• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 	IPI_CPU_BACKTRACE,
70 };
71 
72 static DECLARE_COMPLETION(cpu_running);
73 
74 static struct smp_operations smp_ops;
75 
smp_set_ops(struct smp_operations * ops)76 void __init smp_set_ops(struct smp_operations *ops)
77 {
78 	if (ops)
79 		smp_ops = *ops;
80 };
81 
__cpu_up(unsigned int cpu,struct task_struct * idle)82 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
83 {
84 	int ret;
85 
86 	/*
87 	 * We need to tell the secondary core where to find
88 	 * its stack and the page tables.
89 	 */
90 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
92 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
94 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
95 
96 	/*
97 	 * Now bring the CPU into our world.
98 	 */
99 	ret = boot_secondary(cpu, idle);
100 	if (ret == 0) {
101 		/*
102 		 * CPU was successfully started, wait for it
103 		 * to come online or time out.
104 		 */
105 		wait_for_completion_timeout(&cpu_running,
106 						 msecs_to_jiffies(1000));
107 
108 		if (!cpu_online(cpu)) {
109 			pr_crit("CPU%u: failed to come online\n", cpu);
110 			ret = -EIO;
111 		}
112 	} else {
113 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
114 	}
115 
116 	secondary_data.stack = NULL;
117 	secondary_data.pgdir = 0;
118 
119 	return ret;
120 }
121 
122 /* platform specific SMP operations */
smp_init_cpus(void)123 void __init smp_init_cpus(void)
124 {
125 	if (smp_ops.smp_init_cpus)
126 		smp_ops.smp_init_cpus();
127 }
128 
boot_secondary(unsigned int cpu,struct task_struct * idle)129 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
130 {
131 	if (smp_ops.smp_boot_secondary)
132 		return smp_ops.smp_boot_secondary(cpu, idle);
133 	return -ENOSYS;
134 }
135 
136 #ifdef CONFIG_HOTPLUG_CPU
137 static void percpu_timer_stop(void);
138 
platform_cpu_kill(unsigned int cpu)139 static int platform_cpu_kill(unsigned int cpu)
140 {
141 	if (smp_ops.cpu_kill)
142 		return smp_ops.cpu_kill(cpu);
143 	return 1;
144 }
145 
platform_cpu_disable(unsigned int cpu)146 static int platform_cpu_disable(unsigned int cpu)
147 {
148 	if (smp_ops.cpu_disable)
149 		return smp_ops.cpu_disable(cpu);
150 
151 	/*
152 	 * By default, allow disabling all CPUs except the first one,
153 	 * since this is special on a lot of platforms, e.g. because
154 	 * of clock tick interrupts.
155 	 */
156 	return cpu == 0 ? -EPERM : 0;
157 }
158 /*
159  * __cpu_disable runs on the processor to be shutdown.
160  */
__cpu_disable(void)161 int __cpuinit __cpu_disable(void)
162 {
163 	unsigned int cpu = smp_processor_id();
164 	int ret;
165 
166 	ret = platform_cpu_disable(cpu);
167 	if (ret)
168 		return ret;
169 
170 	/*
171 	 * Take this CPU offline.  Once we clear this, we can't return,
172 	 * and we must not schedule until we're ready to give up the cpu.
173 	 */
174 	set_cpu_online(cpu, false);
175 
176 	/*
177 	 * OK - migrate IRQs away from this CPU
178 	 */
179 	migrate_irqs();
180 
181 	/*
182 	 * Stop the local timer for this CPU.
183 	 */
184 	percpu_timer_stop();
185 
186 	/*
187 	 * Flush user cache and TLB mappings, and then remove this CPU
188 	 * from the vm mask set of all processes.
189 	 *
190 	 * Caches are flushed to the Level of Unification Inner Shareable
191 	 * to write-back dirty lines to unified caches shared by all CPUs.
