• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #include <linux/device.h>
27 #include <linux/clocksource.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33 
timecounter_init(struct timecounter * tc,const struct cyclecounter * cc,u64 start_tstamp)34 void timecounter_init(struct timecounter *tc,
35 		      const struct cyclecounter *cc,
36 		      u64 start_tstamp)
37 {
38 	tc->cc = cc;
39 	tc->cycle_last = cc->read(cc);
40 	tc->nsec = start_tstamp;
41 }
42 EXPORT_SYMBOL_GPL(timecounter_init);
43 
44 /**
45  * timecounter_read_delta - get nanoseconds since last call of this function
46  * @tc:         Pointer to time counter
47  *
48  * When the underlying cycle counter runs over, this will be handled
49  * correctly as long as it does not run over more than once between
50  * calls.
51  *
52  * The first call to this function for a new time counter initializes
53  * the time tracking and returns an undefined result.
54  */
timecounter_read_delta(struct timecounter * tc)55 static u64 timecounter_read_delta(struct timecounter *tc)
56 {
57 	cycle_t cycle_now, cycle_delta;
58 	u64 ns_offset;
59 
60 	/* read cycle counter: */
61 	cycle_now = tc->cc->read(tc->cc);
62 
63 	/* calculate the delta since the last timecounter_read_delta(): */
64 	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
65 
66 	/* convert to nanoseconds: */
67 	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
68 
69 	/* update time stamp of timecounter_read_delta() call: */
70 	tc->cycle_last = cycle_now;
71 
72 	return ns_offset;
73 }
74 
timecounter_read(struct timecounter * tc)75 u64 timecounter_read(struct timecounter *tc)
76 {
77 	u64 nsec;
78 
79 	/* increment time by nanoseconds since last call */
80 	nsec = timecounter_read_delta(tc);
81 	nsec += tc->nsec;
82 	tc->nsec = nsec;
83 
84 	return nsec;
85 }
86 EXPORT_SYMBOL_GPL(timecounter_read);
87 
timecounter_cyc2time(struct timecounter * tc,cycle_t cycle_tstamp)88 u64 timecounter_cyc2time(struct timecounter *tc,
89 			 cycle_t cycle_tstamp)
90 {
91 	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
92 	u64 nsec;
93 
94 	/*
95 	 * Instead of always treating cycle_tstamp as more recent
96 	 * than tc->cycle_last, detect when it is too far in the
97 	 * future and treat it as old time stamp instead.
98 	 */
99 	if (cycle_delta > tc->cc->mask / 2) {
100 		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101 		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102 	} else {
103 		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104 	}
105 
106 	return nsec;
107 }
108 EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109 
110 /**
111  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112  * @mult:	pointer to mult variable
113  * @shift:	pointer to shift variable
114  * @from:	frequency to convert from
115  * @to:		frequency to convert to
116  * @maxsec:	guaranteed runtime conversion range in seconds
117  *
118  * The function evaluates the shift/mult pair for the scaled math
119  * operations of clocksources and clockevents.
120  *
121  * @to and @from are frequency values in HZ. For clock sources @to is
122  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123  * event @to is the counter frequency and @from is NSEC_PER_SEC.
124  *
125  * The @maxsec conversion range argument controls the time frame in
126  * seconds which must be covered by the runtime conversion with the
127  * calculated mult and shift factors. This guarantees that no 64bit
128  * overflow happens when the input value of the conversion is
129  * multiplied with the calculated mult factor. Larger ranges may
130  * reduce the conversion accuracy by chosing smaller mult and shift
131  * factors.
132  */
133 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)134 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
135 {
136 	u64 tmp;
137 	u32 sft, sftacc= 32;
138 
139 	/*
140 	 * Calculate the shift factor which is limiting the conversion
141 	 * range:
142 	 */
143 	tmp = ((u64)maxsec * from) >> 32;
144 	while (tmp) {
145 		tmp >>=1;
146 		sftacc--;
147 	}
148 
149 	/*
150 	 * Find the conversion shift/mult pair which has the best
151 	 * accuracy and fits the maxsec conversion range:
152 	 */
153 	for (sft = 32; sft > 0; sft--) {
154 		tmp = (u64) to << sft;
155 		tmp += from / 2;
156 		do_div(tmp, from);
157 		if ((tmp >> sftacc) == 0)
158 			break;
159 	}
160 	*mult = tmp;
161 	*shift = sft;
162 }
163 
164 /*[Clocksource internal variables]---------
165  * curr_clocksource:
166  *	currently selected clocksource.
