1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48
49 /*
50 * as from 2.5, kernels no longer have an init_tasks structure
51 * so we need some other way of telling a new secondary core
52 * where to place its SVC stack
53 */
54 struct secondary_data secondary_data;
55
56 /*
57 * control for which core is the next to come out of the secondary
58 * boot "holding pen"
59 */
60 volatile int __cpuinitdata pen_release = -1;
61
62 enum ipi_msg_type {
63 IPI_WAKEUP,
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CALL_FUNC_SINGLE,
68 IPI_CPU_STOP,
69 IPI_CPU_BACKTRACE,
70 };
71
72 static DECLARE_COMPLETION(cpu_running);
73
74 static struct smp_operations smp_ops;
75
smp_set_ops(struct smp_operations * ops)76 void __init smp_set_ops(struct smp_operations *ops)
77 {
78 if (ops)
79 smp_ops = *ops;
80 };
81
__cpu_up(unsigned int cpu,struct task_struct * idle)82 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
83 {
84 int ret;
85
86 /*
87 * We need to tell the secondary core where to find
88 * its stack and the page tables.
89 */
90 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
91 secondary_data.pgdir = virt_to_phys(idmap_pgd);
92 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
93 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
94 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
95
96 /*
97 * Now bring the CPU into our world.
98 */
99 ret = boot_secondary(cpu, idle);
100 if (ret == 0) {
101 /*
102 * CPU was successfully started, wait for it
103 * to come online or time out.
104 */
105 wait_for_completion_timeout(&cpu_running,
106 msecs_to_jiffies(1000));
107
108 if (!cpu_online(cpu)) {
109 pr_crit("CPU%u: failed to come online\n", cpu);
110 ret = -EIO;
111 }
112 } else {
113 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
114 }
115
116 secondary_data.stack = NULL;
117 secondary_data.pgdir = 0;
118
119 return ret;
120 }
121
122 /* platform specific SMP operations */
smp_init_cpus(void)123 void __init smp_init_cpus(void)
124 {
125 if (smp_ops.smp_init_cpus)
126 smp_ops.smp_init_cpus();
127 }
128
boot_secondary(unsigned int cpu,struct task_struct * idle)129 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
130 {
131 if (smp_ops.smp_boot_secondary)
132 return smp_ops.smp_boot_secondary(cpu, idle);
133 return -ENOSYS;
134 }
135
136 #ifdef CONFIG_HOTPLUG_CPU
137 static void percpu_timer_stop(void);
138
platform_cpu_kill(unsigned int cpu)139 static int platform_cpu_kill(unsigned int cpu)
140 {
141 if (smp_ops.cpu_kill)
142 return smp_ops.cpu_kill(cpu);
143 return 1;
144 }
145
platform_cpu_disable(unsigned int cpu)146 static int platform_cpu_disable(unsigned int cpu)
147 {
148 if (smp_ops.cpu_disable)
149 return smp_ops.cpu_disable(cpu);
150
151 /*
152 * By default, allow disabling all CPUs except the first one,
153 * since this is special on a lot of platforms, e.g. because
154 * of clock tick interrupts.
155 */
156 return cpu == 0 ? -EPERM : 0;
157 }
158 /*
159 * __cpu_disable runs on the processor to be shutdown.
160 */
__cpu_disable(void)161 int __cpuinit __cpu_disable(void)
162 {
163 unsigned int cpu = smp_processor_id();
164 int ret;
165
166 ret = platform_cpu_disable(cpu);
167 if (ret)
168 return ret;
169
170 /*
171 * Take this CPU offline. Once we clear this, we can't return,
172 * and we must not schedule until we're ready to give up the cpu.
173 */
174 set_cpu_online(cpu, false);
175
176 /*
177 * OK - migrate IRQs away from this CPU
178 */
179 migrate_irqs();
180
181 /*
182 * Stop the local timer for this CPU.
183 */
184 percpu_timer_stop();
185
186 /*
187 * Flush user cache and TLB mappings, and then remove this CPU
188 * from the vm mask set of all processes.
189 *
190 * Caches are flushed to the Level of Unification Inner Shareable
191 * to write-back dirty lines to unified caches shared by all CPUs.
192 */
193 flush_cache_louis();
194 local_flush_tlb_all();
195
196 clear_tasks_mm_cpumask(cpu);
197
198 return 0;
199 }
200
201 static DECLARE_COMPLETION(cpu_died);
202
203 /*
204 * called on the thread which is asking for a CPU to be shutdown -
205 * waits until shutdown has completed, or it is timed out.