192 	 */
193 	flush_cache_louis();
194 	local_flush_tlb_all();
195 
196 	clear_tasks_mm_cpumask(cpu);
197 
198 	return 0;
199 }
200 
201 static DECLARE_COMPLETION(cpu_died);
202 
203 /*
204  * called on the thread which is asking for a CPU to be shutdown -
205  * waits until shutdown has completed, or it is timed out.
206  */
__cpu_die(unsigned int cpu)207 void __cpuinit __cpu_die(unsigned int cpu)
208 {
209 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
210 		pr_err("CPU%u: cpu didn't die\n", cpu);
211 		return;
212 	}
213 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
214 
215 	/*
216 	 * platform_cpu_kill() is generally expected to do the powering off
217 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
218 	 * be done by the CPU which is dying in preference to supporting
219 	 * this call, but that means there is _no_ synchronisation between
220 	 * the requesting CPU and the dying CPU actually losing power.
221 	 */
222 	if (!platform_cpu_kill(cpu))
223 		printk("CPU%u: unable to kill\n", cpu);
224 }
225 
226 /*
227  * Called from the idle thread for the CPU which has been shutdown.
228  *
229  * Note that we disable IRQs here, but do not re-enable them
230  * before returning to the caller. This is also the behaviour
231  * of the other hotplug-cpu capable cores, so presumably coming
232  * out of idle fixes this.
233  */
cpu_die(void)234 void __ref cpu_die(void)
235 {
236 	unsigned int cpu = smp_processor_id();
237 
238 	idle_task_exit();
239 
240 	local_irq_disable();
241 
242 	/*
243 	 * Flush the data out of the L1 cache for this CPU.  This must be
244 	 * before the completion to ensure that data is safely written out
245 	 * before platform_cpu_kill() gets called - which may disable
246 	 * *this* CPU and power down its cache.
247 	 */
248 	flush_cache_louis();
249 
250 	/*
251 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
252 	 * this returns, power and/or clocks can be removed at any point
253 	 * from this CPU and its cache by platform_cpu_kill().
254 	 */
255 	complete(&cpu_died);
256 
257 	/*
258 	 * Ensure that the cache lines associated with that completion are
259 	 * written out.  This covers the case where _this_ CPU is doing the
260 	 * powering down, to ensure that the completion is visible to the
261 	 * CPU waiting for this one.
262 	 */
263 	flush_cache_louis();
264 
265 	/*
266 	 * The actual CPU shutdown procedure is at least platform (if not
267 	 * CPU) specific.  This may remove power, or it may simply spin.
268 	 *
269 	 * Platforms are generally expected *NOT* to return from this call,
270 	 * although there are some which do because they have no way to
271 	 * power down the CPU.  These platforms are the _only_ reason we
272 	 * have a return path which uses the fragment of assembly below.
273 	 *
274 	 * The return path should not be used for platforms which can
275 	 * power off the CPU.
276 	 */
277 	if (smp_ops.cpu_die)
278 		smp_ops.cpu_die(cpu);
279 
280 	/*
281 	 * Do not return to the idle loop - jump back to the secondary
282 	 * cpu initialisation.  There's some initialisation which needs
283 	 * to be repeated to undo the effects of taking the CPU offline.
284 	 */
285 	__asm__("mov	sp, %0\n"
286 	"	mov	fp, #0\n"
287 	"	b	secondary_start_kernel"
288 		:
289 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
290 }
291 #endif /* CONFIG_HOTPLUG_CPU */
292 
293 /*
294  * Called by both boot and secondaries to move global data into
295  * per-processor storage.
296  */
smp_store_cpu_info(unsigned int cpuid)297 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
298 {
299 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
300 
301 	cpu_info->loops_per_jiffy = loops_per_jiffy;
302 	cpu_info->cpuid = read_cpuid_id();
303 
304 	store_cpu_topology(cpuid);
305 }
306 
307 static void percpu_timer_setup(void);
308 
309 /*
310  * This is the secondary CPU boot entry.  We're using this CPUs
311  * idle thread stack, but a set of temporary page tables.
