfs_mount_t		*mp,
3231 	xfs_efi_log_item_t	*efip)
3232 {
3233 	xfs_efd_log_item_t	*efdp;
3234 	xfs_trans_t		*tp;
3235 	int			i;
3236 	int			error = 0;
3237 	xfs_extent_t		*extp;
3238 	xfs_fsblock_t		startblock_fsb;
3239 
3240 	ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3241 
3242 	/*
3243 	 * First check the validity of the extents described by the
3244 	 * EFI.  If any are bad, then assume that all are bad and
3245 	 * just toss the EFI.
3246 	 */
3247 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3248 		extp = &(efip->efi_format.efi_extents[i]);
3249 		startblock_fsb = XFS_BB_TO_FSB(mp,
3250 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3251 		if ((startblock_fsb == 0) ||
3252 		    (extp->ext_len == 0) ||
3253 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3254 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3255 			/*
3256 			 * This will pull the EFI from the AIL and
3257 			 * free the memory associated with it.
3258 			 */
3259 			set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3260 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3261 			return XFS_ERROR(EIO);
3262 		}
3263 	}
3264 
3265 	tp = xfs_trans_alloc(mp, 0);
3266 	error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3267 	if (error)
3268 		goto abort_error;
3269 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3270 
3271 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3272 		extp = &(efip->efi_format.efi_extents[i]);
3273 		error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3274 		if (error)
3275 			goto abort_error;
3276 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3277 					 extp->ext_len);
3278 	}
3279 
3280 	set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3281 	error = xfs_trans_commit(tp, 0);
3282 	return error;
3283 
3284 abort_error:
3285 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3286 	return error;
3287 }
3288 
3289 /*
3290  * When this is called, all of the EFIs which did not have
3291  * corresponding EFDs should be in the AIL.  What we do now
3292  * is free the extents associated with each one.
3293  *
3294  * Since we process the EFIs in normal transactions, they
3295  * will be removed at some point after the commit.  This prevents
3296  * us from just walking down the list processing each one.
3297  * We'll use a flag in the EFI to skip those that we've already
3298  * processed and use the AIL iteration mechanism's generation
3299  * count to try to speed this up at least a bit.
3300  *
3301  * When we start, we know that the EFIs are the only things in
3302  * the AIL.  As we process them, however, other items are added
3303  * to the AIL.  Since everything added to the AIL must come after
3304  * everything already in the AIL, we stop processing as soon as
3305  * we see something other than an EFI in the AIL.
3306  */
3307 STATIC int
xlog_recover_process_efis(struct xlog * log)3308 xlog_recover_process_efis(
3309 	struct xlog	*log)
3310 {
3311 	xfs_log_item_t		*lip;
3312 	xfs_efi_log_item_t	*efip;
3313 	int			error = 0;
3314 	struct xfs_ail_cursor	cur;
3315 	struct xfs_ail		*ailp;
3316 
3317 	ailp = log->l_ailp;
3318 	spin_lock(&ailp->xa_lock);
3319 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3320 	while (lip != NULL) {
3321 		/*
3322 		 * We're done when we see something other than an EFI.
3323 		 * There should be no EFIs left in the AIL now.
3324 		 */
3325 		if (lip->li_type != XFS_LI_EFI) {
3326 #ifdef DEBUG
3327 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3328 				ASSERT(lip->li_type != XFS_LI_EFI);
3329 #endif
3330 			break;
3331 		}
3332 
3333 		/*
3334 		 * Skip EFIs that we've already processed.
3335 		 */
3336 		efip = (xfs_efi_log_item_t *)lip;
3337 		if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3338 			lip = xfs_trans_ail_cursor_next(ailp, &cur);
3339 			continue;
3340 		}
3341 
3342 		spin_unlock(&ailp->xa_lock);
3343 		error = xlog_recover_process_efi(log->l_mp, efip);
3344 		spin_lock(&ailp->xa_lock);
3345 		if (error)
3346 			goto out;
3347 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3348 	}
3349 out:
3350 	xfs_trans_ail_cursor_done(ailp, &cur);
3351 	spin_unlock(&ailp->xa_lock);
3352 	return error;
3353 }
3354 
3355 /*
3356  * This routine performs a transaction to null out a bad inode pointer
3357  * in an agi unlinked inode hash bucket.
