• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  */
20 
21 /* This file implements all the hardware specific functions for the ZD1211
22  * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23  * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/slab.h>
29 
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34 
zd_chip_init(struct zd_chip * chip,struct ieee80211_hw * hw,struct usb_interface * intf)35 void zd_chip_init(struct zd_chip *chip,
36 	         struct ieee80211_hw *hw,
37 		 struct usb_interface *intf)
38 {
39 	memset(chip, 0, sizeof(*chip));
40 	mutex_init(&chip->mutex);
41 	zd_usb_init(&chip->usb, hw, intf);
42 	zd_rf_init(&chip->rf);
43 }
44 
zd_chip_clear(struct zd_chip * chip)45 void zd_chip_clear(struct zd_chip *chip)
46 {
47 	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
48 	zd_usb_clear(&chip->usb);
49 	zd_rf_clear(&chip->rf);
50 	mutex_destroy(&chip->mutex);
51 	ZD_MEMCLEAR(chip, sizeof(*chip));
52 }
53 
scnprint_mac_oui(struct zd_chip * chip,char * buffer,size_t size)54 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
55 {
56 	u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
57 	return scnprintf(buffer, size, "%02x-%02x-%02x",
58 		         addr[0], addr[1], addr[2]);
59 }
60 
61 /* Prints an identifier line, which will support debugging. */
scnprint_id(struct zd_chip * chip,char * buffer,size_t size)62 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
63 {
64 	int i = 0;
65 
66 	i = scnprintf(buffer, size, "zd1211%s chip ",
67 		      zd_chip_is_zd1211b(chip) ? "b" : "");
68 	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
69 	i += scnprintf(buffer+i, size-i, " ");
70 	i += scnprint_mac_oui(chip, buffer+i, size-i);
71 	i += scnprintf(buffer+i, size-i, " ");
72 	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
73 	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
74 		chip->patch_cck_gain ? 'g' : '-',
75 		chip->patch_cr157 ? '7' : '-',
76 		chip->patch_6m_band_edge ? '6' : '-',
77 		chip->new_phy_layout ? 'N' : '-',
78 		chip->al2230s_bit ? 'S' : '-');
79 	return i;
80 }
81 
print_id(struct zd_chip * chip)82 static void print_id(struct zd_chip *chip)
83 {
84 	char buffer[80];
85 
86 	scnprint_id(chip, buffer, sizeof(buffer));
87 	buffer[sizeof(buffer)-1] = 0;
88 	dev_info(zd_chip_dev(chip), "%s\n", buffer);
89 }
90 
inc_addr(zd_addr_t addr)91 static zd_addr_t inc_addr(zd_addr_t addr)
92 {
93 	u16 a = (u16)addr;
94 	/* Control registers use byte addressing, but everything else uses word
95 	 * addressing. */
96 	if ((a & 0xf000) == CR_START)
97 		a += 2;
98 	else
99 		a += 1;
100 	return (zd_addr_t)a;
101 }
102 
103 /* Read a variable number of 32-bit values. Parameter count is not allowed to
104  * exceed USB_MAX_IOREAD32_COUNT.
105  */
zd_ioread32v_locked(struct zd_chip * chip,u32 * values,const zd_addr_t * addr,unsigned int count)106 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
107 		 unsigned int count)
108 {
109 	int r;
110 	int i;
111 	zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
112 	u16 v16[USB_MAX_IOREAD32_COUNT * 2];
113 	unsigned int count16;
114 
115 	if (count > USB_MAX_IOREAD32_COUNT)
116 		return -EINVAL;
117 
118 	/* Use stack for values and addresses. */
119 	count16 = 2 * count;
120 	BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
121 	BUG_ON(count16 * sizeof(u16) > sizeof(v16));
122 
123 	for (i = 0; i < count; i++) {
124 		int j = 2*i;
125 		/* We read the high word always first. */
126 		a16[j] = inc_addr(addr[i]);
127 		a16[j+1] = addr[i];
128 	}
129 
130 	r = zd_ioread16v_locked(chip, v16, a16, count16);
131 	if (r) {
132 		dev_dbg_f(zd_chip_dev(chip),
133 			  "error: zd_ioread16v_locked. Error number %d\n", r);
134 		return r;
135 	}
136 
137 	for (i = 0; i < count; i++) {
138 		int j = 2*i;
139 		values[i] = (v16[j] << 16) | v16[j+1];
140 	}
141 
142 	return 0;
143 }
144 
_zd_iowrite32v_async_locked(struct zd_chip * chip,const struct zd_ioreq32 * ioreqs,unsigned int count)145 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
146 				       const struct zd_ioreq32 *ioreqs,
147 				       unsigned int count)
148 {
149 	int i, j, r;
150 	struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
151 	unsigned int count16;
152 
153 	/* Use stack for values and addresses. */
154 
155 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
156 
157 	if (count == 0)
158 		return 0;
159 	if (count > USB_MAX_IOWRITE32_COUNT)
160 		return -EINVAL;
161 
162 	count16 = 2 * count;
163 	BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
164 
165 	for (i = 0; i < count; i++) {
166 		j = 2*i;
167 		/* We write the high word always first. */
168 		ioreqs16[j].value   = ioreqs[i].value >> 16;
169 		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
170 		ioreqs16[j+1].value = ioreqs[i].value;
171 		ioreqs16[j+1].addr  = ioreqs[i].addr;
172 	}
173 
174 	r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
175 #ifdef DEBUG
176 	if (r) {
177 		dev_dbg_f(zd_chip_dev(chip),
178 			  "error %d in zd_usb_write16v\n", r);
179 	}
180 #endif /* DEBUG */
181 	return r;
182 }
183 
_zd_iowrite32v_locked(struct zd_chip * chip,const struct zd_ioreq32 * ioreqs,unsigned int count)184 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
185 			  unsigned int count)
186 {
187 	int r;
188 
189 	zd_usb_iowrite16v_async_start(&chip->usb);
190 	r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
191 	if (r) {
192 		zd_usb_iowrite16v_async_end(&chip->usb, 0);
193 		return r;
194 	}
195 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
196 }
197 
zd_iowrite16a_locked(struct zd_chip * chip,const struct zd_ioreq16 * ioreqs,unsigned int count)198 int zd_iowrite16a_locked(struct zd_chip *chip,
199                   const struct zd_ioreq16 *ioreqs, unsigned int count)
200 {
201 	int r;
202 	unsigned int i, j, t, max;
203 
204 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
205 	zd_usb_iowrite16v_async_start(&chip->usb);
206 
207 	for (i = 0; i < count; i += j + t) {
208 		t = 0;
209 		max = count-i;
210 		if (max > USB_MAX_IOWRITE16_COUNT)
211 			max = USB_MAX_IOWRITE16_COUNT;
212 		for (j = 0; j < max; j++) {
213 			if (!ioreqs[i+j].addr) {
214 				t = 1;
215 				break;
216 			}
217 		}
218 
219 		r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
220 		if (r) {
221 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
222 			dev_dbg_f(zd_chip_dev(chip),
223 				  "error zd_usb_iowrite16v. Error number %d\n",
224 				  r);
225 			return r;
226 		}
227 	}
228 
229 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
230 }
231 
232 /* Writes a variable number of 32 bit registers. The functions will split
233  * that in several USB requests. A split can be forced by inserting an IO
234  * request with an zero address field.
