1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_extent_busy.h"
38 #include "xfs_bmap.h"
39 #include "xfs_quota.h"
40 #include "xfs_qm.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_trans_space.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_log_priv.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_trace.h"
47
48 kmem_zone_t *xfs_trans_zone;
49 kmem_zone_t *xfs_log_item_desc_zone;
50
51 /*
52 * A buffer has a format structure overhead in the log in addition
53 * to the data, so we need to take this into account when reserving
54 * space in a transaction for a buffer. Round the space required up
55 * to a multiple of 128 bytes so that we don't change the historical
56 * reservation that has been used for this overhead.
57 */
58 STATIC uint
xfs_buf_log_overhead(void)59 xfs_buf_log_overhead(void)
60 {
61 return round_up(sizeof(struct xlog_op_header) +
62 sizeof(struct xfs_buf_log_format), 128);
63 }
64
65 /*
66 * Calculate out transaction log reservation per item in bytes.
67 *
68 * The nbufs argument is used to indicate the number of items that
69 * will be changed in a transaction. size is used to tell how many
70 * bytes should be reserved per item.
71 */
72 STATIC uint
xfs_calc_buf_res(uint nbufs,uint size)73 xfs_calc_buf_res(
74 uint nbufs,
75 uint size)
76 {
77 return nbufs * (size + xfs_buf_log_overhead());
78 }
79
80 /*
81 * Various log reservation values.
82 *
83 * These are based on the size of the file system block because that is what
84 * most transactions manipulate. Each adds in an additional 128 bytes per
85 * item logged to try to account for the overhead of the transaction mechanism.
86 *
87 * Note: Most of the reservations underestimate the number of allocation
88 * groups into which they could free extents in the xfs_bmap_finish() call.
89 * This is because the number in the worst case is quite high and quite
90 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
91 * extents in only a single AG at a time. This will require changes to the
92 * EFI code as well, however, so that the EFI for the extents not freed is
93 * logged again in each transaction. See SGI PV #261917.
94 *
95 * Reservation functions here avoid a huge stack in xfs_trans_init due to
96 * register overflow from temporaries in the calculations.
97 */
98
99
100 /*
101 * In a write transaction we can allocate a maximum of 2
102 * extents. This gives:
103 * the inode getting the new extents: inode size
104 * the inode's bmap btree: max depth * block size
105 * the agfs of the ags from which the extents are allocated: 2 * sector
106 * the superblock free block counter: sector size
107 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
108 * And the bmap_finish transaction can free bmap blocks in a join:
109 * the agfs of the ags containing the blocks: 2 * sector size
110 * the agfls of the ags containing the blocks: 2 * sector size
111 * the super block free block counter: sector size
112 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
113 */
114 STATIC uint
xfs_calc_write_reservation(struct xfs_mount * mp)115 xfs_calc_write_reservation(
116 struct xfs_mount *mp)
117 {
118 return XFS_DQUOT_LOGRES(mp) +
119 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
120 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
121 XFS_FSB_TO_B(mp, 1)) +
122 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
123 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
124 XFS_FSB_TO_B(mp, 1))),
125 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
126 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
127 XFS_FSB_TO_B(mp, 1))));
128 }
129
130 /*
131 * In truncating a file we free up to two extents at once. We can modify:
132 * the inode being truncated: inode size
133 * the inode's bmap btree: (max depth + 1) * block size
134 * And the bmap_finish transaction can free the blocks and bmap blocks:
135 * the agf for each of the ags: 4 * sector size
136 * the agfl for each of the ags: 4 * sector size
137 * the super block to reflect the freed blocks: sector size
138 * worst case split in allocation btrees per extent assuming 4 extents:
139 * 4 exts * 2 trees * (2 * max depth - 1) * block size
140 * the inode btree: max depth * blocksize
141 * the allocation btrees: 2 trees * (max depth - 1) * block size
142 */
143 STATIC uint
xfs_calc_itruncate_reservation(struct xfs_mount * mp)144 xfs_calc_itruncate_reservation(
145 struct xfs_mount *mp)
146 {
147 return XFS_DQUOT_LOGRES(mp) +
148 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
149 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1,
150 XFS_FSB_TO_B(mp, 1))),
151 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
152 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
153 XFS_FSB_TO_B(mp, 1)) +
154 xfs_calc_buf_res(5, 0) +
155 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
156 XFS_FSB_TO_B(mp, 1)) +
157 xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
158 mp->m_in_maxlevels, 0)));
159 }
160
161 /*
162 * In renaming a files we can modify:
163 * the four inodes involved: 4 * inode size
164 * the two directory btrees: 2 * (max depth + v2) * dir block size
165 * the two directory bmap btrees: 2 * max depth * block size
166 * And the bmap_finish transaction can free dir and bmap blocks (two sets
167 * of bmap blocks) giving:
168 * the agf for the ags in which the blocks live: 3 * sector size
169 * the agfl for the ags in which the blocks live: 3 * sector size
170 * the superblock for the free block count: sector size
171 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
172 */
173 STATIC uint
xfs_calc_rename_reservation(struct xfs_mount * mp)174 xfs_calc_rename_reservation(
175 struct xfs_mount *mp)
176 {
177 return XFS_DQUOT_LOGRES(mp) +
178 MAX((xfs_calc_buf_res(4, mp->m_sb.sb_inodesize) +
179 xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
180 XFS_FSB_TO_B(mp, 1))),
181 (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
182 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 3),
183 XFS_FSB_TO_B(mp, 1))));
184 }
185
186 /*
187 * For creating a link to an inode:
188 * the parent directory inode: inode size
189 * the linked inode: inode size
190 * the directory btree could split: (max depth + v2) * dir block size
191 * the directory bmap btree could join or split: (max depth + v2) * blocksize
192 * And the bmap_finish transaction can free some bmap blocks giving:
193 * the agf for the ag in which the blocks live: sector size
194 * the agfl for the ag in which the blocks live: sector size
195 * the superblock for the free block count: sector size
196 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
197 */
198 STATIC uint
xfs_calc_link_reservation(struct xfs_mount * mp)199 xfs_calc_link_reservation(
200 struct xfs_mount *mp)
201 {
202 return XFS_DQUOT_LOGRES(mp) +
203 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
204 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
205 XFS_FSB_TO_B(mp, 1))),
206 (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
207 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
208 XFS_FSB_TO_B(mp, 1))));
209 }
210
211 /*
212 * For removing a directory entry we can modify:
213 * the parent directory inode: inode size
214 * the removed inode: inode size
215 * the directory btree could join: (max depth + v2) * dir block size
216 * the directory bmap btree could join or split: (max depth + v2) * blocksize
217 * And the bmap_finish transaction can free the dir and bmap blocks giving:
218 * the agf for the ag in which the blocks live: 2 * sector size