312  */
secondary_start_kernel(void)313 asmlinkage void __cpuinit secondary_start_kernel(void)
314 {
315 	struct mm_struct *mm = &init_mm;
316 	unsigned int cpu;
317 
318 	/*
319 	 * The identity mapping is uncached (strongly ordered), so
320 	 * switch away from it before attempting any exclusive accesses.
321 	 */
322 	cpu_switch_mm(mm->pgd, mm);
323 	local_flush_bp_all();
324 	enter_lazy_tlb(mm, current);
325 	local_flush_tlb_all();
326 
327 	/*
328 	 * All kernel threads share the same mm context; grab a
329 	 * reference and switch to it.
330 	 */
331 	cpu = smp_processor_id();
332 	atomic_inc(&mm->mm_count);
333 	current->active_mm = mm;
334 	cpumask_set_cpu(cpu, mm_cpumask(mm));
335 
336 	cpu_init();
337 
338 	printk("CPU%u: Booted secondary processor\n", cpu);
339 
340 	preempt_disable();
341 	trace_hardirqs_off();
342 
343 	/*
344 	 * Give the platform a chance to do its own initialisation.
345 	 */
346 	if (smp_ops.smp_secondary_init)
347 		smp_ops.smp_secondary_init(cpu);
348 
349 	notify_cpu_starting(cpu);
350 
351 	calibrate_delay();
352 
353 	smp_store_cpu_info(cpu);
354 
355 	/*
356 	 * OK, now it's safe to let the boot CPU continue.  Wait for
357 	 * the CPU migration code to notice that the CPU is online
358 	 * before we continue - which happens after __cpu_up returns.
359 	 */
360 	set_cpu_online(cpu, true);
361 	complete(&cpu_running);
362 
363 	/*
364 	 * Setup the percpu timer for this CPU.
365 	 */
366 	percpu_timer_setup();
367 
368 	local_irq_enable();
369 	local_fiq_enable();
370 
371 	/*
372 	 * OK, it's off to the idle thread for us
373 	 */
374 	cpu_startup_entry(CPUHP_ONLINE);
375 }
376 
smp_cpus_done(unsigned int max_cpus)377 void __init smp_cpus_done(unsigned int max_cpus)
378 {
379 	int cpu;
380 	unsigned long bogosum = 0;
381 
382 	for_each_online_cpu(cpu)
383 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
384 
385 	printk(KERN_INFO "SMP: Total of %d processors activated "
386 	       "(%lu.%02lu BogoMIPS).\n",
387 	       num_online_cpus(),
388 	       bogosum / (500000/HZ),
389 	       (bogosum / (5000/HZ)) % 100);
390 
391 	hyp_mode_check();
392 }
393 
smp_prepare_boot_cpu(void)394 void __init smp_prepare_boot_cpu(void)
395 {
396 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
397 }
398 
smp_prepare_cpus(unsigned int max_cpus)399 void __init smp_prepare_cpus(unsigned int max_cpus)
400 {
401 	unsigned int ncores = num_possible_cpus();
402 
403 	init_cpu_topology();
404 
405 	smp_store_cpu_info(smp_processor_id());
406 
407 	/*
408 	 * are we trying to boot more cores than exist?
409 	 */
410 	if (max_cpus > ncores)
411 		max_cpus = ncores;
412 	if (ncores > 1 && max_cpus) {
413 		/*
414 		 * Enable the local timer or broadcast device for the
415 		 * boot CPU, but only if we have more than one CPU.
416 		 */
417 		percpu_timer_setup();
418 
419 		/*
420 		 * Initialise the present map, which describes the set of CPUs
421 		 * actually populated at the present time. A platform should
422 		 * re-initialize the map in the platforms smp_prepare_cpus()
423 		 * if present != possible (e.g. physical hotplug).