235  */
zd_iowrite32a_locked(struct zd_chip * chip,const struct zd_ioreq32 * ioreqs,unsigned int count)236 int zd_iowrite32a_locked(struct zd_chip *chip,
237 	          const struct zd_ioreq32 *ioreqs, unsigned int count)
238 {
239 	int r;
240 	unsigned int i, j, t, max;
241 
242 	zd_usb_iowrite16v_async_start(&chip->usb);
243 
244 	for (i = 0; i < count; i += j + t) {
245 		t = 0;
246 		max = count-i;
247 		if (max > USB_MAX_IOWRITE32_COUNT)
248 			max = USB_MAX_IOWRITE32_COUNT;
249 		for (j = 0; j < max; j++) {
250 			if (!ioreqs[i+j].addr) {
251 				t = 1;
252 				break;
253 			}
254 		}
255 
256 		r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
257 		if (r) {
258 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
259 			dev_dbg_f(zd_chip_dev(chip),
260 				"error _zd_iowrite32v_locked."
261 				" Error number %d\n", r);
262 			return r;
263 		}
264 	}
265 
266 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
267 }
268 
zd_ioread16(struct zd_chip * chip,zd_addr_t addr,u16 * value)269 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
270 {
271 	int r;
272 
273 	mutex_lock(&chip->mutex);
274 	r = zd_ioread16_locked(chip, value, addr);
275 	mutex_unlock(&chip->mutex);
276 	return r;
277 }
278 
zd_ioread32(struct zd_chip * chip,zd_addr_t addr,u32 * value)279 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
280 {
281 	int r;
282 
283 	mutex_lock(&chip->mutex);
284 	r = zd_ioread32_locked(chip, value, addr);
285 	mutex_unlock(&chip->mutex);
286 	return r;
287 }
288 
zd_iowrite16(struct zd_chip * chip,zd_addr_t addr,u16 value)289 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
290 {
291 	int r;
292 
293 	mutex_lock(&chip->mutex);
294 	r = zd_iowrite16_locked(chip, value, addr);
295 	mutex_unlock(&chip->mutex);
296 	return r;
297 }
298 
zd_iowrite32(struct zd_chip * chip,zd_addr_t addr,u32 value)299 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
300 {
301 	int r;
302 
303 	mutex_lock(&chip->mutex);
304 	r = zd_iowrite32_locked(chip, value, addr);
305 	mutex_unlock(&chip->mutex);
306 	return r;
307 }
308 
zd_ioread32v(struct zd_chip * chip,const zd_addr_t * addresses,u32 * values,unsigned int count)309 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
310 	          u32 *values, unsigned int count)
311 {
312 	int r;
313 
314 	mutex_lock(&chip->mutex);
315 	r = zd_ioread32v_locked(chip, values, addresses, count);
316 	mutex_unlock(&chip->mutex);
317 	return r;
318 }
319 
zd_iowrite32a(struct zd_chip * chip,const struct zd_ioreq32 * ioreqs,unsigned int count)320 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
321 	          unsigned int count)
322 {
323 	int r;
324 
325 	mutex_lock(&chip->mutex);
326 	r = zd_iowrite32a_locked(chip, ioreqs, count);
327 	mutex_unlock(&chip->mutex);
328 	return r;
329 }
330 
read_pod(struct zd_chip * chip,u8 * rf_type)331 static int read_pod(struct zd_chip *chip, u8 *rf_type)
332 {
333 	int r;
334 	u32 value;
335 
336 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
337 	r = zd_ioread32_locked(chip, &value, E2P_POD);
338 	if (r)
339 		goto error;
340 	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
341 
342 	/* FIXME: AL2230 handling (Bit 7 in POD) */
343 	*rf_type = value & 0x0f;
344 	chip->pa_type = (value >> 16) & 0x0f;
345 	chip->patch_cck_gain = (value >> 8) & 0x1;
346 	chip->patch_cr157 = (value >> 13) & 0x1;
347 	chip->patch_6m_band_edge = (value >> 21) & 0x1;
348 	chip->new_phy_layout = (value >> 31) & 0x1;
349 	chip->al2230s_bit = (value >> 7) & 0x1;
350 	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
351 	chip->supports_tx_led = 1;
352 	if (value & (1 << 24)) { /* LED scenario */
353 		if (value & (1 << 29))
354 			chip->supports_tx_led = 0;
355 	}
356 
357 	dev_dbg_f(zd_chip_dev(chip),
358 		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
359 		"patch 6M %d new PHY %d link LED%d tx led %d\n",
360 		zd_rf_name(*rf_type), *rf_type,
361 		chip->pa_type, chip->patch_cck_gain,
362 		chip->patch_cr157, chip->patch_6m_band_edge,
363 		chip->new_phy_layout,
364 		chip->link_led == LED1 ? 1 : 2,
365 		chip->supports_tx_led);
366 	return 0;
367 error:
368 	*rf_type = 0;
369 	chip->pa_type = 0;
370 	chip->patch_cck_gain = 0;
371 	chip->patch_cr157 = 0;
372 	chip->patch_6m_band_edge = 0;
373 	chip->new_phy_layout = 0;
374 	return r;
375 }
376 
zd_write_mac_addr_common(struct zd_chip * chip,const u8 * mac_addr,const struct zd_ioreq32 * in_reqs,const char * type)377 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
378 				    const struct zd_ioreq32 *in_reqs,
379 				    const char *type)
380 {
381 	int r;
382 	struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
383 
384 	if (mac_addr) {
385 		reqs[0].value = (mac_addr[3] << 24)
386 			      | (mac_addr[2] << 16)
387 			      | (mac_addr[1] <<  8)
388 			      |  mac_addr[0];
389 		reqs[1].value = (mac_addr[5] <<  8)
390 			      |  mac_addr[4];
391 		dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
392 	} else {
393 		dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
394 	}
395 
396 	mutex_lock(&chip->mutex);
397 	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
398 	mutex_unlock(&chip->mutex);
399 	return r;
400 }
401 
402 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
403  *              CR_MAC_ADDR_P2 must be overwritten
404  */
zd_write_mac_addr(struct zd_chip * chip,const u8 * mac_addr)405 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
406 {
407 	static const struct zd_ioreq32 reqs[2] = {
408 		[0] = { .addr = CR_MAC_ADDR_P1 },
409 		[1] = { .addr = CR_MAC_ADDR_P2 },
410 	};
411 
412 	return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
413 }
414 
zd_write_bssid(struct zd_chip * chip,const u8 * bssid)415 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
416 {
417 	static const struct zd_ioreq32 reqs[2] = {
418 		[0] = { .addr = CR_BSSID_P1 },
419 		[1] = { .addr = CR_BSSID_P2 },
420 	};
421 
422 	return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
423 }
424 
zd_read_regdomain(struct zd_chip * chip,u8 * regdomain)425 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
426 {
427 	int r;
428 	u32 value;
429 
430 	mutex_lock(&chip->mutex);
431 	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
432 	mutex_unlock(&chip->mutex);
433 	if (r)
434 		return r;
435 
436 	*regdomain = value >> 16;
437 	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
438 
439 	return 0;
440 }
441 
read_values(struct zd_chip * chip,u8 * values,size_t count,zd_addr_t e2p_addr,u32 guard)442 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
443 	               zd_addr_t e2p_addr, u32 guard)
444 {
445 	int r;
446 	int i;
447 	u32 v;
448 
449 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
450 	for (i = 0;;) {
451 		r = zd_ioread32_locked(chip, &v,
452 			               (zd_addr_t)((u16)e2p_addr+i/2));
453 		if (r)
454 			return r;
455 		v -= guard;
456 		if (i+4 < count) {
457 			values[i++] = v;
458 			values[i++] = v >>  8;
459 			values[i++] = v >> 16;
460 			values[i++] = v >> 24;
461 			continue;
462 		}
463 		for (;i < count; i++)
464 			values[i] = v >> (8*(i%3));
465 		return 0;
466 	}
467 }
468 