3358  */
3359 STATIC void
xlog_recover_clear_agi_bucket(xfs_mount_t * mp,xfs_agnumber_t agno,int bucket)3360 xlog_recover_clear_agi_bucket(
3361 	xfs_mount_t	*mp,
3362 	xfs_agnumber_t	agno,
3363 	int		bucket)
3364 {
3365 	xfs_trans_t	*tp;
3366 	xfs_agi_t	*agi;
3367 	xfs_buf_t	*agibp;
3368 	int		offset;
3369 	int		error;
3370 
3371 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3372 	error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3373 				  0, 0, 0);
3374 	if (error)
3375 		goto out_abort;
3376 
3377 	error = xfs_read_agi(mp, tp, agno, &agibp);
3378 	if (error)
3379 		goto out_abort;
3380 
3381 	agi = XFS_BUF_TO_AGI(agibp);
3382 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3383 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3384 		 (sizeof(xfs_agino_t) * bucket);
3385 	xfs_trans_log_buf(tp, agibp, offset,
3386 			  (offset + sizeof(xfs_agino_t) - 1));
3387 
3388 	error = xfs_trans_commit(tp, 0);
3389 	if (error)
3390 		goto out_error;
3391 	return;
3392 
3393 out_abort:
3394 	xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3395 out_error:
3396 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3397 	return;
3398 }
3399 
3400 STATIC xfs_agino_t
xlog_recover_process_one_iunlink(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t agino,int bucket)3401 xlog_recover_process_one_iunlink(
3402 	struct xfs_mount		*mp,
3403 	xfs_agnumber_t			agno,
3404 	xfs_agino_t			agino,
3405 	int				bucket)
3406 {
3407 	struct xfs_buf			*ibp;
3408 	struct xfs_dinode		*dip;
3409 	struct xfs_inode		*ip;
3410 	xfs_ino_t			ino;
3411 	int				error;
3412 
3413 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
3414 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3415 	if (error)
3416 		goto fail;
3417 
3418 	/*
3419 	 * Get the on disk inode to find the next inode in the bucket.
3420 	 */
3421 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3422 	if (error)
3423 		goto fail_iput;
3424 
3425 	ASSERT(ip->i_d.di_nlink == 0);
3426 	ASSERT(ip->i_d.di_mode != 0);
3427 
3428 	/* setup for the next pass */
3429 	agino = be32_to_cpu(dip->di_next_unlinked);
3430 	xfs_buf_relse(ibp);
3431 
3432 	/*
3433 	 * Prevent any DMAPI event from being sent when the reference on
3434 	 * the inode is dropped.
3435 	 */
3436 	ip->i_d.di_dmevmask = 0;
3437 
3438 	IRELE(ip);
3439 	return agino;
3440 
3441  fail_iput:
3442 	IRELE(ip);
3443  fail:
3444 	/*
3445 	 * We can't read in the inode this bucket points to, or this inode
3446 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
3447 	 * some inodes and space, but at least we won't hang.
3448 	 *
3449 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3450 	 * clear the inode pointer in the bucket.
3451 	 */
3452 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
3453 	return NULLAGINO;
3454 }
3455 
3456 /*
3457  * xlog_iunlink_recover
3458  *
3459  * This is called during recovery to process any inodes which
3460  * we unlinked but not freed when the system crashed.  These
3461  * inodes will be on the lists in the AGI blocks.  What we do
3462  * here is scan all the AGIs and fully truncate and free any
3463  * inodes found on the lists.  Each inode is removed from the
3464  * lists when it has been fully truncated and is freed.  The
3465  * freeing of the inode and its removal from the list must be
3466  * atomic.
3467  */
3468 STATIC void
xlog_recover_process_iunlinks(struct xlog * log)3469 xlog_recover_process_iunlinks(
3470 	struct xlog	*log)
3471 {
3472 	xfs_mount_t	*mp;
3473 	xfs_agnumber_t	agno;
3474 	xfs_agi_t	*agi;
3475 	xfs_buf_t	*agibp;
3476 	xfs_agino_t	agino;
3477 	int		bucket;
3478 	int		error;
3479 	uint		mp_dmevmask;
3480 
3481 	mp = log->l_mp;
3482 
3483 	/*
3484 	 * Prevent any DMAPI event from being sent while in this function.
