• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * xhci_handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done).  There are two failure modes:  "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
xhci_handshake(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec)55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 		      u32 mask, u32 done, int usec)
57 {
58 	u32	result;
59 
60 	do {
61 		result = xhci_readl(xhci, ptr);
62 		if (result == ~(u32)0)		/* card removed */
63 			return -ENODEV;
64 		result &= mask;
65 		if (result == done)
66 			return 0;
67 		udelay(1);
68 		usec--;
69 	} while (usec > 0);
70 	return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
xhci_quiesce(struct xhci_hcd * xhci)76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 	u32 halted;
79 	u32 cmd;
80 	u32 mask;
81 
82 	mask = ~(XHCI_IRQS);
83 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 	if (!halted)
85 		mask &= ~CMD_RUN;
86 
87 	cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 	cmd &= mask;
89 	xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
xhci_halt(struct xhci_hcd * xhci)100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 	int ret;
103 	xhci_dbg(xhci, "// Halt the HC\n");
104 	xhci_quiesce(xhci);
105 
106 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 	if (!ret) {
109 		xhci->xhc_state |= XHCI_STATE_HALTED;
110 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 	} else
112 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 				XHCI_MAX_HALT_USEC);
114 	return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
xhci_start(struct xhci_hcd * xhci)120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 	u32 temp;
123 	int ret;
124 
125 	temp = xhci_readl(xhci, &xhci->op_regs->command);
126 	temp |= (CMD_RUN);
127 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 			temp);
129 	xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131 	/*
132 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 	 * running.
134 	 */
135 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 	if (ret == -ETIMEDOUT)
138 		xhci_err(xhci, "Host took too long to start, "
139 				"waited %u microseconds.\n",
140 				XHCI_MAX_HALT_USEC);
141 	if (!ret)
142 		xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 	return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
xhci_reset(struct xhci_hcd * xhci)153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 	u32 command;
156 	u32 state;
157 	int ret, i;
158 
159 	state = xhci_readl(xhci, &xhci->op_regs->status);
160 	if ((state & STS_HALT) == 0) {
161 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 		return 0;
163 	}
164 
165 	xhci_dbg(xhci, "// Reset the HC\n");
166 	command = xhci_readl(xhci, &xhci->op_regs->command);
167 	command |= CMD_RESET;
168 	xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170 	ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 			CMD_RESET, 0, 10 * 1000 * 1000);
172 	if (ret)
173 		return ret;
174 
175 	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 	/*
177 	 * xHCI cannot write to any doorbells or operational registers other
178 	 * than status until the "Controller Not Ready" flag is cleared.
179 	 */
180 	ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 			STS_CNR, 0, 10 * 1000 * 1000);
182 
183 	for (i = 0; i < 2; ++i) {
184 		xhci->bus_state[i].port_c_suspend = 0;
185 		xhci->bus_state[i].suspended_ports = 0;
186 		xhci->bus_state[i].resuming_ports = 0;
187 	}
188 
189 	return ret;
190 }
191 
192 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 	int i;
196 
197 	if (!xhci->msix_entries)
198 		return -EINVAL;
199 
200 	for (i = 0; i < xhci->msix_count; i++)
201 		if (xhci->msix_entries[i].vector)
202 			free_irq(xhci->msix_entries[i].vector,
203 					xhci_to_hcd(xhci));
204 	return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
xhci_setup_msi(struct xhci_hcd * xhci)210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 	int ret;
213 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215 	ret = pci_enable_msi(pdev);
216 	if (ret) {
217 		xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 		return ret;
219 	}
220 
221 	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 				0, "xhci_hcd", xhci_to_hcd(xhci));
223 	if (ret) {
224 		xhci_dbg(xhci, "disable MSI interrupt\n");
225 		pci_disable_msi(pdev);
226 	}
227 
228 	return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
xhci_free_irq(struct xhci_hcd * xhci)235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 	int ret;
239 
240 	/* return if using legacy interrupt */
241 	if (xhci_to_hcd(xhci)->irq > 0)
242 		return;
243 
244 	ret = xhci_free_msi(xhci);
245 	if (!ret)
246 		return;
247 	if (pdev->irq > 0)
248 		free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250 	return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
xhci_setup_msix(struct xhci_hcd * xhci)256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 	int i, ret = 0;
259 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262 	/*
263 	 * calculate number of msi-x vectors supported.
264 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
266 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 	 *   Add additional 1 vector to ensure always available interrupt.
268 	 */
269 	xhci->msix_count = min(num_online_cpus() + 1,
270 				HCS_MAX_INTRS(xhci->hcs_params1));
271 
272 	xhci->msix_entries =
273 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 				GFP_KERNEL);
275 	if (!xhci->msix_entries) {
276 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 		return -ENOMEM;
278 	}
279 
280 	for (i = 0; i < xhci->msix_count; i++) {
281 		xhci->msix_entries[i].entry = i;
282 		xhci->msix_entries[i].vector = 0;
283 	}
284 
285 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 	if (ret) {
287 		xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 		goto free_entries;
289 	}
290 
291 	for (i = 0; i < xhci->msix_count; i++) {
292 		ret = request_irq(xhci->msix_entries[i].vector,
293 				(irq_handler_t)xhci_msi_irq,
294 				0, "xhci_hcd", xhci_to_hcd(xhci));
295 		if (ret)
296 			goto disable_msix;
297 	}
298 
299 	hcd->msix_enabled = 1;
300 	return ret;
301 
302 disable_msix:
303 	xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 	xhci_free_irq(xhci);
305 	pci_disable_msix(pdev);
306 free_entries:
307 	kfree(xhci->msix_entries);
308 	xhci->msix_entries = NULL;
309 	return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318 	xhci_free_irq(xhci);
319 
320 	if (xhci->msix_entries) {
321 		pci_disable_msix(pdev);
322 		kfree(xhci->msix_entries);
323 		xhci->msix_entries = NULL;
324 	} else {
325 		pci_disable_msi(pdev);
326 	}
327 
328 	hcd->msix_enabled = 0;
329 	return;
330 }
331 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 	int i;
335 
336 	if (xhci->msix_entries) {
337 		for (i = 0; i < xhci->msix_count; i++)
338 			synchronize_irq(xhci->msix_entries[i].vector);
339 	}
340 }
341 
xhci_try_enable_msi(struct usb_hcd * hcd)342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 	int ret;
347 
348 	/*
349 	 * Some Fresco Logic host controllers advertise MSI, but fail to
350 	 * generate interrupts.  Don't even try to enable MSI.
351 	 */
352 	if (xhci->quirks & XHCI_BROKEN_MSI)
353 		goto legacy_irq;
354 
355 	/* unregister the legacy interrupt */
356 	if (hcd->irq)
357 		free_irq(hcd->irq, hcd);
358 	hcd->irq = 0;
359 
360 	ret = xhci_setup_msix(xhci);
361 	if (ret)
362 		/* fall back to msi*/
363 		ret = xhci_setup_msi(xhci);
364 
365 	if (!ret)
366 		/* hcd->irq is 0, we have MSI */
367 		return 0;
368 
369 	if (!pdev->irq) {
370 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 		return -EINVAL;
372 	}
373 
374  legacy_irq:
375 	/* fall back to legacy interrupt*/
376 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377 			hcd->irq_descr, hcd);
378 	if (ret) {
379 		xhci_err(xhci, "request interrupt %d failed\n",
380 				pdev->irq);
381 		return ret;
382 	}
383 	hcd->irq = pdev->irq;
384 	return 0;
385 }
386 
387 #else
388 
xhci_try_enable_msi(struct usb_hcd * hcd)389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391 	return 0;
392 }
393 
xhci_cleanup_msix(struct xhci_hcd * xhci)394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401 
402 #endif
403 
compliance_mode_recovery(unsigned long arg)404 static void compliance_mode_recovery(unsigned long arg)
405 {
406 	struct xhci_hcd *xhci;
407 	struct usb_hcd *hcd;
408 	u32 temp;
409 	int i;
410 
411 	xhci = (struct xhci_hcd *)arg;
412 
413 	for (i = 0; i < xhci->num_usb3_ports; i++) {
414 		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416 			/*
417 			 * Compliance Mode Detected. Letting USB Core
418 			 * handle the Warm Reset
419 			 */
420 			xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421 					i + 1);
422 			xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423 			hcd = xhci->shared_hcd;
424 
425 			if (hcd->state == HC_STATE_SUSPENDED)
426 				usb_hcd_resume_root_hub(hcd);
427 
428 			usb_hcd_poll_rh_status(hcd);
429 		}
430 	}
431 
432 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433 		mod_timer(&xhci->comp_mode_recovery_timer,
434 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436 
437 /*
438  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439  * that causes ports behind that hardware to enter compliance mode sometimes.
440  * The quirk creates a timer that polls every 2 seconds the link state of
441  * each host controller's port and recovers it by issuing a Warm reset
442  * if Compliance mode is detected, otherwise the port will become "dead" (no
443  * device connections or disconnections will be detected anymore). Becasue no
444  * status event is generated when entering compliance mode (per xhci spec),
445  * this quirk is needed on systems that have the failing hardware installed.
446  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449 	xhci->port_status_u0 = 0;
450 	init_timer(&xhci->comp_mode_recovery_timer);
451 
452 	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453 	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454 	xhci->comp_mode_recovery_timer.expires = jiffies +
455 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456 
457 	set_timer_slack(&xhci->comp_mode_recovery_timer,
458 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 	add_timer(&xhci->comp_mode_recovery_timer);
460 	xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462 
463 /*
464  * This function identifies the systems that have installed the SN65LVPE502CP
465  * USB3.0 re-driver and that need the Compliance Mode Quirk.
466  * Systems:
467  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468  */
xhci_compliance_mode_recovery_timer_quirk_check(void)469 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
470 {
471 	const char *dmi_product_name, *dmi_sys_vendor;
472 
473 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475 	if (!dmi_product_name || !dmi_sys_vendor)
476 		return false;
477 
478 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479 		return false;
480 
481 	if (strstr(dmi_product_name, "Z420") ||
482 			strstr(dmi_product_name, "Z620") ||
483 			strstr(dmi_product_name, "Z820") ||
484 			strstr(dmi_product_name, "Z1 Workstation"))
485 		return true;
486 
487 	return false;
488 }
489 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494 
495 
496 /*
497  * Initialize memory for HCD and xHC (one-time init).
498  *
499  * Program the PAGESIZE register, initialize the device context array, create
500  * device contexts (?), set up a command ring segment (or two?), create event
501  * ring (one for now).
502  */
xhci_init(struct usb_hcd * hcd)503 int xhci_init(struct usb_hcd *hcd)
504 {
505 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 	int retval = 0;
507 
508 	xhci_dbg(xhci, "xhci_init\n");
509 	spin_lock_init(&xhci->lock);
510 	if (xhci->hci_version == 0x95 && link_quirk) {
511 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513 	} else {
514 		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515 	}
516 	retval = xhci_mem_init(xhci, GFP_KERNEL);
517 	xhci_dbg(xhci, "Finished xhci_init\n");
518 
519 	/* Initializing Compliance Mode Recovery Data If Needed */
520 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
521 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522 		compliance_mode_recovery_timer_init(xhci);
523 	}
524 
525 	return retval;
526 }
527 
528 /*-------------------------------------------------------------------------*/
529 
530 
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
xhci_event_ring_work(unsigned long arg)532 static void xhci_event_ring_work(unsigned long arg)
533 {
534 	unsigned long flags;
535 	int temp;
536 	u64 temp_64;
537 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
538 	int i, j;
539 
540 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541 
542 	spin_lock_irqsave(&xhci->lock, flags);
543 	temp = xhci_readl(xhci, &xhci->op_regs->status);
544 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
545 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
546 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
547 		xhci_dbg(xhci, "HW died, polling stopped.\n");
548 		spin_unlock_irqrestore(&xhci->lock, flags);
549 		return;
550 	}
551 
552 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
553 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
554 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
555 	xhci->error_bitmask = 0;
556 	xhci_dbg(xhci, "Event ring:\n");
557 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
558 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
559 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
560 	temp_64 &= ~ERST_PTR_MASK;
561 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
562 	xhci_dbg(xhci, "Command ring:\n");
563 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
564 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
565 	xhci_dbg_cmd_ptrs(xhci);
566 	for (i = 0; i < MAX_HC_SLOTS; ++i) {
567 		if (!xhci->devs[i])
568 			continue;
569 		for (j = 0; j < 31; ++j) {
570 			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
571 		}
572 	}
573 	spin_unlock_irqrestore(&xhci->lock, flags);
574 
575 	if (!xhci->zombie)
576 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577 	else
578 		xhci_dbg(xhci, "Quit polling the event ring.\n");
579 }
580 #endif
581 
xhci_run_finished(struct xhci_hcd * xhci)582 static int xhci_run_finished(struct xhci_hcd *xhci)
583 {
584 	if (xhci_start(xhci)) {
585 		xhci_halt(xhci);
586 		return -ENODEV;
587 	}
588 	xhci->shared_hcd->state = HC_STATE_RUNNING;
589 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590 
591 	if (xhci->quirks & XHCI_NEC_HOST)
592 		xhci_ring_cmd_db(xhci);
593 
594 	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
595 	return 0;
596 }
597 
598 /*
599  * Start the HC after it was halted.
600  *
601  * This function is called by the USB core when the HC driver is added.
602  * Its opposite is xhci_stop().
603  *
604  * xhci_init() must be called once before this function can be called.
605  * Reset the HC, enable device slot contexts, program DCBAAP, and
606  * set command ring pointer and event ring pointer.
607  *
608  * Setup MSI-X vectors and enable interrupts.
609  */
xhci_run(struct usb_hcd * hcd)610 int xhci_run(struct usb_hcd *hcd)
611 {
612 	u32 temp;
613 	u64 temp_64;
614 	int ret;
615 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616 
617 	/* Start the xHCI host controller running only after the USB 2.0 roothub
618 	 * is setup.
619 	 */
620 
621 	hcd->uses_new_polling = 1;
622 	if (!usb_hcd_is_primary_hcd(hcd))
623 		return xhci_run_finished(xhci);
624 
625 	xhci_dbg(xhci, "xhci_run\n");
626 
627 	ret = xhci_try_enable_msi(hcd);
628 	if (ret)
629 		return ret;
630 
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632 	init_timer(&xhci->event_ring_timer);
633 	xhci->event_ring_timer.data = (unsigned long) xhci;
634 	xhci->event_ring_timer.function = xhci_event_ring_work;
635 	/* Poll the event ring */
636 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637 	xhci->zombie = 0;
638 	xhci_dbg(xhci, "Setting event ring polling timer\n");
639 	add_timer(&xhci->event_ring_timer);
640 #endif
641 
642 	xhci_dbg(xhci, "Command ring memory map follows:\n");
643 	xhci_debug_ring(xhci, xhci->cmd_ring);
644 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
645 	xhci_dbg_cmd_ptrs(xhci);
646 
647 	xhci_dbg(xhci, "ERST memory map follows:\n");
648 	xhci_dbg_erst(xhci, &xhci->erst);
649 	xhci_dbg(xhci, "Event ring:\n");
650 	xhci_debug_ring(xhci, xhci->event_ring);
651 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
652 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
653 	temp_64 &= ~ERST_PTR_MASK;
654 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655 
656 	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
657 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
658 	temp &= ~ER_IRQ_INTERVAL_MASK;
659 	temp |= (u32) 160;
660 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661 
662 	/* Set the HCD state before we enable the irqs */
663 	temp = xhci_readl(xhci, &xhci->op_regs->command);
664 	temp |= (CMD_EIE);
665 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666 			temp);
667 	xhci_writel(xhci, temp, &xhci->op_regs->command);
668 
669 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
670 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
672 	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
673 			&xhci->ir_set->irq_pending);
674 	xhci_print_ir_set(xhci, 0);
675 
676 	if (xhci->quirks & XHCI_NEC_HOST)
677 		xhci_queue_vendor_command(xhci, 0, 0, 0,
678 				TRB_TYPE(TRB_NEC_GET_FW));
679 
680 	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
681 	return 0;
682 }
683 
xhci_only_stop_hcd(struct usb_hcd * hcd)684 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 {
686 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687 
688 	spin_lock_irq(&xhci->lock);
689 	xhci_halt(xhci);
690 
691 	/* The shared_hcd is going to be deallocated shortly (the USB core only
692 	 * calls this function when allocation fails in usb_add_hcd(), or
693 	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
694 	 */
695 	xhci->shared_hcd = NULL;
696 	spin_unlock_irq(&xhci->lock);
697 }
698 
699 /*
700  * Stop xHCI driver.
701  *
702  * This function is called by the USB core when the HC driver is removed.
703  * Its opposite is xhci_run().
704  *
705  * Disable device contexts, disable IRQs, and quiesce the HC.
706  * Reset the HC, finish any completed transactions, and cleanup memory.
707  */
xhci_stop(struct usb_hcd * hcd)708 void xhci_stop(struct usb_hcd *hcd)
709 {
710 	u32 temp;
711 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712 
713 	if (!usb_hcd_is_primary_hcd(hcd)) {
714 		xhci_only_stop_hcd(xhci->shared_hcd);
715 		return;
716 	}
717 
718 	spin_lock_irq(&xhci->lock);
719 	/* Make sure the xHC is halted for a USB3 roothub
720 	 * (xhci_stop() could be called as part of failed init).
721 	 */
722 	xhci_halt(xhci);
723 	xhci_reset(xhci);
724 	spin_unlock_irq(&xhci->lock);
725 
726 	xhci_cleanup_msix(xhci);
727 
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729 	/* Tell the event ring poll function not to reschedule */
730 	xhci->zombie = 1;
731 	del_timer_sync(&xhci->event_ring_timer);
732 #endif
733 
734 	/* Deleting Compliance Mode Recovery Timer */
735 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
736 			(!(xhci_all_ports_seen_u0(xhci)))) {
737 		del_timer_sync(&xhci->comp_mode_recovery_timer);
738 		xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
739 				__func__);
740 	}
741 
742 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
743 		usb_amd_dev_put();
744 
745 	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
746 	temp = xhci_readl(xhci, &xhci->op_regs->status);
747 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
748 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
749 	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
750 			&xhci->ir_set->irq_pending);
751 	xhci_print_ir_set(xhci, 0);
752 
753 	xhci_dbg(xhci, "cleaning up memory\n");
754 	xhci_mem_cleanup(xhci);
755 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
756 		    xhci_readl(xhci, &xhci->op_regs->status));
757 }
758 
759 /*
760  * Shutdown HC (not bus-specific)
761  *
762  * This is called when the machine is rebooting or halting.  We assume that the
763  * machine will be powered off, and the HC's internal state will be reset.