read_pwr_cal_values(struct zd_chip * chip)469 static int read_pwr_cal_values(struct zd_chip *chip)
470 {
471 	return read_values(chip, chip->pwr_cal_values,
472 		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
473 			0);
474 }
475 
read_pwr_int_values(struct zd_chip * chip)476 static int read_pwr_int_values(struct zd_chip *chip)
477 {
478 	return read_values(chip, chip->pwr_int_values,
479 		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
480 			E2P_PWR_INT_GUARD);
481 }
482 
read_ofdm_cal_values(struct zd_chip * chip)483 static int read_ofdm_cal_values(struct zd_chip *chip)
484 {
485 	int r;
486 	int i;
487 	static const zd_addr_t addresses[] = {
488 		E2P_36M_CAL_VALUE1,
489 		E2P_48M_CAL_VALUE1,
490 		E2P_54M_CAL_VALUE1,
491 	};
492 
493 	for (i = 0; i < 3; i++) {
494 		r = read_values(chip, chip->ofdm_cal_values[i],
495 				E2P_CHANNEL_COUNT, addresses[i], 0);
496 		if (r)
497 			return r;
498 	}
499 	return 0;
500 }
501 
read_cal_int_tables(struct zd_chip * chip)502 static int read_cal_int_tables(struct zd_chip *chip)
503 {
504 	int r;
505 
506 	r = read_pwr_cal_values(chip);
507 	if (r)
508 		return r;
509 	r = read_pwr_int_values(chip);
510 	if (r)
511 		return r;
512 	r = read_ofdm_cal_values(chip);
513 	if (r)
514 		return r;
515 	return 0;
516 }
517 
518 /* phy means physical registers */
zd_chip_lock_phy_regs(struct zd_chip * chip)519 int zd_chip_lock_phy_regs(struct zd_chip *chip)
520 {
521 	int r;
522 	u32 tmp;
523 
524 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
525 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
526 	if (r) {
527 		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
528 		return r;
529 	}
530 
531 	tmp &= ~UNLOCK_PHY_REGS;
532 
533 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
534 	if (r)
535 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
536 	return r;
537 }
538 
zd_chip_unlock_phy_regs(struct zd_chip * chip)539 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
540 {
541 	int r;
542 	u32 tmp;
543 
544 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
545 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
546 	if (r) {
547 		dev_err(zd_chip_dev(chip),
548 			"error ioread32(CR_REG1): %d\n", r);
549 		return r;
550 	}
551 
552 	tmp |= UNLOCK_PHY_REGS;
553 
554 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
555 	if (r)
556 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
557 	return r;
558 }
559 
560 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
patch_cr157(struct zd_chip * chip)561 static int patch_cr157(struct zd_chip *chip)
562 {
563 	int r;
564 	u16 value;
565 
566 	if (!chip->patch_cr157)
567 		return 0;
568 
569 	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
570 	if (r)
571 		return r;
572 
573 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
574 	return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
575 }
576 
577 /*
578  * 6M band edge can be optionally overwritten for certain RF's
579  * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
580  * bit (for AL2230, AL2230S)
581  */
patch_6m_band_edge(struct zd_chip * chip,u8 channel)582 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
583 {
584 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
585 	if (!chip->patch_6m_band_edge)
586 		return 0;
587 
588 	return zd_rf_patch_6m_band_edge(&chip->rf, channel);
589 }
590 
591 /* Generic implementation of 6M band edge patching, used by most RFs via
592  * zd_rf_generic_patch_6m() */
zd_chip_generic_patch_6m_band(struct zd_chip * chip,int channel)593 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
594 {
595 	struct zd_ioreq16 ioreqs[] = {
596 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
597 		{ ZD_CR47,  0x1e },
598 	};
599 
600 	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
601 	if (channel == 1 || channel == 11)
602 		ioreqs[0].value = 0x12;
603 
604 	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
605 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
606 }
607 
zd1211_hw_reset_phy(struct zd_chip * chip)608 static int zd1211_hw_reset_phy(struct zd_chip *chip)
609 {
610 	static const struct zd_ioreq16 ioreqs[] = {
611 		{ ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
612 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
613 		{ ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
614 		{ ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
615 		{ ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
616 		{ ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
617 		{ ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
618 		{ ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
619 		{ ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
620 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
621 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
622 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
623 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
624 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
625 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
626 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
627 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
628 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
629 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
630 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
631 		{ ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
632 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
633 		{ ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
634 		{ ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
635 		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
636 		{ ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
637 		{ ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
638 		{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
639 		{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
640 		{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
641 		{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
642 		{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
643 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
644 		{ },
645 		{ ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
646 		{ ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
647 		{ ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
648 		{ ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
649 		{ ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
650 		{ ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
651 		{ ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
652 		{ ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
653 		{ ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
654 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
655 		{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
656 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
657 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
658 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
659 		{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
660 		{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
661 		{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