219 * the agfl for the ag in which the blocks live: 2 * sector size
220 * the superblock for the free block count: sector size
221 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
222 */
223 STATIC uint
xfs_calc_remove_reservation(struct xfs_mount * mp)224 xfs_calc_remove_reservation(
225 struct xfs_mount *mp)
226 {
227 return XFS_DQUOT_LOGRES(mp) +
228 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
229 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
230 XFS_FSB_TO_B(mp, 1))),
231 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
232 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
233 XFS_FSB_TO_B(mp, 1))));
234 }
235
236 /*
237 * For symlink we can modify:
238 * the parent directory inode: inode size
239 * the new inode: inode size
240 * the inode btree entry: 1 block
241 * the directory btree: (max depth + v2) * dir block size
242 * the directory inode's bmap btree: (max depth + v2) * block size
243 * the blocks for the symlink: 1 kB
244 * Or in the first xact we allocate some inodes giving:
245 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
246 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
247 * the inode btree: max depth * blocksize
248 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
249 */
250 STATIC uint
xfs_calc_symlink_reservation(struct xfs_mount * mp)251 xfs_calc_symlink_reservation(
252 struct xfs_mount *mp)
253 {
254 return XFS_DQUOT_LOGRES(mp) +
255 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
256 xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
257 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
258 XFS_FSB_TO_B(mp, 1)) +
259 xfs_calc_buf_res(1, 1024)),
260 (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
261 xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp),
262 XFS_FSB_TO_B(mp, 1)) +
263 xfs_calc_buf_res(mp->m_in_maxlevels,
264 XFS_FSB_TO_B(mp, 1)) +
265 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
266 XFS_FSB_TO_B(mp, 1))));
267 }
268
269 /*
270 * For create we can modify:
271 * the parent directory inode: inode size
272 * the new inode: inode size
273 * the inode btree entry: block size
274 * the superblock for the nlink flag: sector size
275 * the directory btree: (max depth + v2) * dir block size
276 * the directory inode's bmap btree: (max depth + v2) * block size
277 * Or in the first xact we allocate some inodes giving:
278 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
279 * the superblock for the nlink flag: sector size
280 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
281 * the inode btree: max depth * blocksize
282 * the allocation btrees: 2 trees * (max depth - 1) * block size
283 */
284 STATIC uint
xfs_calc_create_reservation(struct xfs_mount * mp)285 xfs_calc_create_reservation(
286 struct xfs_mount *mp)
287 {
288 return XFS_DQUOT_LOGRES(mp) +
289 MAX((xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
290 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
291 (uint)XFS_FSB_TO_B(mp, 1) +
292 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
293 XFS_FSB_TO_B(mp, 1))),
294 (xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
295 mp->m_sb.sb_sectsize +
296 xfs_calc_buf_res(XFS_IALLOC_BLOCKS(mp),
297 XFS_FSB_TO_B(mp, 1)) +
298 xfs_calc_buf_res(mp->m_in_maxlevels,
299 XFS_FSB_TO_B(mp, 1)) +
300 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
301 XFS_FSB_TO_B(mp, 1))));
302 }
303
304 /*
305 * Making a new directory is the same as creating a new file.
306 */
307 STATIC uint
xfs_calc_mkdir_reservation(struct xfs_mount * mp)308 xfs_calc_mkdir_reservation(
309 struct xfs_mount *mp)
310 {
311 return xfs_calc_create_reservation(mp);
312 }
313
314 /*
315 * In freeing an inode we can modify:
316 * the inode being freed: inode size
317 * the super block free inode counter: sector size
318 * the agi hash list and counters: sector size
319 * the inode btree entry: block size
320 * the on disk inode before ours in the agi hash list: inode cluster size
321 * the inode btree: max depth * blocksize
322 * the allocation btrees: 2 trees * (max depth - 1) * block size
323 */
324 STATIC uint
xfs_calc_ifree_reservation(struct xfs_mount * mp)325 xfs_calc_ifree_reservation(
326 struct xfs_mount *mp)
327 {
328 return XFS_DQUOT_LOGRES(mp) +
329 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
330 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
331 xfs_calc_buf_res(1, XFS_FSB_TO_B(mp, 1)) +
332 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
333 XFS_INODE_CLUSTER_SIZE(mp)) +
334 xfs_calc_buf_res(1, 0) +
335 xfs_calc_buf_res(2 + XFS_IALLOC_BLOCKS(mp) +
336 mp->m_in_maxlevels, 0) +
337 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
338 XFS_FSB_TO_B(mp, 1));
339 }
340
341 /*
342 * When only changing the inode we log the inode and possibly the superblock
343 * We also add a bit of slop for the transaction stuff.
344 */
345 STATIC uint
xfs_calc_ichange_reservation(struct xfs_mount * mp)346 xfs_calc_ichange_reservation(
347 struct xfs_mount *mp)
348 {
349 return XFS_DQUOT_LOGRES(mp) +
350 mp->m_sb.sb_inodesize +
351 mp->m_sb.sb_sectsize +
352 512;
353
354 }
355
356 /*
357 * Growing the data section of the filesystem.
358 * superblock
359 * agi and agf
360 * allocation btrees
361 */
362 STATIC uint
xfs_calc_growdata_reservation(struct xfs_mount * mp)363 xfs_calc_growdata_reservation(
364 struct xfs_mount *mp)
365 {
366 return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
367 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
368 XFS_FSB_TO_B(mp, 1));
369 }
370
371 /*
372 * Growing the rt section of the filesystem.
373 * In the first set of transactions (ALLOC) we allocate space to the
374 * bitmap or summary files.
375 * superblock: sector size
376 * agf of the ag from which the extent is allocated: sector size
377 * bmap btree for bitmap/summary inode: max depth * blocksize
378 * bitmap/summary inode: inode size
379 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
380 */
381 STATIC uint
xfs_calc_growrtalloc_reservation(struct xfs_mount * mp)382 xfs_calc_growrtalloc_reservation(
383 struct xfs_mount *mp)
384 {
385 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
386 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
387 XFS_FSB_TO_B(mp, 1)) +
388 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
389 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
390 XFS_FSB_TO_B(mp, 1));
391 }
392
393 /*
394 * Growing the rt section of the filesystem.
395 * In the second set of transactions (ZERO) we zero the new metadata blocks.
396 * one bitmap/summary block: blocksize
397 */
398 STATIC uint
xfs_calc_growrtzero_reservation(struct xfs_mount * mp)399 xfs_calc_growrtzero_reservation(
400 struct xfs_mount *mp)
401 {
402 return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
403 }
404
405 /*
406 * Growing the rt section of the filesystem.
407 * In the third set of transactions (FREE) we update metadata without
408 * allocating any new blocks.
409 * superblock: sector size
410 * bitmap inode: inode size
411 * summary inode: inode size
412 * one bitmap block: blocksize
413 * summary blocks: new summary size
414 */
415 STATIC uint
xfs_calc_growrtfree_reservation(struct xfs_mount * mp)416 xfs_calc_growrtfree_reservation(
417 struct xfs_mount *mp)
418 {
419 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
420 xfs_calc_buf_res(2, mp->m_sb.sb_inodesize) +
421 xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
422 xfs_calc_buf_res(1, mp->m_rsumsize);
423 }
424
425 /*
426 * Logging the inode modification timestamp on a synchronous write.