764  * Don't bother to free memory.
765  *
766  * This will only ever be called with the main usb_hcd (the USB3 roothub).
767  */
xhci_shutdown(struct usb_hcd * hcd)768 void xhci_shutdown(struct usb_hcd *hcd)
769 {
770 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
771 
772 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
773 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
774 
775 	spin_lock_irq(&xhci->lock);
776 	xhci_halt(xhci);
777 	spin_unlock_irq(&xhci->lock);
778 
779 	xhci_cleanup_msix(xhci);
780 
781 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
782 		    xhci_readl(xhci, &xhci->op_regs->status));
783 }
784 
785 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)786 static void xhci_save_registers(struct xhci_hcd *xhci)
787 {
788 	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
789 	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
790 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
791 	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
792 	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
793 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
794 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
795 	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
796 	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
797 }
798 
xhci_restore_registers(struct xhci_hcd * xhci)799 static void xhci_restore_registers(struct xhci_hcd *xhci)
800 {
801 	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
802 	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
803 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
804 	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
805 	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
806 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
807 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
808 	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
809 	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
810 }
811 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
813 {
814 	u64	val_64;
815 
816 	/* step 2: initialize command ring buffer */
817 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
818 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
819 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
820 				      xhci->cmd_ring->dequeue) &
821 		 (u64) ~CMD_RING_RSVD_BITS) |
822 		xhci->cmd_ring->cycle_state;
823 	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
824 			(long unsigned long) val_64);
825 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
826 }
827 
828 /*
829  * The whole command ring must be cleared to zero when we suspend the host.
830  *
831  * The host doesn't save the command ring pointer in the suspend well, so we
832  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
833  * aligned, because of the reserved bits in the command ring dequeue pointer
834  * register.  Therefore, we can't just set the dequeue pointer back in the
835  * middle of the ring (TRBs are 16-byte aligned).
836  */
xhci_clear_command_ring(struct xhci_hcd * xhci)837 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
838 {
839 	struct xhci_ring *ring;
840 	struct xhci_segment *seg;
841 
842 	ring = xhci->cmd_ring;
843 	seg = ring->deq_seg;
844 	do {
845 		memset(seg->trbs, 0,
846 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
847 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
848 			cpu_to_le32(~TRB_CYCLE);
849 		seg = seg->next;
850 	} while (seg != ring->deq_seg);
851 
852 	/* Reset the software enqueue and dequeue pointers */
853 	ring->deq_seg = ring->first_seg;
854 	ring->dequeue = ring->first_seg->trbs;
855 	ring->enq_seg = ring->deq_seg;
856 	ring->enqueue = ring->dequeue;
857 
858 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
859 	/*
860 	 * Ring is now zeroed, so the HW should look for change of ownership
861 	 * when the cycle bit is set to 1.
862 	 */
863 	ring->cycle_state = 1;
864 
865 	/*
866 	 * Reset the hardware dequeue pointer.
867 	 * Yes, this will need to be re-written after resume, but we're paranoid
868 	 * and want to make sure the hardware doesn't access bogus memory
869 	 * because, say, the BIOS or an SMI started the host without changing
870 	 * the command ring pointers.
871 	 */
872 	xhci_set_cmd_ring_deq(xhci);
873 }
874 
875 /*
876  * Stop HC (not bus-specific)
877  *
878  * This is called when the machine transition into S3/S4 mode.
879  *
880  */
xhci_suspend(struct xhci_hcd * xhci)881 int xhci_suspend(struct xhci_hcd *xhci)
882 {
883 	int			rc = 0;
884 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
885 	u32			command;
886 
887 	if (hcd->state != HC_STATE_SUSPENDED ||
888 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
889 		return -EINVAL;
890 
891 	/* Don't poll the roothubs on bus suspend. */
892 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
893 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894 	del_timer_sync(&hcd->rh_timer);
895 
896 	spin_lock_irq(&xhci->lock);
897 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899 	/* step 1: stop endpoint */
900 	/* skipped assuming that port suspend has done */
901 
902 	/* step 2: clear Run/Stop bit */
903 	command = xhci_readl(xhci, &xhci->op_regs->command);
904 	command &= ~CMD_RUN;
905 	xhci_writel(xhci, command, &xhci->op_regs->command);
906 	if (xhci_handshake(xhci, &xhci->op_regs->status,
907 		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
908 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
909 		spin_unlock_irq(&xhci->lock);
910 		return -ETIMEDOUT;
911 	}
912 	xhci_clear_command_ring(xhci);
913 
914 	/* step 3: save registers */
915 	xhci_save_registers(xhci);
916 
917 	/* step 4: set CSS flag */
918 	command = xhci_readl(xhci, &xhci->op_regs->command);
919 	command |= CMD_CSS;
920 	xhci_writel(xhci, command, &xhci->op_regs->command);
921 	if (xhci_handshake(xhci, &xhci->op_regs->status,
922 				STS_SAVE, 0, 10 * 1000)) {
923 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
924 		spin_unlock_irq(&xhci->lock);
925 		return -ETIMEDOUT;
926 	}
927 	spin_unlock_irq(&xhci->lock);
928 
929 	/*
930 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
931 	 * is about to be suspended.
932 	 */
933 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
934 			(!(xhci_all_ports_seen_u0(xhci)))) {
935 		del_timer_sync(&xhci->comp_mode_recovery_timer);
936 		xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
937 				__func__);
938 	}
939 
940 	/* step 5: remove core well power */
941 	/* synchronize irq when using MSI-X */
942 	xhci_msix_sync_irqs(xhci);
943 
944 	return rc;
945 }
946 
947 /*
948  * start xHC (not bus-specific)
949  *
950  * This is called when the machine transition from S3/S4 mode.
951  *
952  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 	u32			command, temp = 0;
956 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
957 	struct usb_hcd		*secondary_hcd;
958 	int			retval = 0;
959 	bool			comp_timer_running = false;
960 
961 	/* Wait a bit if either of the roothubs need to settle from the
962 	 * transition into bus suspend.
963 	 */
964 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
965 			time_before(jiffies,
966 				xhci->bus_state[1].next_statechange))
967 		msleep(100);
968 
969 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
970 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
971 
972 	spin_lock_irq(&xhci->lock);
973 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
974 		hibernated = true;
975 
976 	if (!hibernated) {
977 		/* step 1: restore register */
978 		xhci_restore_registers(xhci);
979 		/* step 2: initialize command ring buffer */
980 		xhci_set_cmd_ring_deq(xhci);
981 		/* step 3: restore state and start state*/
982 		/* step 3: set CRS flag */
983 		command = xhci_readl(xhci, &xhci->op_regs->command);
984 		command |= CMD_CRS;
985 		xhci_writel(xhci, command, &xhci->op_regs->command);
986 		if (xhci_handshake(xhci, &xhci->op_regs->status,
987 			      STS_RESTORE, 0, 10 * 1000)) {
988 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
989 			spin_unlock_irq(&xhci->lock);
990 			return -ETIMEDOUT;
991 		}
992 		temp = xhci_readl(xhci, &xhci->op_regs->status);
993 	}
994 
995 	/* If restore operation fails, re-initialize the HC during resume */
996 	if ((temp & STS_SRE) || hibernated) {
997 
998 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
999 				!(xhci_all_ports_seen_u0(xhci))) {
1000 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1001 			xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1002 		}
1003 
1004 		/* Let the USB core know _both_ roothubs lost power. */
1005 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1006 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1007 
1008 		xhci_dbg(xhci, "Stop HCD\n");
1009 		xhci_halt(xhci);
1010 		xhci_reset(xhci);
1011 		spin_unlock_irq(&xhci->lock);
1012 		xhci_cleanup_msix(xhci);
1013 
1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1015 		/* Tell the event ring poll function not to reschedule */
1016 		xhci->zombie = 1;
1017 		del_timer_sync(&xhci->event_ring_timer);
1018 #endif
1019 
1020 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1021 		temp = xhci_readl(xhci, &xhci->op_regs->status);
1022 		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1023 		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1024 		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1025 				&xhci->ir_set->irq_pending);
1026 		xhci_print_ir_set(xhci, 0);
1027 
1028 		xhci_dbg(xhci, "cleaning up memory\n");
1029 		xhci_mem_cleanup(xhci);
1030 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1031 			    xhci_readl(xhci, &xhci->op_regs->status));
1032 
1033 		/* USB core calls the PCI reinit and start functions twice:
1034 		 * first with the primary HCD, and then with the secondary HCD.
1035 		 * If we don't do the same, the host will never be started.
1036 		 */
1037 		if (!usb_hcd_is_primary_hcd(hcd))
1038 			secondary_hcd = hcd;
1039 		else
1040 			secondary_hcd = xhci->shared_hcd;
1041 
1042 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1043 		retval = xhci_init(hcd->primary_hcd);
1044 		if (retval)
1045 			return retval;
1046 		comp_timer_running = true;
1047 
1048 		xhci_dbg(xhci, "Start the primary HCD\n");
1049 		retval = xhci_run(hcd->primary_hcd);
1050 		if (!retval) {
1051 			xhci_dbg(xhci, "Start the secondary HCD\n");
1052 			retval = xhci_run(secondary_hcd);
1053 		}
1054 		hcd->state = HC_STATE_SUSPENDED;
1055 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1056 		goto done;
1057 	}
1058 
1059 	/* step 4: set Run/Stop bit */
1060 	command = xhci_readl(xhci, &xhci->op_regs->command);
1061 	command |= CMD_RUN;
1062 	xhci_writel(xhci, command, &xhci->op_regs->command);
1063 	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1064 		  0, 250 * 1000);
1065 
1066 	/* step 5: walk topology and initialize portsc,
1067 	 * portpmsc and portli
1068 	 */
1069 	/* this is done in bus_resume */
1070 
1071 	/* step 6: restart each of the previously
1072 	 * Running endpoints by ringing their doorbells
1073 	 */
1074 
1075 	spin_unlock_irq(&xhci->lock);
1076 
1077  done:
1078 	if (retval == 0) {
1079 		usb_hcd_resume_root_hub(hcd);
1080 		usb_hcd_resume_root_hub(xhci->shared_hcd);
1081 	}
1082 
1083 	/*
1084 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1085 	 * be re-initialized Always after a system resume. Ports are subject
1086 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1087 	 * ports have entered previously to U0 before system's suspension.
1088 	 */
1089 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1090 		compliance_mode_recovery_timer_init(xhci);
1091 
1092 	/* Re-enable port polling. */
1093 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1094 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1095 	usb_hcd_poll_rh_status(hcd);
1096 
1097 	return retval;
1098 }
1099 #endif	/* CONFIG_PM */
1100 
1101 /*-------------------------------------------------------------------------*/
1102 
1103 /**
1104  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1105  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1106  * value to right shift 1 for the bitmask.
1107  *
1108  * Index  = (epnum * 2) + direction - 1,
1109  * where direction = 0 for OUT, 1 for IN.
1110  * For control endpoints, the IN index is used (OUT index is unused), so
1111  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1112  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1114 {
1115 	unsigned int index;
1116 	if (usb_endpoint_xfer_control(desc))
1117 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1118 	else
1119 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1120 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1121 	return index;
1122 }
1123 
1124 /* Find the flag for this endpoint (for use in the control context).  Use the
1125  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1126  * bit 1, etc.
1127  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1128 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1129 {
1130 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1131 }
1132 
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1137 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1138 {
1139 	return 1 << (ep_index + 1);
1140 }
1141 
1142 /* Compute the last valid endpoint context index.  Basically, this is the
1143  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1144  * we find the most significant bit set in the added contexts flags.
1145  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1146  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1147  */
xhci_last_valid_endpoint(u32 added_ctxs)1148 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1149 {
1150 	return fls(added_ctxs) - 1;
1151 }
1152 
1153 /* Returns 1 if the arguments are OK;
1154  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1155  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1156 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1157 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1158 		const char *func) {
1159 	struct xhci_hcd	*xhci;
1160 	struct xhci_virt_device	*virt_dev;
1161 
1162 	if (!hcd || (check_ep && !ep) || !udev) {
1163 		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1164 				func);
1165 		return -EINVAL;
1166 	}
1167 	if (!udev->parent) {
1168 		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1169 				func);
1170 		return 0;
1171 	}
1172 
1173 	xhci = hcd_to_xhci(hcd);
1174 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1175 		return -ENODEV;
1176 
1177 	if (check_virt_dev) {
1178 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1179 			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1180 						"device\n", func);
1181 			return -EINVAL;
1182 		}
1183 
1184 		virt_dev = xhci->devs[udev->slot_id];
1185 		if (virt_dev->udev != udev) {
1186 			printk(KERN_DEBUG "xHCI %s called with udev and "
1187 					  "virt_dev does not match\n", func);
1188 			return -EINVAL;
1189 		}
1190 	}
1191 
1192 	return 1;
1193 }
1194 
1195 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1196 		struct usb_device *udev, struct xhci_command *command,
1197 		bool ctx_change, bool must_succeed);
1198 
1199 /*
1200  * Full speed devices may have a max packet size greater than 8 bytes, but the
1201  * USB core doesn't know that until it reads the first 8 bytes of the
1202  * descriptor.  If the usb_device's max packet size changes after that point,
1203  * we need to issue an evaluate context command and wait on it.
1204  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb)1205 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1206 		unsigned int ep_index, struct urb *urb)
1207 {
1208 	struct xhci_container_ctx *in_ctx;
1209 	struct xhci_container_ctx *out_ctx;
1210 	struct xhci_input_control_ctx *ctrl_ctx;
1211 	struct xhci_ep_ctx *ep_ctx;
1212 	int max_packet_size;
1213 	int hw_max_packet_size;
1214 	int ret = 0;
1215 
1216 	out_ctx = xhci->devs[slot_id]->out_ctx;
1217 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1218 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1219 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1220 	if (hw_max_packet_size != max_packet_size) {
1221 		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1222 		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1223 				max_packet_size);
1224 		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1225 				hw_max_packet_size);
1226 		xhci_dbg(xhci, "Issuing evaluate context command.\n");
1227 
1228 		/* Set up the modified control endpoint 0 */
1229 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1230 				xhci->devs[slot_id]->out_ctx, ep_index);
1231 		in_ctx = xhci->devs[slot_id]->in_ctx;
1232 		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1233 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1234 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1235 
1236 		/* Set up the input context flags for the command */
1237 		/* FIXME: This won't work if a non-default control endpoint
1238 		 * changes max packet sizes.
1239 		 */
1240 		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1241 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1242 		ctrl_ctx->drop_flags = 0;
1243 
1244 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1245 		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1246 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1247 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1248 
1249 		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1250 				true, false);
1251 
1252 		/* Clean up the input context for later use by bandwidth
1253 		 * functions.
1254 		 */
1255 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1256 	}
1257 	return ret;
1258 }
1259 
1260 /*
1261  * non-error returns are a promise to giveback() the urb later
1262  * we drop ownership so next owner (or urb unlink) can get it
1263  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1264 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1265 {
1266 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1267 	struct xhci_td *buffer;
1268 	unsigned long flags;
1269 	int ret = 0;
1270 	unsigned int slot_id, ep_index;
1271 	struct urb_priv	*urb_priv;
1272 	int size, i;
1273 
1274 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1275 					true, true, __func__) <= 0)
1276 		return -EINVAL;
1277 
1278 	slot_id = urb->dev->slot_id;
1279 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1280 
1281 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1282 		if (!in_interrupt())
1283 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1284 		ret = -ESHUTDOWN;
1285 		goto exit;
1286 	}
1287 
1288 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1289 		size = urb->number_of_packets;
1290 	else
1291 		size = 1;
1292 
1293 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1294 				  size * sizeof(struct xhci_td *), mem_flags);
1295 	if (!urb_priv)
1296 		return -ENOMEM;
1297 
1298 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1299 	if (!buffer) {
1300 		kfree(urb_priv);
1301 		return -ENOMEM;
1302 	}
1303 
1304 	for (i = 0; i < size; i++) {
1305 		urb_priv->td[i] = buffer;
1306 		buffer++;
1307 	}
1308 
1309 	urb_priv->length = size;
1310 	urb_priv->td_cnt = 0;
1311 	urb->hcpriv = urb_priv;
1312 
1313 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1314 		/* Check to see if the max packet size for the default control
1315 		 * endpoint changed during FS device enumeration
1316 		 */
1317 		if (urb->dev->speed == USB_SPEED_FULL) {
1318 			ret = xhci_check_maxpacket(xhci, slot_id,
1319 					ep_index, urb);
1320 			if (ret < 0) {
1321 				xhci_urb_free_priv(xhci, urb_priv);
1322 				urb->hcpriv = NULL;
1323 				return ret;
1324 			}
1325 		}
1326 
1327 		/* We have a spinlock and interrupts disabled, so we must pass
1328 		 * atomic context to this function, which may allocate memory.
1329 		 */
1330 		spin_lock_irqsave(&xhci->lock, flags);
1331 		if (xhci->xhc_state & XHCI_STATE_DYING)
1332 			goto dying;
1333 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1334 				slot_id, ep_index);
1335 		if (ret)
1336 			goto free_priv;
1337 		spin_unlock_irqrestore(&xhci->lock, flags);
1338 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1339 		spin_lock_irqsave(&xhci->lock, flags);
1340 		if (xhci->xhc_state & XHCI_STATE_DYING)
1341 			goto dying;
1342 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1343 				EP_GETTING_STREAMS) {
1344 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1345 					"is transitioning to using streams.\n");
1346 			ret = -EINVAL;
1347 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1348 				EP_GETTING_NO_STREAMS) {
1349 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1350 					"is transitioning to "
1351 					"not having streams.\n");
1352 			ret = -EINVAL;
1353 		} else {
1354 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1355 					slot_id, ep_index);
1356 		}
1357 		if (ret)
1358 			goto free_priv;
1359 		spin_unlock_irqrestore(&xhci->lock, flags);
1360 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1361 		spin_lock_irqsave(&xhci->lock, flags);
1362 		if (xhci->xhc_state & XHCI_STATE_DYING)
1363 			goto dying;
1364 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1365 				slot_id, ep_index);
1366 		if (ret)
1367 			goto free_priv;
1368 		spin_unlock_irqrestore(&xhci->lock, flags);
1369 	} else {
1370 		spin_lock_irqsave(&xhci->lock, flags);
1371 		if (xhci->xhc_state & XHCI_STATE_DYING)
1372 			goto dying;
1373 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1374 				slot_id, ep_index);
1375 		if (ret)
1376 			goto free_priv;
1377 		spin_unlock_irqrestore(&xhci->lock, flags);
1378 	}
1379 exit:
1380 	return ret;
1381 dying:
1382 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1383 			"non-responsive xHCI host.\n",
1384 			urb->ep->desc.bEndpointAddress, urb);
1385 	ret = -ESHUTDOWN;
1386 free_priv:
1387 	xhci_urb_free_priv(xhci, urb_priv);
1388 	urb->hcpriv = NULL;
1389 	spin_unlock_irqrestore(&xhci->lock, flags);
1390 	return ret;
1391 }
1392 
1393 /* Get the right ring for the given URB.