662 		{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
663 		{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
664 		{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
665 		{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
666 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
667 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
668 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
669 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
670 		/* Note: ZD_CR204 must lead the ZD_CR203 */
671 		{ ZD_CR204, 0x7d },
672 		{ },
673 		{ ZD_CR203, 0x30 },
674 	};
675 
676 	int r, t;
677 
678 	dev_dbg_f(zd_chip_dev(chip), "\n");
679 
680 	r = zd_chip_lock_phy_regs(chip);
681 	if (r)
682 		goto out;
683 
684 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
685 	if (r)
686 		goto unlock;
687 
688 	r = patch_cr157(chip);
689 unlock:
690 	t = zd_chip_unlock_phy_regs(chip);
691 	if (t && !r)
692 		r = t;
693 out:
694 	return r;
695 }
696 
zd1211b_hw_reset_phy(struct zd_chip * chip)697 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
698 {
699 	static const struct zd_ioreq16 ioreqs[] = {
700 		{ ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
701 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
702 		{ ZD_CR10,  0x81 },
703 		/* power control { { ZD_CR11,  1 << 6 }, */
704 		{ ZD_CR11,  0x00 },
705 		{ ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
706 		{ ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
707 		{ ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
708 		{ ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
709 		{ ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
710 		{ ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
711 		{ ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
712 		{ ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
713 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
714 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
715 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
716 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
717 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
718 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
719 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
720 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
721 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
722 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
723 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
724 		{ ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
725 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
726 		{ ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
727 		{ ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
728 		{ ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
729 		{ ZD_CR94,  0x01 },
730 		{ ZD_CR95,  0x20 }, /* ZD1211B */
731 		{ ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
732 		{ ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
733 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
734 		{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
735 		{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
736 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
737 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
738 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
739 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
740 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
741 		{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
742 		{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
743 		{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
744 		{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
745 		{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
746 		{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
747 		{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
748 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
749 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
750 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
751 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
752 		/* Note: ZD_CR204 must lead the ZD_CR203 */
753 		{ ZD_CR204, 0x7d },
754 		{},
755 		{ ZD_CR203, 0x30 },
756 	};
757 
758 	int r, t;
759 
760 	dev_dbg_f(zd_chip_dev(chip), "\n");
761 
762 	r = zd_chip_lock_phy_regs(chip);
763 	if (r)
764 		goto out;
765 
766 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
767 	t = zd_chip_unlock_phy_regs(chip);
768 	if (t && !r)
769 		r = t;
770 out:
771 	return r;
772 }
773 
hw_reset_phy(struct zd_chip * chip)774 static int hw_reset_phy(struct zd_chip *chip)
775 {
776 	return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
777 		                  zd1211_hw_reset_phy(chip);
778 }
779 
zd1211_hw_init_hmac(struct zd_chip * chip)780 static int zd1211_hw_init_hmac(struct zd_chip *chip)
781 {
782 	static const struct zd_ioreq32 ioreqs[] = {
783 		{ CR_ZD1211_RETRY_MAX,		ZD1211_RETRY_COUNT },
784 		{ CR_RX_THRESHOLD,		0x000c0640 },
785 	};
786 
787 	dev_dbg_f(zd_chip_dev(chip), "\n");
788 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
789 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
790 }
791 
zd1211b_hw_init_hmac(struct zd_chip * chip)792 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
793 {
794 	static const struct zd_ioreq32 ioreqs[] = {
795 		{ CR_ZD1211B_RETRY_MAX,		ZD1211B_RETRY_COUNT },
796 		{ CR_ZD1211B_CWIN_MAX_MIN_AC0,	0x007f003f },
797 		{ CR_ZD1211B_CWIN_MAX_MIN_AC1,	0x007f003f },
798 		{ CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
799 		{ CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
800 		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
801 		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
802 		{ CR_ZD1211B_TXOP,		0x01800824 },
803 		{ CR_RX_THRESHOLD,		0x000c0eff, },
804 	};
805 
806 	dev_dbg_f(zd_chip_dev(chip), "\n");
807 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
808 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
809 }
810 
hw_init_hmac(struct zd_chip * chip)811 static int hw_init_hmac(struct zd_chip *chip)
812 {
813 	int r;
814 	static const struct zd_ioreq32 ioreqs[] = {
815 		{ CR_ACK_TIMEOUT_EXT,		0x20 },
816 		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
817 		{ CR_SNIFFER_ON,		0 },
818 		{ CR_RX_FILTER,			STA_RX_FILTER },
819 		{ CR_GROUP_HASH_P1,		0x00 },
820 		{ CR_GROUP_HASH_P2,		0x80000000 },
821 		{ CR_REG1,			0xa4 },
822 		{ CR_ADDA_PWR_DWN,		0x7f },
823 		{ CR_BCN_PLCP_CFG,		0x00f00401 },
824 		{ CR_PHY_DELAY,			0x00 },
825 		{ CR_ACK_TIMEOUT_EXT,		0x80 },
826 		{ CR_ADDA_PWR_DWN,		0x00 },
827 		{ CR_ACK_TIME_80211,		0x100 },
828 		{ CR_RX_PE_DELAY,		0x70 },
829 		{ CR_PS_CTRL,			0x10000000 },
830 		{ CR_RTS_CTS_RATE,		0x02030203 },
831 		{ CR_AFTER_PNP,			0x1 },
832 		{ CR_WEP_PROTECT,		0x114 },
833 		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
834 		{ CR_CAM_MODE,			MODE_AP_WDS},
835 	};
836 
837 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
838 	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
839 	if (r)
840 		return r;
841 
842 	return zd_chip_is_zd1211b(chip) ?