3485 	 */
3486 	mp_dmevmask = mp->m_dmevmask;
3487 	mp->m_dmevmask = 0;
3488 
3489 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3490 		/*
3491 		 * Find the agi for this ag.
3492 		 */
3493 		error = xfs_read_agi(mp, NULL, agno, &agibp);
3494 		if (error) {
3495 			/*
3496 			 * AGI is b0rked. Don't process it.
3497 			 *
3498 			 * We should probably mark the filesystem as corrupt
3499 			 * after we've recovered all the ag's we can....
3500 			 */
3501 			continue;
3502 		}
3503 		/*
3504 		 * Unlock the buffer so that it can be acquired in the normal
3505 		 * course of the transaction to truncate and free each inode.
3506 		 * Because we are not racing with anyone else here for the AGI
3507 		 * buffer, we don't even need to hold it locked to read the
3508 		 * initial unlinked bucket entries out of the buffer. We keep
3509 		 * buffer reference though, so that it stays pinned in memory
3510 		 * while we need the buffer.
3511 		 */
3512 		agi = XFS_BUF_TO_AGI(agibp);
3513 		xfs_buf_unlock(agibp);
3514 
3515 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3516 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3517 			while (agino != NULLAGINO) {
3518 				agino = xlog_recover_process_one_iunlink(mp,
3519 							agno, agino, bucket);
3520 			}
3521 		}
3522 		xfs_buf_rele(agibp);
3523 	}
3524 
3525 	mp->m_dmevmask = mp_dmevmask;
3526 }
3527 
3528 /*
3529  * Upack the log buffer data and crc check it. If the check fails, issue a
3530  * warning if and only if the CRC in the header is non-zero. This makes the
3531  * check an advisory warning, and the zero CRC check will prevent failure
3532  * warnings from being emitted when upgrading the kernel from one that does not
3533  * add CRCs by default.
3534  *
3535  * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3536  * corruption failure
3537  */
3538 STATIC int
xlog_unpack_data_crc(struct xlog_rec_header * rhead,xfs_caddr_t dp,struct xlog * log)3539 xlog_unpack_data_crc(
3540 	struct xlog_rec_header	*rhead,
3541 	xfs_caddr_t		dp,
3542 	struct xlog		*log)
3543 {
3544 	__le32			crc;
3545 
3546 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3547 	if (crc != rhead->h_crc) {
3548 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3549 			xfs_alert(log->l_mp,
3550 		"log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3551 					le32_to_cpu(rhead->h_crc),
3552 					le32_to_cpu(crc));
3553 			xfs_hex_dump(dp, 32);
3554 		}
3555 
3556 		/*
3557 		 * If we've detected a log record corruption, then we can't
3558 		 * recover past this point. Abort recovery if we are enforcing
3559 		 * CRC protection by punting an error back up the stack.