1394  * If the endpoint supports streams, boundary check the URB's stream ID.
1395  * If the endpoint doesn't support streams, return the singular endpoint ring.
1396  */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1397 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1398 		struct urb *urb)
1399 {
1400 	unsigned int slot_id;
1401 	unsigned int ep_index;
1402 	unsigned int stream_id;
1403 	struct xhci_virt_ep *ep;
1404 
1405 	slot_id = urb->dev->slot_id;
1406 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1407 	stream_id = urb->stream_id;
1408 	ep = &xhci->devs[slot_id]->eps[ep_index];
1409 	/* Common case: no streams */
1410 	if (!(ep->ep_state & EP_HAS_STREAMS))
1411 		return ep->ring;
1412 
1413 	if (stream_id == 0) {
1414 		xhci_warn(xhci,
1415 				"WARN: Slot ID %u, ep index %u has streams, "
1416 				"but URB has no stream ID.\n",
1417 				slot_id, ep_index);
1418 		return NULL;
1419 	}
1420 
1421 	if (stream_id < ep->stream_info->num_streams)
1422 		return ep->stream_info->stream_rings[stream_id];
1423 
1424 	xhci_warn(xhci,
1425 			"WARN: Slot ID %u, ep index %u has "
1426 			"stream IDs 1 to %u allocated, "
1427 			"but stream ID %u is requested.\n",
1428 			slot_id, ep_index,
1429 			ep->stream_info->num_streams - 1,
1430 			stream_id);
1431 	return NULL;
1432 }
1433 
1434 /*
1435  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1436  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1437  * should pick up where it left off in the TD, unless a Set Transfer Ring
1438  * Dequeue Pointer is issued.
1439  *
1440  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1441  * the ring.  Since the ring is a contiguous structure, they can't be physically
1442  * removed.  Instead, there are two options:
1443  *
1444  *  1) If the HC is in the middle of processing the URB to be canceled, we
1445  *     simply move the ring's dequeue pointer past those TRBs using the Set
1446  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1447  *     when drivers timeout on the last submitted URB and attempt to cancel.
1448  *
1449  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1450  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1451  *     HC will need to invalidate the any TRBs it has cached after the stop
1452  *     endpoint command, as noted in the xHCI 0.95 errata.
1453  *
1454  *  3) The TD may have completed by the time the Stop Endpoint Command
1455  *     completes, so software needs to handle that case too.
1456  *
1457  * This function should protect against the TD enqueueing code ringing the
1458  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1459  * It also needs to account for multiple cancellations on happening at the same
1460  * time for the same endpoint.
1461  *
1462  * Note that this function can be called in any context, or so says
1463  * usb_hcd_unlink_urb()
1464  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1465 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1466 {
1467 	unsigned long flags;
1468 	int ret, i;
1469 	u32 temp;
1470 	struct xhci_hcd *xhci;
1471 	struct urb_priv	*urb_priv;
1472 	struct xhci_td *td;
1473 	unsigned int ep_index;
1474 	struct xhci_ring *ep_ring;
1475 	struct xhci_virt_ep *ep;
1476 
1477 	xhci = hcd_to_xhci(hcd);
1478 	spin_lock_irqsave(&xhci->lock, flags);
1479 	/* Make sure the URB hasn't completed or been unlinked already */
1480 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1481 	if (ret || !urb->hcpriv)
1482 		goto done;
1483 	temp = xhci_readl(xhci, &xhci->op_regs->status);
1484 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1485 		xhci_dbg(xhci, "HW died, freeing TD.\n");
1486 		urb_priv = urb->hcpriv;
1487 		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1488 			td = urb_priv->td[i];
1489 			if (!list_empty(&td->td_list))
1490 				list_del_init(&td->td_list);
1491 			if (!list_empty(&td->cancelled_td_list))
1492 				list_del_init(&td->cancelled_td_list);
1493 		}
1494 
1495 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1496 		spin_unlock_irqrestore(&xhci->lock, flags);
1497 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1498 		xhci_urb_free_priv(xhci, urb_priv);
1499 		return ret;
1500 	}
1501 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1502 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1503 		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1504 				"non-responsive xHCI host.\n",
1505 				urb->ep->desc.bEndpointAddress, urb);
1506 		/* Let the stop endpoint command watchdog timer (which set this
1507 		 * state) finish cleaning up the endpoint TD lists.  We must
1508 		 * have caught it in the middle of dropping a lock and giving
1509 		 * back an URB.
1510 		 */
1511 		goto done;
1512 	}
1513 
1514 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1515 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1516 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1517 	if (!ep_ring) {
1518 		ret = -EINVAL;
1519 		goto done;
1520 	}
1521 
1522 	urb_priv = urb->hcpriv;
1523 	i = urb_priv->td_cnt;
1524 	if (i < urb_priv->length)
1525 		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1526 				"starting at offset 0x%llx\n",
1527 				urb, urb->dev->devpath,
1528 				urb->ep->desc.bEndpointAddress,
1529 				(unsigned long long) xhci_trb_virt_to_dma(
1530 					urb_priv->td[i]->start_seg,
1531 					urb_priv->td[i]->first_trb));
1532 
1533 	for (; i < urb_priv->length; i++) {
1534 		td = urb_priv->td[i];
1535 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1536 	}
1537 
1538 	/* Queue a stop endpoint command, but only if this is
1539 	 * the first cancellation to be handled.
1540 	 */
1541 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1542 		ep->ep_state |= EP_HALT_PENDING;
1543 		ep->stop_cmds_pending++;
1544 		ep->stop_cmd_timer.expires = jiffies +
1545 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1546 		add_timer(&ep->stop_cmd_timer);
1547 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1548 		xhci_ring_cmd_db(xhci);
1549 	}
1550 done:
1551 	spin_unlock_irqrestore(&xhci->lock, flags);
1552 	return ret;
1553 }
1554 
1555 /* Drop an endpoint from a new bandwidth configuration for this device.
1556  * Only one call to this function is allowed per endpoint before
1557  * check_bandwidth() or reset_bandwidth() must be called.
1558  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1559  * add the endpoint to the schedule with possibly new parameters denoted by a
1560  * different endpoint descriptor in usb_host_endpoint.
1561  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1562  * not allowed.
1563  *
1564  * The USB core will not allow URBs to be queued to an endpoint that is being
1565  * disabled, so there's no need for mutual exclusion to protect
1566  * the xhci->devs[slot_id] structure.
1567  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1568 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1569 		struct usb_host_endpoint *ep)
1570 {
1571 	struct xhci_hcd *xhci;
1572 	struct xhci_container_ctx *in_ctx, *out_ctx;
1573 	struct xhci_input_control_ctx *ctrl_ctx;
1574 	struct xhci_slot_ctx *slot_ctx;
1575 	unsigned int last_ctx;
1576 	unsigned int ep_index;
1577 	struct xhci_ep_ctx *ep_ctx;
1578 	u32 drop_flag;
1579 	u32 new_add_flags, new_drop_flags, new_slot_info;
1580 	int ret;
1581 
1582 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1583 	if (ret <= 0)
1584 		return ret;
1585 	xhci = hcd_to_xhci(hcd);
1586 	if (xhci->xhc_state & XHCI_STATE_DYING)
1587 		return -ENODEV;
1588 
1589 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1590 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1591 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1592 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1593 				__func__, drop_flag);
1594 		return 0;
1595 	}
1596 
1597 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1598 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1599 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1600 	ep_index = xhci_get_endpoint_index(&ep->desc);
1601 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1602 	/* If the HC already knows the endpoint is disabled,
1603 	 * or the HCD has noted it is disabled, ignore this request
1604 	 */
1605 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1606 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1607 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1608 	    xhci_get_endpoint_flag(&ep->desc)) {
1609 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1610 				__func__, ep);
1611 		return 0;
1612 	}
1613 
1614 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1615 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1616 
1617 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1618 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1619 
1620 	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1621 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1622 	/* Update the last valid endpoint context, if we deleted the last one */
1623 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1624 	    LAST_CTX(last_ctx)) {
1625 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1626 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1627 	}
1628 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1629 
1630 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1631 
1632 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1633 			(unsigned int) ep->desc.bEndpointAddress,
1634 			udev->slot_id,
1635 			(unsigned int) new_drop_flags,
1636 			(unsigned int) new_add_flags,
1637 			(unsigned int) new_slot_info);
1638 	return 0;
1639 }
1640 
1641 /* Add an endpoint to a new possible bandwidth configuration for this device.
1642  * Only one call to this function is allowed per endpoint before
1643  * check_bandwidth() or reset_bandwidth() must be called.
1644  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1645  * add the endpoint to the schedule with possibly new parameters denoted by a
1646  * different endpoint descriptor in usb_host_endpoint.
1647  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1648  * not allowed.
1649  *
1650  * The USB core will not allow URBs to be queued to an endpoint until the
1651  * configuration or alt setting is installed in the device, so there's no need
1652  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1653  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1654 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1655 		struct usb_host_endpoint *ep)
1656 {
1657 	struct xhci_hcd *xhci;
1658 	struct xhci_container_ctx *in_ctx, *out_ctx;
1659 	unsigned int ep_index;
1660 	struct xhci_slot_ctx *slot_ctx;
1661 	struct xhci_input_control_ctx *ctrl_ctx;
1662 	u32 added_ctxs;
1663 	unsigned int last_ctx;
1664 	u32 new_add_flags, new_drop_flags, new_slot_info;
1665 	struct xhci_virt_device *virt_dev;
1666 	int ret = 0;
1667 
1668 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1669 	if (ret <= 0) {
1670 		/* So we won't queue a reset ep command for a root hub */
1671 		ep->hcpriv = NULL;
1672 		return ret;
1673 	}
1674 	xhci = hcd_to_xhci(hcd);
1675 	if (xhci->xhc_state & XHCI_STATE_DYING)
1676 		return -ENODEV;
1677 
1678 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1679 	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1680 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1681 		/* FIXME when we have to issue an evaluate endpoint command to
1682 		 * deal with ep0 max packet size changing once we get the
1683 		 * descriptors
1684 		 */
1685 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1686 				__func__, added_ctxs);
1687 		return 0;
1688 	}
1689 
1690 	virt_dev = xhci->devs[udev->slot_id];
1691 	in_ctx = virt_dev->in_ctx;
1692 	out_ctx = virt_dev->out_ctx;
1693 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1694 	ep_index = xhci_get_endpoint_index(&ep->desc);
1695 
1696 	/* If this endpoint is already in use, and the upper layers are trying
1697 	 * to add it again without dropping it, reject the addition.
1698 	 */
1699 	if (virt_dev->eps[ep_index].ring &&
1700 			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1701 				xhci_get_endpoint_flag(&ep->desc))) {
1702 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1703 				"without dropping it.\n",
1704 				(unsigned int) ep->desc.bEndpointAddress);
1705 		return -EINVAL;
1706 	}
1707 
1708 	/* If the HCD has already noted the endpoint is enabled,
1709 	 * ignore this request.
1710 	 */
1711 	if (le32_to_cpu(ctrl_ctx->add_flags) &
1712 	    xhci_get_endpoint_flag(&ep->desc)) {
1713 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1714 				__func__, ep);
1715 		return 0;
1716 	}
1717 
1718 	/*
1719 	 * Configuration and alternate setting changes must be done in
1720 	 * process context, not interrupt context (or so documenation
1721 	 * for usb_set_interface() and usb_set_configuration() claim).
1722 	 */
1723 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1724 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1725 				__func__, ep->desc.bEndpointAddress);
1726 		return -ENOMEM;
1727 	}
1728 
1729 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1730 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1731 
1732 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1733 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1734 	 * this re-adds a new state for the endpoint from the new endpoint
1735 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1736 	 * drop flags alone.
1737 	 */
1738 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1739 
1740 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1741 	/* Update the last valid endpoint context, if we just added one past */
1742 	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1743 	    LAST_CTX(last_ctx)) {
1744 		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1745 		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1746 	}
1747 	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1748 
1749 	/* Store the usb_device pointer for later use */
1750 	ep->hcpriv = udev;
1751 
1752 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1753 			(unsigned int) ep->desc.bEndpointAddress,
1754 			udev->slot_id,
1755 			(unsigned int) new_drop_flags,
1756 			(unsigned int) new_add_flags,
1757 			(unsigned int) new_slot_info);
1758 	return 0;
1759 }
1760 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1761 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1762 {
1763 	struct xhci_input_control_ctx *ctrl_ctx;
1764 	struct xhci_ep_ctx *ep_ctx;
1765 	struct xhci_slot_ctx *slot_ctx;
1766 	int i;
1767 
1768 	/* When a device's add flag and drop flag are zero, any subsequent
1769 	 * configure endpoint command will leave that endpoint's state
1770 	 * untouched.  Make sure we don't leave any old state in the input
1771 	 * endpoint contexts.
1772 	 */
1773 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1774 	ctrl_ctx->drop_flags = 0;
1775 	ctrl_ctx->add_flags = 0;
1776 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1777 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1778 	/* Endpoint 0 is always valid */
1779 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1780 	for (i = 1; i < 31; ++i) {
1781 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1782 		ep_ctx->ep_info = 0;
1783 		ep_ctx->ep_info2 = 0;
1784 		ep_ctx->deq = 0;
1785 		ep_ctx->tx_info = 0;
1786 	}
1787 }
1788 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1789 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1790 		struct usb_device *udev, u32 *cmd_status)
1791 {
1792 	int ret;
1793 
1794 	switch (*cmd_status) {
1795 	case COMP_ENOMEM:
1796 		dev_warn(&udev->dev, "Not enough host controller resources "
1797 				"for new device state.\n");
1798 		ret = -ENOMEM;
1799 		/* FIXME: can we allocate more resources for the HC? */
1800 		break;
1801 	case COMP_BW_ERR:
1802 	case COMP_2ND_BW_ERR:
1803 		dev_warn(&udev->dev, "Not enough bandwidth "
1804 				"for new device state.\n");
1805 		ret = -ENOSPC;
1806 		/* FIXME: can we go back to the old state? */
1807 		break;
1808 	case COMP_TRB_ERR:
1809 		/* the HCD set up something wrong */
1810 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1811 				"add flag = 1, "
1812 				"and endpoint is not disabled.\n");
1813 		ret = -EINVAL;
1814 		break;
1815 	case COMP_DEV_ERR:
1816 		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1817 				"configure command.\n");
1818 		ret = -ENODEV;
1819 		break;
1820 	case COMP_SUCCESS:
1821 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1822 		ret = 0;
1823 		break;
1824 	default:
1825 		xhci_err(xhci, "ERROR: unexpected command completion "
1826 				"code 0x%x.\n", *cmd_status);
1827 		ret = -EINVAL;
1828 		break;
1829 	}
1830 	return ret;
1831 }
1832 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1833 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1834 		struct usb_device *udev, u32 *cmd_status)
1835 {
1836 	int ret;
1837 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1838 
1839 	switch (*cmd_status) {
1840 	case COMP_EINVAL:
1841 		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1842 				"context command.\n");
1843 		ret = -EINVAL;
1844 		break;
1845 	case COMP_EBADSLT:
1846 		dev_warn(&udev->dev, "WARN: slot not enabled for"
1847 				"evaluate context command.\n");
1848 		ret = -EINVAL;
1849 		break;
1850 	case COMP_CTX_STATE:
1851 		dev_warn(&udev->dev, "WARN: invalid context state for "
1852 				"evaluate context command.\n");
1853 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1854 		ret = -EINVAL;
1855 		break;
1856 	case COMP_DEV_ERR:
1857 		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1858 				"context command.\n");
1859 		ret = -ENODEV;
1860 		break;
1861 	case COMP_MEL_ERR:
1862 		/* Max Exit Latency too large error */
1863 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1864 		ret = -EINVAL;
1865 		break;
1866 	case COMP_SUCCESS:
1867 		dev_dbg(&udev->dev, "Successful evaluate context command\n");
1868 		ret = 0;
1869 		break;
1870 	default:
1871 		xhci_err(xhci, "ERROR: unexpected command completion "
1872 				"code 0x%x.\n", *cmd_status);
1873 		ret = -EINVAL;
1874 		break;
1875 	}
1876 	return ret;
1877 }
1878 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1879 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1880 		struct xhci_container_ctx *in_ctx)
1881 {
1882 	struct xhci_input_control_ctx *ctrl_ctx;
1883 	u32 valid_add_flags;
1884 	u32 valid_drop_flags;
1885 
1886 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1887 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1888 	 * (bit 1).  The default control endpoint is added during the Address
1889 	 * Device command and is never removed until the slot is disabled.
1890 	 */
1891 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1892 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1893 
1894 	/* Use hweight32 to count the number of ones in the add flags, or
1895 	 * number of endpoints added.  Don't count endpoints that are changed
1896 	 * (both added and dropped).
1897 	 */
1898 	return hweight32(valid_add_flags) -
1899 		hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1902 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1903 		struct xhci_container_ctx *in_ctx)
1904 {
1905 	struct xhci_input_control_ctx *ctrl_ctx;
1906 	u32 valid_add_flags;
1907 	u32 valid_drop_flags;
1908 
1909 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1910 	valid_add_flags = ctrl_ctx->add_flags >> 2;
1911 	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1912 
1913 	return hweight32(valid_drop_flags) -
1914 		hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916 
1917 /*
1918  * We need to reserve the new number of endpoints before the configure endpoint
1919  * command completes.  We can't subtract the dropped endpoints from the number
1920  * of active endpoints until the command completes because we can oversubscribe
1921  * the host in this case:
1922  *
1923  *  - the first configure endpoint command drops more endpoints than it adds
1924  *  - a second configure endpoint command that adds more endpoints is queued
1925  *  - the first configure endpoint command fails, so the config is unchanged
1926  *  - the second command may succeed, even though there isn't enough resources
1927  *
1928  * Must be called with xhci->lock held.