427 * inode
428 */
429 STATIC uint
xfs_calc_swrite_reservation(struct xfs_mount * mp)430 xfs_calc_swrite_reservation(
431 struct xfs_mount *mp)
432 {
433 return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
434 }
435
436 /*
437 * Logging the inode mode bits when writing a setuid/setgid file
438 * inode
439 */
440 STATIC uint
xfs_calc_writeid_reservation(xfs_mount_t * mp)441 xfs_calc_writeid_reservation(xfs_mount_t *mp)
442 {
443 return xfs_calc_buf_res(1, mp->m_sb.sb_inodesize);
444 }
445
446 /*
447 * Converting the inode from non-attributed to attributed.
448 * the inode being converted: inode size
449 * agf block and superblock (for block allocation)
450 * the new block (directory sized)
451 * bmap blocks for the new directory block
452 * allocation btrees
453 */
454 STATIC uint
xfs_calc_addafork_reservation(struct xfs_mount * mp)455 xfs_calc_addafork_reservation(
456 struct xfs_mount *mp)
457 {
458 return XFS_DQUOT_LOGRES(mp) +
459 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
460 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
461 xfs_calc_buf_res(1, mp->m_dirblksize) +
462 xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
463 XFS_FSB_TO_B(mp, 1)) +
464 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 1),
465 XFS_FSB_TO_B(mp, 1));
466 }
467
468 /*
469 * Removing the attribute fork of a file
470 * the inode being truncated: inode size
471 * the inode's bmap btree: max depth * block size
472 * And the bmap_finish transaction can free the blocks and bmap blocks:
473 * the agf for each of the ags: 4 * sector size
474 * the agfl for each of the ags: 4 * sector size
475 * the super block to reflect the freed blocks: sector size
476 * worst case split in allocation btrees per extent assuming 4 extents:
477 * 4 exts * 2 trees * (2 * max depth - 1) * block size
478 */
479 STATIC uint
xfs_calc_attrinval_reservation(struct xfs_mount * mp)480 xfs_calc_attrinval_reservation(
481 struct xfs_mount *mp)
482 {
483 return MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
484 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
485 XFS_FSB_TO_B(mp, 1))),
486 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
487 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 4),
488 XFS_FSB_TO_B(mp, 1))));
489 }
490
491 /*
492 * Setting an attribute at mount time.
493 * the inode getting the attribute
494 * the superblock for allocations
495 * the agfs extents are allocated from
496 * the attribute btree * max depth
497 * the inode allocation btree
498 * Since attribute transaction space is dependent on the size of the attribute,
499 * the calculation is done partially at mount time and partially at runtime(see
500 * below).
501 */
502 STATIC uint
xfs_calc_attrsetm_reservation(struct xfs_mount * mp)503 xfs_calc_attrsetm_reservation(
504 struct xfs_mount *mp)
505 {
506 return XFS_DQUOT_LOGRES(mp) +
507 xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
508 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
509 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
510 }
511
512 /*
513 * Setting an attribute at runtime, transaction space unit per block.
514 * the superblock for allocations: sector size
515 * the inode bmap btree could join or split: max depth * block size
516 * Since the runtime attribute transaction space is dependent on the total
517 * blocks needed for the 1st bmap, here we calculate out the space unit for
518 * one block so that the caller could figure out the total space according
519 * to the attibute extent length in blocks by: ext * XFS_ATTRSETRT_LOG_RES(mp).
520 */
521 STATIC uint
xfs_calc_attrsetrt_reservation(struct xfs_mount * mp)522 xfs_calc_attrsetrt_reservation(
523 struct xfs_mount *mp)
524 {
525 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
526 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
527 XFS_FSB_TO_B(mp, 1));
528 }
529
530 /*
531 * Removing an attribute.
532 * the inode: inode size
533 * the attribute btree could join: max depth * block size
534 * the inode bmap btree could join or split: max depth * block size
535 * And the bmap_finish transaction can free the attr blocks freed giving:
536 * the agf for the ag in which the blocks live: 2 * sector size
537 * the agfl for the ag in which the blocks live: 2 * sector size
538 * the superblock for the free block count: sector size
539 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
540 */
541 STATIC uint
xfs_calc_attrrm_reservation(struct xfs_mount * mp)542 xfs_calc_attrrm_reservation(
543 struct xfs_mount *mp)
544 {
545 return XFS_DQUOT_LOGRES(mp) +
546 MAX((xfs_calc_buf_res(1, mp->m_sb.sb_inodesize) +
547 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
548 XFS_FSB_TO_B(mp, 1)) +
549 (uint)XFS_FSB_TO_B(mp,
550 XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
551 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
552 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
553 xfs_calc_buf_res(XFS_ALLOCFREE_LOG_COUNT(mp, 2),
554 XFS_FSB_TO_B(mp, 1))));
555 }
556
557 /*
558 * Clearing a bad agino number in an agi hash bucket.
559 */
560 STATIC uint
xfs_calc_clear_agi_bucket_reservation(struct xfs_mount * mp)561 xfs_calc_clear_agi_bucket_reservation(
562 struct xfs_mount *mp)
563 {
564 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
565 }
566
567 /*
568 * Clearing the quotaflags in the superblock.
569 * the super block for changing quota flags: sector size
570 */
571 STATIC uint
xfs_calc_qm_sbchange_reservation(struct xfs_mount * mp)572 xfs_calc_qm_sbchange_reservation(
573 struct xfs_mount *mp)
574 {
575 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
576 }
577
578 /*
579 * Adjusting quota limits.
580 * the xfs_disk_dquot_t: sizeof(struct xfs_disk_dquot)
581 */
582 STATIC uint
xfs_calc_qm_setqlim_reservation(struct xfs_mount * mp)583 xfs_calc_qm_setqlim_reservation(
584 struct xfs_mount *mp)
585 {
586 return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
587 }
588
589 /*
590 * Allocating quota on disk if needed.
591 * the write transaction log space: XFS_WRITE_LOG_RES(mp)
592 * the unit of quota allocation: one system block size
593 */
594 STATIC uint
xfs_calc_qm_dqalloc_reservation(struct xfs_mount * mp)595 xfs_calc_qm_dqalloc_reservation(
596 struct xfs_mount *mp)
597 {
598 return XFS_WRITE_LOG_RES(mp) +
599 xfs_calc_buf_res(1,
600 XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
601 }
602
603 /*
604 * Turning off quotas.
605 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
606 * the superblock for the quota flags: sector size
607 */
608 STATIC uint
xfs_calc_qm_quotaoff_reservation(struct xfs_mount * mp)609 xfs_calc_qm_quotaoff_reservation(
610 struct xfs_mount *mp)
611 {
612 return sizeof(struct xfs_qoff_logitem) * 2 +
613 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
614 }
615
616 /*
617 * End of turning off quotas.