3560 		 */
3561 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3562 			return EFSCORRUPTED;
3563 	}
3564 
3565 	return 0;
3566 }
3567 
3568 STATIC int
xlog_unpack_data(struct xlog_rec_header * rhead,xfs_caddr_t dp,struct xlog * log)3569 xlog_unpack_data(
3570 	struct xlog_rec_header	*rhead,
3571 	xfs_caddr_t		dp,
3572 	struct xlog		*log)
3573 {
3574 	int			i, j, k;
3575 	int			error;
3576 
3577 	error = xlog_unpack_data_crc(rhead, dp, log);
3578 	if (error)
3579 		return error;
3580 
3581 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3582 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3583 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3584 		dp += BBSIZE;
3585 	}
3586 
3587 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3588 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3589 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3590 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3591 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3592 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3593 			dp += BBSIZE;
3594 		}
3595 	}
3596 
3597 	return 0;
3598 }
3599 
3600 STATIC int
xlog_valid_rec_header(struct xlog * log,struct xlog_rec_header * rhead,xfs_daddr_t blkno)3601 xlog_valid_rec_header(
3602 	struct xlog		*log,
3603 	struct xlog_rec_header	*rhead,
3604 	xfs_daddr_t		blkno)
3605 {
3606 	int			hlen;
3607 
3608 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3609 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3610 				XFS_ERRLEVEL_LOW, log->l_mp);
3611 		return XFS_ERROR(EFSCORRUPTED);
3612 	}
3613 	if (unlikely(
3614 	    (!rhead->h_version ||
3615 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3616 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3617 			__func__, be32_to_cpu(rhead->h_version));
3618 		return XFS_ERROR(EIO);
3619 	}
3620 
3621 	/* LR body must have data or it wouldn't have been written */
3622 	hlen = be32_to_cpu(rhead->h_len);
3623 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3624 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3625 				XFS_ERRLEVEL_LOW, log->l_mp);
3626 		return XFS_ERROR(EFSCORRUPTED);
3627 	}
3628 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3629 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3630 				XFS_ERRLEVEL_LOW, log->l_mp);
3631 		return XFS_ERROR(EFSCORRUPTED);
3632 	}
3633 	return 0;
3634 }
3635 
3636 /*
3637  * Read the log from tail to head and process the log records found.
3638  * Handle the two cases where the tail and head are in the same cycle
3639  * and where the active portion of the log wraps around the end of
3640  * the physical log separately.  The pass parameter is passed through
3641  * to the routines called to process the data and is not looked at
3642  * here.
3643  */
3644 STATIC int
xlog_do_recovery_pass(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass)3645 xlog_do_recovery_pass(
3646 	struct xlog		*log,
3647 	xfs_daddr_t		head_blk,
3648 	xfs_daddr_t		tail_blk,
3649 	int			pass)
3650 {
3651 	xlog_rec_header_t	*rhead;
3652 	xfs_daddr_t		blk_no;
3653 	xfs_caddr_t		offset;
3654 	xfs_buf_t		*hbp, *dbp;
3655 	int			error = 0, h_size;
3656 	int			bblks, split_bblks;
3657 	int			hblks, split_hblks, wrapped_hblks;
3658 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
3659 
3660 	ASSERT(head_blk != tail_blk);
3661 
3662 	/*
3663 	 * Read the header of the tail block and get the iclog buffer size from
3664 	 * h_size.  Use this to tell how many sectors make up the log header.
3665 	 */
3666 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3667 		/*
3668 		 * When using variable length iclogs, read first sector of
3669 		 * iclog header and extract the header size from it.  Get a
3670 		 * new hbp that is the correct size.
3671 		 */
3672 		hbp = xlog_get_bp(log, 1);
3673 		if (!hbp)
3674 			return ENOMEM;
3675 
3676 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3677 		if (error)
3678 			goto bread_err1;
3679 
3680 		rhead = (xlog_rec_header_t *)offset;
3681 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3682 		if (error)
3683 			goto bread_err1;
3684 		h_size = be32_to_cpu(rhead->h_size);
3685 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3686 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3687 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3688 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3689 				hblks++;
3690 			xlog_put_bp(hbp);
3691 			hbp = xlog_get_bp(log, hblks);
3692 		} else {
3693 			hblks = 1;
3694 		}
3695 	} else {
3696 		ASSERT(log->l_sectBBsize == 1);
3697 		hblks = 1;
3698 		hbp = xlog_get_bp(log, 1);
3699 		h_size = XLOG_BIG_RECORD_BSIZE;
3700 	}
3701 
3702 	if (!hbp)
3703 		return ENOMEM;
3704 	dbp = xlog_get_bp(log, BTOBB(h_size));
3705 	if (!dbp) {
3706 		xlog_put_bp(hbp);
3707 		return ENOMEM;
3708 	}
3709 
3710 	memset(rhash, 0, sizeof(rhash));
3711 	if (tail_blk <= head_blk) {
3712 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3713 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3714 			if (error)
3715 				goto bread_err2;
3716 
3717 			rhead = (xlog_rec_header_t *)offset;
3718 			error = xlog_valid_rec_header(log, rhead, blk_no);
3719 			if (error)
3720 				goto bread_err2;
3721 
3722 			/* blocks in data section */
3723 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3724 			error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3725 					   &offset);
3726 			if (error)
3727 				goto bread_err2;
3728 
3729 			error = xlog_unpack_data(rhead, offset, log);
3730 			if (error)
3731 				goto bread_err2;
3732 
3733 			error = xlog_recover_process_data(log,
3734 						rhash, rhead, offset, pass);
3735 			if (error)
3736 				goto bread_err2;
3737 			blk_no += bblks + hblks;
3738 		}
3739 	} else {
3740 		/*
3741 		 * Perform recovery around the end of the physical log.