843 		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
844 }
845 
846 struct aw_pt_bi {
847 	u32 atim_wnd_period;
848 	u32 pre_tbtt;
849 	u32 beacon_interval;
850 };
851 
get_aw_pt_bi(struct zd_chip * chip,struct aw_pt_bi * s)852 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
853 {
854 	int r;
855 	static const zd_addr_t aw_pt_bi_addr[] =
856 		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
857 	u32 values[3];
858 
859 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
860 		         ARRAY_SIZE(aw_pt_bi_addr));
861 	if (r) {
862 		memset(s, 0, sizeof(*s));
863 		return r;
864 	}
865 
866 	s->atim_wnd_period = values[0];
867 	s->pre_tbtt = values[1];
868 	s->beacon_interval = values[2];
869 	return 0;
870 }
871 
set_aw_pt_bi(struct zd_chip * chip,struct aw_pt_bi * s)872 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
873 {
874 	struct zd_ioreq32 reqs[3];
875 	u16 b_interval = s->beacon_interval & 0xffff;
876 
877 	if (b_interval <= 5)
878 		b_interval = 5;
879 	if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
880 		s->pre_tbtt = b_interval - 1;
881 	if (s->atim_wnd_period >= s->pre_tbtt)
882 		s->atim_wnd_period = s->pre_tbtt - 1;
883 
884 	reqs[0].addr = CR_ATIM_WND_PERIOD;
885 	reqs[0].value = s->atim_wnd_period;
886 	reqs[1].addr = CR_PRE_TBTT;
887 	reqs[1].value = s->pre_tbtt;
888 	reqs[2].addr = CR_BCN_INTERVAL;
889 	reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
890 
891 	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
892 }
893 
894 
set_beacon_interval(struct zd_chip * chip,u16 interval,u8 dtim_period,int type)895 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
896 			       u8 dtim_period, int type)
897 {
898 	int r;
899 	struct aw_pt_bi s;
900 	u32 b_interval, mode_flag;
901 
902 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
903 
904 	if (interval > 0) {
905 		switch (type) {
906 		case NL80211_IFTYPE_ADHOC:
907 		case NL80211_IFTYPE_MESH_POINT:
908 			mode_flag = BCN_MODE_IBSS;
909 			break;
910 		case NL80211_IFTYPE_AP:
911 			mode_flag = BCN_MODE_AP;
912 			break;
913 		default:
914 			mode_flag = 0;
915 			break;
916 		}
917 	} else {
918 		dtim_period = 0;
919 		mode_flag = 0;
920 	}
921 
922 	b_interval = mode_flag | (dtim_period << 16) | interval;
923 
924 	r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
925 	if (r)
926 		return r;
927 	r = get_aw_pt_bi(chip, &s);
928 	if (r)
929 		return r;
930 	return set_aw_pt_bi(chip, &s);
931 }
932 
zd_set_beacon_interval(struct zd_chip * chip,u16 interval,u8 dtim_period,int type)933 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
934 			   int type)
935 {
936 	int r;
937 
938 	mutex_lock(&chip->mutex);
939 	r = set_beacon_interval(chip, interval, dtim_period, type);
940 	mutex_unlock(&chip->mutex);
941 	return r;
942 }
943 
hw_init(struct zd_chip * chip)944 static int hw_init(struct zd_chip *chip)
945 {
946 	int r;
947 
948 	dev_dbg_f(zd_chip_dev(chip), "\n");
949 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
950 	r = hw_reset_phy(chip);
951 	if (r)
952 		return r;
953 
954 	r = hw_init_hmac(chip);
955 	if (r)
956 		return r;
957 
958 	return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
959 }
960 
fw_reg_addr(struct zd_chip * chip,u16 offset)961 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
962 {
963 	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
964 }
965 
966 #ifdef DEBUG
dump_cr(struct zd_chip * chip,const zd_addr_t addr,const char * addr_string)967 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
968 	           const char *addr_string)
969 {
970 	int r;
971 	u32 value;
972 
973 	r = zd_ioread32_locked(chip, &value, addr);
974 	if (r) {
975 		dev_dbg_f(zd_chip_dev(chip),
976 			"error reading %s. Error number %d\n", addr_string, r);
977 		return r;
978 	}
979 
980 	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
981 		addr_string, (unsigned int)value);
982 	return 0;
983 }
984 
test_init(struct zd_chip * chip)985 static int test_init(struct zd_chip *chip)
986 {
987 	int r;
988 
989 	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
990 	if (r)
991 		return r;
992 	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
993 	if (r)
994 		return r;
995 	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
996 }
997 
dump_fw_registers(struct zd_chip * chip)998 static void dump_fw_registers(struct zd_chip *chip)
999 {
1000 	const zd_addr_t addr[4] = {
1001 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1002 		fw_reg_addr(chip, FW_REG_USB_SPEED),
1003 		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1004 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1005 	};
1006 
1007 	int r;
1008 	u16 values[4];
1009 
1010 	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1011 		         ARRAY_SIZE(addr));
1012 	if (r) {
1013 		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1014 			 r);
1015 		return;
1016 	}
1017 
1018 	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1019 	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1020 	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1021 	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1022 }
1023 #endif /* DEBUG */
1024 
print_fw_version(struct zd_chip * chip)1025 static int print_fw_version(struct zd_chip *chip)
1026 {
1027 	struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1028 	int r;
1029 	u16 version;
1030 
1031 	r = zd_ioread16_locked(chip, &version,
1032 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1033 	if (r)
1034 		return r;
1035 
1036 	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1037 
1038 	snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1039 			"%04hx", version);
1040 
1041 	return 0;
1042 }
1043 
set_mandatory_rates(struct zd_chip * chip,int gmode)1044 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1045 {
1046 	u32 rates;
1047 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1048 	/* This sets the mandatory rates, which only depend from the standard
1049 	 * that the device is supporting. Until further notice we should try
1050 	 * to support 802.11g also for full speed USB.