618 * the xfs_qoff_logitem_t: sizeof(struct xfs_qoff_logitem) * 2
619 */
620 STATIC uint
xfs_calc_qm_quotaoff_end_reservation(struct xfs_mount * mp)621 xfs_calc_qm_quotaoff_end_reservation(
622 struct xfs_mount *mp)
623 {
624 return sizeof(struct xfs_qoff_logitem) * 2;
625 }
626
627 /*
628 * Syncing the incore super block changes to disk.
629 * the super block to reflect the changes: sector size
630 */
631 STATIC uint
xfs_calc_sb_reservation(struct xfs_mount * mp)632 xfs_calc_sb_reservation(
633 struct xfs_mount *mp)
634 {
635 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
636 }
637
638 /*
639 * Initialize the precomputed transaction reservation values
640 * in the mount structure.
641 */
642 void
xfs_trans_init(struct xfs_mount * mp)643 xfs_trans_init(
644 struct xfs_mount *mp)
645 {
646 struct xfs_trans_reservations *resp = &mp->m_reservations;
647
648 resp->tr_write = xfs_calc_write_reservation(mp);
649 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
650 resp->tr_rename = xfs_calc_rename_reservation(mp);
651 resp->tr_link = xfs_calc_link_reservation(mp);
652 resp->tr_remove = xfs_calc_remove_reservation(mp);
653 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
654 resp->tr_create = xfs_calc_create_reservation(mp);
655 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
656 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
657 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
658 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
659 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
660 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
661 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
662 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
663 resp->tr_attrsetm = xfs_calc_attrsetm_reservation(mp);
664 resp->tr_attrsetrt = xfs_calc_attrsetrt_reservation(mp);
665 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
666 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
667 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
668 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
669 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
670 resp->tr_qm_sbchange = xfs_calc_qm_sbchange_reservation(mp);
671 resp->tr_qm_setqlim = xfs_calc_qm_setqlim_reservation(mp);
672 resp->tr_qm_dqalloc = xfs_calc_qm_dqalloc_reservation(mp);
673 resp->tr_qm_quotaoff = xfs_calc_qm_quotaoff_reservation(mp);
674 resp->tr_qm_equotaoff = xfs_calc_qm_quotaoff_end_reservation(mp);
675 resp->tr_sb = xfs_calc_sb_reservation(mp);
676 }
677
678 /*
679 * This routine is called to allocate a transaction structure.
680 * The type parameter indicates the type of the transaction. These
681 * are enumerated in xfs_trans.h.
682 *
683 * Dynamically allocate the transaction structure from the transaction
684 * zone, initialize it, and return it to the caller.
685 */
686 xfs_trans_t *
xfs_trans_alloc(xfs_mount_t * mp,uint type)687 xfs_trans_alloc(
688 xfs_mount_t *mp,
689 uint type)
690 {
691 xfs_trans_t *tp;
692
693 sb_start_intwrite(mp->m_super);
694 tp = _xfs_trans_alloc(mp, type, KM_SLEEP);
695 tp->t_flags |= XFS_TRANS_FREEZE_PROT;
696 return tp;
697 }
698
699 xfs_trans_t *
_xfs_trans_alloc(xfs_mount_t * mp,uint type,xfs_km_flags_t memflags)700 _xfs_trans_alloc(
701 xfs_mount_t *mp,
702 uint type,
703 xfs_km_flags_t memflags)
704 {
705 xfs_trans_t *tp;
706
707 WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
708 atomic_inc(&mp->m_active_trans);
709
710 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
711 tp->t_magic = XFS_TRANS_MAGIC;
712 tp->t_type = type;
713 tp->t_mountp = mp;
714 INIT_LIST_HEAD(&tp->t_items);
715 INIT_LIST_HEAD(&tp->t_busy);
716 return tp;
717 }
718
719 /*
720 * Free the transaction structure. If there is more clean up
721 * to do when the structure is freed, add it here.
722 */
723 STATIC void
xfs_trans_free(struct xfs_trans * tp)724 xfs_trans_free(
725 struct xfs_trans *tp)
726 {
727 xfs_extent_busy_sort(&tp->t_busy);
728 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
729
730 atomic_dec(&tp->t_mountp->m_active_trans);
731 if (tp->t_flags & XFS_TRANS_FREEZE_PROT)
732 sb_end_intwrite(tp->t_mountp->m_super);
733 xfs_trans_free_dqinfo(tp);
734 kmem_zone_free(xfs_trans_zone, tp);
735 }
736
737 /*
738 * This is called to create a new transaction which will share the
739 * permanent log reservation of the given transaction. The remaining
740 * unused block and rt extent reservations are also inherited. This
741 * implies that the original transaction is no longer allowed to allocate
742 * blocks. Locks and log items, however, are no inherited. They must
743 * be added to the new transaction explicitly.
744 */
745 xfs_trans_t *
xfs_trans_dup(xfs_trans_t * tp)746 xfs_trans_dup(
747 xfs_trans_t *tp)
748 {
749 xfs_trans_t *ntp;
750
751 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
752
753 /*
754 * Initialize the new transaction structure.
755 */
756 ntp->t_magic = XFS_TRANS_MAGIC;
757 ntp->t_type = tp->t_type;
758 ntp->t_mountp = tp->t_mountp;
759 INIT_LIST_HEAD(&ntp->t_items);
760 INIT_LIST_HEAD(&ntp->t_busy);
761
762 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
763 ASSERT(tp->t_ticket != NULL);
764
765 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
766 (tp->t_flags & XFS_TRANS_RESERVE) |
767 (tp->t_flags & XFS_TRANS_FREEZE_PROT);
768 /* We gave our writer reference to the new transaction */
769 tp->t_flags &= ~XFS_TRANS_FREEZE_PROT;
770 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
771 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
772 tp->t_blk_res = tp->t_blk_res_used;
773 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
774 tp->t_rtx_res = tp->t_rtx_res_used;
775 ntp->t_pflags = tp->t_pflags;
776
777 xfs_trans_dup_dqinfo(tp, ntp);
778
779 atomic_inc(&tp->t_mountp->m_active_trans);
780 return ntp;
781 }
782
783 /*
784 * This is called to reserve free disk blocks and log space for the
785 * given transaction. This must be done before allocating any resources
786 * within the transaction.
787 *
788 * This will return ENOSPC if there are not enough blocks available.
789 * It will sleep waiting for available log space.
790 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
791 * is used by long running transactions. If any one of the reservations
792 * fails then they will all be backed out.
793 *
794 * This does not do quota reservations. That typically is done by the
795 * caller afterwards.
796 */
797 int
xfs_trans_reserve(xfs_trans_t * tp,uint blocks,uint logspace,uint rtextents,uint flags,uint logcount)798 xfs_trans_reserve(
799 xfs_trans_t *tp,
800 uint blocks,
801 uint logspace,
802 uint rtextents,
803 uint flags,
804 uint logcount)
805 {
806 int error = 0;
807 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
808
809 /* Mark this thread as being in a transaction */
810 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
811
812 /*
813 * Attempt to reserve the needed disk blocks by decrementing
814 * the number needed from the number available. This will
815 * fail if the count would go below zero.