3742 		 * When the head is not on the same cycle number as the tail,
3743 		 * we can't do a sequential recovery as above.
3744 		 */
3745 		blk_no = tail_blk;
3746 		while (blk_no < log->l_logBBsize) {
3747 			/*
3748 			 * Check for header wrapping around physical end-of-log
3749 			 */
3750 			offset = hbp->b_addr;
3751 			split_hblks = 0;
3752 			wrapped_hblks = 0;
3753 			if (blk_no + hblks <= log->l_logBBsize) {
3754 				/* Read header in one read */
3755 				error = xlog_bread(log, blk_no, hblks, hbp,
3756 						   &offset);
3757 				if (error)
3758 					goto bread_err2;
3759 			} else {
3760 				/* This LR is split across physical log end */
3761 				if (blk_no != log->l_logBBsize) {
3762 					/* some data before physical log end */
3763 					ASSERT(blk_no <= INT_MAX);
3764 					split_hblks = log->l_logBBsize - (int)blk_no;
3765 					ASSERT(split_hblks > 0);
3766 					error = xlog_bread(log, blk_no,
3767 							   split_hblks, hbp,
3768 							   &offset);
3769 					if (error)
3770 						goto bread_err2;
3771 				}
3772 
3773 				/*
3774 				 * Note: this black magic still works with
3775 				 * large sector sizes (non-512) only because:
3776 				 * - we increased the buffer size originally
3777 				 *   by 1 sector giving us enough extra space
3778 				 *   for the second read;
3779 				 * - the log start is guaranteed to be sector
3780 				 *   aligned;
3781 				 * - we read the log end (LR header start)
3782 				 *   _first_, then the log start (LR header end)
3783 				 *   - order is important.
3784 				 */
3785 				wrapped_hblks = hblks - split_hblks;
3786 				error = xlog_bread_offset(log, 0,
3787 						wrapped_hblks, hbp,
3788 						offset + BBTOB(split_hblks));
3789 				if (error)
3790 					goto bread_err2;
3791 			}
3792 			rhead = (xlog_rec_header_t *)offset;
3793 			error = xlog_valid_rec_header(log, rhead,
3794 						split_hblks ? blk_no : 0);
3795 			if (error)
3796 				goto bread_err2;
3797 
3798 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3799 			blk_no += hblks;
3800 
3801 			/* Read in data for log record */
3802 			if (blk_no + bblks <= log->l_logBBsize) {
3803 				error = xlog_bread(log, blk_no, bblks, dbp,
3804 						   &offset);
3805 				if (error)
3806 					goto bread_err2;
3807 			} else {
3808 				/* This log record is split across the
3809 				 * physical end of log */
3810 				offset = dbp->b_addr;
3811 				split_bblks = 0;
3812 				if (blk_no != log->l_logBBsize) {
3813 					/* some data is before the physical
3814 					 * end of log */
3815 					ASSERT(!wrapped_hblks);
3816 					ASSERT(blk_no <= INT_MAX);
3817 					split_bblks =
3818 						log->l_logBBsize - (int)blk_no;
3819 					ASSERT(split_bblks > 0);
3820 					error = xlog_bread(log, blk_no,
3821 							split_bblks, dbp,
3822 							&offset);
3823 					if (error)
3824 						goto bread_err2;
3825 				}
3826 
3827 				/*
3828 				 * Note: this black magic still works with
3829 				 * large sector sizes (non-512) only because:
3830 				 * - we increased the buffer size originally
3831 				 *   by 1 sector giving us enough extra space
3832 				 *   for the second read;
3833 				 * - the log start is guaranteed to be sector
3834 				 *   aligned;
3835 				 * - we read the log end (LR header start)
3836 				 *   _first_, then the log start (LR header end)
3837 				 *   - order is important.