206 */
__cpu_die(unsigned int cpu)207 void __cpuinit __cpu_die(unsigned int cpu)
208 {
209 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
210 pr_err("CPU%u: cpu didn't die\n", cpu);
211 return;
212 }
213 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
214
215 /*
216 * platform_cpu_kill() is generally expected to do the powering off
217 * and/or cutting of clocks to the dying CPU. Optionally, this may
218 * be done by the CPU which is dying in preference to supporting
219 * this call, but that means there is _no_ synchronisation between
220 * the requesting CPU and the dying CPU actually losing power.
221 */
222 if (!platform_cpu_kill(cpu))
223 printk("CPU%u: unable to kill\n", cpu);
224 }
225
226 /*
227 * Called from the idle thread for the CPU which has been shutdown.
228 *
229 * Note that we disable IRQs here, but do not re-enable them
230 * before returning to the caller. This is also the behaviour
231 * of the other hotplug-cpu capable cores, so presumably coming
232 * out of idle fixes this.
233 */
cpu_die(void)234 void __ref cpu_die(void)
235 {
236 unsigned int cpu = smp_processor_id();
237
238 idle_task_exit();
239
240 local_irq_disable();
241
242 /*
243 * Flush the data out of the L1 cache for this CPU. This must be
244 * before the completion to ensure that data is safely written out
245 * before platform_cpu_kill() gets called - which may disable
246 * *this* CPU and power down its cache.
247 */
248 flush_cache_louis();
249
250 /*
251 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
252 * this returns, power and/or clocks can be removed at any point
253 * from this CPU and its cache by platform_cpu_kill().
254 */
255 complete(&cpu_died);
256
257 /*
258 * Ensure that the cache lines associated with that completion are
259 * written out. This covers the case where _this_ CPU is doing the
260 * powering down, to ensure that the completion is visible to the
261 * CPU waiting for this one.
262 */
263 flush_cache_louis();
264
265 /*
266 * The actual CPU shutdown procedure is at least platform (if not
267 * CPU) specific. This may remove power, or it may simply spin.
268 *
269 * Platforms are generally expected *NOT* to return from this call,
270 * although there are some which do because they have no way to
271 * power down the CPU. These platforms are the _only_ reason we
272 * have a return path which uses the fragment of assembly below.
273 *
274 * The return path should not be used for platforms which can
275 * power off the CPU.
276 */
277 if (smp_ops.cpu_die)
278 smp_ops.cpu_die(cpu);
279
280 /*
281 * Do not return to the idle loop - jump back to the secondary
282 * cpu initialisation. There's some initialisation which needs
283 * to be repeated to undo the effects of taking the CPU offline.
284 */
285 __asm__("mov sp, %0\n"
286 " mov fp, #0\n"
287 " b secondary_start_kernel"
288 :
289 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
290 }
291 #endif /* CONFIG_HOTPLUG_CPU */
292
293 /*
294 * Called by both boot and secondaries to move global data into
295 * per-processor storage.
296 */
smp_store_cpu_info(unsigned int cpuid)297 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
298 {
299 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
300
301 cpu_info->loops_per_jiffy = loops_per_jiffy;
302 cpu_info->cpuid = read_cpuid_id();
303
304 store_cpu_topology(cpuid);
305 }
306
307 static void percpu_timer_setup(void);
308
309 /*
310 * This is the secondary CPU boot entry. We're using this CPUs
311 * idle thread stack, but a set of temporary page tables.
312 */
secondary_start_kernel(void)313 asmlinkage void __cpuinit secondary_start_kernel(void)
314 {
315 struct mm_struct *mm = &init_mm;
316 unsigned int cpu;
317
318 /*
319 * The identity mapping is uncached (strongly ordered), so
320 * switch away from it before attempting any exclusive accesses.
321 */
322 cpu_switch_mm(mm->pgd, mm);
323 local_flush_bp_all();
324 enter_lazy_tlb(mm, current);
325 local_flush_tlb_all();
326
327 /*
328 * All kernel threads share the same mm context; grab a
329 * reference and switch to it.
330 */
331 cpu = smp_processor_id();
332 atomic_inc(&mm->mm_count);
333 current->active_mm = mm;
334 cpumask_set_cpu(cpu, mm_cpumask(mm));
335
336 cpu_init();
337
338 printk("CPU%u: Booted secondary processor\n", cpu);
339
340 preempt_disable();
341 trace_hardirqs_off();
342
343 /*
344 * Give the platform a chance to do its own initialisation.