1051 	 */
1052 	if (!gmode)
1053 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1054 	else
1055 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1056 			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1057 
1058 	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1059 }
1060 
zd_chip_set_rts_cts_rate_locked(struct zd_chip * chip,int preamble)1061 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1062 				    int preamble)
1063 {
1064 	u32 value = 0;
1065 
1066 	dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1067 	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1068 	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1069 
1070 	/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1071 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1072 	value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1073 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1074 	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1075 
1076 	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1077 }
1078 
zd_chip_enable_hwint(struct zd_chip * chip)1079 int zd_chip_enable_hwint(struct zd_chip *chip)
1080 {
1081 	int r;
1082 
1083 	mutex_lock(&chip->mutex);
1084 	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1085 	mutex_unlock(&chip->mutex);
1086 	return r;
1087 }
1088 
disable_hwint(struct zd_chip * chip)1089 static int disable_hwint(struct zd_chip *chip)
1090 {
1091 	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1092 }
1093 
zd_chip_disable_hwint(struct zd_chip * chip)1094 int zd_chip_disable_hwint(struct zd_chip *chip)
1095 {
1096 	int r;
1097 
1098 	mutex_lock(&chip->mutex);
1099 	r = disable_hwint(chip);
1100 	mutex_unlock(&chip->mutex);
1101 	return r;
1102 }
1103 
read_fw_regs_offset(struct zd_chip * chip)1104 static int read_fw_regs_offset(struct zd_chip *chip)
1105 {
1106 	int r;
1107 
1108 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1109 	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1110 		               FWRAW_REGS_ADDR);
1111 	if (r)
1112 		return r;
1113 	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1114 		  (u16)chip->fw_regs_base);
1115 
1116 	return 0;
1117 }
1118 
1119 /* Read mac address using pre-firmware interface */
zd_chip_read_mac_addr_fw(struct zd_chip * chip,u8 * addr)1120 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1121 {
1122 	dev_dbg_f(zd_chip_dev(chip), "\n");
1123 	return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1124 		ETH_ALEN);
1125 }
1126 
zd_chip_init_hw(struct zd_chip * chip)1127 int zd_chip_init_hw(struct zd_chip *chip)
1128 {
1129 	int r;
1130 	u8 rf_type;
1131 
1132 	dev_dbg_f(zd_chip_dev(chip), "\n");
1133 
1134 	mutex_lock(&chip->mutex);
1135 
1136 #ifdef DEBUG
1137 	r = test_init(chip);
1138 	if (r)
1139 		goto out;
1140 #endif
1141 	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1142 	if (r)
1143 		goto out;
1144 
1145 	r = read_fw_regs_offset(chip);
1146 	if (r)
1147 		goto out;
1148 
1149 	/* GPI is always disabled, also in the other driver.
1150 	 */
1151 	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1152 	if (r)
1153 		goto out;
1154 	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1155 	if (r)
1156 		goto out;
1157 	/* Currently we support IEEE 802.11g for full and high speed USB.
1158 	 * It might be discussed, whether we should support pure b mode for
1159 	 * full speed USB.
1160 	 */
1161 	r = set_mandatory_rates(chip, 1);
1162 	if (r)
1163 		goto out;
1164 	/* Disabling interrupts is certainly a smart thing here.