424 		 */
425 		init_cpu_present(cpu_possible_mask);
426 
427 		/*
428 		 * Initialise the SCU if there are more than one CPU
429 		 * and let them know where to start.
430 		 */
431 		if (smp_ops.smp_prepare_cpus)
432 			smp_ops.smp_prepare_cpus(max_cpus);
433 	}
434 }
435 
436 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
437 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))438 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
439 {
440 	if (!smp_cross_call)
441 		smp_cross_call = fn;
442 }
443 
arch_send_call_function_ipi_mask(const struct cpumask * mask)444 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
445 {
446 	smp_cross_call(mask, IPI_CALL_FUNC);
447 }
448 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)449 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
450 {
451 	smp_cross_call(mask, IPI_WAKEUP);
452 }
453 
arch_send_call_function_single_ipi(int cpu)454 void arch_send_call_function_single_ipi(int cpu)
455 {
456 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
457 }
458 
459 static const char *ipi_types[NR_IPI] = {
460 #define S(x,s)	[x] = s
461 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
462 	S(IPI_TIMER, "Timer broadcast interrupts"),
463 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
464 	S(IPI_CALL_FUNC, "Function call interrupts"),
465 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
466 	S(IPI_CPU_STOP, "CPU stop interrupts"),
467 	S(IPI_CPU_BACKTRACE, "CPU backtrace"),
468 };
469 
show_ipi_list(struct seq_file * p,int prec)470 void show_ipi_list(struct seq_file *p, int prec)
471 {
472 	unsigned int cpu, i;
473 
474 	for (i = 0; i < NR_IPI; i++) {
475 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
476 
477 		for_each_online_cpu(cpu)
478 			seq_printf(p, "%10u ",
479 				   __get_irq_stat(cpu, ipi_irqs[i]));
480 
481 		seq_printf(p, " %s\n", ipi_types[i]);
482 	}
483 }
484 
smp_irq_stat_cpu(unsigned int cpu)485 u64 smp_irq_stat_cpu(unsigned int cpu)
486 {
487 	u64 sum = 0;
488 	int i;
489 
490 	for (i = 0; i < NR_IPI; i++)
491 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
492 
493 	return sum;
494 }
495 
496 /*
497  * Timer (local or broadcast) support
498  */
499 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
500 
501 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)502 void tick_broadcast(const struct cpumask *mask)
503 {
504 	smp_cross_call(mask, IPI_TIMER);
505 }
506 #endif
507 
broadcast_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)508 static void broadcast_timer_set_mode(enum clock_event_mode mode,
509 	struct clock_event_device *evt)
510 {
511 }
512 
broadcast_timer_setup(struct clock_event_device * evt)513 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
514 {
515 	evt->name	= "dummy_timer";
516 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
517 			  CLOCK_EVT_FEAT_PERIODIC |
518 			  CLOCK_EVT_FEAT_DUMMY;
519 	evt->rating	= 100;
520 	evt->mult	= 1;
521 	evt->set_mode	= broadcast_timer_set_mode;
522 
523 	clockevents_register_device(evt);
524 }
525 
526 static struct local_timer_ops *lt_ops;
527 
528 #ifdef CONFIG_LOCAL_TIMERS
local_timer_register(struct local_timer_ops * ops)529 int local_timer_register(struct local_timer_ops *ops)
530 {
531 	if (!is_smp() || !setup_max_cpus)
532 		return -ENXIO;
533 
534 	if (lt_ops)
535 		return -EBUSY;
536 
537 	lt_ops = ops;
538 	return 0;
539 }
540 #endif
541 
percpu_timer_setup(void)542 static void __cpuinit percpu_timer_setup(void)
543 {
544 	unsigned int cpu = smp_processor_id();
545 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
546 
547 	evt->cpumask = cpumask_of(cpu);
548 
549 	if (!lt_ops || lt_ops->setup(evt))
550 		broadcast_timer_setup(evt);
551 }
552 
553 #ifdef CONFIG_HOTPLUG_CPU
554 /*
555  * The generic clock events code purposely does not stop the local timer
556  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
557  * manually here.