1929  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1930 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1931 		struct xhci_container_ctx *in_ctx)
1932 {
1933 	u32 added_eps;
1934 
1935 	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1936 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1937 		xhci_dbg(xhci, "Not enough ep ctxs: "
1938 				"%u active, need to add %u, limit is %u.\n",
1939 				xhci->num_active_eps, added_eps,
1940 				xhci->limit_active_eps);
1941 		return -ENOMEM;
1942 	}
1943 	xhci->num_active_eps += added_eps;
1944 	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1945 			xhci->num_active_eps);
1946 	return 0;
1947 }
1948 
1949 /*
1950  * The configure endpoint was failed by the xHC for some other reason, so we
1951  * need to revert the resources that failed configuration would have used.
1952  *
1953  * Must be called with xhci->lock held.
1954  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1955 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1956 		struct xhci_container_ctx *in_ctx)
1957 {
1958 	u32 num_failed_eps;
1959 
1960 	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1961 	xhci->num_active_eps -= num_failed_eps;
1962 	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1963 			num_failed_eps,
1964 			xhci->num_active_eps);
1965 }
1966 
1967 /*
1968  * Now that the command has completed, clean up the active endpoint count by
1969  * subtracting out the endpoints that were dropped (but not changed).
1970  *
1971  * Must be called with xhci->lock held.
1972  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx)1973 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1974 		struct xhci_container_ctx *in_ctx)
1975 {
1976 	u32 num_dropped_eps;
1977 
1978 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1979 	xhci->num_active_eps -= num_dropped_eps;
1980 	if (num_dropped_eps)
1981 		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1982 				num_dropped_eps,
1983 				xhci->num_active_eps);
1984 }
1985 
xhci_get_block_size(struct usb_device * udev)1986 static unsigned int xhci_get_block_size(struct usb_device *udev)
1987 {
1988 	switch (udev->speed) {
1989 	case USB_SPEED_LOW:
1990 	case USB_SPEED_FULL:
1991 		return FS_BLOCK;
1992 	case USB_SPEED_HIGH:
1993 		return HS_BLOCK;
1994 	case USB_SPEED_SUPER:
1995 		return SS_BLOCK;
1996 	case USB_SPEED_UNKNOWN:
1997 	case USB_SPEED_WIRELESS:
1998 	default:
1999 		/* Should never happen */
2000 		return 1;
2001 	}
2002 }
2003 
2004 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2005 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2006 {
2007 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2008 		return LS_OVERHEAD;
2009 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2010 		return FS_OVERHEAD;
2011 	return HS_OVERHEAD;
2012 }
2013 
2014 /* If we are changing a LS/FS device under a HS hub,
2015  * make sure (if we are activating a new TT) that the HS bus has enough
2016  * bandwidth for this new TT.
2017  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2018 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2019 		struct xhci_virt_device *virt_dev,
2020 		int old_active_eps)
2021 {
2022 	struct xhci_interval_bw_table *bw_table;
2023 	struct xhci_tt_bw_info *tt_info;
2024 
2025 	/* Find the bandwidth table for the root port this TT is attached to. */
2026 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2027 	tt_info = virt_dev->tt_info;
2028 	/* If this TT already had active endpoints, the bandwidth for this TT
2029 	 * has already been added.  Removing all periodic endpoints (and thus
2030 	 * making the TT enactive) will only decrease the bandwidth used.
2031 	 */
2032 	if (old_active_eps)
2033 		return 0;
2034 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2035 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2036 			return -ENOMEM;
2037 		return 0;
2038 	}
2039 	/* Not sure why we would have no new active endpoints...
2040 	 *
2041 	 * Maybe because of an Evaluate Context change for a hub update or a
2042 	 * control endpoint 0 max packet size change?
2043 	 * FIXME: skip the bandwidth calculation in that case.
2044 	 */
2045 	return 0;
2046 }
2047 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2048 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2049 		struct xhci_virt_device *virt_dev)
2050 {
2051 	unsigned int bw_reserved;
2052 
2053 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2054 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2055 		return -ENOMEM;
2056 
2057 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2058 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2059 		return -ENOMEM;
2060 
2061 	return 0;
2062 }
2063 
2064 /*
2065  * This algorithm is a very conservative estimate of the worst-case scheduling
2066  * scenario for any one interval.  The hardware dynamically schedules the
2067  * packets, so we can't tell which microframe could be the limiting factor in
2068  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2069  *
2070  * Obviously, we can't solve an NP complete problem to find the minimum worst
2071  * case scenario.  Instead, we come up with an estimate that is no less than
2072  * the worst case bandwidth used for any one microframe, but may be an
2073  * over-estimate.
2074  *
2075  * We walk the requirements for each endpoint by interval, starting with the
2076  * smallest interval, and place packets in the schedule where there is only one
2077  * possible way to schedule packets for that interval.  In order to simplify
2078  * this algorithm, we record the largest max packet size for each interval, and
2079  * assume all packets will be that size.
2080  *
2081  * For interval 0, we obviously must schedule all packets for each interval.
2082  * The bandwidth for interval 0 is just the amount of data to be transmitted
2083  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2084  * the number of packets).
2085  *
2086  * For interval 1, we have two possible microframes to schedule those packets
2087  * in.  For this algorithm, if we can schedule the same number of packets for
2088  * each possible scheduling opportunity (each microframe), we will do so.  The
2089  * remaining number of packets will be saved to be transmitted in the gaps in
2090  * the next interval's scheduling sequence.
2091  *
2092  * As we move those remaining packets to be scheduled with interval 2 packets,
2093  * we have to double the number of remaining packets to transmit.  This is
2094  * because the intervals are actually powers of 2, and we would be transmitting
2095  * the previous interval's packets twice in this interval.  We also have to be
2096  * sure that when we look at the largest max packet size for this interval, we
2097  * also look at the largest max packet size for the remaining packets and take
2098  * the greater of the two.
2099  *
2100  * The algorithm continues to evenly distribute packets in each scheduling
2101  * opportunity, and push the remaining packets out, until we get to the last
2102  * interval.  Then those packets and their associated overhead are just added
2103  * to the bandwidth used.
2104  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2105 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2106 		struct xhci_virt_device *virt_dev,
2107 		int old_active_eps)
2108 {
2109 	unsigned int bw_reserved;
2110 	unsigned int max_bandwidth;
2111 	unsigned int bw_used;
2112 	unsigned int block_size;
2113 	struct xhci_interval_bw_table *bw_table;
2114 	unsigned int packet_size = 0;
2115 	unsigned int overhead = 0;
2116 	unsigned int packets_transmitted = 0;
2117 	unsigned int packets_remaining = 0;
2118 	unsigned int i;
2119 
2120 	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2121 		return xhci_check_ss_bw(xhci, virt_dev);
2122 
2123 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2124 		max_bandwidth = HS_BW_LIMIT;
2125 		/* Convert percent of bus BW reserved to blocks reserved */
2126 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2127 	} else {
2128 		max_bandwidth = FS_BW_LIMIT;
2129 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2130 	}
2131 
2132 	bw_table = virt_dev->bw_table;
2133 	/* We need to translate the max packet size and max ESIT payloads into
2134 	 * the units the hardware uses.
2135 	 */
2136 	block_size = xhci_get_block_size(virt_dev->udev);
2137 
2138 	/* If we are manipulating a LS/FS device under a HS hub, double check
2139 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2140 	 */
2141 	if (virt_dev->tt_info) {
2142 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2143 				virt_dev->real_port);
2144 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2145 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2146 					"newly activated TT.\n");
2147 			return -ENOMEM;
2148 		}
2149 		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2150 				virt_dev->tt_info->slot_id,
2151 				virt_dev->tt_info->ttport);
2152 	} else {
2153 		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2154 				virt_dev->real_port);
2155 	}
2156 
2157 	/* Add in how much bandwidth will be used for interval zero, or the
2158 	 * rounded max ESIT payload + number of packets * largest overhead.
2159 	 */
2160 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2161 		bw_table->interval_bw[0].num_packets *
2162 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2163 
2164 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2165 		unsigned int bw_added;
2166 		unsigned int largest_mps;
2167 		unsigned int interval_overhead;
2168 
2169 		/*
2170 		 * How many packets could we transmit in this interval?
2171 		 * If packets didn't fit in the previous interval, we will need
2172 		 * to transmit that many packets twice within this interval.
2173 		 */
2174 		packets_remaining = 2 * packets_remaining +
2175 			bw_table->interval_bw[i].num_packets;
2176 
2177 		/* Find the largest max packet size of this or the previous
2178 		 * interval.
2179 		 */
2180 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2181 			largest_mps = 0;
2182 		else {
2183 			struct xhci_virt_ep *virt_ep;
2184 			struct list_head *ep_entry;
2185 
2186 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2187 			virt_ep = list_entry(ep_entry,
2188 					struct xhci_virt_ep, bw_endpoint_list);
2189 			/* Convert to blocks, rounding up */
2190 			largest_mps = DIV_ROUND_UP(
2191 					virt_ep->bw_info.max_packet_size,
2192 					block_size);
2193 		}
2194 		if (largest_mps > packet_size)
2195 			packet_size = largest_mps;
2196 
2197 		/* Use the larger overhead of this or the previous interval. */
2198 		interval_overhead = xhci_get_largest_overhead(
2199 				&bw_table->interval_bw[i]);
2200 		if (interval_overhead > overhead)
2201 			overhead = interval_overhead;
2202 
2203 		/* How many packets can we evenly distribute across
2204 		 * (1 << (i + 1)) possible scheduling opportunities?
2205 		 */
2206 		packets_transmitted = packets_remaining >> (i + 1);
2207 
2208 		/* Add in the bandwidth used for those scheduled packets */
2209 		bw_added = packets_transmitted * (overhead + packet_size);
2210 
2211 		/* How many packets do we have remaining to transmit? */
2212 		packets_remaining = packets_remaining % (1 << (i + 1));
2213 
2214 		/* What largest max packet size should those packets have? */
2215 		/* If we've transmitted all packets, don't carry over the
2216 		 * largest packet size.
2217 		 */
2218 		if (packets_remaining == 0) {
2219 			packet_size = 0;
2220 			overhead = 0;
2221 		} else if (packets_transmitted > 0) {
2222 			/* Otherwise if we do have remaining packets, and we've
2223 			 * scheduled some packets in this interval, take the
2224 			 * largest max packet size from endpoints with this
2225 			 * interval.
2226 			 */
2227 			packet_size = largest_mps;
2228 			overhead = interval_overhead;
2229 		}
2230 		/* Otherwise carry over packet_size and overhead from the last
2231 		 * time we had a remainder.
2232 		 */
2233 		bw_used += bw_added;
2234 		if (bw_used > max_bandwidth) {
2235 			xhci_warn(xhci, "Not enough bandwidth. "
2236 					"Proposed: %u, Max: %u\n",
2237 				bw_used, max_bandwidth);
2238 			return -ENOMEM;
2239 		}
2240 	}
2241 	/*
2242 	 * Ok, we know we have some packets left over after even-handedly
2243 	 * scheduling interval 15.  We don't know which microframes they will
2244 	 * fit into, so we over-schedule and say they will be scheduled every
2245 	 * microframe.
2246 	 */
2247 	if (packets_remaining > 0)
2248 		bw_used += overhead + packet_size;
2249 
2250 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2251 		unsigned int port_index = virt_dev->real_port - 1;
2252 
2253 		/* OK, we're manipulating a HS device attached to a
2254 		 * root port bandwidth domain.  Include the number of active TTs
2255 		 * in the bandwidth used.
2256 		 */
2257 		bw_used += TT_HS_OVERHEAD *
2258 			xhci->rh_bw[port_index].num_active_tts;
2259 	}
2260 
2261 	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2262 		"Available: %u " "percent\n",
2263 		bw_used, max_bandwidth, bw_reserved,
2264 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2265 		max_bandwidth);
2266 
2267 	bw_used += bw_reserved;
2268 	if (bw_used > max_bandwidth) {
2269 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2270 				bw_used, max_bandwidth);
2271 		return -ENOMEM;
2272 	}
2273 
2274 	bw_table->bw_used = bw_used;
2275 	return 0;
2276 }
2277 
xhci_is_async_ep(unsigned int ep_type)2278 static bool xhci_is_async_ep(unsigned int ep_type)
2279 {
2280 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2281 					ep_type != ISOC_IN_EP &&
2282 					ep_type != INT_IN_EP);
2283 }
2284 
xhci_is_sync_in_ep(unsigned int ep_type)2285 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2286 {
2287 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2288 }
2289 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2290 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2291 {
2292 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2293 
2294 	if (ep_bw->ep_interval == 0)
2295 		return SS_OVERHEAD_BURST +
2296 			(ep_bw->mult * ep_bw->num_packets *
2297 					(SS_OVERHEAD + mps));
2298 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2299 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2300 				1 << ep_bw->ep_interval);
2301 
2302 }
2303 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2304 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2305 		struct xhci_bw_info *ep_bw,
2306 		struct xhci_interval_bw_table *bw_table,
2307 		struct usb_device *udev,
2308 		struct xhci_virt_ep *virt_ep,
2309 		struct xhci_tt_bw_info *tt_info)
2310 {
2311 	struct xhci_interval_bw	*interval_bw;
2312 	int normalized_interval;
2313 
2314 	if (xhci_is_async_ep(ep_bw->type))
2315 		return;
2316 
2317 	if (udev->speed == USB_SPEED_SUPER) {
2318 		if (xhci_is_sync_in_ep(ep_bw->type))
2319 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2320 				xhci_get_ss_bw_consumed(ep_bw);
2321 		else
2322 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2323 				xhci_get_ss_bw_consumed(ep_bw);
2324 		return;
2325 	}
2326 
2327 	/* SuperSpeed endpoints never get added to intervals in the table, so
2328 	 * this check is only valid for HS/FS/LS devices.
2329 	 */
2330 	if (list_empty(&virt_ep->bw_endpoint_list))
2331 		return;
2332 	/* For LS/FS devices, we need to translate the interval expressed in
2333 	 * microframes to frames.
2334 	 */
2335 	if (udev->speed == USB_SPEED_HIGH)
2336 		normalized_interval = ep_bw->ep_interval;
2337 	else
2338 		normalized_interval = ep_bw->ep_interval - 3;
2339 
2340 	if (normalized_interval == 0)
2341 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2342 	interval_bw = &bw_table->interval_bw[normalized_interval];
2343 	interval_bw->num_packets -= ep_bw->num_packets;
2344 	switch (udev->speed) {
2345 	case USB_SPEED_LOW:
2346 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2347 		break;
2348 	case USB_SPEED_FULL:
2349 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2350 		break;
2351 	case USB_SPEED_HIGH:
2352 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2353 		break;
2354 	case USB_SPEED_SUPER:
2355 	case USB_SPEED_UNKNOWN:
2356 	case USB_SPEED_WIRELESS:
2357 		/* Should never happen because only LS/FS/HS endpoints will get
2358 		 * added to the endpoint list.
2359 		 */
2360 		return;
2361 	}
2362 	if (tt_info)
2363 		tt_info->active_eps -= 1;
2364 	list_del_init(&virt_ep->bw_endpoint_list);
2365 }
2366 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2367 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2368 		struct xhci_bw_info *ep_bw,
2369 		struct xhci_interval_bw_table *bw_table,
2370 		struct usb_device *udev,
2371 		struct xhci_virt_ep *virt_ep,
2372 		struct xhci_tt_bw_info *tt_info)
2373 {
2374 	struct xhci_interval_bw	*interval_bw;
2375 	struct xhci_virt_ep *smaller_ep;
2376 	int normalized_interval;
2377 
2378 	if (xhci_is_async_ep(ep_bw->type))
2379 		return;
2380 
2381 	if (udev->speed == USB_SPEED_SUPER) {
2382 		if (xhci_is_sync_in_ep(ep_bw->type))
2383 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2384 				xhci_get_ss_bw_consumed(ep_bw);
2385 		else
2386 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2387 				xhci_get_ss_bw_consumed(ep_bw);
2388 		return;
2389 	}
2390 
2391 	/* For LS/FS devices, we need to translate the interval expressed in
2392 	 * microframes to frames.
2393 	 */
2394 	if (udev->speed == USB_SPEED_HIGH)
2395 		normalized_interval = ep_bw->ep_interval;
2396 	else
2397 		normalized_interval = ep_bw->ep_interval - 3;
2398 
2399 	if (normalized_interval == 0)
2400 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2401 	interval_bw = &bw_table->interval_bw[normalized_interval];
2402 	interval_bw->num_packets += ep_bw->num_packets;
2403 	switch (udev->speed) {
2404 	case USB_SPEED_LOW:
2405 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2406 		break;
2407 	case USB_SPEED_FULL:
2408 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2409 		break;
2410 	case USB_SPEED_HIGH:
2411 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2412 		break;
2413 	case USB_SPEED_SUPER:
2414 	case USB_SPEED_UNKNOWN:
2415 	case USB_SPEED_WIRELESS:
2416 		/* Should never happen because only LS/FS/HS endpoints will get
2417 		 * added to the endpoint list.
2418 		 */
2419 		return;
2420 	}
2421 
2422 	if (tt_info)
2423 		tt_info->active_eps += 1;
2424 	/* Insert the endpoint into the list, largest max packet size first. */
2425 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2426 			bw_endpoint_list) {
2427 		if (ep_bw->max_packet_size >=
2428 				smaller_ep->bw_info.max_packet_size) {
2429 			/* Add the new ep before the smaller endpoint */
2430 			list_add_tail(&virt_ep->bw_endpoint_list,
2431 					&smaller_ep->bw_endpoint_list);
2432 			return;
2433 		}
2434 	}
2435 	/* Add the new endpoint at the end of the list. */
2436 	list_add_tail(&virt_ep->bw_endpoint_list,
2437 			&interval_bw->endpoints);
2438 }
2439 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2440 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2441 		struct xhci_virt_device *virt_dev,
2442 		int old_active_eps)
2443 {
2444 	struct xhci_root_port_bw_info *rh_bw_info;
2445 	if (!virt_dev->tt_info)
2446 		return;
2447 
2448 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2449 	if (old_active_eps == 0 &&
2450 				virt_dev->tt_info->active_eps != 0) {
2451 		rh_bw_info->num_active_tts += 1;
2452 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2453 	} else if (old_active_eps != 0 &&
2454 				virt_dev->tt_info->active_eps == 0) {
2455 		rh_bw_info->num_active_tts -= 1;
2456 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2457 	}
2458 }
2459 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2460 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2461 		struct xhci_virt_device *virt_dev,
2462 		struct xhci_container_ctx *in_ctx)
2463 {
2464 	struct xhci_bw_info ep_bw_info[31];
2465 	int i;
2466 	struct xhci_input_control_ctx *ctrl_ctx;
2467 	int old_active_eps = 0;
2468 
2469 	if (virt_dev->tt_info)
2470 		old_active_eps = virt_dev->tt_info->active_eps;
2471 
2472 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2473 
2474 	for (i = 0; i < 31; i++) {
2475 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476 			continue;
2477 
2478 		/* Make a copy of the BW info in case we need to revert this */
2479 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480 				sizeof(ep_bw_info[i]));
2481 		/* Drop the endpoint from the interval table if the endpoint is
2482 		 * being dropped or changed.