1165 	 */
1166 	r = disable_hwint(chip);
1167 	if (r)
1168 		goto out;
1169 	r = read_pod(chip, &rf_type);
1170 	if (r)
1171 		goto out;
1172 	r = hw_init(chip);
1173 	if (r)
1174 		goto out;
1175 	r = zd_rf_init_hw(&chip->rf, rf_type);
1176 	if (r)
1177 		goto out;
1178 
1179 	r = print_fw_version(chip);
1180 	if (r)
1181 		goto out;
1182 
1183 #ifdef DEBUG
1184 	dump_fw_registers(chip);
1185 	r = test_init(chip);
1186 	if (r)
1187 		goto out;
1188 #endif /* DEBUG */
1189 
1190 	r = read_cal_int_tables(chip);
1191 	if (r)
1192 		goto out;
1193 
1194 	print_id(chip);
1195 out:
1196 	mutex_unlock(&chip->mutex);
1197 	return r;
1198 }
1199 
update_pwr_int(struct zd_chip * chip,u8 channel)1200 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1201 {
1202 	u8 value = chip->pwr_int_values[channel - 1];
1203 	return zd_iowrite16_locked(chip, value, ZD_CR31);
1204 }
1205 
update_pwr_cal(struct zd_chip * chip,u8 channel)1206 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1207 {
1208 	u8 value = chip->pwr_cal_values[channel-1];
1209 	return zd_iowrite16_locked(chip, value, ZD_CR68);
1210 }
1211 
update_ofdm_cal(struct zd_chip * chip,u8 channel)1212 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1213 {
1214 	struct zd_ioreq16 ioreqs[3];
1215 
1216 	ioreqs[0].addr = ZD_CR67;
1217 	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1218 	ioreqs[1].addr = ZD_CR66;
1219 	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1220 	ioreqs[2].addr = ZD_CR65;
1221 	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1222 
1223 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1224 }
1225 
update_channel_integration_and_calibration(struct zd_chip * chip,u8 channel)1226 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1227 	                                              u8 channel)
1228 {
1229 	int r;
1230 
1231 	if (!zd_rf_should_update_pwr_int(&chip->rf))
1232 		return 0;
1233 
1234 	r = update_pwr_int(chip, channel);
1235 	if (r)
1236 		return r;
1237 	if (zd_chip_is_zd1211b(chip)) {
1238 		static const struct zd_ioreq16 ioreqs[] = {
1239 			{ ZD_CR69, 0x28 },
1240 			{},
1241 			{ ZD_CR69, 0x2a },
1242 		};
1243 
1244 		r = update_ofdm_cal(chip, channel);
1245 		if (r)
1246 			return r;
1247 		r = update_pwr_cal(chip, channel);
1248 		if (r)
1249 			return r;
1250 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1251 		if (r)
1252 			return r;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /* The CCK baseband gain can be optionally patched by the EEPROM */
patch_cck_gain(struct zd_chip * chip)1259 static int patch_cck_gain(struct zd_chip *chip)
1260 {
1261 	int r;
1262 	u32 value;
1263 
1264 	if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1265 		return 0;
1266 
1267 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1268 	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1269 	if (r)
1270 		return r;
1271 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1272 	return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1273 }
1274 
zd_chip_set_channel(struct zd_chip * chip,u8 channel)1275 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1276 {
1277 	int r, t;
1278 
1279 	mutex_lock(&chip->mutex);
1280 	r = zd_chip_lock_phy_regs(chip);
1281 	if (r)
1282 		goto out;
1283 	r = zd_rf_set_channel(&chip->rf, channel);
1284 	if (r)
1285 		goto unlock;
1286 	r = update_channel_integration_and_calibration(chip, channel);
1287 	if (r)
1288 		goto unlock;
1289 	r = patch_cck_gain(chip);
1290 	if (r)
1291 		goto unlock;
1292 	r = patch_6m_band_edge(chip, channel);
1293 	if (r)
1294 		goto unlock;
1295 	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1296 unlock:
1297 	t = zd_chip_unlock_phy_regs(chip);
1298 	if (t && !r)
1299 		r = t;
1300 out:
1301 	mutex_unlock(&chip->mutex);
1302 	return r;
1303 }
1304 
zd_chip_get_channel(struct zd_chip * chip)1305 u8 zd_chip_get_channel(struct zd_chip *chip)
1306 {
1307 	u8 channel;
1308 
1309 	mutex_lock(&chip->mutex);
1310 	channel = chip->rf.channel;
1311 	mutex_unlock(&chip->mutex);
1312 	return channel;
1313 }
1314 
zd_chip_control_leds(struct zd_chip * chip,enum led_status status)1315 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1316 {
1317 	const zd_addr_t a[] = {
1318 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1319 		CR_LED,
1320 	};
1321 
1322 	int r;
1323 	u16 v[ARRAY_SIZE(a)];
1324 	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1325 		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1326 		[1] = { CR_LED },
1327 	};
1328 	u16 other_led;
1329 
1330 	mutex_lock(&chip->mutex);
1331 	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1332 	if (r)
1333 		goto out;
1334 
1335 	other_led = chip->link_led == LED1 ? LED2 : LED1;
1336 
1337 	switch (status) {
1338 	case ZD_LED_OFF:
1339 		ioreqs[0].value = FW_LINK_OFF;
1340 		ioreqs[1].value = v[1] & ~(LED1|LED2);
1341 		break;
1342 	case ZD_LED_SCANNING:
1343 		ioreqs[0].value = FW_LINK_OFF;
1344 		ioreqs[1].value = v[1] & ~other_led;
1345 		if (get_seconds() % 3 == 0) {
1346 			ioreqs[1].value &= ~chip->link_led;
1347 		} else {
1348 			ioreqs[1].value |= chip->link_led;
1349 		}
1350 		break;
1351 	case ZD_LED_ASSOCIATED:
1352 		ioreqs[0].value = FW_LINK_TX;
1353 		ioreqs[1].value = v[1] & ~other_led;
1354 		ioreqs[1].value |= chip->link_led;
1355 		break;
1356 	default:
1357 		r = -EINVAL;
1358 		goto out;
1359 	}
1360 
1361 	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1362 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1363 		if (r)
1364 			goto out;
1365 	}
1366 	r = 0;
1367 out:
1368 	mutex_unlock(&chip->mutex);
1369 	return r;
1370 }
1371 
zd_chip_set_basic_rates(struct zd_chip * chip,u16 cr_rates)1372 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1373 {
1374 	int r;
1375 
1376 	if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1377 		return -EINVAL;
1378 
1379 	mutex_lock(&chip->mutex);
1380 	r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1381 	mutex_unlock(&chip->mutex);
1382 	return r;
1383 }
1384 
zd_rate_from_ofdm_plcp_header(const void * rx_frame)1385 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1386 {
1387 	return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1388 }
1389 
1390 /**
1391  * zd_rx_rate - report zd-rate
1392  * @rx_frame - received frame
1393  * @rx_status - rx_status as given by the device
1394  *
1395  * This function converts the rate as encoded in the received packet to the
1396  * zd-rate, we are using on other places in the driver.