816 */
817 if (blocks > 0) {
818 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
819 -((int64_t)blocks), rsvd);
820 if (error != 0) {
821 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
822 return (XFS_ERROR(ENOSPC));
823 }
824 tp->t_blk_res += blocks;
825 }
826
827 /*
828 * Reserve the log space needed for this transaction.
829 */
830 if (logspace > 0) {
831 bool permanent = false;
832
833 ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
834 ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
835
836 if (flags & XFS_TRANS_PERM_LOG_RES) {
837 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
838 permanent = true;
839 } else {
840 ASSERT(tp->t_ticket == NULL);
841 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
842 }
843
844 if (tp->t_ticket != NULL) {
845 ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
846 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
847 } else {
848 error = xfs_log_reserve(tp->t_mountp, logspace,
849 logcount, &tp->t_ticket,
850 XFS_TRANSACTION, permanent,
851 tp->t_type);
852 }
853
854 if (error)
855 goto undo_blocks;
856
857 tp->t_log_res = logspace;
858 tp->t_log_count = logcount;
859 }
860
861 /*
862 * Attempt to reserve the needed realtime extents by decrementing
863 * the number needed from the number available. This will
864 * fail if the count would go below zero.
865 */
866 if (rtextents > 0) {
867 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
868 -((int64_t)rtextents), rsvd);
869 if (error) {
870 error = XFS_ERROR(ENOSPC);
871 goto undo_log;
872 }
873 tp->t_rtx_res += rtextents;
874 }
875
876 return 0;
877
878 /*
879 * Error cases jump to one of these labels to undo any
880 * reservations which have already been performed.
881 */
882 undo_log:
883 if (logspace > 0) {
884 int log_flags;
885
886 if (flags & XFS_TRANS_PERM_LOG_RES) {
887 log_flags = XFS_LOG_REL_PERM_RESERV;
888 } else {
889 log_flags = 0;
890 }
891 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
892 tp->t_ticket = NULL;
893 tp->t_log_res = 0;
894 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
895 }
896
897 undo_blocks:
898 if (blocks > 0) {
899 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
900 (int64_t)blocks, rsvd);
901 tp->t_blk_res = 0;
902 }
903
904 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
905
906 return error;
907 }
908
909 /*
910 * Record the indicated change to the given field for application
911 * to the file system's superblock when the transaction commits.
912 * For now, just store the change in the transaction structure.
913 *
914 * Mark the transaction structure to indicate that the superblock
915 * needs to be updated before committing.
916 *
917 * Because we may not be keeping track of allocated/free inodes and
918 * used filesystem blocks in the superblock, we do not mark the
919 * superblock dirty in this transaction if we modify these fields.
920 * We still need to update the transaction deltas so that they get
921 * applied to the incore superblock, but we don't want them to
922 * cause the superblock to get locked and logged if these are the
923 * only fields in the superblock that the transaction modifies.
924 */
925 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)926 xfs_trans_mod_sb(
927 xfs_trans_t *tp,
928 uint field,
929 int64_t delta)
930 {
931 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
932 xfs_mount_t *mp = tp->t_mountp;
933
934 switch (field) {
935 case XFS_TRANS_SB_ICOUNT:
936 tp->t_icount_delta += delta;
937 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
938 flags &= ~XFS_TRANS_SB_DIRTY;
939 break;
940 case XFS_TRANS_SB_IFREE:
941 tp->t_ifree_delta += delta;
942 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
943 flags &= ~XFS_TRANS_SB_DIRTY;
944 break;
945 case XFS_TRANS_SB_FDBLOCKS:
946 /*
947 * Track the number of blocks allocated in the
948 * transaction. Make sure it does not exceed the
949 * number reserved.
950 */
951 if (delta < 0) {
952 tp->t_blk_res_used += (uint)-delta;
953 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
954 }
955 tp->t_fdblocks_delta += delta;
956 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
957 flags &= ~XFS_TRANS_SB_DIRTY;
958 break;
959 case XFS_TRANS_SB_RES_FDBLOCKS:
960 /*
961 * The allocation has already been applied to the
962 * in-core superblock's counter. This should only
963 * be applied to the on-disk superblock.
964 */
965 ASSERT(delta < 0);
966 tp->t_res_fdblocks_delta += delta;
967 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
968 flags &= ~XFS_TRANS_SB_DIRTY;
969 break;
970 case XFS_TRANS_SB_FREXTENTS:
971 /*
972 * Track the number of blocks allocated in the
973 * transaction. Make sure it does not exceed the
974 * number reserved.
975 */
976 if (delta < 0) {
977 tp->t_rtx_res_used += (uint)-delta;
978 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
979 }
980 tp->t_frextents_delta += delta;
981 break;
982 case XFS_TRANS_SB_RES_FREXTENTS:
983 /*
984 * The allocation has already been applied to the
985 * in-core superblock's counter. This should only
986 * be applied to the on-disk superblock.
987 */
988 ASSERT(delta < 0);
989 tp->t_res_frextents_delta += delta;
990 break;
991 case XFS_TRANS_SB_DBLOCKS:
992 ASSERT(delta > 0);
993 tp->t_dblocks_delta += delta;
994 break;
995 case XFS_TRANS_SB_AGCOUNT:
996 ASSERT(delta > 0);
997 tp->t_agcount_delta += delta;
998 break;
999 case XFS_TRANS_SB_IMAXPCT:
1000 tp->t_imaxpct_delta += delta;
1001 break;
1002 case XFS_TRANS_SB_REXTSIZE:
1003 tp->t_rextsize_delta += delta;
1004 break;
1005 case XFS_TRANS_SB_RBMBLOCKS:
1006 tp->t_rbmblocks_delta += delta;
1007 break;
1008 case XFS_TRANS_SB_RBLOCKS:
1009 tp->t_rblocks_delta += delta;
1010 break;
1011 case XFS_TRANS_SB_REXTENTS:
1012 tp->t_rextents_delta += delta;
1013 break;
1014 case XFS_TRANS_SB_REXTSLOG:
1015 tp->t_rextslog_delta += delta;
1016 break;
1017 default:
1018 ASSERT(0);
1019 return;
1020 }
1021
1022 tp->t_flags |= flags;
1023 }
1024
1025 /*
1026 * xfs_trans_apply_sb_deltas() is called from the commit code
1027 * to bring the superblock buffer into the current transaction
1028 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
1029 *
1030 * For now we just look at each field allowed to change and change
1031 * it if necessary.
1032 */
1033 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)1034 xfs_trans_apply_sb_deltas(
1035 xfs_trans_t *tp)
1036 {
1037 xfs_dsb_t *sbp;
1038 xfs_buf_t *bp;
1039 int whole = 0;
1040
1041 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
1042 sbp = XFS_BUF_TO_SBP(bp);
1043
1044 /*
1045 * Check that superblock mods match the mods made to AGF counters.