167  * clocksource_list:
168  *	linked list with the registered clocksources
169  * clocksource_mutex:
170  *	protects manipulations to curr_clocksource and the clocksource_list
171  * override_name:
172  *	Name of the user-specified clocksource.
173  */
174 static struct clocksource *curr_clocksource;
175 static LIST_HEAD(clocksource_list);
176 static DEFINE_MUTEX(clocksource_mutex);
177 static char override_name[32];
178 static int finished_booting;
179 
180 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181 static void clocksource_watchdog_work(struct work_struct *work);
182 
183 static LIST_HEAD(watchdog_list);
184 static struct clocksource *watchdog;
185 static struct timer_list watchdog_timer;
186 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187 static DEFINE_SPINLOCK(watchdog_lock);
188 static int watchdog_running;
189 static atomic_t watchdog_reset_pending;
190 
191 static int clocksource_watchdog_kthread(void *data);
192 static void __clocksource_change_rating(struct clocksource *cs, int rating);
193 
194 /*
195  * Interval: 0.5sec Threshold: 0.0625s
196  */
197 #define WATCHDOG_INTERVAL (HZ >> 1)
198 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
199 
clocksource_watchdog_work(struct work_struct * work)200 static void clocksource_watchdog_work(struct work_struct *work)
201 {
202 	/*
203 	 * If kthread_run fails the next watchdog scan over the
204 	 * watchdog_list will find the unstable clock again.
205 	 */
206 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
207 }
208 
__clocksource_unstable(struct clocksource * cs)209 static void __clocksource_unstable(struct clocksource *cs)
210 {
211 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
212 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
213 	if (finished_booting)
214 		schedule_work(&watchdog_work);
215 }
216 
clocksource_unstable(struct clocksource * cs,int64_t delta)217 static void clocksource_unstable(struct clocksource *cs, int64_t delta)
218 {
219 	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
220 	       cs->name, delta);
221 	__clocksource_unstable(cs);
222 }
223 
224 /**
225  * clocksource_mark_unstable - mark clocksource unstable via watchdog
226  * @cs:		clocksource to be marked unstable
227  *
228  * This function is called instead of clocksource_change_rating from
229  * cpu hotplug code to avoid a deadlock between the clocksource mutex
230  * and the cpu hotplug mutex. It defers the update of the clocksource
231  * to the watchdog thread.
232  */
clocksource_mark_unstable(struct clocksource * cs)233 void clocksource_mark_unstable(struct clocksource *cs)
234 {
235 	unsigned long flags;
236 
237 	spin_lock_irqsave(&watchdog_lock, flags);
238 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
239 		if (list_empty(&cs->wd_list))
240 			list_add(&cs->wd_list, &watchdog_list);
241 		__clocksource_unstable(cs);
242 	}
243 	spin_unlock_irqrestore(&watchdog_lock, flags);
244 }
245 
clocksource_watchdog(unsigned long data)246 static void clocksource_watchdog(unsigned long data)
247 {
248 	struct clocksource *cs;
249 	cycle_t csnow, wdnow;
250 	int64_t wd_nsec, cs_nsec;
251 	int next_cpu, reset_pending;
252 
253 	spin_lock(&watchdog_lock);
254 	if (!watchdog_running)
255 		goto out;
256 
257 	reset_pending = atomic_read(&watchdog_reset_pending);
258 
259 	list_for_each_entry(cs, &watchdog_list, wd_list) {
260 
261 		/* Clocksource already marked unstable? */
262 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
263 			if (finished_booting)
264 				schedule_work(&watchdog_work);
265 			continue;
266 		}
267 
268 		local_irq_disable();
269 		csnow = cs->read(cs);
270 		wdnow = watchdog->read(watchdog);
271 		local_irq_enable();
272 
273 		/* Clocksource initialized ? */
274 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
275 		    atomic_read(&watchdog_reset_pending)) {
276 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
277 			cs->wd_last = wdnow;
278 			cs->cs_last = csnow;
279 			continue;
280 		}
281 
282 		wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
283 					     watchdog->mult, watchdog->shift);
284 
285 		cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
286 					     cs->mask, cs->mult, cs->shift);
287 		cs->cs_last = csnow;
288 		cs->wd_last = wdnow;
289 
290 		if (atomic_read(&watchdog_reset_pending))
291 			continue;
292 
293 		/* Check the deviation from the watchdog clocksource. */
294 		if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
295 			clocksource_unstable(cs, cs_nsec - wd_nsec);
296 			continue;
297 		}
298 
299 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
300 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
301 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
302 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
303 			/*
304 			 * We just marked the clocksource as highres-capable,
305 			 * notify the rest of the system as well so that we
306 			 * transition into high-res mode:
307 			 */
308 			tick_clock_notify();
309 		}
310 	}
311 
312 	/*
313 	 * We only clear the watchdog_reset_pending, when we did a
314 	 * full cycle through all clocksources.