2483 		 */
2484 		if (EP_IS_DROPPED(ctrl_ctx, i))
2485 			xhci_drop_ep_from_interval_table(xhci,
2486 					&virt_dev->eps[i].bw_info,
2487 					virt_dev->bw_table,
2488 					virt_dev->udev,
2489 					&virt_dev->eps[i],
2490 					virt_dev->tt_info);
2491 	}
2492 	/* Overwrite the information stored in the endpoints' bw_info */
2493 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494 	for (i = 0; i < 31; i++) {
2495 		/* Add any changed or added endpoints to the interval table */
2496 		if (EP_IS_ADDED(ctrl_ctx, i))
2497 			xhci_add_ep_to_interval_table(xhci,
2498 					&virt_dev->eps[i].bw_info,
2499 					virt_dev->bw_table,
2500 					virt_dev->udev,
2501 					&virt_dev->eps[i],
2502 					virt_dev->tt_info);
2503 	}
2504 
2505 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506 		/* Ok, this fits in the bandwidth we have.
2507 		 * Update the number of active TTs.
2508 		 */
2509 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510 		return 0;
2511 	}
2512 
2513 	/* We don't have enough bandwidth for this, revert the stored info. */
2514 	for (i = 0; i < 31; i++) {
2515 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516 			continue;
2517 
2518 		/* Drop the new copies of any added or changed endpoints from
2519 		 * the interval table.
2520 		 */
2521 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2522 			xhci_drop_ep_from_interval_table(xhci,
2523 					&virt_dev->eps[i].bw_info,
2524 					virt_dev->bw_table,
2525 					virt_dev->udev,
2526 					&virt_dev->eps[i],
2527 					virt_dev->tt_info);
2528 		}
2529 		/* Revert the endpoint back to its old information */
2530 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531 				sizeof(ep_bw_info[i]));
2532 		/* Add any changed or dropped endpoints back into the table */
2533 		if (EP_IS_DROPPED(ctrl_ctx, i))
2534 			xhci_add_ep_to_interval_table(xhci,
2535 					&virt_dev->eps[i].bw_info,
2536 					virt_dev->bw_table,
2537 					virt_dev->udev,
2538 					&virt_dev->eps[i],
2539 					virt_dev->tt_info);
2540 	}
2541 	return -ENOMEM;
2542 }
2543 
2544 
2545 /* Issue a configure endpoint command or evaluate context command
2546  * and wait for it to finish.
2547  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549 		struct usb_device *udev,
2550 		struct xhci_command *command,
2551 		bool ctx_change, bool must_succeed)
2552 {
2553 	int ret;
2554 	int timeleft;
2555 	unsigned long flags;
2556 	struct xhci_container_ctx *in_ctx;
2557 	struct completion *cmd_completion;
2558 	u32 *cmd_status;
2559 	struct xhci_virt_device *virt_dev;
2560 	union xhci_trb *cmd_trb;
2561 
2562 	spin_lock_irqsave(&xhci->lock, flags);
2563 	virt_dev = xhci->devs[udev->slot_id];
2564 
2565 	if (command)
2566 		in_ctx = command->in_ctx;
2567 	else
2568 		in_ctx = virt_dev->in_ctx;
2569 
2570 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2571 			xhci_reserve_host_resources(xhci, in_ctx)) {
2572 		spin_unlock_irqrestore(&xhci->lock, flags);
2573 		xhci_warn(xhci, "Not enough host resources, "
2574 				"active endpoint contexts = %u\n",
2575 				xhci->num_active_eps);
2576 		return -ENOMEM;
2577 	}
2578 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2579 			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2580 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2581 			xhci_free_host_resources(xhci, in_ctx);
2582 		spin_unlock_irqrestore(&xhci->lock, flags);
2583 		xhci_warn(xhci, "Not enough bandwidth\n");
2584 		return -ENOMEM;
2585 	}
2586 
2587 	if (command) {
2588 		cmd_completion = command->completion;
2589 		cmd_status = &command->status;
2590 		command->command_trb = xhci->cmd_ring->enqueue;
2591 
2592 		/* Enqueue pointer can be left pointing to the link TRB,
2593 		 * we must handle that
2594 		 */
2595 		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2596 			command->command_trb =
2597 				xhci->cmd_ring->enq_seg->next->trbs;
2598 
2599 		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2600 	} else {
2601 		cmd_completion = &virt_dev->cmd_completion;
2602 		cmd_status = &virt_dev->cmd_status;
2603 	}
2604 	init_completion(cmd_completion);
2605 
2606 	cmd_trb = xhci->cmd_ring->dequeue;
2607 	if (!ctx_change)
2608 		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2609 				udev->slot_id, must_succeed);
2610 	else
2611 		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2612 				udev->slot_id, must_succeed);
2613 	if (ret < 0) {
2614 		if (command)
2615 			list_del(&command->cmd_list);
2616 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2617 			xhci_free_host_resources(xhci, in_ctx);
2618 		spin_unlock_irqrestore(&xhci->lock, flags);
2619 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2620 		return -ENOMEM;
2621 	}
2622 	xhci_ring_cmd_db(xhci);
2623 	spin_unlock_irqrestore(&xhci->lock, flags);
2624 
2625 	/* Wait for the configure endpoint command to complete */
2626 	timeleft = wait_for_completion_interruptible_timeout(
2627 			cmd_completion,
2628 			XHCI_CMD_DEFAULT_TIMEOUT);
2629 	if (timeleft <= 0) {
2630 		xhci_warn(xhci, "%s while waiting for %s command\n",
2631 				timeleft == 0 ? "Timeout" : "Signal",
2632 				ctx_change == 0 ?
2633 					"configure endpoint" :
2634 					"evaluate context");
2635 		/* cancel the configure endpoint command */
2636 		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2637 		if (ret < 0)
2638 			return ret;
2639 		return -ETIME;
2640 	}
2641 
2642 	if (!ctx_change)
2643 		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2644 	else
2645 		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2646 
2647 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648 		spin_lock_irqsave(&xhci->lock, flags);
2649 		/* If the command failed, remove the reserved resources.
2650 		 * Otherwise, clean up the estimate to include dropped eps.
2651 		 */
2652 		if (ret)
2653 			xhci_free_host_resources(xhci, in_ctx);
2654 		else
2655 			xhci_finish_resource_reservation(xhci, in_ctx);
2656 		spin_unlock_irqrestore(&xhci->lock, flags);
2657 	}
2658 	return ret;
2659 }
2660 
2661 /* Called after one or more calls to xhci_add_endpoint() or
2662  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2663  * to call xhci_reset_bandwidth().
2664  *
2665  * Since we are in the middle of changing either configuration or
2666  * installing a new alt setting, the USB core won't allow URBs to be
2667  * enqueued for any endpoint on the old config or interface.  Nothing
2668  * else should be touching the xhci->devs[slot_id] structure, so we
2669  * don't need to take the xhci->lock for manipulating that.
2670  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2671 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2672 {
2673 	int i;
2674 	int ret = 0;
2675 	struct xhci_hcd *xhci;
2676 	struct xhci_virt_device	*virt_dev;
2677 	struct xhci_input_control_ctx *ctrl_ctx;
2678 	struct xhci_slot_ctx *slot_ctx;
2679 
2680 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2681 	if (ret <= 0)
2682 		return ret;
2683 	xhci = hcd_to_xhci(hcd);
2684 	if (xhci->xhc_state & XHCI_STATE_DYING)
2685 		return -ENODEV;
2686 
2687 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688 	virt_dev = xhci->devs[udev->slot_id];
2689 
2690 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2692 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2693 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2694 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2695 
2696 	/* Don't issue the command if there's no endpoints to update. */
2697 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2698 			ctrl_ctx->drop_flags == 0)
2699 		return 0;
2700 
2701 	xhci_dbg(xhci, "New Input Control Context:\n");
2702 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2703 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2704 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2705 
2706 	ret = xhci_configure_endpoint(xhci, udev, NULL,
2707 			false, false);
2708 	if (ret) {
2709 		/* Callee should call reset_bandwidth() */
2710 		return ret;
2711 	}
2712 
2713 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2714 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2715 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2716 
2717 	/* Free any rings that were dropped, but not changed. */
2718 	for (i = 1; i < 31; ++i) {
2719 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2720 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2721 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2722 	}
2723 	xhci_zero_in_ctx(xhci, virt_dev);
2724 	/*
2725 	 * Install any rings for completely new endpoints or changed endpoints,
2726 	 * and free or cache any old rings from changed endpoints.
2727 	 */
2728 	for (i = 1; i < 31; ++i) {
2729 		if (!virt_dev->eps[i].new_ring)
2730 			continue;
2731 		/* Only cache or free the old ring if it exists.
2732 		 * It may not if this is the first add of an endpoint.
2733 		 */
2734 		if (virt_dev->eps[i].ring) {
2735 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2736 		}
2737 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2738 		virt_dev->eps[i].new_ring = NULL;
2739 	}
2740 
2741 	return ret;
2742 }
2743 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2744 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2745 {
2746 	struct xhci_hcd *xhci;
2747 	struct xhci_virt_device	*virt_dev;
2748 	int i, ret;
2749 
2750 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2751 	if (ret <= 0)
2752 		return;
2753 	xhci = hcd_to_xhci(hcd);
2754 
2755 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2756 	virt_dev = xhci->devs[udev->slot_id];
2757 	/* Free any rings allocated for added endpoints */
2758 	for (i = 0; i < 31; ++i) {
2759 		if (virt_dev->eps[i].new_ring) {
2760 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2761 			virt_dev->eps[i].new_ring = NULL;
2762 		}
2763 	}
2764 	xhci_zero_in_ctx(xhci, virt_dev);
2765 }
2766 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,u32 add_flags,u32 drop_flags)2767 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2768 		struct xhci_container_ctx *in_ctx,
2769 		struct xhci_container_ctx *out_ctx,
2770 		u32 add_flags, u32 drop_flags)
2771 {
2772 	struct xhci_input_control_ctx *ctrl_ctx;
2773 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2774 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2775 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2776 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2777 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2778 
2779 	xhci_dbg(xhci, "Input Context:\n");
2780 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2781 }
2782 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2783 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2784 		unsigned int slot_id, unsigned int ep_index,
2785 		struct xhci_dequeue_state *deq_state)
2786 {
2787 	struct xhci_container_ctx *in_ctx;
2788 	struct xhci_ep_ctx *ep_ctx;
2789 	u32 added_ctxs;
2790 	dma_addr_t addr;
2791 
2792 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2793 			xhci->devs[slot_id]->out_ctx, ep_index);
2794 	in_ctx = xhci->devs[slot_id]->in_ctx;
2795 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2796 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2797 			deq_state->new_deq_ptr);
2798 	if (addr == 0) {
2799 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2800 				"reset ep command\n");
2801 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2802 				deq_state->new_deq_seg,
2803 				deq_state->new_deq_ptr);
2804 		return;
2805 	}
2806 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2807 
2808 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2809 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2810 			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2811 }
2812 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,struct usb_device * udev,unsigned int ep_index)2813 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2814 		struct usb_device *udev, unsigned int ep_index)
2815 {
2816 	struct xhci_dequeue_state deq_state;
2817 	struct xhci_virt_ep *ep;
2818 
2819 	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2820 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2821 	/* We need to move the HW's dequeue pointer past this TD,
2822 	 * or it will attempt to resend it on the next doorbell ring.
2823 	 */
2824 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2825 			ep_index, ep->stopped_stream, ep->stopped_td,
2826 			&deq_state);
2827 
2828 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2829 	 * issue a configure endpoint command later.
2830 	 */
2831 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2832 		xhci_dbg(xhci, "Queueing new dequeue state\n");
2833 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2834 				ep_index, ep->stopped_stream, &deq_state);
2835 	} else {
2836 		/* Better hope no one uses the input context between now and the
2837 		 * reset endpoint completion!
2838 		 * XXX: No idea how this hardware will react when stream rings
2839 		 * are enabled.
2840 		 */
2841 		xhci_dbg(xhci, "Setting up input context for "
2842 				"configure endpoint command\n");
2843 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2844 				ep_index, &deq_state);
2845 	}
2846 }
2847 
2848 /* Deal with stalled endpoints.  The core should have sent the control message
2849  * to clear the halt condition.  However, we need to make the xHCI hardware
2850  * reset its sequence number, since a device will expect a sequence number of
2851  * zero after the halt condition is cleared.
2852  * Context: in_interrupt
2853  */
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2854 void xhci_endpoint_reset(struct usb_hcd *hcd,
2855 		struct usb_host_endpoint *ep)
2856 {
2857 	struct xhci_hcd *xhci;
2858 	struct usb_device *udev;
2859 	unsigned int ep_index;
2860 	unsigned long flags;
2861 	int ret;
2862 	struct xhci_virt_ep *virt_ep;
2863 
2864 	xhci = hcd_to_xhci(hcd);
2865 	udev = (struct usb_device *) ep->hcpriv;
2866 	/* Called with a root hub endpoint (or an endpoint that wasn't added
2867 	 * with xhci_add_endpoint()
2868 	 */
2869 	if (!ep->hcpriv)
2870 		return;
2871 	ep_index = xhci_get_endpoint_index(&ep->desc);
2872 	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2873 	if (!virt_ep->stopped_td) {
2874 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2875 				ep->desc.bEndpointAddress);
2876 		return;
2877 	}
2878 	if (usb_endpoint_xfer_control(&ep->desc)) {
2879 		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2880 		return;
2881 	}
2882 
2883 	xhci_dbg(xhci, "Queueing reset endpoint command\n");
2884 	spin_lock_irqsave(&xhci->lock, flags);
2885 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2886 	/*
2887 	 * Can't change the ring dequeue pointer until it's transitioned to the
2888 	 * stopped state, which is only upon a successful reset endpoint
2889 	 * command.  Better hope that last command worked!
2890 	 */
2891 	if (!ret) {
2892 		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2893 		kfree(virt_ep->stopped_td);
2894 		xhci_ring_cmd_db(xhci);
2895 	}
2896 	virt_ep->stopped_td = NULL;
2897 	virt_ep->stopped_trb = NULL;
2898 	virt_ep->stopped_stream = 0;
2899 	spin_unlock_irqrestore(&xhci->lock, flags);
2900 
2901 	if (ret)
2902 		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2903 }
2904 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)2905 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2906 		struct usb_device *udev, struct usb_host_endpoint *ep,
2907 		unsigned int slot_id)
2908 {
2909 	int ret;
2910 	unsigned int ep_index;
2911 	unsigned int ep_state;
2912 
2913 	if (!ep)
2914 		return -EINVAL;
2915 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2916 	if (ret <= 0)
2917 		return -EINVAL;
2918 	if (ep->ss_ep_comp.bmAttributes == 0) {
2919 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2920 				" descriptor for ep 0x%x does not support streams\n",
2921 				ep->desc.bEndpointAddress);
2922 		return -EINVAL;
2923 	}
2924 
2925 	ep_index = xhci_get_endpoint_index(&ep->desc);
2926 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2927 	if (ep_state & EP_HAS_STREAMS ||
2928 			ep_state & EP_GETTING_STREAMS) {
2929 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2930 				"already has streams set up.\n",
2931 				ep->desc.bEndpointAddress);
2932 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2933 				"dynamic stream context array reallocation.\n");
2934 		return -EINVAL;
2935 	}
2936 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2937 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2938 				"endpoint 0x%x; URBs are pending.\n",
2939 				ep->desc.bEndpointAddress);
2940 		return -EINVAL;
2941 	}
2942 	return 0;
2943 }
2944 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)2945 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2946 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2947 {
2948 	unsigned int max_streams;
2949 
2950 	/* The stream context array size must be a power of two */
2951 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2952 	/*
2953 	 * Find out how many primary stream array entries the host controller
2954 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2955 	 * level page entries), but that's an optional feature for xHCI host
2956 	 * controllers. xHCs must support at least 4 stream IDs.
2957 	 */
2958 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2959 	if (*num_stream_ctxs > max_streams) {
2960 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2961 				max_streams);
2962 		*num_stream_ctxs = max_streams;
2963 		*num_streams = max_streams;
2964 	}
2965 }
2966 
2967 /* Returns an error code if one of the endpoint already has streams.
2968  * This does not change any data structures, it only checks and gathers
2969  * information.
2970  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)2971 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2972 		struct usb_device *udev,
2973 		struct usb_host_endpoint **eps, unsigned int num_eps,
2974 		unsigned int *num_streams, u32 *changed_ep_bitmask)
2975 {
2976 	unsigned int max_streams;
2977 	unsigned int endpoint_flag;
2978 	int i;
2979 	int ret;
2980 
2981 	for (i = 0; i < num_eps; i++) {
2982 		ret = xhci_check_streams_endpoint(xhci, udev,
2983 				eps[i], udev->slot_id);
2984 		if (ret < 0)
2985 			return ret;
2986 
2987 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2988 		if (max_streams < (*num_streams - 1)) {
2989 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2990 					eps[i]->desc.bEndpointAddress,
2991 					max_streams);
2992 			*num_streams = max_streams+1;
2993 		}
2994 
2995 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2996 		if (*changed_ep_bitmask & endpoint_flag)
2997 			return -EINVAL;
2998 		*changed_ep_bitmask |= endpoint_flag;
2999 	}
3000 	return 0;
3001 }
3002 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3003 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3004 		struct usb_device *udev,
3005 		struct usb_host_endpoint **eps, unsigned int num_eps)
3006 {
3007 	u32 changed_ep_bitmask = 0;
3008 	unsigned int slot_id;
3009 	unsigned int ep_index;
3010 	unsigned int ep_state;
3011 	int i;
3012 
3013 	slot_id = udev->slot_id;
3014 	if (!xhci->devs[slot_id])
3015 		return 0;
3016 
3017 	for (i = 0; i < num_eps; i++) {
3018 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3019 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3020 		/* Are streams already being freed for the endpoint? */
3021 		if (ep_state & EP_GETTING_NO_STREAMS) {
3022 			xhci_warn(xhci, "WARN Can't disable streams for "
3023 					"endpoint 0x%x\n, "
3024 					"streams are being disabled already.",
3025 					eps[i]->desc.bEndpointAddress);
3026 			return 0;
3027 		}
3028 		/* Are there actually any streams to free? */
3029 		if (!(ep_state & EP_HAS_STREAMS) &&
3030 				!(ep_state & EP_GETTING_STREAMS)) {
3031 			xhci_warn(xhci, "WARN Can't disable streams for "
3032 					"endpoint 0x%x\n, "
3033 					"streams are already disabled!",
3034 					eps[i]->desc.bEndpointAddress);
3035 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3036 					"with non-streams endpoint\n");
3037 			return 0;
3038 		}
3039 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3040 	}
3041 	return changed_ep_bitmask;
3042 }
3043 
3044 /*
3045  * The USB device drivers use this function (though the HCD interface in USB
3046  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3047  * coordinate mass storage command queueing across multiple endpoints (basically
3048  * a stream ID == a task ID).