1046 */
1047 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
1048 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
1049 tp->t_ag_btree_delta));
1050
1051 /*
1052 * Only update the superblock counters if we are logging them
1053 */
1054 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
1055 if (tp->t_icount_delta)
1056 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
1057 if (tp->t_ifree_delta)
1058 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
1059 if (tp->t_fdblocks_delta)
1060 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
1061 if (tp->t_res_fdblocks_delta)
1062 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
1063 }
1064
1065 if (tp->t_frextents_delta)
1066 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
1067 if (tp->t_res_frextents_delta)
1068 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
1069
1070 if (tp->t_dblocks_delta) {
1071 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
1072 whole = 1;
1073 }
1074 if (tp->t_agcount_delta) {
1075 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
1076 whole = 1;
1077 }
1078 if (tp->t_imaxpct_delta) {
1079 sbp->sb_imax_pct += tp->t_imaxpct_delta;
1080 whole = 1;
1081 }
1082 if (tp->t_rextsize_delta) {
1083 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
1084 whole = 1;
1085 }
1086 if (tp->t_rbmblocks_delta) {
1087 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
1088 whole = 1;
1089 }
1090 if (tp->t_rblocks_delta) {
1091 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
1092 whole = 1;
1093 }
1094 if (tp->t_rextents_delta) {
1095 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
1096 whole = 1;
1097 }
1098 if (tp->t_rextslog_delta) {
1099 sbp->sb_rextslog += tp->t_rextslog_delta;
1100 whole = 1;
1101 }
1102
1103 if (whole)
1104 /*
1105 * Log the whole thing, the fields are noncontiguous.
1106 */
1107 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
1108 else
1109 /*
1110 * Since all the modifiable fields are contiguous, we
1111 * can get away with this.
1112 */
1113 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
1114 offsetof(xfs_dsb_t, sb_frextents) +
1115 sizeof(sbp->sb_frextents) - 1);
1116 }
1117
1118 /*
1119 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
1120 * and apply superblock counter changes to the in-core superblock. The
1121 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
1122 * applied to the in-core superblock. The idea is that that has already been
1123 * done.
1124 *
1125 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1126 * However, we have to ensure that we only modify each superblock field only
1127 * once because the application of the delta values may not be atomic. That can
1128 * lead to ENOSPC races occurring if we have two separate modifcations of the
1129 * free space counter to put back the entire reservation and then take away
1130 * what we used.
1131 *
1132 * If we are not logging superblock counters, then the inode allocated/free and
1133 * used block counts are not updated in the on disk superblock. In this case,
1134 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1135 * still need to update the incore superblock with the changes.
1136 */
1137 void
xfs_trans_unreserve_and_mod_sb(xfs_trans_t * tp)1138 xfs_trans_unreserve_and_mod_sb(
1139 xfs_trans_t *tp)
1140 {
1141 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1142 xfs_mod_sb_t *msbp;
1143 xfs_mount_t *mp = tp->t_mountp;
1144 /* REFERENCED */
1145 int error;
1146 int rsvd;
1147 int64_t blkdelta = 0;
1148 int64_t rtxdelta = 0;
1149 int64_t idelta = 0;
1150 int64_t ifreedelta = 0;
1151
1152 msbp = msb;
1153 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1154
1155 /* calculate deltas */
1156 if (tp->t_blk_res > 0)
1157 blkdelta = tp->t_blk_res;
1158 if ((tp->t_fdblocks_delta != 0) &&
1159 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1160 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1161 blkdelta += tp->t_fdblocks_delta;
1162
1163 if (tp->t_rtx_res > 0)
1164 rtxdelta = tp->t_rtx_res;
1165 if ((tp->t_frextents_delta != 0) &&
1166 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1167 rtxdelta += tp->t_frextents_delta;
1168
1169 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1170 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1171 idelta = tp->t_icount_delta;
1172 ifreedelta = tp->t_ifree_delta;
1173 }
1174
1175 /* apply the per-cpu counters */
1176 if (blkdelta) {
1177 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1178 blkdelta, rsvd);
1179 if (error)
1180 goto out;
1181 }
1182
1183 if (idelta) {
1184 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1185 idelta, rsvd);
1186 if (error)
1187 goto out_undo_fdblocks;
1188 }
1189
1190 if (ifreedelta) {
1191 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1192 ifreedelta, rsvd);
1193 if (error)
1194 goto out_undo_icount;
1195 }
1196
1197 /* apply remaining deltas */
1198 if (rtxdelta != 0) {
1199 msbp->msb_field = XFS_SBS_FREXTENTS;
1200 msbp->msb_delta = rtxdelta;
1201 msbp++;
1202 }
1203
1204 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1205 if (tp->t_dblocks_delta != 0) {
1206 msbp->msb_field = XFS_SBS_DBLOCKS;
1207 msbp->msb_delta = tp->t_dblocks_delta;
1208 msbp++;
1209 }
1210 if (tp->t_agcount_delta != 0) {
1211 msbp->msb_field = XFS_SBS_AGCOUNT;
1212 msbp->msb_delta = tp->t_agcount_delta;
1213 msbp++;
1214 }
1215 if (tp->t_imaxpct_delta != 0) {
1216 msbp->msb_field = XFS_SBS_IMAX_PCT;
1217 msbp->msb_delta = tp->t_imaxpct_delta;
1218 msbp++;
1219 }
1220 if (tp->t_rextsize_delta != 0) {
1221 msbp->msb_field = XFS_SBS_REXTSIZE;
1222 msbp->msb_delta = tp->t_rextsize_delta;
1223 msbp++;
1224 }
1225 if (tp->t_rbmblocks_delta != 0) {
1226 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1227 msbp->msb_delta = tp->t_rbmblocks_delta;
1228 msbp++;
1229 }
1230 if (tp->t_rblocks_delta != 0) {
1231 msbp->msb_field = XFS_SBS_RBLOCKS;
1232 msbp->msb_delta = tp->t_rblocks_delta;
1233 msbp++;
1234 }
1235 if (tp->t_rextents_delta != 0) {
1236 msbp->msb_field = XFS_SBS_REXTENTS;
1237 msbp->msb_delta = tp->t_rextents_delta;
1238 msbp++;
1239 }
1240 if (tp->t_rextslog_delta != 0) {
1241 msbp->msb_field = XFS_SBS_REXTSLOG;
1242 msbp->msb_delta = tp->t_rextslog_delta;
1243 msbp++;
1244 }
1245 }
1246
1247 /*
1248 * If we need to change anything, do it.
1249 */
1250 if (msbp > msb) {
1251 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1252 (uint)(msbp - msb), rsvd);
1253 if (error)
1254 goto out_undo_ifreecount;
1255 }
1256
1257 return;
1258
1259 out_undo_ifreecount:
1260 if (ifreedelta)
1261 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1262 out_undo_icount:
1263 if (idelta)
1264 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1265 out_undo_fdblocks:
1266 if (blkdelta)
1267 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1268 out:
1269 ASSERT(error == 0);
1270 return;
1271 }
1272
1273 /*
1274 * Add the given log item to the transaction's list of log items.