3838 				 */
3839 				error = xlog_bread_offset(log, 0,
3840 						bblks - split_bblks, dbp,
3841 						offset + BBTOB(split_bblks));
3842 				if (error)
3843 					goto bread_err2;
3844 			}
3845 
3846 			error = xlog_unpack_data(rhead, offset, log);
3847 			if (error)
3848 				goto bread_err2;
3849 
3850 			error = xlog_recover_process_data(log, rhash,
3851 							rhead, offset, pass);
3852 			if (error)
3853 				goto bread_err2;
3854 			blk_no += bblks;
3855 		}
3856 
3857 		ASSERT(blk_no >= log->l_logBBsize);
3858 		blk_no -= log->l_logBBsize;
3859 
3860 		/* read first part of physical log */
3861 		while (blk_no < head_blk) {
3862 			error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3863 			if (error)
3864 				goto bread_err2;
3865 
3866 			rhead = (xlog_rec_header_t *)offset;
3867 			error = xlog_valid_rec_header(log, rhead, blk_no);
3868 			if (error)
3869 				goto bread_err2;
3870 
3871 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3872 			error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3873 					   &offset);
3874 			if (error)
3875 				goto bread_err2;
3876 
3877 			error = xlog_unpack_data(rhead, offset, log);
3878 			if (error)
3879 				goto bread_err2;
3880 
3881 			error = xlog_recover_process_data(log, rhash,
3882 							rhead, offset, pass);
3883 			if (error)
3884 				goto bread_err2;
3885 			blk_no += bblks + hblks;
3886 		}
3887 	}
3888 
3889  bread_err2:
3890 	xlog_put_bp(dbp);
3891  bread_err1:
3892 	xlog_put_bp(hbp);
3893 	return error;
3894 }
3895 
3896 /*
3897  * Do the recovery of the log.  We actually do this in two phases.
3898  * The two passes are necessary in order to implement the function
3899  * of cancelling a record written into the log.  The first pass
3900  * determines those things which have been cancelled, and the
3901  * second pass replays log items normally except for those which
3902  * have been cancelled.  The handling of the replay and cancellations
3903  * takes place in the log item type specific routines.
3904  *
3905  * The table of items which have cancel records in the log is allocated
3906  * and freed at this level, since only here do we know when all of
3907  * the log recovery has been completed.
3908  */
3909 STATIC int
xlog_do_log_recovery(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)3910 xlog_do_log_recovery(
3911 	struct xlog	*log,
3912 	xfs_daddr_t	head_blk,
3913 	xfs_daddr_t	tail_blk)
3914 {
3915 	int		error, i;
3916 
3917 	ASSERT(head_blk != tail_blk);
3918 
3919 	/*
3920 	 * First do a pass to find all of the cancelled buf log items.
3921 	 * Store them in the buf_cancel_table for use in the second pass.
3922 	 */
3923 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3924 						 sizeof(struct list_head),
3925 						 KM_SLEEP);
3926 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3927 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3928 
3929 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3930 				      XLOG_RECOVER_PASS1);
3931 	if (error != 0) {
3932 		kmem_free(log->l_buf_cancel_table);
3933 		log->l_buf_cancel_table = NULL;
3934 		return error;
3935 	}
3936 	/*
3937 	 * Then do a second pass to actually recover the items in the log.
3938 	 * When it is complete free the table of buf cancel items.
3939 	 */
3940 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3941 				      XLOG_RECOVER_PASS2);
3942 #ifdef DEBUG
3943 	if (!error) {
3944 		int	i;
3945 
3946 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3947 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3948 	}
3949 #endif	/* DEBUG */
3950 
3951 	kmem_free(log->l_buf_cancel_table);
3952 	log->l_buf_cancel_table = NULL;
3953 
3954 	return error;
3955 }
3956 
3957 /*
3958  * Do the actual recovery
3959  */
3960 STATIC int
xlog_do_recover(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)3961 xlog_do_recover(
3962 	struct xlog	*log,
3963 	xfs_daddr_t	head_blk,
3964 	xfs_daddr_t	tail_blk)
3965 {
3966 	int		error;
3967 	xfs_buf_t	*bp;
3968 	xfs_sb_t	*sbp;
3969 
3970 	/*
3971 	 * First replay the images in the log.