345 */
346 if (smp_ops.smp_secondary_init)
347 smp_ops.smp_secondary_init(cpu);
348
349 notify_cpu_starting(cpu);
350
351 calibrate_delay();
352
353 smp_store_cpu_info(cpu);
354
355 /*
356 * OK, now it's safe to let the boot CPU continue. Wait for
357 * the CPU migration code to notice that the CPU is online
358 * before we continue - which happens after __cpu_up returns.
359 */
360 set_cpu_online(cpu, true);
361 complete(&cpu_running);
362
363 /*
364 * Setup the percpu timer for this CPU.
365 */
366 percpu_timer_setup();
367
368 local_irq_enable();
369 local_fiq_enable();
370
371 /*
372 * OK, it's off to the idle thread for us
373 */
374 cpu_startup_entry(CPUHP_ONLINE);
375 }
376
smp_cpus_done(unsigned int max_cpus)377 void __init smp_cpus_done(unsigned int max_cpus)
378 {
379 int cpu;
380 unsigned long bogosum = 0;
381
382 for_each_online_cpu(cpu)
383 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
384
385 printk(KERN_INFO "SMP: Total of %d processors activated "
386 "(%lu.%02lu BogoMIPS).\n",
387 num_online_cpus(),
388 bogosum / (500000/HZ),
389 (bogosum / (5000/HZ)) % 100);
390
391 hyp_mode_check();
392 }
393
smp_prepare_boot_cpu(void)394 void __init smp_prepare_boot_cpu(void)
395 {
396 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
397 }
398
smp_prepare_cpus(unsigned int max_cpus)399 void __init smp_prepare_cpus(unsigned int max_cpus)
400 {
401 unsigned int ncores = num_possible_cpus();
402
403 init_cpu_topology();
404
405 smp_store_cpu_info(smp_processor_id());
406
407 /*
408 * are we trying to boot more cores than exist?
409 */
410 if (max_cpus > ncores)
411 max_cpus = ncores;
412 if (ncores > 1 && max_cpus) {
413 /*
414 * Enable the local timer or broadcast device for the
415 * boot CPU, but only if we have more than one CPU.
416 */
417 percpu_timer_setup();
418
419 /*
420 * Initialise the present map, which describes the set of CPUs
421 * actually populated at the present time. A platform should
422 * re-initialize the map in the platforms smp_prepare_cpus()
423 * if present != possible (e.g. physical hotplug).
424 */
425 init_cpu_present(cpu_possible_mask);
426
427 /*
428 * Initialise the SCU if there are more than one CPU
429 * and let them know where to start.
430 */
431 if (smp_ops.smp_prepare_cpus)
432 smp_ops.smp_prepare_cpus(max_cpus);
433 }
434 }
435
436 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
437
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))438 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
439 {
440 if (!smp_cross_call)
441 smp_cross_call = fn;
442 }
443
arch_send_call_function_ipi_mask(const struct cpumask * mask)444 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
445 {
446 smp_cross_call(mask, IPI_CALL_FUNC);
447 }
448
arch_send_wakeup_ipi_mask(const struct cpumask * mask)449 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
450 {
451 smp_cross_call(mask, IPI_WAKEUP);
452 }
453
arch_send_call_function_single_ipi(int cpu)454 void arch_send_call_function_single_ipi(int cpu)
455 {
456 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
457 }
458
459 static const char *ipi_types[NR_IPI] = {
460 #define S(x,s) [x] = s
461 S(IPI_WAKEUP, "CPU wakeup interrupts"),
462 S(IPI_TIMER, "Timer broadcast interrupts"),
463 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
464 S(IPI_CALL_FUNC, "Function call interrupts"),
465 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
466 S(IPI_CPU_STOP, "CPU stop interrupts"),
467 S(IPI_CPU_BACKTRACE, "CPU backtrace"),
468 };
469
show_ipi_list(struct seq_file * p,int prec)470 void show_ipi_list(struct seq_file *p, int prec)