3049  *
3050  * Setting up streams involves allocating the same size stream context array
3051  * for each endpoint and issuing a configure endpoint command for all endpoints.
3052  *
3053  * Don't allow the call to succeed if one endpoint only supports one stream
3054  * (which means it doesn't support streams at all).
3055  *
3056  * Drivers may get less stream IDs than they asked for, if the host controller
3057  * hardware or endpoints claim they can't support the number of requested
3058  * stream IDs.
3059  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3060 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3061 		struct usb_host_endpoint **eps, unsigned int num_eps,
3062 		unsigned int num_streams, gfp_t mem_flags)
3063 {
3064 	int i, ret;
3065 	struct xhci_hcd *xhci;
3066 	struct xhci_virt_device *vdev;
3067 	struct xhci_command *config_cmd;
3068 	unsigned int ep_index;
3069 	unsigned int num_stream_ctxs;
3070 	unsigned long flags;
3071 	u32 changed_ep_bitmask = 0;
3072 
3073 	if (!eps)
3074 		return -EINVAL;
3075 
3076 	/* Add one to the number of streams requested to account for
3077 	 * stream 0 that is reserved for xHCI usage.
3078 	 */
3079 	num_streams += 1;
3080 	xhci = hcd_to_xhci(hcd);
3081 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082 			num_streams);
3083 
3084 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3085 	if (!config_cmd) {
3086 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3087 		return -ENOMEM;
3088 	}
3089 
3090 	/* Check to make sure all endpoints are not already configured for
3091 	 * streams.  While we're at it, find the maximum number of streams that
3092 	 * all the endpoints will support and check for duplicate endpoints.
3093 	 */
3094 	spin_lock_irqsave(&xhci->lock, flags);
3095 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3096 			num_eps, &num_streams, &changed_ep_bitmask);
3097 	if (ret < 0) {
3098 		xhci_free_command(xhci, config_cmd);
3099 		spin_unlock_irqrestore(&xhci->lock, flags);
3100 		return ret;
3101 	}
3102 	if (num_streams <= 1) {
3103 		xhci_warn(xhci, "WARN: endpoints can't handle "
3104 				"more than one stream.\n");
3105 		xhci_free_command(xhci, config_cmd);
3106 		spin_unlock_irqrestore(&xhci->lock, flags);
3107 		return -EINVAL;
3108 	}
3109 	vdev = xhci->devs[udev->slot_id];
3110 	/* Mark each endpoint as being in transition, so
3111 	 * xhci_urb_enqueue() will reject all URBs.
3112 	 */
3113 	for (i = 0; i < num_eps; i++) {
3114 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3115 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3116 	}
3117 	spin_unlock_irqrestore(&xhci->lock, flags);
3118 
3119 	/* Setup internal data structures and allocate HW data structures for
3120 	 * streams (but don't install the HW structures in the input context
3121 	 * until we're sure all memory allocation succeeded).
3122 	 */
3123 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3124 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3125 			num_stream_ctxs, num_streams);
3126 
3127 	for (i = 0; i < num_eps; i++) {
3128 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3130 				num_stream_ctxs,
3131 				num_streams, mem_flags);
3132 		if (!vdev->eps[ep_index].stream_info)
3133 			goto cleanup;
3134 		/* Set maxPstreams in endpoint context and update deq ptr to
3135 		 * point to stream context array. FIXME
3136 		 */
3137 	}
3138 
3139 	/* Set up the input context for a configure endpoint command. */
3140 	for (i = 0; i < num_eps; i++) {
3141 		struct xhci_ep_ctx *ep_ctx;
3142 
3143 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3144 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3145 
3146 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3147 				vdev->out_ctx, ep_index);
3148 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3149 				vdev->eps[ep_index].stream_info);
3150 	}
3151 	/* Tell the HW to drop its old copy of the endpoint context info
3152 	 * and add the updated copy from the input context.
3153 	 */
3154 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3155 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3156 
3157 	/* Issue and wait for the configure endpoint command */
3158 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3159 			false, false);
3160 
3161 	/* xHC rejected the configure endpoint command for some reason, so we
3162 	 * leave the old ring intact and free our internal streams data
3163 	 * structure.
3164 	 */
3165 	if (ret < 0)
3166 		goto cleanup;
3167 
3168 	spin_lock_irqsave(&xhci->lock, flags);
3169 	for (i = 0; i < num_eps; i++) {
3170 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3172 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3173 			 udev->slot_id, ep_index);
3174 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3175 	}
3176 	xhci_free_command(xhci, config_cmd);
3177 	spin_unlock_irqrestore(&xhci->lock, flags);
3178 
3179 	/* Subtract 1 for stream 0, which drivers can't use */
3180 	return num_streams - 1;
3181 
3182 cleanup:
3183 	/* If it didn't work, free the streams! */
3184 	for (i = 0; i < num_eps; i++) {
3185 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3186 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3187 		vdev->eps[ep_index].stream_info = NULL;
3188 		/* FIXME Unset maxPstreams in endpoint context and
3189 		 * update deq ptr to point to normal string ring.
3190 		 */
3191 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3192 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3193 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3194 	}
3195 	xhci_free_command(xhci, config_cmd);
3196 	return -ENOMEM;
3197 }
3198 
3199 /* Transition the endpoint from using streams to being a "normal" endpoint
3200  * without streams.
3201  *
3202  * Modify the endpoint context state, submit a configure endpoint command,
3203  * and free all endpoint rings for streams if that completes successfully.
3204  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3205 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3206 		struct usb_host_endpoint **eps, unsigned int num_eps,
3207 		gfp_t mem_flags)
3208 {
3209 	int i, ret;
3210 	struct xhci_hcd *xhci;
3211 	struct xhci_virt_device *vdev;
3212 	struct xhci_command *command;
3213 	unsigned int ep_index;
3214 	unsigned long flags;
3215 	u32 changed_ep_bitmask;
3216 
3217 	xhci = hcd_to_xhci(hcd);
3218 	vdev = xhci->devs[udev->slot_id];
3219 
3220 	/* Set up a configure endpoint command to remove the streams rings */
3221 	spin_lock_irqsave(&xhci->lock, flags);
3222 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3223 			udev, eps, num_eps);
3224 	if (changed_ep_bitmask == 0) {
3225 		spin_unlock_irqrestore(&xhci->lock, flags);
3226 		return -EINVAL;
3227 	}
3228 
3229 	/* Use the xhci_command structure from the first endpoint.  We may have
3230 	 * allocated too many, but the driver may call xhci_free_streams() for
3231 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3232 	 */
3233 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3234 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3235 	for (i = 0; i < num_eps; i++) {
3236 		struct xhci_ep_ctx *ep_ctx;
3237 
3238 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3240 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3241 			EP_GETTING_NO_STREAMS;
3242 
3243 		xhci_endpoint_copy(xhci, command->in_ctx,
3244 				vdev->out_ctx, ep_index);
3245 		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3246 				&vdev->eps[ep_index]);
3247 	}
3248 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3249 			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3250 	spin_unlock_irqrestore(&xhci->lock, flags);
3251 
3252 	/* Issue and wait for the configure endpoint command,
3253 	 * which must succeed.
3254 	 */
3255 	ret = xhci_configure_endpoint(xhci, udev, command,
3256 			false, true);
3257 
3258 	/* xHC rejected the configure endpoint command for some reason, so we
3259 	 * leave the streams rings intact.
3260 	 */
3261 	if (ret < 0)
3262 		return ret;
3263 
3264 	spin_lock_irqsave(&xhci->lock, flags);
3265 	for (i = 0; i < num_eps; i++) {
3266 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3268 		vdev->eps[ep_index].stream_info = NULL;
3269 		/* FIXME Unset maxPstreams in endpoint context and
3270 		 * update deq ptr to point to normal string ring.
3271 		 */
3272 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3273 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3274 	}
3275 	spin_unlock_irqrestore(&xhci->lock, flags);
3276 
3277 	return 0;
3278 }
3279 
3280 /*
3281  * Deletes endpoint resources for endpoints that were active before a Reset
3282  * Device command, or a Disable Slot command.  The Reset Device command leaves
3283  * the control endpoint intact, whereas the Disable Slot command deletes it.
3284  *
3285  * Must be called with xhci->lock held.
3286  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3287 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3288 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3289 {
3290 	int i;
3291 	unsigned int num_dropped_eps = 0;
3292 	unsigned int drop_flags = 0;
3293 
3294 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3295 		if (virt_dev->eps[i].ring) {
3296 			drop_flags |= 1 << i;
3297 			num_dropped_eps++;
3298 		}
3299 	}
3300 	xhci->num_active_eps -= num_dropped_eps;
3301 	if (num_dropped_eps)
3302 		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3303 				"%u now active.\n",
3304 				num_dropped_eps, drop_flags,
3305 				xhci->num_active_eps);
3306 }
3307 
3308 /*
3309  * This submits a Reset Device Command, which will set the device state to 0,
3310  * set the device address to 0, and disable all the endpoints except the default
3311  * control endpoint.  The USB core should come back and call
3312  * xhci_address_device(), and then re-set up the configuration.  If this is
3313  * called because of a usb_reset_and_verify_device(), then the old alternate
3314  * settings will be re-installed through the normal bandwidth allocation
3315  * functions.
3316  *
3317  * Wait for the Reset Device command to finish.  Remove all structures
3318  * associated with the endpoints that were disabled.  Clear the input device
3319  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3320  *
3321  * If the virt_dev to be reset does not exist or does not match the udev,
3322  * it means the device is lost, possibly due to the xHC restore error and
3323  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3324  * re-allocate the device.
3325  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3326 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3327 {
3328 	int ret, i;
3329 	unsigned long flags;
3330 	struct xhci_hcd *xhci;
3331 	unsigned int slot_id;
3332 	struct xhci_virt_device *virt_dev;
3333 	struct xhci_command *reset_device_cmd;
3334 	int timeleft;
3335 	int last_freed_endpoint;
3336 	struct xhci_slot_ctx *slot_ctx;
3337 	int old_active_eps = 0;
3338 
3339 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3340 	if (ret <= 0)
3341 		return ret;
3342 	xhci = hcd_to_xhci(hcd);
3343 	slot_id = udev->slot_id;
3344 	virt_dev = xhci->devs[slot_id];
3345 	if (!virt_dev) {
3346 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3347 				"not exist. Re-allocate the device\n", slot_id);
3348 		ret = xhci_alloc_dev(hcd, udev);
3349 		if (ret == 1)
3350 			return 0;
3351 		else
3352 			return -EINVAL;
3353 	}
3354 
3355 	if (virt_dev->udev != udev) {
3356 		/* If the virt_dev and the udev does not match, this virt_dev
3357 		 * may belong to another udev.
3358 		 * Re-allocate the device.
3359 		 */
3360 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3361 				"not match the udev. Re-allocate the device\n",
3362 				slot_id);
3363 		ret = xhci_alloc_dev(hcd, udev);
3364 		if (ret == 1)
3365 			return 0;
3366 		else
3367 			return -EINVAL;
3368 	}
3369 
3370 	/* If device is not setup, there is no point in resetting it */
3371 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3372 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3373 						SLOT_STATE_DISABLED)
3374 		return 0;
3375 
3376 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3377 	/* Allocate the command structure that holds the struct completion.
3378 	 * Assume we're in process context, since the normal device reset
3379 	 * process has to wait for the device anyway.  Storage devices are
3380 	 * reset as part of error handling, so use GFP_NOIO instead of
3381 	 * GFP_KERNEL.
3382 	 */
3383 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3384 	if (!reset_device_cmd) {
3385 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3386 		return -ENOMEM;
3387 	}
3388 
3389 	/* Attempt to submit the Reset Device command to the command ring */
3390 	spin_lock_irqsave(&xhci->lock, flags);
3391 	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3392 
3393 	/* Enqueue pointer can be left pointing to the link TRB,
3394 	 * we must handle that
3395 	 */
3396 	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3397 		reset_device_cmd->command_trb =
3398 			xhci->cmd_ring->enq_seg->next->trbs;
3399 
3400 	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3401 	ret = xhci_queue_reset_device(xhci, slot_id);
3402 	if (ret) {
3403 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3404 		list_del(&reset_device_cmd->cmd_list);
3405 		spin_unlock_irqrestore(&xhci->lock, flags);
3406 		goto command_cleanup;
3407 	}
3408 	xhci_ring_cmd_db(xhci);
3409 	spin_unlock_irqrestore(&xhci->lock, flags);
3410 
3411 	/* Wait for the Reset Device command to finish */
3412 	timeleft = wait_for_completion_interruptible_timeout(
3413 			reset_device_cmd->completion,
3414 			USB_CTRL_SET_TIMEOUT);
3415 	if (timeleft <= 0) {
3416 		xhci_warn(xhci, "%s while waiting for reset device command\n",
3417 				timeleft == 0 ? "Timeout" : "Signal");
3418 		spin_lock_irqsave(&xhci->lock, flags);
3419 		/* The timeout might have raced with the event ring handler, so
3420 		 * only delete from the list if the item isn't poisoned.
3421 		 */
3422 		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3423 			list_del(&reset_device_cmd->cmd_list);
3424 		spin_unlock_irqrestore(&xhci->lock, flags);
3425 		ret = -ETIME;
3426 		goto command_cleanup;
3427 	}
3428 
3429 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430 	 * unless we tried to reset a slot ID that wasn't enabled,
3431 	 * or the device wasn't in the addressed or configured state.
3432 	 */
3433 	ret = reset_device_cmd->status;
3434 	switch (ret) {
3435 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3436 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3437 		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3438 				slot_id,
3439 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3440 		xhci_info(xhci, "Not freeing device rings.\n");
3441 		/* Don't treat this as an error.  May change my mind later. */
3442 		ret = 0;
3443 		goto command_cleanup;
3444 	case COMP_SUCCESS:
3445 		xhci_dbg(xhci, "Successful reset device command.\n");
3446 		break;
3447 	default:
3448 		if (xhci_is_vendor_info_code(xhci, ret))
3449 			break;
3450 		xhci_warn(xhci, "Unknown completion code %u for "
3451 				"reset device command.\n", ret);
3452 		ret = -EINVAL;
3453 		goto command_cleanup;
3454 	}
3455 
3456 	/* Free up host controller endpoint resources */
3457 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3458 		spin_lock_irqsave(&xhci->lock, flags);
3459 		/* Don't delete the default control endpoint resources */
3460 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3461 		spin_unlock_irqrestore(&xhci->lock, flags);
3462 	}
3463 
3464 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3465 	last_freed_endpoint = 1;
3466 	for (i = 1; i < 31; ++i) {
3467 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3468 
3469 		if (ep->ep_state & EP_HAS_STREAMS) {
3470 			xhci_free_stream_info(xhci, ep->stream_info);
3471 			ep->stream_info = NULL;
3472 			ep->ep_state &= ~EP_HAS_STREAMS;
3473 		}
3474 
3475 		if (ep->ring) {
3476 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3477 			last_freed_endpoint = i;
3478 		}
3479 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3480 			xhci_drop_ep_from_interval_table(xhci,
3481 					&virt_dev->eps[i].bw_info,
3482 					virt_dev->bw_table,
3483 					udev,
3484 					&virt_dev->eps[i],
3485 					virt_dev->tt_info);
3486 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3487 	}
3488 	/* If necessary, update the number of active TTs on this root port */
3489 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3490 
3491 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3492 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3493 	ret = 0;
3494 
3495 command_cleanup:
3496 	xhci_free_command(xhci, reset_device_cmd);
3497 	return ret;
3498 }
3499 
3500 /*
3501  * At this point, the struct usb_device is about to go away, the device has
3502  * disconnected, and all traffic has been stopped and the endpoints have been
3503  * disabled.  Free any HC data structures associated with that device.
3504  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3505 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3506 {
3507 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3508 	struct xhci_virt_device *virt_dev;
3509 	unsigned long flags;
3510 	u32 state;
3511 	int i, ret;
3512 
3513 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3514 	/* If the host is halted due to driver unload, we still need to free the
3515 	 * device.
3516 	 */
3517 	if (ret <= 0 && ret != -ENODEV)
3518 		return;
3519 
3520 	virt_dev = xhci->devs[udev->slot_id];
3521 
3522 	/* Stop any wayward timer functions (which may grab the lock) */
3523 	for (i = 0; i < 31; ++i) {
3524 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3525 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3526 	}
3527 
3528 	if (udev->usb2_hw_lpm_enabled) {
3529 		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3530 		udev->usb2_hw_lpm_enabled = 0;
3531 	}
3532 
3533 	spin_lock_irqsave(&xhci->lock, flags);
3534 	/* Don't disable the slot if the host controller is dead. */
3535 	state = xhci_readl(xhci, &xhci->op_regs->status);
3536 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3537 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3538 		xhci_free_virt_device(xhci, udev->slot_id);
3539 		spin_unlock_irqrestore(&xhci->lock, flags);
3540 		return;
3541 	}
3542 
3543 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3544 		spin_unlock_irqrestore(&xhci->lock, flags);
3545 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3546 		return;
3547 	}
3548 	xhci_ring_cmd_db(xhci);
3549 	spin_unlock_irqrestore(&xhci->lock, flags);
3550 	/*
3551 	 * Event command completion handler will free any data structures
3552 	 * associated with the slot.  XXX Can free sleep?
3553 	 */
3554 }
3555 
3556 /*
3557  * Checks if we have enough host controller resources for the default control
3558  * endpoint.
3559  *
3560  * Must be called with xhci->lock held.