3972 	 */
3973 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3974 	if (error)
3975 		return error;
3976 
3977 	/*
3978 	 * If IO errors happened during recovery, bail out.
3979 	 */
3980 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3981 		return (EIO);
3982 	}
3983 
3984 	/*
3985 	 * We now update the tail_lsn since much of the recovery has completed
3986 	 * and there may be space available to use.  If there were no extent
3987 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3988 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3989 	 * lsn of the last known good LR on disk.  If there are extent frees
3990 	 * or iunlinks they will have some entries in the AIL; so we look at
3991 	 * the AIL to determine how to set the tail_lsn.
3992 	 */
3993 	xlog_assign_tail_lsn(log->l_mp);
3994 
3995 	/*
3996 	 * Now that we've finished replaying all buffer and inode
3997 	 * updates, re-read in the superblock and reverify it.
3998 	 */
3999 	bp = xfs_getsb(log->l_mp, 0);
4000 	XFS_BUF_UNDONE(bp);
4001 	ASSERT(!(XFS_BUF_ISWRITE(bp)));
4002 	XFS_BUF_READ(bp);
4003 	XFS_BUF_UNASYNC(bp);
4004 	bp->b_ops = &xfs_sb_buf_ops;
4005 	xfsbdstrat(log->l_mp, bp);
4006 	error = xfs_buf_iowait(bp);
4007 	if (error) {
4008 		xfs_buf_ioerror_alert(bp, __func__);
4009 		ASSERT(0);
4010 		xfs_buf_relse(bp);
4011 		return error;
4012 	}
4013 
4014 	/* Convert superblock from on-disk format */
4015 	sbp = &log->l_mp->m_sb;
4016 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4017 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4018 	ASSERT(xfs_sb_good_version(sbp));
4019 	xfs_buf_relse(bp);
4020 
4021 	/* We've re-read the superblock so re-initialize per-cpu counters */
4022 	xfs_icsb_reinit_counters(log->l_mp);
4023 
4024 	xlog_recover_check_summary(log);
4025 
4026 	/* Normal transactions can now occur */
4027 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4028 	return 0;
4029 }
4030 
4031 /*
4032  * Perform recovery and re-initialize some log variables in xlog_find_tail.
4033  *
4034  * Return error or zero.
4035  */
4036 int
xlog_recover(struct xlog * log)4037 xlog_recover(
4038 	struct xlog	*log)
4039 {
4040 	xfs_daddr_t	head_blk, tail_blk;
4041 	int		error;
4042 
4043 	/* find the tail of the log */
4044 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4045 		return error;
4046 
4047 	if (tail_blk != head_blk) {
4048 		/* There used to be a comment here:
4049 		 *
4050 		 * disallow recovery on read-only mounts.  note -- mount
4051 		 * checks for ENOSPC and turns it into an intelligent
4052 		 * error message.
4053 		 * ...but this is no longer true.  Now, unless you specify
4054 		 * NORECOVERY (in which case this function would never be
4055 		 * called), we just go ahead and recover.  We do this all
4056 		 * under the vfs layer, so we can get away with it unless
4057 		 * the device itself is read-only, in which case we fail.
4058 		 */
4059 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4060 			return error;
4061 		}
4062 
4063 		/*
4064 		 * Version 5 superblock log feature mask validation. We know the
4065 		 * log is dirty so check if there are any unknown log features
4066 		 * in what we need to recover. If there are unknown features
4067 		 * (e.g. unsupported transactions, then simply reject the
4068 		 * attempt at recovery before touching anything.