471 {
472 unsigned int cpu, i;
473
474 for (i = 0; i < NR_IPI; i++) {
475 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
476
477 for_each_online_cpu(cpu)
478 seq_printf(p, "%10u ",
479 __get_irq_stat(cpu, ipi_irqs[i]));
480
481 seq_printf(p, " %s\n", ipi_types[i]);
482 }
483 }
484
smp_irq_stat_cpu(unsigned int cpu)485 u64 smp_irq_stat_cpu(unsigned int cpu)
486 {
487 u64 sum = 0;
488 int i;
489
490 for (i = 0; i < NR_IPI; i++)
491 sum += __get_irq_stat(cpu, ipi_irqs[i]);
492
493 return sum;
494 }
495
496 /*
497 * Timer (local or broadcast) support
498 */
499 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
500
501 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)502 void tick_broadcast(const struct cpumask *mask)
503 {
504 smp_cross_call(mask, IPI_TIMER);
505 }
506 #endif
507
broadcast_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)508 static void broadcast_timer_set_mode(enum clock_event_mode mode,
509 struct clock_event_device *evt)
510 {
511 }
512
broadcast_timer_setup(struct clock_event_device * evt)513 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
514 {
515 evt->name = "dummy_timer";
516 evt->features = CLOCK_EVT_FEAT_ONESHOT |
517 CLOCK_EVT_FEAT_PERIODIC |
518 CLOCK_EVT_FEAT_DUMMY;
519 evt->rating = 100;
520 evt->mult = 1;
521 evt->set_mode = broadcast_timer_set_mode;
522
523 clockevents_register_device(evt);
524 }
525
526 static struct local_timer_ops *lt_ops;
527
528 #ifdef CONFIG_LOCAL_TIMERS
local_timer_register(struct local_timer_ops * ops)529 int local_timer_register(struct local_timer_ops *ops)
530 {
531 if (!is_smp() || !setup_max_cpus)
532 return -ENXIO;
533
534 if (lt_ops)
535 return -EBUSY;
536
537 lt_ops = ops;
538 return 0;
539 }
540 #endif
541
percpu_timer_setup(void)542 static void __cpuinit percpu_timer_setup(void)
543 {
544 unsigned int cpu = smp_processor_id();
545 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
546
547 evt->cpumask = cpumask_of(cpu);
548
549 if (!lt_ops || lt_ops->setup(evt))
550 broadcast_timer_setup(evt);
551 }
552
553 #ifdef CONFIG_HOTPLUG_CPU
554 /*
555 * The generic clock events code purposely does not stop the local timer
556 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
557 * manually here.
558 */
percpu_timer_stop(void)559 static void percpu_timer_stop(void)
560 {
561 unsigned int cpu = smp_processor_id();
562 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
563
564 if (lt_ops)
565 lt_ops->stop(evt);
566 }
567 #endif
568
569 static DEFINE_RAW_SPINLOCK(stop_lock);
570
571 /*
572 * ipi_cpu_stop - handle IPI from smp_send_stop()
573 */
ipi_cpu_stop(unsigned int cpu)574 static void ipi_cpu_stop(unsigned int cpu)
575 {
576 if (system_state == SYSTEM_BOOTING ||
577 system_state == SYSTEM_RUNNING) {
578 raw_spin_lock(&stop_lock);
579 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
580 dump_stack();
581 raw_spin_unlock(&stop_lock);
582 }
583
584 set_cpu_online(cpu, false);
585
586 local_fiq_disable();
587 local_irq_disable();
588
589 while (1)
590 cpu_relax();
591 }
592
593 static cpumask_t backtrace_mask;
594 static DEFINE_RAW_SPINLOCK(backtrace_lock);
595
596 /* "in progress" flag of arch_trigger_all_cpu_backtrace */
597 static unsigned long backtrace_flag;
598
smp_send_all_cpu_backtrace(void)599 void smp_send_all_cpu_backtrace(void)
600 {
601 unsigned int this_cpu = smp_processor_id();
602 int i;
603
604 if (test_and_set_bit(0, &backtrace_flag))
605 /*
606 * If there is already a trigger_all_cpu_backtrace() in progress
607 * (backtrace_flag == 1), don't output double cpu dump infos.