315 	 */
316 	if (reset_pending)
317 		atomic_dec(&watchdog_reset_pending);
318 
319 	/*
320 	 * Cycle through CPUs to check if the CPUs stay synchronized
321 	 * to each other.
322 	 */
323 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
324 	if (next_cpu >= nr_cpu_ids)
325 		next_cpu = cpumask_first(cpu_online_mask);
326 	watchdog_timer.expires += WATCHDOG_INTERVAL;
327 	add_timer_on(&watchdog_timer, next_cpu);
328 out:
329 	spin_unlock(&watchdog_lock);
330 }
331 
clocksource_start_watchdog(void)332 static inline void clocksource_start_watchdog(void)
333 {
334 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
335 		return;
336 	init_timer(&watchdog_timer);
337 	watchdog_timer.function = clocksource_watchdog;
338 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
339 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
340 	watchdog_running = 1;
341 }
342 
clocksource_stop_watchdog(void)343 static inline void clocksource_stop_watchdog(void)
344 {
345 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
346 		return;
347 	del_timer(&watchdog_timer);
348 	watchdog_running = 0;
349 }
350 
clocksource_reset_watchdog(void)351 static inline void clocksource_reset_watchdog(void)
352 {
353 	struct clocksource *cs;
354 
355 	list_for_each_entry(cs, &watchdog_list, wd_list)
356 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
357 }
358 
clocksource_resume_watchdog(void)359 static void clocksource_resume_watchdog(void)
360 {
361 	atomic_inc(&watchdog_reset_pending);
362 }
363 
clocksource_enqueue_watchdog(struct clocksource * cs)364 static void clocksource_enqueue_watchdog(struct clocksource *cs)
365 {
366 	unsigned long flags;
367 
368 	spin_lock_irqsave(&watchdog_lock, flags);
369 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
370 		/* cs is a clocksource to be watched. */
371 		list_add(&cs->wd_list, &watchdog_list);
372 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
373 	} else {
374 		/* cs is a watchdog. */
375 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
376 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
377 		/* Pick the best watchdog. */
378 		if (!watchdog || cs->rating > watchdog->rating) {
379 			watchdog = cs;
380 			/* Reset watchdog cycles */
381 			clocksource_reset_watchdog();
382 		}
383 	}
384 	/* Check if the watchdog timer needs to be started. */
385 	clocksource_start_watchdog();
386 	spin_unlock_irqrestore(&watchdog_lock, flags);
387 }
388 
clocksource_dequeue_watchdog(struct clocksource * cs)389 static void clocksource_dequeue_watchdog(struct clocksource *cs)
390 {
391 	struct clocksource *tmp;
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(&watchdog_lock, flags);
395 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
396 		/* cs is a watched clocksource. */
397 		list_del_init(&cs->wd_list);
398 	} else if (cs == watchdog) {
399 		/* Reset watchdog cycles */
400 		clocksource_reset_watchdog();
401 		/* Current watchdog is removed. Find an alternative. */
402 		watchdog = NULL;
403 		list_for_each_entry(tmp, &clocksource_list, list) {
404 			if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
405 				continue;
406 			if (!watchdog || tmp->rating > watchdog->rating)
407 				watchdog = tmp;
408 		}
409 	}
410 	cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
411 	/* Check if the watchdog timer needs to be stopped. */
412 	clocksource_stop_watchdog();
413 	spin_unlock_irqrestore(&watchdog_lock, flags);
414 }
415 