3561  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3562 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3563 {
3564 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3565 		xhci_dbg(xhci, "Not enough ep ctxs: "
3566 				"%u active, need to add 1, limit is %u.\n",
3567 				xhci->num_active_eps, xhci->limit_active_eps);
3568 		return -ENOMEM;
3569 	}
3570 	xhci->num_active_eps += 1;
3571 	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3572 			xhci->num_active_eps);
3573 	return 0;
3574 }
3575 
3576 
3577 /*
3578  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3579  * timed out, or allocating memory failed.  Returns 1 on success.
3580  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3581 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3582 {
3583 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3584 	unsigned long flags;
3585 	int timeleft;
3586 	int ret;
3587 	union xhci_trb *cmd_trb;
3588 
3589 	spin_lock_irqsave(&xhci->lock, flags);
3590 	cmd_trb = xhci->cmd_ring->dequeue;
3591 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3592 	if (ret) {
3593 		spin_unlock_irqrestore(&xhci->lock, flags);
3594 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3595 		return 0;
3596 	}
3597 	xhci_ring_cmd_db(xhci);
3598 	spin_unlock_irqrestore(&xhci->lock, flags);
3599 
3600 	/* XXX: how much time for xHC slot assignment? */
3601 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3602 			XHCI_CMD_DEFAULT_TIMEOUT);
3603 	if (timeleft <= 0) {
3604 		xhci_warn(xhci, "%s while waiting for a slot\n",
3605 				timeleft == 0 ? "Timeout" : "Signal");
3606 		/* cancel the enable slot request */
3607 		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3608 	}
3609 
3610 	if (!xhci->slot_id) {
3611 		xhci_err(xhci, "Error while assigning device slot ID\n");
3612 		return 0;
3613 	}
3614 
3615 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3616 		spin_lock_irqsave(&xhci->lock, flags);
3617 		ret = xhci_reserve_host_control_ep_resources(xhci);
3618 		if (ret) {
3619 			spin_unlock_irqrestore(&xhci->lock, flags);
3620 			xhci_warn(xhci, "Not enough host resources, "
3621 					"active endpoint contexts = %u\n",
3622 					xhci->num_active_eps);
3623 			goto disable_slot;
3624 		}
3625 		spin_unlock_irqrestore(&xhci->lock, flags);
3626 	}
3627 	/* Use GFP_NOIO, since this function can be called from
3628 	 * xhci_discover_or_reset_device(), which may be called as part of
3629 	 * mass storage driver error handling.
3630 	 */
3631 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3632 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3633 		goto disable_slot;
3634 	}
3635 	udev->slot_id = xhci->slot_id;
3636 	/* Is this a LS or FS device under a HS hub? */
3637 	/* Hub or peripherial? */
3638 	return 1;
3639 
3640 disable_slot:
3641 	/* Disable slot, if we can do it without mem alloc */
3642 	spin_lock_irqsave(&xhci->lock, flags);
3643 	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3644 		xhci_ring_cmd_db(xhci);
3645 	spin_unlock_irqrestore(&xhci->lock, flags);
3646 	return 0;
3647 }
3648 
3649 /*
3650  * Issue an Address Device command (which will issue a SetAddress request to
3651  * the device).
3652  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3653  * we should only issue and wait on one address command at the same time.
3654  *
3655  * We add one to the device address issued by the hardware because the USB core
3656  * uses address 1 for the root hubs (even though they're not really devices).
3657  */
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)3658 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3659 {
3660 	unsigned long flags;
3661 	int timeleft;
3662 	struct xhci_virt_device *virt_dev;
3663 	int ret = 0;
3664 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3665 	struct xhci_slot_ctx *slot_ctx;
3666 	struct xhci_input_control_ctx *ctrl_ctx;
3667 	u64 temp_64;
3668 	union xhci_trb *cmd_trb;
3669 
3670 	if (!udev->slot_id) {
3671 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3672 		return -EINVAL;
3673 	}
3674 
3675 	virt_dev = xhci->devs[udev->slot_id];
3676 
3677 	if (WARN_ON(!virt_dev)) {
3678 		/*
3679 		 * In plug/unplug torture test with an NEC controller,
3680 		 * a zero-dereference was observed once due to virt_dev = 0.
3681 		 * Print useful debug rather than crash if it is observed again!
3682 		 */
3683 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3684 			udev->slot_id);
3685 		return -EINVAL;
3686 	}
3687 
3688 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3689 	/*
3690 	 * If this is the first Set Address since device plug-in or
3691 	 * virt_device realloaction after a resume with an xHCI power loss,
3692 	 * then set up the slot context.
3693 	 */
3694 	if (!slot_ctx->dev_info)
3695 		xhci_setup_addressable_virt_dev(xhci, udev);
3696 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3697 	else
3698 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3699 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3700 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3701 	ctrl_ctx->drop_flags = 0;
3702 
3703 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3704 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3705 
3706 	spin_lock_irqsave(&xhci->lock, flags);
3707 	cmd_trb = xhci->cmd_ring->dequeue;
3708 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3709 					udev->slot_id);
3710 	if (ret) {
3711 		spin_unlock_irqrestore(&xhci->lock, flags);
3712 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3713 		return ret;
3714 	}
3715 	xhci_ring_cmd_db(xhci);
3716 	spin_unlock_irqrestore(&xhci->lock, flags);
3717 
3718 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3719 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3720 			XHCI_CMD_DEFAULT_TIMEOUT);
3721 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3722 	 * the SetAddress() "recovery interval" required by USB and aborting the
3723 	 * command on a timeout.
3724 	 */
3725 	if (timeleft <= 0) {
3726 		xhci_warn(xhci, "%s while waiting for address device command\n",
3727 				timeleft == 0 ? "Timeout" : "Signal");
3728 		/* cancel the address device command */
3729 		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3730 		if (ret < 0)
3731 			return ret;
3732 		return -ETIME;
3733 	}
3734 
3735 	switch (virt_dev->cmd_status) {
3736 	case COMP_CTX_STATE:
3737 	case COMP_EBADSLT:
3738 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3739 				udev->slot_id);
3740 		ret = -EINVAL;
3741 		break;
3742 	case COMP_TX_ERR:
3743 		dev_warn(&udev->dev, "Device not responding to set address.\n");
3744 		ret = -EPROTO;
3745 		break;
3746 	case COMP_DEV_ERR:
3747 		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3748 				"device command.\n");
3749 		ret = -ENODEV;
3750 		break;
3751 	case COMP_SUCCESS:
3752 		xhci_dbg(xhci, "Successful Address Device command\n");
3753 		break;
3754 	default:
3755 		xhci_err(xhci, "ERROR: unexpected command completion "
3756 				"code 0x%x.\n", virt_dev->cmd_status);
3757 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3758 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3759 		ret = -EINVAL;
3760 		break;
3761 	}
3762 	if (ret) {
3763 		return ret;
3764 	}
3765 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3766 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3767 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3768 		 udev->slot_id,
3769 		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3770 		 (unsigned long long)
3771 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3772 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3773 			(unsigned long long)virt_dev->out_ctx->dma);
3774 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3775 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3776 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3777 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3778 	/*
3779 	 * USB core uses address 1 for the roothubs, so we add one to the
3780 	 * address given back to us by the HC.
3781 	 */
3782 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3783 	/* Use kernel assigned address for devices; store xHC assigned
3784 	 * address locally. */
3785 	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3786 		+ 1;
3787 	/* Zero the input context control for later use */
3788 	ctrl_ctx->add_flags = 0;
3789 	ctrl_ctx->drop_flags = 0;
3790 
3791 	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3792 
3793 	return 0;
3794 }
3795 
3796 /*
3797  * Transfer the port index into real index in the HW port status
3798  * registers. Caculate offset between the port's PORTSC register
3799  * and port status base. Divide the number of per port register
3800  * to get the real index. The raw port number bases 1.
3801  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)3802 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3803 {
3804 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3805 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3806 	__le32 __iomem *addr;
3807 	int raw_port;
3808 
3809 	if (hcd->speed != HCD_USB3)
3810 		addr = xhci->usb2_ports[port1 - 1];
3811 	else
3812 		addr = xhci->usb3_ports[port1 - 1];
3813 
3814 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3815 	return raw_port;
3816 }
3817 
3818 #ifdef CONFIG_PM_RUNTIME
3819 
3820 /* BESL to HIRD Encoding array for USB2 LPM */
3821 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3822 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3823 
3824 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)3825 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3826 					struct usb_device *udev)
3827 {
3828 	int u2del, besl, besl_host;
3829 	int besl_device = 0;
3830 	u32 field;
3831 
3832 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3833 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3834 
3835 	if (field & USB_BESL_SUPPORT) {
3836 		for (besl_host = 0; besl_host < 16; besl_host++) {
3837 			if (xhci_besl_encoding[besl_host] >= u2del)
3838 				break;
3839 		}
3840 		/* Use baseline BESL value as default */
3841 		if (field & USB_BESL_BASELINE_VALID)
3842 			besl_device = USB_GET_BESL_BASELINE(field);
3843 		else if (field & USB_BESL_DEEP_VALID)
3844 			besl_device = USB_GET_BESL_DEEP(field);
3845 	} else {
3846 		if (u2del <= 50)
3847 			besl_host = 0;
3848 		else
3849 			besl_host = (u2del - 51) / 75 + 1;
3850 	}
3851 
3852 	besl = besl_host + besl_device;
3853 	if (besl > 15)
3854 		besl = 15;
3855 
3856 	return besl;
3857 }
3858 
xhci_usb2_software_lpm_test(struct usb_hcd * hcd,struct usb_device * udev)3859 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3860 					struct usb_device *udev)
3861 {
3862 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3863 	struct dev_info	*dev_info;
3864 	__le32 __iomem	**port_array;
3865 	__le32 __iomem	*addr, *pm_addr;
3866 	u32		temp, dev_id;
3867 	unsigned int	port_num;
3868 	unsigned long	flags;
3869 	int		hird;
3870 	int		ret;
3871 
3872 	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3873 			!udev->lpm_capable)
3874 		return -EINVAL;
3875 
3876 	/* we only support lpm for non-hub device connected to root hub yet */
3877 	if (!udev->parent || udev->parent->parent ||
3878 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3879 		return -EINVAL;
3880 
3881 	spin_lock_irqsave(&xhci->lock, flags);
3882 
3883 	/* Look for devices in lpm_failed_devs list */
3884 	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3885 			le16_to_cpu(udev->descriptor.idProduct);
3886 	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3887 		if (dev_info->dev_id == dev_id) {
3888 			ret = -EINVAL;
3889 			goto finish;
3890 		}
3891 	}
3892 
3893 	port_array = xhci->usb2_ports;
3894 	port_num = udev->portnum - 1;
3895 
3896 	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3897 		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3898 		ret = -EINVAL;
3899 		goto finish;
3900 	}
3901 
3902 	/*
3903 	 * Test USB 2.0 software LPM.
3904 	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3905 	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3906 	 * in the June 2011 errata release.
3907 	 */
3908 	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3909 	/*
3910 	 * Set L1 Device Slot and HIRD/BESL.
3911 	 * Check device's USB 2.0 extension descriptor to determine whether
3912 	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3913 	 */
3914 	pm_addr = port_array[port_num] + 1;
3915 	hird = xhci_calculate_hird_besl(xhci, udev);
3916 	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3917 	xhci_writel(xhci, temp, pm_addr);
3918 
3919 	/* Set port link state to U2(L1) */
3920 	addr = port_array[port_num];
3921 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3922 
3923 	/* wait for ACK */
3924 	spin_unlock_irqrestore(&xhci->lock, flags);
3925 	msleep(10);
3926 	spin_lock_irqsave(&xhci->lock, flags);
3927 
3928 	/* Check L1 Status */
3929 	ret = xhci_handshake(xhci, pm_addr,
3930 			PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3931 	if (ret != -ETIMEDOUT) {
3932 		/* enter L1 successfully */
3933 		temp = xhci_readl(xhci, addr);
3934 		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3935 				port_num, temp);
3936 		ret = 0;
3937 	} else {
3938 		temp = xhci_readl(xhci, pm_addr);
3939 		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3940 				port_num, temp & PORT_L1S_MASK);
3941 		ret = -EINVAL;
3942 	}
3943 
3944 	/* Resume the port */
3945 	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3946 
3947 	spin_unlock_irqrestore(&xhci->lock, flags);
3948 	msleep(10);
3949 	spin_lock_irqsave(&xhci->lock, flags);
3950 
3951 	/* Clear PLC */
3952 	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3953 
3954 	/* Check PORTSC to make sure the device is in the right state */
3955 	if (!ret) {
3956 		temp = xhci_readl(xhci, addr);
3957 		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3958 		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3959 				(temp & PORT_PLS_MASK) != XDEV_U0) {
3960 			xhci_dbg(xhci, "port L1 resume fail\n");
3961 			ret = -EINVAL;
3962 		}
3963 	}
3964 
3965 	if (ret) {
3966 		/* Insert dev to lpm_failed_devs list */
3967 		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3968 				"re-enumerate\n");
3969 		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3970 		if (!dev_info) {
3971 			ret = -ENOMEM;
3972 			goto finish;
3973 		}
3974 		dev_info->dev_id = dev_id;
3975 		INIT_LIST_HEAD(&dev_info->list);
3976 		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3977 	} else {
3978 		xhci_ring_device(xhci, udev->slot_id);
3979 	}
3980 
3981 finish:
3982 	spin_unlock_irqrestore(&xhci->lock, flags);
3983 	return ret;
3984 }
3985 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3987 			struct usb_device *udev, int enable)
3988 {
3989 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3990 	__le32 __iomem	**port_array;
3991 	__le32 __iomem	*pm_addr;
3992 	u32		temp;
3993 	unsigned int	port_num;
3994 	unsigned long	flags;
3995 	int		hird;
3996 
3997 	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3998 			!udev->lpm_capable)
3999 		return -EPERM;
4000 
4001 	if (!udev->parent || udev->parent->parent ||
4002 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4003 		return -EPERM;
4004 
4005 	if (udev->usb2_hw_lpm_capable != 1)
4006 		return -EPERM;
4007 
4008 	spin_lock_irqsave(&xhci->lock, flags);
4009 
4010 	port_array = xhci->usb2_ports;
4011 	port_num = udev->portnum - 1;
4012 	pm_addr = port_array[port_num] + 1;
4013 	temp = xhci_readl(xhci, pm_addr);
4014 
4015 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4016 			enable ? "enable" : "disable", port_num);
4017 
4018 	hird = xhci_calculate_hird_besl(xhci, udev);
4019 
4020 	if (enable) {
4021 		temp &= ~PORT_HIRD_MASK;
4022 		temp |= PORT_HIRD(hird) | PORT_RWE;
4023 		xhci_writel(xhci, temp, pm_addr);
4024 		temp = xhci_readl(xhci, pm_addr);
4025 		temp |= PORT_HLE;
4026 		xhci_writel(xhci, temp, pm_addr);
4027 	} else {
4028 		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4029 		xhci_writel(xhci, temp, pm_addr);
4030 	}
4031 
4032 	spin_unlock_irqrestore(&xhci->lock, flags);
4033 	return 0;
4034 }
4035 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4036 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4037 {
4038 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4039 	int		ret;
4040 
4041 	ret = xhci_usb2_software_lpm_test(hcd, udev);
4042 	if (!ret) {
4043 		xhci_dbg(xhci, "software LPM test succeed\n");
4044 		if (xhci->hw_lpm_support == 1) {
4045 			udev->usb2_hw_lpm_capable = 1;
4046 			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4047 			if (!ret)
4048 				udev->usb2_hw_lpm_enabled = 1;
4049 		}
4050 	}
4051 
4052 	return 0;
4053 }
4054 
4055 #else
4056 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4057 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4058 				struct usb_device *udev, int enable)
4059 {
4060 	return 0;
4061 }
4062 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4063 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4064 {
4065 	return 0;
4066 }
4067 
4068 #endif /* CONFIG_PM_RUNTIME */
4069 
4070 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4071 
4072 #ifdef CONFIG_PM
4073 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4074 static unsigned long long xhci_service_interval_to_ns(
4075 		struct usb_endpoint_descriptor *desc)
4076 {
4077 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4078 }
4079 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4080 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4081 		enum usb3_link_state state)
4082 {
4083 	unsigned long long sel;
4084 	unsigned long long pel;
4085 	unsigned int max_sel_pel;
4086 	char *state_name;
4087 
4088 	switch (state) {
4089 	case USB3_LPM_U1:
4090 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4091 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4092 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4093 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4094 		state_name = "U1";
4095 		break;
4096 	case USB3_LPM_U2:
4097 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4098 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4099 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4100 		state_name = "U2";
4101 		break;
4102 	default:
4103 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4104 				__func__);
4105 		return USB3_LPM_DISABLED;
4106 	}
4107 
4108 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4109 		return USB3_LPM_DEVICE_INITIATED;
4110 
4111 	if (sel > max_sel_pel)
4112 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4113 				"due to long SEL %llu ms\n",
4114 				state_name, sel);
4115 	else
4116 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4117 				"due to long PEL %llu\n ms",
4118 				state_name, pel);
4119 	return USB3_LPM_DISABLED;
4120 }
4121 
4122 /* Returns the hub-encoded U1 timeout value.
4123  * The U1 timeout should be the maximum of the following values:
4124  *  - For control endpoints, U1 system exit latency (SEL) * 3
4125  *  - For bulk endpoints, U1 SEL * 5
4126  *  - For interrupt endpoints:
4127  *    - Notification EPs, U1 SEL * 3
4128  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4129  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4130  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4131 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4132 		struct usb_endpoint_descriptor *desc)
4133 {
4134 	unsigned long long timeout_ns;
4135 	int ep_type;
4136 	int intr_type;
4137 
4138 	ep_type = usb_endpoint_type(desc);
4139 	switch (ep_type) {
4140 	case USB_ENDPOINT_XFER_CONTROL:
4141 		timeout_ns = udev->u1_params.sel * 3;
4142 		break;
4143 	case USB_ENDPOINT_XFER_BULK:
4144 		timeout_ns = udev->u1_params.sel * 5;
4145 		break;
4146 	case USB_ENDPOINT_XFER_INT:
4147 		intr_type = usb_endpoint_interrupt_type(desc);
4148 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4149 			timeout_ns = udev->u1_params.sel * 3;
4150 			break;
4151 		}
4152 		/* Otherwise the calculation is the same as isoc eps */
4153 	case USB_ENDPOINT_XFER_ISOC:
4154 		timeout_ns = xhci_service_interval_to_ns(desc);
4155 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4156 		if (timeout_ns < udev->u1_params.sel * 2)
4157 			timeout_ns = udev->u1_params.sel * 2;
4158 		break;
4159 	default:
4160 		return 0;
4161 	}
4162 
4163 	/* The U1 timeout is encoded in 1us intervals. */
4164 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4165 	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4166 	if (timeout_ns == USB3_LPM_DISABLED)
4167 		timeout_ns++;
4168 
4169 	/* If the necessary timeout value is bigger than what we can set in the
4170 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4171 	 */
4172 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4173 		return timeout_ns;
4174 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4175 			"due to long timeout %llu ms\n", timeout_ns);
4176 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4177 }
4178 
4179 /* Returns the hub-encoded U2 timeout value.