608 */
609 return;
610
611 cpumask_copy(&backtrace_mask, cpu_online_mask);
612 cpu_clear(this_cpu, backtrace_mask);
613
614 pr_info("Backtrace for cpu %d (current):\n", this_cpu);
615 dump_stack();
616
617 pr_info("\nsending IPI to all other CPUs:\n");
618 smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
619
620 /* Wait for up to 10 seconds for all other CPUs to do the backtrace */
621 for (i = 0; i < 10 * 1000; i++) {
622 if (cpumask_empty(&backtrace_mask))
623 break;
624 mdelay(1);
625 }
626
627 clear_bit(0, &backtrace_flag);
628 smp_mb__after_clear_bit();
629 }
630
631 /*
632 * ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
633 */
ipi_cpu_backtrace(unsigned int cpu,struct pt_regs * regs)634 static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
635 {
636 if (cpu_isset(cpu, backtrace_mask)) {
637 raw_spin_lock(&backtrace_lock);
638 pr_warning("IPI backtrace for cpu %d\n", cpu);
639 show_regs(regs);
640 raw_spin_unlock(&backtrace_lock);
641 cpu_clear(cpu, backtrace_mask);
642 }
643 }
644
645 /*
646 * Main handler for inter-processor interrupts
647 */
do_IPI(int ipinr,struct pt_regs * regs)648 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
649 {
650 handle_IPI(ipinr, regs);
651 }
652
handle_IPI(int ipinr,struct pt_regs * regs)653 void handle_IPI(int ipinr, struct pt_regs *regs)
654 {
655 unsigned int cpu = smp_processor_id();
656 struct pt_regs *old_regs = set_irq_regs(regs);
657
658 if (ipinr < NR_IPI)
659 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
660
661 switch (ipinr) {
662 case IPI_WAKEUP:
663 break;
664
665 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
666 case IPI_TIMER:
667 irq_enter();
668 tick_receive_broadcast();
669 irq_exit();
670 break;
671 #endif
672
673 case IPI_RESCHEDULE:
674 scheduler_ipi();
675 break;
676
677 case IPI_CALL_FUNC:
678 irq_enter();
679 generic_smp_call_function_interrupt();
680 irq_exit();
681 break;
682
683 case IPI_CALL_FUNC_SINGLE:
684 irq_enter();
685 generic_smp_call_function_single_interrupt();
686 irq_exit();
687 break;
688
689 case IPI_CPU_STOP:
690 irq_enter();
691 ipi_cpu_stop(cpu);
692 irq_exit();
693 break;
694
695 case IPI_CPU_BACKTRACE:
696 ipi_cpu_backtrace(cpu, regs);
697 break;
698
699 default:
700 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
701 cpu, ipinr);
702 break;
703 }
704 set_irq_regs(old_regs);
705 }
706
smp_send_reschedule(int cpu)707 void smp_send_reschedule(int cpu)
708 {
709 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
710 }
711
smp_send_stop(void)712 void smp_send_stop(void)
713 {
714 unsigned long timeout;
715 struct cpumask mask;
716
717 cpumask_copy(&mask, cpu_online_mask);
718 cpumask_clear_cpu(smp_processor_id(), &mask);
719 if (!cpumask_empty(&mask))
720 smp_cross_call(&mask, IPI_CPU_STOP);
721
722 /* Wait up to one second for other CPUs to stop */
723 timeout = USEC_PER_SEC;
724 while (num_online_cpus() > 1 && timeout--)
725 udelay(1);
726
727 if (num_online_cpus() > 1)
728 pr_warning("SMP: failed to stop secondary CPUs\n");
729 }
730
731 /*
732 * not supported here
733 */
setup_profiling_timer(unsigned int multiplier)734 int setup_profiling_timer(unsigned int multiplier)
735 {
736 return -EINVAL;
737 }
738
739 #ifdef CONFIG_CPU_FREQ
740
741 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
742 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
743 static unsigned long global_l_p_j_ref;
744 static unsigned long global_l_p_j_ref_freq;
745
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)746 static int cpufreq_callback(struct notifier_block *nb,
747 unsigned long val, void *data)
748 {
749 struct cpufreq_freqs *freq = data;
750 int cpu = freq->cpu;
751
752 if (freq->flags & CPUFREQ_CONST_LOOPS)
753 return NOTIFY_OK;
754
755 if (!per_cpu(l_p_j_ref, cpu)) {
756 per_cpu(l_p_j_ref, cpu) =
757 per_cpu(cpu_data, cpu).loops_per_jiffy;
758 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
759 if (!global_l_p_j_ref) {
760 global_l_p_j_ref = loops_per_jiffy;
761 global_l_p_j_ref_freq = freq->old;
762 }
763 }
764
765 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
766 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
767 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
768 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
769 global_l_p_j_ref_freq,
770 freq->new);
771 per_cpu(cpu_data, cpu).loops_per_jiffy =
772 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
773 per_cpu(l_p_j_ref_freq, cpu),
774 freq->new);
775 }
776 return NOTIFY_OK;
777 }
778
779 static struct notifier_block cpufreq_notifier = {
780 .notifier_call = cpufreq_callback,
781 };
782
register_cpufreq_notifier(void)783 static int __init register_cpufreq_notifier(void)
784 {
785 return cpufreq_register_notifier(&cpufreq_notifier,
786 CPUFREQ_TRANSITION_NOTIFIER);
787 }
788 core_initcall(register_cpufreq_notifier);
789
790 #endif
791