1275 *
1276 * The log item will now point to its new descriptor with its li_desc field.
1277 */
1278 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)1279 xfs_trans_add_item(
1280 struct xfs_trans *tp,
1281 struct xfs_log_item *lip)
1282 {
1283 struct xfs_log_item_desc *lidp;
1284
1285 ASSERT(lip->li_mountp == tp->t_mountp);
1286 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1287
1288 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1289
1290 lidp->lid_item = lip;
1291 lidp->lid_flags = 0;
1292 list_add_tail(&lidp->lid_trans, &tp->t_items);
1293
1294 lip->li_desc = lidp;
1295 }
1296
1297 STATIC void
xfs_trans_free_item_desc(struct xfs_log_item_desc * lidp)1298 xfs_trans_free_item_desc(
1299 struct xfs_log_item_desc *lidp)
1300 {
1301 list_del_init(&lidp->lid_trans);
1302 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1303 }
1304
1305 /*
1306 * Unlink and free the given descriptor.
1307 */
1308 void
xfs_trans_del_item(struct xfs_log_item * lip)1309 xfs_trans_del_item(
1310 struct xfs_log_item *lip)
1311 {
1312 xfs_trans_free_item_desc(lip->li_desc);
1313 lip->li_desc = NULL;
1314 }
1315
1316 /*
1317 * Unlock all of the items of a transaction and free all the descriptors
1318 * of that transaction.
1319 */
1320 void
xfs_trans_free_items(struct xfs_trans * tp,xfs_lsn_t commit_lsn,int flags)1321 xfs_trans_free_items(
1322 struct xfs_trans *tp,
1323 xfs_lsn_t commit_lsn,
1324 int flags)
1325 {
1326 struct xfs_log_item_desc *lidp, *next;
1327
1328 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1329 struct xfs_log_item *lip = lidp->lid_item;
1330
1331 lip->li_desc = NULL;
1332
1333 if (commit_lsn != NULLCOMMITLSN)
1334 IOP_COMMITTING(lip, commit_lsn);
1335 if (flags & XFS_TRANS_ABORT)
1336 lip->li_flags |= XFS_LI_ABORTED;
1337 IOP_UNLOCK(lip);
1338
1339 xfs_trans_free_item_desc(lidp);
1340 }
1341 }
1342
1343 static inline void
xfs_log_item_batch_insert(struct xfs_ail * ailp,struct xfs_ail_cursor * cur,struct xfs_log_item ** log_items,int nr_items,xfs_lsn_t commit_lsn)1344 xfs_log_item_batch_insert(
1345 struct xfs_ail *ailp,
1346 struct xfs_ail_cursor *cur,
1347 struct xfs_log_item **log_items,
1348 int nr_items,
1349 xfs_lsn_t commit_lsn)
1350 {
1351 int i;
1352
1353 spin_lock(&ailp->xa_lock);
1354 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1355 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1356
1357 for (i = 0; i < nr_items; i++)
1358 IOP_UNPIN(log_items[i], 0);
1359 }
1360
1361 /*
1362 * Bulk operation version of xfs_trans_committed that takes a log vector of
1363 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1364 * minimise lock traffic.
1365 *
1366 * If we are called with the aborted flag set, it is because a log write during
1367 * a CIL checkpoint commit has failed. In this case, all the items in the
1368 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1369 * means that checkpoint commit abort handling is treated exactly the same
1370 * as an iclog write error even though we haven't started any IO yet. Hence in
1371 * this case all we need to do is IOP_COMMITTED processing, followed by an
1372 * IOP_UNPIN(aborted) call.
1373 *
1374 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1375 * at the end of the AIL, the insert cursor avoids the need to walk
1376 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1377 * call. This saves a lot of needless list walking and is a net win, even
1378 * though it slightly increases that amount of AIL lock traffic to set it up
1379 * and tear it down.
1380 */
1381 void
xfs_trans_committed_bulk(struct xfs_ail * ailp,struct xfs_log_vec * log_vector,xfs_lsn_t commit_lsn,int aborted)1382 xfs_trans_committed_bulk(
1383 struct xfs_ail *ailp,
1384 struct xfs_log_vec *log_vector,
1385 xfs_lsn_t commit_lsn,
1386 int aborted)
1387 {
1388 #define LOG_ITEM_BATCH_SIZE 32
1389 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1390 struct xfs_log_vec *lv;
1391 struct xfs_ail_cursor cur;
1392 int i = 0;
1393
1394 spin_lock(&ailp->xa_lock);
1395 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1396 spin_unlock(&ailp->xa_lock);
1397
1398 /* unpin all the log items */
1399 for (lv = log_vector; lv; lv = lv->lv_next ) {
1400 struct xfs_log_item *lip = lv->lv_item;
1401 xfs_lsn_t item_lsn;
1402
1403 if (aborted)
1404 lip->li_flags |= XFS_LI_ABORTED;
1405 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1406
1407 /* item_lsn of -1 means the item needs no further processing */
1408 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1409 continue;
1410
1411 /*
1412 * if we are aborting the operation, no point in inserting the
1413 * object into the AIL as we are in a shutdown situation.
1414 */
1415 if (aborted) {
1416 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1417 IOP_UNPIN(lip, 1);
1418 continue;
1419 }
1420
1421 if (item_lsn != commit_lsn) {
1422
1423 /*
1424 * Not a bulk update option due to unusual item_lsn.
1425 * Push into AIL immediately, rechecking the lsn once
1426 * we have the ail lock. Then unpin the item. This does
1427 * not affect the AIL cursor the bulk insert path is
1428 * using.
1429 */
1430 spin_lock(&ailp->xa_lock);
1431 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1432 xfs_trans_ail_update(ailp, lip, item_lsn);
1433 else
1434 spin_unlock(&ailp->xa_lock);
1435 IOP_UNPIN(lip, 0);
1436 continue;
1437 }
1438
1439 /* Item is a candidate for bulk AIL insert. */
1440 log_items[i++] = lv->lv_item;
1441 if (i >= LOG_ITEM_BATCH_SIZE) {
1442 xfs_log_item_batch_insert(ailp, &cur, log_items,
1443 LOG_ITEM_BATCH_SIZE, commit_lsn);
1444 i = 0;
1445 }
1446 }
1447
1448 /* make sure we insert the remainder! */
1449 if (i)
1450 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1451
1452 spin_lock(&ailp->xa_lock);
1453 xfs_trans_ail_cursor_done(ailp, &cur);
1454 spin_unlock(&ailp->xa_lock);
1455 }
1456
1457 /*
1458 * Commit the given transaction to the log.
1459 *
1460 * XFS disk error handling mechanism is not based on a typical
1461 * transaction abort mechanism. Logically after the filesystem
1462 * gets marked 'SHUTDOWN', we can't let any new transactions
1463 * be durable - ie. committed to disk - because some metadata might
1464 * be inconsistent. In such cases, this returns an error, and the
1465 * caller may assume that all locked objects joined to the transaction
1466 * have already been unlocked as if the commit had succeeded.