1397  */
zd_rx_rate(const void * rx_frame,const struct rx_status * status)1398 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1399 {
1400 	u8 zd_rate;
1401 	if (status->frame_status & ZD_RX_OFDM) {
1402 		zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1403 	} else {
1404 		switch (zd_cck_plcp_header_signal(rx_frame)) {
1405 		case ZD_CCK_PLCP_SIGNAL_1M:
1406 			zd_rate = ZD_CCK_RATE_1M;
1407 			break;
1408 		case ZD_CCK_PLCP_SIGNAL_2M:
1409 			zd_rate = ZD_CCK_RATE_2M;
1410 			break;
1411 		case ZD_CCK_PLCP_SIGNAL_5M5:
1412 			zd_rate = ZD_CCK_RATE_5_5M;
1413 			break;
1414 		case ZD_CCK_PLCP_SIGNAL_11M:
1415 			zd_rate = ZD_CCK_RATE_11M;
1416 			break;
1417 		default:
1418 			zd_rate = 0;
1419 		}
1420 	}
1421 
1422 	return zd_rate;
1423 }
1424 
zd_chip_switch_radio_on(struct zd_chip * chip)1425 int zd_chip_switch_radio_on(struct zd_chip *chip)
1426 {
1427 	int r;
1428 
1429 	mutex_lock(&chip->mutex);
1430 	r = zd_switch_radio_on(&chip->rf);
1431 	mutex_unlock(&chip->mutex);
1432 	return r;
1433 }
1434 
zd_chip_switch_radio_off(struct zd_chip * chip)1435 int zd_chip_switch_radio_off(struct zd_chip *chip)
1436 {
1437 	int r;
1438 
1439 	mutex_lock(&chip->mutex);
1440 	r = zd_switch_radio_off(&chip->rf);
1441 	mutex_unlock(&chip->mutex);
1442 	return r;
1443 }
1444 
zd_chip_enable_int(struct zd_chip * chip)1445 int zd_chip_enable_int(struct zd_chip *chip)
1446 {
1447 	int r;
1448 
1449 	mutex_lock(&chip->mutex);
1450 	r = zd_usb_enable_int(&chip->usb);
1451 	mutex_unlock(&chip->mutex);
1452 	return r;
1453 }
1454 
zd_chip_disable_int(struct zd_chip * chip)1455 void zd_chip_disable_int(struct zd_chip *chip)
1456 {
1457 	mutex_lock(&chip->mutex);
1458 	zd_usb_disable_int(&chip->usb);
1459 	mutex_unlock(&chip->mutex);
1460 
1461 	/* cancel pending interrupt work */
1462 	cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1463 }
1464 
zd_chip_enable_rxtx(struct zd_chip * chip)1465 int zd_chip_enable_rxtx(struct zd_chip *chip)
1466 {
1467 	int r;
1468 
1469 	mutex_lock(&chip->mutex);
1470 	zd_usb_enable_tx(&chip->usb);
1471 	r = zd_usb_enable_rx(&chip->usb);
1472 	zd_tx_watchdog_enable(&chip->usb);
1473 	mutex_unlock(&chip->mutex);
1474 	return r;
1475 }
1476 
zd_chip_disable_rxtx(struct zd_chip * chip)1477 void zd_chip_disable_rxtx(struct zd_chip *chip)
1478 {
1479 	mutex_lock(&chip->mutex);
1480 	zd_tx_watchdog_disable(&chip->usb);
1481 	zd_usb_disable_rx(&chip->usb);
1482 	zd_usb_disable_tx(&chip->usb);
1483 	mutex_unlock(&chip->mutex);
1484 }
1485 
zd_rfwritev_locked(struct zd_chip * chip,const u32 * values,unsigned int count,u8 bits)1486 int zd_rfwritev_locked(struct zd_chip *chip,
1487 	               const u32* values, unsigned int count, u8 bits)
1488 {
1489 	int r;
1490 	unsigned int i;
1491 
1492 	for (i = 0; i < count; i++) {
1493 		r = zd_rfwrite_locked(chip, values[i], bits);
1494 		if (r)
1495 			return r;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 /*
1502  * We can optionally program the RF directly through CR regs, if supported by
1503  * the hardware. This is much faster than the older method.
1504  */
zd_rfwrite_cr_locked(struct zd_chip * chip,u32 value)1505 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1506 {
1507 	const struct zd_ioreq16 ioreqs[] = {
1508 		{ ZD_CR244, (value >> 16) & 0xff },
1509 		{ ZD_CR243, (value >>  8) & 0xff },
1510 		{ ZD_CR242,  value        & 0xff },
1511 	};
1512 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1513 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1514 }
1515 
zd_rfwritev_cr_locked(struct zd_chip * chip,const u32 * values,unsigned int count)1516 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1517 	                  const u32 *values, unsigned int count)
1518 {
1519 	int r;
1520 	unsigned int i;
1521 
1522 	for (i = 0; i < count; i++) {
1523 		r = zd_rfwrite_cr_locked(chip, values[i]);
1524 		if (r)
1525 			return r;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
zd_chip_set_multicast_hash(struct zd_chip * chip,struct zd_mc_hash * hash)1531 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1532 	                       struct zd_mc_hash *hash)
1533 {
1534 	const struct zd_ioreq32 ioreqs[] = {
1535 		{ CR_GROUP_HASH_P1, hash->low },
1536 		{ CR_GROUP_HASH_P2, hash->high },
1537 	};
1538 
1539 	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1540 }
1541 
zd_chip_get_tsf(struct zd_chip * chip)1542 u64 zd_chip_get_tsf(struct zd_chip *chip)
1543 {
1544 	int r;
1545 	static const zd_addr_t aw_pt_bi_addr[] =
1546 		{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1547 	u32 values[2];
1548 	u64 tsf;
1549 
1550 	mutex_lock(&chip->mutex);
1551 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1552 	                        ARRAY_SIZE(aw_pt_bi_addr));
1553 	mutex_unlock(&chip->mutex);
1554 	if (r)
1555 		return 0;
1556 
1557 	tsf = values[1];
1558 	tsf = (tsf << 32) | values[0];
1559 
1560 	return tsf;
1561 }
1562