4069 		 */
4070 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4071 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4072 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4073 			xfs_warn(log->l_mp,
4074 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4075 "The log can not be fully and/or safely recovered by this kernel.\n"
4076 "Please recover the log on a kernel that supports the unknown features.",
4077 				(log->l_mp->m_sb.sb_features_log_incompat &
4078 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4079 			return EINVAL;
4080 		}
4081 
4082 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4083 				log->l_mp->m_logname ? log->l_mp->m_logname
4084 						     : "internal");
4085 
4086 		error = xlog_do_recover(log, head_blk, tail_blk);
4087 		log->l_flags |= XLOG_RECOVERY_NEEDED;
4088 	}
4089 	return error;
4090 }
4091 
4092 /*
4093  * In the first part of recovery we replay inodes and buffers and build
4094  * up the list of extent free items which need to be processed.  Here
4095  * we process the extent free items and clean up the on disk unlinked
4096  * inode lists.  This is separated from the first part of recovery so
4097  * that the root and real-time bitmap inodes can be read in from disk in
4098  * between the two stages.  This is necessary so that we can free space
4099  * in the real-time portion of the file system.
4100  */
4101 int
xlog_recover_finish(struct xlog * log)4102 xlog_recover_finish(
4103 	struct xlog	*log)
4104 {
4105 	/*
4106 	 * Now we're ready to do the transactions needed for the
4107 	 * rest of recovery.  Start with completing all the extent
4108 	 * free intent records and then process the unlinked inode
4109 	 * lists.  At this point, we essentially run in normal mode
4110 	 * except that we're still performing recovery actions
4111 	 * rather than accepting new requests.
4112 	 */
4113 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4114 		int	error;
4115 		error = xlog_recover_process_efis(log);
4116 		if (error) {
4117 			xfs_alert(log->l_mp, "Failed to recover EFIs");
4118 			return error;
4119 		}
4120 		/*
4121 		 * Sync the log to get all the EFIs out of the AIL.
4122 		 * This isn't absolutely necessary, but it helps in
4123 		 * case the unlink transactions would have problems
4124 		 * pushing the EFIs out of the way.
4125 		 */
4126 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4127 
4128 		xlog_recover_process_iunlinks(log);
4129 
4130 		xlog_recover_check_summary(log);
4131 
4132 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4133 				log->l_mp->m_logname ? log->l_mp->m_logname
4134 						     : "internal");
4135 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4136 	} else {
4137 		xfs_info(log->l_mp, "Ending clean mount");
4138 	}
4139 	return 0;
4140 }
4141 
4142 
4143 #if defined(DEBUG)
4144 /*
4145  * Read all of the agf and agi counters and check that they
4146  * are consistent with the superblock counters.
4147  */
4148 void
xlog_recover_check_summary(struct xlog * log)4149 xlog_recover_check_summary(
4150 	struct xlog	*log)
4151 {
4152 	xfs_mount_t	*mp;
4153 	xfs_agf_t	*agfp;
4154 	xfs_buf_t	*agfbp;
4155 	xfs_buf_t	*agibp;
4156 	xfs_agnumber_t	agno;
4157 	__uint64_t	freeblks;
4158 	__uint64_t	itotal;
4159 	__uint64_t	ifree;
4160 	int		error;
4161 
4162 	mp = log->l_mp;
4163 
4164 	freeblks = 0LL;
4165 	itotal = 0LL;
4166 	ifree = 0LL;
4167 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4168 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4169 		if (error) {
4170 			xfs_alert(mp, "%s agf read failed agno %d error %d",
4171 						__func__, agno, error);
4172 		} else {
4173 			agfp = XFS_BUF_TO_AGF(agfbp);
4174 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
4175 				    be32_to_cpu(agfp->agf_flcount);
4176 			xfs_buf_relse(agfbp);
4177 		}
4178 
4179 		error = xfs_read_agi(mp, NULL, agno, &agibp);
4180 		if (error) {
4181 			xfs_alert(mp, "%s agi read failed agno %d error %d",
4182 						__func__, agno, error);
4183 		} else {
4184 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
4185 
4186 			itotal += be32_to_cpu(agi->agi_count);
4187 			ifree += be32_to_cpu(agi->agi_freecount);
4188 			xfs_buf_relse(agibp);
4189 		}
4190 	}
4191 }
4192 #endif /* DEBUG */
4193