1467 * Do not reference the transaction structure after this call.
1468 */
1469 int
xfs_trans_commit(struct xfs_trans * tp,uint flags)1470 xfs_trans_commit(
1471 struct xfs_trans *tp,
1472 uint flags)
1473 {
1474 struct xfs_mount *mp = tp->t_mountp;
1475 xfs_lsn_t commit_lsn = -1;
1476 int error = 0;
1477 int log_flags = 0;
1478 int sync = tp->t_flags & XFS_TRANS_SYNC;
1479
1480 /*
1481 * Determine whether this commit is releasing a permanent
1482 * log reservation or not.
1483 */
1484 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1485 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1486 log_flags = XFS_LOG_REL_PERM_RESERV;
1487 }
1488
1489 /*
1490 * If there is nothing to be logged by the transaction,
1491 * then unlock all of the items associated with the
1492 * transaction and free the transaction structure.
1493 * Also make sure to return any reserved blocks to
1494 * the free pool.
1495 */
1496 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1497 goto out_unreserve;
1498
1499 if (XFS_FORCED_SHUTDOWN(mp)) {
1500 error = XFS_ERROR(EIO);
1501 goto out_unreserve;
1502 }
1503
1504 ASSERT(tp->t_ticket != NULL);
1505
1506 /*
1507 * If we need to update the superblock, then do it now.
1508 */
1509 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1510 xfs_trans_apply_sb_deltas(tp);
1511 xfs_trans_apply_dquot_deltas(tp);
1512
1513 error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1514 if (error == ENOMEM) {
1515 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1516 error = XFS_ERROR(EIO);
1517 goto out_unreserve;
1518 }
1519
1520 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1521 xfs_trans_free(tp);
1522
1523 /*
1524 * If the transaction needs to be synchronous, then force the
1525 * log out now and wait for it.
1526 */
1527 if (sync) {
1528 if (!error) {
1529 error = _xfs_log_force_lsn(mp, commit_lsn,
1530 XFS_LOG_SYNC, NULL);
1531 }
1532 XFS_STATS_INC(xs_trans_sync);
1533 } else {
1534 XFS_STATS_INC(xs_trans_async);
1535 }
1536
1537 return error;
1538
1539 out_unreserve:
1540 xfs_trans_unreserve_and_mod_sb(tp);
1541
1542 /*
1543 * It is indeed possible for the transaction to be not dirty but
1544 * the dqinfo portion to be. All that means is that we have some
1545 * (non-persistent) quota reservations that need to be unreserved.
1546 */
1547 xfs_trans_unreserve_and_mod_dquots(tp);
1548 if (tp->t_ticket) {
1549 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1550 if (commit_lsn == -1 && !error)
1551 error = XFS_ERROR(EIO);
1552 }
1553 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1554 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1555 xfs_trans_free(tp);
1556
1557 XFS_STATS_INC(xs_trans_empty);
1558 return error;
1559 }
1560
1561 /*
1562 * Unlock all of the transaction's items and free the transaction.
1563 * The transaction must not have modified any of its items, because
1564 * there is no way to restore them to their previous state.
1565 *
1566 * If the transaction has made a log reservation, make sure to release
1567 * it as well.
1568 */
1569 void
xfs_trans_cancel(xfs_trans_t * tp,int flags)1570 xfs_trans_cancel(
1571 xfs_trans_t *tp,
1572 int flags)
1573 {
1574 int log_flags;
1575 xfs_mount_t *mp = tp->t_mountp;
1576
1577 /*
1578 * See if the caller is being too lazy to figure out if
1579 * the transaction really needs an abort.
1580 */
1581 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1582 flags &= ~XFS_TRANS_ABORT;
1583 /*
1584 * See if the caller is relying on us to shut down the
1585 * filesystem. This happens in paths where we detect
1586 * corruption and decide to give up.
1587 */
1588 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1589 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1590 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1591 }
1592 #ifdef DEBUG
1593 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1594 struct xfs_log_item_desc *lidp;
1595
1596 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1597 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1598 }
1599 #endif
1600 xfs_trans_unreserve_and_mod_sb(tp);
1601 xfs_trans_unreserve_and_mod_dquots(tp);
1602
1603 if (tp->t_ticket) {
1604 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1605 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1606 log_flags = XFS_LOG_REL_PERM_RESERV;
1607 } else {
1608 log_flags = 0;
1609 }
1610 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1611 }
1612
1613 /* mark this thread as no longer being in a transaction */
1614 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1615
1616 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1617 xfs_trans_free(tp);
1618 }
1619
1620 /*
1621 * Roll from one trans in the sequence of PERMANENT transactions to
1622 * the next: permanent transactions are only flushed out when
1623 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1624 * as possible to let chunks of it go to the log. So we commit the
1625 * chunk we've been working on and get a new transaction to continue.
1626 */
1627 int
xfs_trans_roll(struct xfs_trans ** tpp,struct xfs_inode * dp)1628 xfs_trans_roll(
1629 struct xfs_trans **tpp,
1630 struct xfs_inode *dp)
1631 {
1632 struct xfs_trans *trans;
1633 unsigned int logres, count;
1634 int error;
1635
1636 /*
1637 * Ensure that the inode is always logged.
1638 */
1639 trans = *tpp;
1640 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1641
1642 /*
1643 * Copy the critical parameters from one trans to the next.
1644 */
1645 logres = trans->t_log_res;
1646 count = trans->t_log_count;
1647 *tpp = xfs_trans_dup(trans);
1648
1649 /*
1650 * Commit the current transaction.
1651 * If this commit failed, then it'd just unlock those items that
1652 * are not marked ihold. That also means that a filesystem shutdown
1653 * is in progress. The caller takes the responsibility to cancel
1654 * the duplicate transaction that gets returned.
1655 */
1656 error = xfs_trans_commit(trans, 0);
1657 if (error)
1658 return (error);
1659
1660 trans = *tpp;
1661
1662 /*
1663 * transaction commit worked ok so we can drop the extra ticket
1664 * reference that we gained in xfs_trans_dup()
1665 */
1666 xfs_log_ticket_put(trans->t_ticket);
1667
1668
1669 /*
1670 * Reserve space in the log for th next transaction.
1671 * This also pushes items in the "AIL", the list of logged items,
1672 * out to disk if they are taking up space at the tail of the log
1673 * that we want to use. This requires that either nothing be locked
1674 * across this call, or that anything that is locked be logged in
1675 * the prior and the next transactions.
1676 */
1677 error = xfs_trans_reserve(trans, 0, logres, 0,
1678 XFS_TRANS_PERM_LOG_RES, count);
1679 /*
1680 * Ensure that the inode is in the new transaction and locked.
1681 */
1682 if (error)
1683 return error;
1684
1685 xfs_trans_ijoin(trans, dp, 0);
1686 return 0;
1687 }
1688