558  */
percpu_timer_stop(void)559 static void percpu_timer_stop(void)
560 {
561 	unsigned int cpu = smp_processor_id();
562 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
563 
564 	if (lt_ops)
565 		lt_ops->stop(evt);
566 }
567 #endif
568 
569 static DEFINE_RAW_SPINLOCK(stop_lock);
570 
571 /*
572  * ipi_cpu_stop - handle IPI from smp_send_stop()
573  */
ipi_cpu_stop(unsigned int cpu)574 static void ipi_cpu_stop(unsigned int cpu)
575 {
576 	if (system_state == SYSTEM_BOOTING ||
577 	    system_state == SYSTEM_RUNNING) {
578 		raw_spin_lock(&stop_lock);
579 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
580 		dump_stack();
581 		raw_spin_unlock(&stop_lock);
582 	}
583 
584 	set_cpu_online(cpu, false);
585 
586 	local_fiq_disable();
587 	local_irq_disable();
588 
589 	while (1)
590 		cpu_relax();
591 }
592 
593 static cpumask_t backtrace_mask;
594 static DEFINE_RAW_SPINLOCK(backtrace_lock);
595 
596 /* "in progress" flag of arch_trigger_all_cpu_backtrace */
597 static unsigned long backtrace_flag;
598 
smp_send_all_cpu_backtrace(void)599 void smp_send_all_cpu_backtrace(void)
600 {
601 	unsigned int this_cpu = smp_processor_id();
602 	int i;
603 
604 	if (test_and_set_bit(0, &backtrace_flag))
605 		/*
606 		 * If there is already a trigger_all_cpu_backtrace() in progress
607 		 * (backtrace_flag == 1), don't output double cpu dump infos.
608 		 */
609 		return;
610 
611 	cpumask_copy(&backtrace_mask, cpu_online_mask);
612 	cpu_clear(this_cpu, backtrace_mask);
613 
614 	pr_info("Backtrace for cpu %d (current):\n", this_cpu);
615 	dump_stack();
616 
617 	pr_info("\nsending IPI to all other CPUs:\n");
618 	smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
619 
620 	/* Wait for up to 10 seconds for all other CPUs to do the backtrace */
621 	for (i = 0; i < 10 * 1000; i++) {
622 		if (cpumask_empty(&backtrace_mask))
623 			break;
624 		mdelay(1);
625 	}
626 
627 	clear_bit(0, &backtrace_flag);
628 	smp_mb__after_clear_bit();
629 }
630 
631 /*
632  * ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
633  */
ipi_cpu_backtrace(unsigned int cpu,struct pt_regs * regs)634 static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
635 {
636 	if (cpu_isset(cpu, backtrace_mask)) {
637 		raw_spin_lock(&backtrace_lock);
638 		pr_warning("IPI backtrace for cpu %d\n", cpu);
639 		show_regs(regs);
640 		raw_spin_unlock(&backtrace_lock);
641 		cpu_clear(cpu, backtrace_mask);
642 	}
643 }
644 
645 /*
646  * Main handler for inter-processor interrupts
647  */
do_IPI(int ipinr,struct pt_regs * regs)648 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
649 {
650 	handle_IPI(ipinr, regs);
651 }
652 
handle_IPI(int ipinr,struct pt_regs * regs)653 void handle_IPI(int ipinr, struct pt_regs *regs)
654 {
655 	unsigned int cpu = smp_processor_id();
656 	struct pt_regs *old_regs = set_irq_regs(regs);
657 
658 	if (ipinr < NR_IPI)
659 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
660 
661 	switch (ipinr) {
662 	case IPI_WAKEUP:
663 		break;
664 
665 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
666 	case IPI_TIMER:
667 		irq_enter();
668 		tick_receive_broadcast();
669 		irq_exit();
670 		break;
671 #endif
672 
673 	case IPI_RESCHEDULE:
674 		scheduler_ipi();