4180  * The U2 timeout should be the maximum of:
4181  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4182  *  - largest bInterval of any active periodic endpoint (to avoid going
4183  *    into lower power link states between intervals).
4184  *  - the U2 Exit Latency of the device
4185  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4186 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4187 		struct usb_endpoint_descriptor *desc)
4188 {
4189 	unsigned long long timeout_ns;
4190 	unsigned long long u2_del_ns;
4191 
4192 	timeout_ns = 10 * 1000 * 1000;
4193 
4194 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4195 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4196 		timeout_ns = xhci_service_interval_to_ns(desc);
4197 
4198 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4199 	if (u2_del_ns > timeout_ns)
4200 		timeout_ns = u2_del_ns;
4201 
4202 	/* The U2 timeout is encoded in 256us intervals */
4203 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4204 	/* If the necessary timeout value is bigger than what we can set in the
4205 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4206 	 */
4207 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4208 		return timeout_ns;
4209 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4210 			"due to long timeout %llu ms\n", timeout_ns);
4211 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4212 }
4213 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4214 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4215 		struct usb_device *udev,
4216 		struct usb_endpoint_descriptor *desc,
4217 		enum usb3_link_state state,
4218 		u16 *timeout)
4219 {
4220 	if (state == USB3_LPM_U1) {
4221 		if (xhci->quirks & XHCI_INTEL_HOST)
4222 			return xhci_calculate_intel_u1_timeout(udev, desc);
4223 	} else {
4224 		if (xhci->quirks & XHCI_INTEL_HOST)
4225 			return xhci_calculate_intel_u2_timeout(udev, desc);
4226 	}
4227 
4228 	return USB3_LPM_DISABLED;
4229 }
4230 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4231 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4232 		struct usb_device *udev,
4233 		struct usb_endpoint_descriptor *desc,
4234 		enum usb3_link_state state,
4235 		u16 *timeout)
4236 {
4237 	u16 alt_timeout;
4238 
4239 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4240 		desc, state, timeout);
4241 
4242 	/* If we found we can't enable hub-initiated LPM, or
4243 	 * the U1 or U2 exit latency was too high to allow
4244 	 * device-initiated LPM as well, just stop searching.
4245 	 */
4246 	if (alt_timeout == USB3_LPM_DISABLED ||
4247 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4248 		*timeout = alt_timeout;
4249 		return -E2BIG;
4250 	}
4251 	if (alt_timeout > *timeout)
4252 		*timeout = alt_timeout;
4253 	return 0;
4254 }
4255 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4256 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4257 		struct usb_device *udev,
4258 		struct usb_host_interface *alt,
4259 		enum usb3_link_state state,
4260 		u16 *timeout)
4261 {
4262 	int j;
4263 
4264 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4265 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4266 					&alt->endpoint[j].desc, state, timeout))
4267 			return -E2BIG;
4268 		continue;
4269 	}
4270 	return 0;
4271 }
4272 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4273 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4274 		enum usb3_link_state state)
4275 {
4276 	struct usb_device *parent;
4277 	unsigned int num_hubs;
4278 
4279 	if (state == USB3_LPM_U2)
4280 		return 0;
4281 
4282 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4283 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4284 			parent = parent->parent)
4285 		num_hubs++;
4286 
4287 	if (num_hubs < 2)
4288 		return 0;
4289 
4290 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4291 			" below second-tier hub.\n");
4292 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4293 			"to decrease power consumption.\n");
4294 	return -E2BIG;
4295 }
4296 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4297 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4298 		struct usb_device *udev,
4299 		enum usb3_link_state state)
4300 {
4301 	if (xhci->quirks & XHCI_INTEL_HOST)
4302 		return xhci_check_intel_tier_policy(udev, state);
4303 	return -EINVAL;
4304 }
4305 
4306 /* Returns the U1 or U2 timeout that should be enabled.
4307  * If the tier check or timeout setting functions return with a non-zero exit
4308  * code, that means the timeout value has been finalized and we shouldn't look
4309  * at any more endpoints.
4310  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4311 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4312 			struct usb_device *udev, enum usb3_link_state state)
4313 {
4314 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4315 	struct usb_host_config *config;
4316 	char *state_name;
4317 	int i;
4318 	u16 timeout = USB3_LPM_DISABLED;
4319 
4320 	if (state == USB3_LPM_U1)
4321 		state_name = "U1";
4322 	else if (state == USB3_LPM_U2)
4323 		state_name = "U2";
4324 	else {
4325 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4326 				state);
4327 		return timeout;
4328 	}
4329 
4330 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4331 		return timeout;
4332 
4333 	/* Gather some information about the currently installed configuration
4334 	 * and alternate interface settings.
4335 	 */
4336 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4337 			state, &timeout))
4338 		return timeout;
4339 
4340 	config = udev->actconfig;
4341 	if (!config)
4342 		return timeout;
4343 
4344 	for (i = 0; i < USB_MAXINTERFACES; i++) {
4345 		struct usb_driver *driver;
4346 		struct usb_interface *intf = config->interface[i];
4347 
4348 		if (!intf)
4349 			continue;
4350 
4351 		/* Check if any currently bound drivers want hub-initiated LPM
4352 		 * disabled.
4353 		 */
4354 		if (intf->dev.driver) {
4355 			driver = to_usb_driver(intf->dev.driver);
4356 			if (driver && driver->disable_hub_initiated_lpm) {
4357 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4358 						"at request of driver %s\n",
4359 						state_name, driver->name);
4360 				return xhci_get_timeout_no_hub_lpm(udev, state);
4361 			}
4362 		}
4363 
4364 		/* Not sure how this could happen... */
4365 		if (!intf->cur_altsetting)
4366 			continue;
4367 
4368 		if (xhci_update_timeout_for_interface(xhci, udev,
4369 					intf->cur_altsetting,
4370 					state, &timeout))
4371 			return timeout;
4372 	}
4373 	return timeout;
4374 }
4375 
4376 /*
4377  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4378  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4379  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4380 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4381 			struct usb_device *udev, u16 max_exit_latency)
4382 {
4383 	struct xhci_virt_device *virt_dev;
4384 	struct xhci_command *command;
4385 	struct xhci_input_control_ctx *ctrl_ctx;
4386 	struct xhci_slot_ctx *slot_ctx;
4387 	unsigned long flags;
4388 	int ret;
4389 
4390 	spin_lock_irqsave(&xhci->lock, flags);
4391 	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4392 		spin_unlock_irqrestore(&xhci->lock, flags);
4393 		return 0;
4394 	}
4395 
4396 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4397 	virt_dev = xhci->devs[udev->slot_id];
4398 	command = xhci->lpm_command;
4399 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4400 	spin_unlock_irqrestore(&xhci->lock, flags);
4401 
4402 	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4403 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4404 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4405 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4406 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4407 
4408 	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4409 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4410 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4411 
4412 	/* Issue and wait for the evaluate context command. */
4413 	ret = xhci_configure_endpoint(xhci, udev, command,
4414 			true, true);
4415 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4416 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4417 
4418 	if (!ret) {
4419 		spin_lock_irqsave(&xhci->lock, flags);
4420 		virt_dev->current_mel = max_exit_latency;
4421 		spin_unlock_irqrestore(&xhci->lock, flags);
4422 	}
4423 	return ret;
4424 }
4425 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4426 static int calculate_max_exit_latency(struct usb_device *udev,
4427 		enum usb3_link_state state_changed,
4428 		u16 hub_encoded_timeout)
4429 {
4430 	unsigned long long u1_mel_us = 0;
4431 	unsigned long long u2_mel_us = 0;
4432 	unsigned long long mel_us = 0;
4433 	bool disabling_u1;
4434 	bool disabling_u2;
4435 	bool enabling_u1;
4436 	bool enabling_u2;
4437 
4438 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4439 			hub_encoded_timeout == USB3_LPM_DISABLED);
4440 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4441 			hub_encoded_timeout == USB3_LPM_DISABLED);
4442 
4443 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4444 			hub_encoded_timeout != USB3_LPM_DISABLED);
4445 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4446 			hub_encoded_timeout != USB3_LPM_DISABLED);
4447 
4448 	/* If U1 was already enabled and we're not disabling it,
4449 	 * or we're going to enable U1, account for the U1 max exit latency.
4450 	 */
4451 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4452 			enabling_u1)
4453 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4454 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4455 			enabling_u2)
4456 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4457 
4458 	if (u1_mel_us > u2_mel_us)
4459 		mel_us = u1_mel_us;
4460 	else
4461 		mel_us = u2_mel_us;
4462 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4463 	if (mel_us > MAX_EXIT) {
4464 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4465 				"is too big.\n", mel_us);
4466 		return -E2BIG;
4467 	}
4468 	return mel_us;
4469 }
4470 
4471 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4472 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4473 			struct usb_device *udev, enum usb3_link_state state)
4474 {
4475 	struct xhci_hcd	*xhci;
4476 	u16 hub_encoded_timeout;
4477 	int mel;
4478 	int ret;
4479 
4480 	xhci = hcd_to_xhci(hcd);
4481 	/* The LPM timeout values are pretty host-controller specific, so don't
4482 	 * enable hub-initiated timeouts unless the vendor has provided
4483 	 * information about their timeout algorithm.
4484 	 */
4485 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4486 			!xhci->devs[udev->slot_id])
4487 		return USB3_LPM_DISABLED;
4488 
4489 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4490 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4491 	if (mel < 0) {
4492 		/* Max Exit Latency is too big, disable LPM. */
4493 		hub_encoded_timeout = USB3_LPM_DISABLED;
4494 		mel = 0;
4495 	}
4496 
4497 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4498 	if (ret)
4499 		return ret;
4500 	return hub_encoded_timeout;
4501 }
4502 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4503 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4504 			struct usb_device *udev, enum usb3_link_state state)
4505 {
4506 	struct xhci_hcd	*xhci;
4507 	u16 mel;
4508 	int ret;
4509 
4510 	xhci = hcd_to_xhci(hcd);
4511 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4512 			!xhci->devs[udev->slot_id])
4513 		return 0;
4514 
4515 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4516 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4517 	if (ret)
4518 		return ret;
4519 	return 0;
4520 }
4521 #else /* CONFIG_PM */
4522 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4523 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4524 			struct usb_device *udev, enum usb3_link_state state)
4525 {
4526 	return USB3_LPM_DISABLED;
4527 }
4528 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4529 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4530 			struct usb_device *udev, enum usb3_link_state state)
4531 {
4532 	return 0;
4533 }
4534 #endif	/* CONFIG_PM */
4535 
4536 /*-------------------------------------------------------------------------*/
4537 
4538 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4539  * internal data structures for the device.
4540  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4541 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4542 			struct usb_tt *tt, gfp_t mem_flags)
4543 {
4544 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4545 	struct xhci_virt_device *vdev;
4546 	struct xhci_command *config_cmd;
4547 	struct xhci_input_control_ctx *ctrl_ctx;
4548 	struct xhci_slot_ctx *slot_ctx;
4549 	unsigned long flags;
4550 	unsigned think_time;
4551 	int ret;
4552 
4553 	/* Ignore root hubs */
4554 	if (!hdev->parent)
4555 		return 0;
4556 
4557 	vdev = xhci->devs[hdev->slot_id];
4558 	if (!vdev) {
4559 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4560 		return -EINVAL;
4561 	}
4562 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4563 	if (!config_cmd) {
4564 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4565 		return -ENOMEM;
4566 	}
4567 
4568 	spin_lock_irqsave(&xhci->lock, flags);
4569 	if (hdev->speed == USB_SPEED_HIGH &&
4570 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4571 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4572 		xhci_free_command(xhci, config_cmd);
4573 		spin_unlock_irqrestore(&xhci->lock, flags);
4574 		return -ENOMEM;
4575 	}
4576 
4577 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4578 	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4579 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4580 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4581 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4582 	if (tt->multi)
4583 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4584 	if (xhci->hci_version > 0x95) {
4585 		xhci_dbg(xhci, "xHCI version %x needs hub "
4586 				"TT think time and number of ports\n",
4587 				(unsigned int) xhci->hci_version);
4588 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4589 		/* Set TT think time - convert from ns to FS bit times.
4590 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4591 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4592 		 *
4593 		 * xHCI 1.0: this field shall be 0 if the device is not a
4594 		 * High-spped hub.
4595 		 */
4596 		think_time = tt->think_time;
4597 		if (think_time != 0)
4598 			think_time = (think_time / 666) - 1;
4599 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4600 			slot_ctx->tt_info |=
4601 				cpu_to_le32(TT_THINK_TIME(think_time));
4602 	} else {
4603 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4604 				"TT think time or number of ports\n",
4605 				(unsigned int) xhci->hci_version);
4606 	}
4607 	slot_ctx->dev_state = 0;
4608 	spin_unlock_irqrestore(&xhci->lock, flags);
4609 
4610 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4611 			(xhci->hci_version > 0x95) ?
4612 			"configure endpoint" : "evaluate context");
4613 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4614 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4615 
4616 	/* Issue and wait for the configure endpoint or
4617 	 * evaluate context command.
4618 	 */
4619 	if (xhci->hci_version > 0x95)
4620 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4621 				false, false);
4622 	else
4623 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4624 				true, false);
4625 
4626 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4627 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4628 
4629 	xhci_free_command(xhci, config_cmd);
4630 	return ret;
4631 }
4632 
xhci_get_frame(struct usb_hcd * hcd)4633 int xhci_get_frame(struct usb_hcd *hcd)
4634 {
4635 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4636 	/* EHCI mods by the periodic size.  Why? */
4637 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4638 }
4639 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4640 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4641 {
4642 	struct xhci_hcd		*xhci;
4643 	struct device		*dev = hcd->self.controller;
4644 	int			retval;
4645 	u32			temp;
4646 
4647 	/* Accept arbitrarily long scatter-gather lists */
4648 	hcd->self.sg_tablesize = ~0;
4649 	/* XHCI controllers don't stop the ep queue on short packets :| */
4650 	hcd->self.no_stop_on_short = 1;
4651 
4652 	if (usb_hcd_is_primary_hcd(hcd)) {
4653 		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4654 		if (!xhci)
4655 			return -ENOMEM;
4656 		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4657 		xhci->main_hcd = hcd;
4658 		/* Mark the first roothub as being USB 2.0.
4659 		 * The xHCI driver will register the USB 3.0 roothub.
4660 		 */
4661 		hcd->speed = HCD_USB2;
4662 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4663 		/*
4664 		 * USB 2.0 roothub under xHCI has an integrated TT,
4665 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4666 		 * companion controller.
4667 		 */
4668 		hcd->has_tt = 1;
4669 	} else {
4670 		/* xHCI private pointer was set in xhci_pci_probe for the second
4671 		 * registered roothub.
4672 		 */
4673 		xhci = hcd_to_xhci(hcd);
4674 		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4675 		if (HCC_64BIT_ADDR(temp)) {
4676 			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4677 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4678 		} else {
4679 			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4680 		}
4681 		return 0;
4682 	}
4683 
4684 	xhci->cap_regs = hcd->regs;
4685 	xhci->op_regs = hcd->regs +
4686 		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4687 	xhci->run_regs = hcd->regs +
4688 		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4689 	/* Cache read-only capability registers */
4690 	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4691 	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4692 	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4693 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4694 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4695 	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4696 	xhci_print_registers(xhci);
4697 
4698 	get_quirks(dev, xhci);
4699 
4700 	/* Make sure the HC is halted. */
4701 	retval = xhci_halt(xhci);
4702 	if (retval)
4703 		goto error;
4704 
4705 	xhci_dbg(xhci, "Resetting HCD\n");
4706 	/* Reset the internal HC memory state and registers. */
4707 	retval = xhci_reset(xhci);
4708 	if (retval)
4709 		goto error;
4710 	xhci_dbg(xhci, "Reset complete\n");
4711 
4712 	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4713 	if (HCC_64BIT_ADDR(temp)) {
4714 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4715 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4716 	} else {
4717 		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4718 	}
4719 
4720 	xhci_dbg(xhci, "Calling HCD init\n");
4721 	/* Initialize HCD and host controller data structures. */
4722 	retval = xhci_init(hcd);
4723 	if (retval)
4724 		goto error;
4725 	xhci_dbg(xhci, "Called HCD init\n");
4726 	return 0;
4727 error:
4728 	kfree(xhci);
4729 	return retval;
4730 }
4731 
4732 MODULE_DESCRIPTION(DRIVER_DESC);
4733 MODULE_AUTHOR(DRIVER_AUTHOR);
4734 MODULE_LICENSE("GPL");
4735 
xhci_hcd_init(void)4736 static int __init xhci_hcd_init(void)
4737 {
4738 	int retval;
4739 
4740 	retval = xhci_register_pci();
4741 	if (retval < 0) {
4742 		printk(KERN_DEBUG "Problem registering PCI driver.");
4743 		return retval;
4744 	}
4745 	retval = xhci_register_plat();
4746 	if (retval < 0) {
4747 		printk(KERN_DEBUG "Problem registering platform driver.");
4748 		goto unreg_pci;
4749 	}
4750 	/*
4751 	 * Check the compiler generated sizes of structures that must be laid
4752 	 * out in specific ways for hardware access.
4753 	 */
4754 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4755 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4756 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4757 	/* xhci_device_control has eight fields, and also
4758 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4759 	 */
4760 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4761 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4762 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4763 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4764 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4765 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4766 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4767 	return 0;
4768 unreg_pci:
4769 	xhci_unregister_pci();
4770 	return retval;
4771 }
4772 module_init(xhci_hcd_init);
4773 
xhci_hcd_cleanup(void)4774 static void __exit xhci_hcd_cleanup(void)
4775 {
4776 	xhci_unregister_pci();
4777 	xhci_unregister_plat();
4778 }
4779 module_exit(xhci_hcd_cleanup);
4780