675 		break;
676 
677 	case IPI_CALL_FUNC:
678 		irq_enter();
679 		generic_smp_call_function_interrupt();
680 		irq_exit();
681 		break;
682 
683 	case IPI_CALL_FUNC_SINGLE:
684 		irq_enter();
685 		generic_smp_call_function_single_interrupt();
686 		irq_exit();
687 		break;
688 
689 	case IPI_CPU_STOP:
690 		irq_enter();
691 		ipi_cpu_stop(cpu);
692 		irq_exit();
693 		break;
694 
695 	case IPI_CPU_BACKTRACE:
696 		ipi_cpu_backtrace(cpu, regs);
697 		break;
698 
699 	default:
700 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
701 		       cpu, ipinr);
702 		break;
703 	}
704 	set_irq_regs(old_regs);
705 }
706 
smp_send_reschedule(int cpu)707 void smp_send_reschedule(int cpu)
708 {
709 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
710 }
711 
smp_send_stop(void)712 void smp_send_stop(void)
713 {
714 	unsigned long timeout;
715 	struct cpumask mask;
716 
717 	cpumask_copy(&mask, cpu_online_mask);
718 	cpumask_clear_cpu(smp_processor_id(), &mask);
719 	if (!cpumask_empty(&mask))
720 		smp_cross_call(&mask, IPI_CPU_STOP);
721 
722 	/* Wait up to one second for other CPUs to stop */
723 	timeout = USEC_PER_SEC;
724 	while (num_online_cpus() > 1 && timeout--)
725 		udelay(1);
726 
727 	if (num_online_cpus() > 1)
728 		pr_warning("SMP: failed to stop secondary CPUs\n");
729 }
730 
731 /*
732  * not supported here
733  */
setup_profiling_timer(unsigned int multiplier)734 int setup_profiling_timer(unsigned int multiplier)
735 {
736 	return -EINVAL;
737 }
738 
739 #ifdef CONFIG_CPU_FREQ
740 
741 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
742 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
743 static unsigned long global_l_p_j_ref;
744 static unsigned long global_l_p_j_ref_freq;
745 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)746 static int cpufreq_callback(struct notifier_block *nb,
747 					unsigned long val, void *data)
748 {
749 	struct cpufreq_freqs *freq = data;
750 	int cpu = freq->cpu;
751 
752 	if (freq->flags & CPUFREQ_CONST_LOOPS)
753 		return NOTIFY_OK;
754 
755 	if (!per_cpu(l_p_j_ref, cpu)) {
756 		per_cpu(l_p_j_ref, cpu) =
757 			per_cpu(cpu_data, cpu).loops_per_jiffy;
758 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
759 		if (!global_l_p_j_ref) {
760 			global_l_p_j_ref = loops_per_jiffy;
761 			global_l_p_j_ref_freq = freq->old;
762 		}
763 	}
764 
765 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
766 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
767 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
768 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
769 						global_l_p_j_ref_freq,
770 						freq->new);
771 		per_cpu(cpu_data, cpu).loops_per_jiffy =
772 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
773 					per_cpu(l_p_j_ref_freq, cpu),
774 					freq->new);
775 	}
776 	return NOTIFY_OK;
777 }
778 
779 static struct notifier_block cpufreq_notifier = {
780 	.notifier_call  = cpufreq_callback,
781 };
782 
register_cpufreq_notifier(void)783 static int __init register_cpufreq_notifier(void)
784 {
785 	return cpufreq_register_notifier(&cpufreq_notifier,
786 						CPUFREQ_TRANSITION_NOTIFIER);
787 }
788 core_initcall(register_cpufreq_notifier);
789 
790 #endif
791