clocksource_watchdog_kthread(void * data)416 static int clocksource_watchdog_kthread(void *data)
417 {
418 	struct clocksource *cs, *tmp;
419 	unsigned long flags;
420 	LIST_HEAD(unstable);
421 
422 	mutex_lock(&clocksource_mutex);
423 	spin_lock_irqsave(&watchdog_lock, flags);
424 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
425 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
426 			list_del_init(&cs->wd_list);
427 			list_add(&cs->wd_list, &unstable);
428 		}
429 	/* Check if the watchdog timer needs to be stopped. */
430 	clocksource_stop_watchdog();
431 	spin_unlock_irqrestore(&watchdog_lock, flags);
432 
433 	/* Needs to be done outside of watchdog lock */
434 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
435 		list_del_init(&cs->wd_list);
436 		__clocksource_change_rating(cs, 0);
437 	}
438 	mutex_unlock(&clocksource_mutex);
439 	return 0;
440 }
441 
442 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
443 
clocksource_enqueue_watchdog(struct clocksource * cs)444 static void clocksource_enqueue_watchdog(struct clocksource *cs)
445 {
446 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
447 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
448 }
449 
clocksource_dequeue_watchdog(struct clocksource * cs)450 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)451 static inline void clocksource_resume_watchdog(void) { }
clocksource_watchdog_kthread(void * data)452 static inline int clocksource_watchdog_kthread(void *data) { return 0; }
453 
454 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
455 
456 /**
457  * clocksource_suspend - suspend the clocksource(s)
458  */
clocksource_suspend(void)459 void clocksource_suspend(void)
460 {
461 	struct clocksource *cs;
462 
463 	list_for_each_entry_reverse(cs, &clocksource_list, list)
464 		if (cs->suspend)
465 			cs->suspend(cs);
466 }
467 
468 /**
469  * clocksource_resume - resume the clocksource(s)
470  */
clocksource_resume(void)471 void clocksource_resume(void)
472 {
473 	struct clocksource *cs;
474 
475 	list_for_each_entry(cs, &clocksource_list, list)
476 		if (cs->resume)
477 			cs->resume(cs);
478 
479 	clocksource_resume_watchdog();
480 }
481 
482 /**
483  * clocksource_touch_watchdog - Update watchdog
484  *
485  * Update the watchdog after exception contexts such as kgdb so as not
486  * to incorrectly trip the watchdog. This might fail when the kernel
487  * was stopped in code which holds watchdog_lock.
488  */
clocksource_touch_watchdog(void)489 void clocksource_touch_watchdog(void)
490 {
491 	clocksource_resume_watchdog();
492 }
493 
494 /**
495  * clocksource_max_adjustment- Returns max adjustment amount
496  * @cs:         Pointer to clocksource
497  *
498  */
clocksource_max_adjustment(struct clocksource * cs)499 static u32 clocksource_max_adjustment(struct clocksource *cs)
500 {
501 	u64 ret;
502 	/*
503 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
504 	 */
505 	ret = (u64)cs->mult * 11;
506 	do_div(ret,100);
507 	return (u32)ret;
508 }
509 
510 /**
511  * clocksource_max_deferment - Returns max time the clocksource can be deferred
512  * @cs:         Pointer to clocksource
513  *
514  */
clocksource_max_deferment(struct clocksource * cs)515 static u64 clocksource_max_deferment(struct clocksource *cs)
516 {
517 	u64 max_nsecs, max_cycles;
518 
519 	/*
520 	 * Calculate the maximum number of cycles that we can pass to the
521 	 * cyc2ns function without overflowing a 64-bit signed result. The
522 	 * maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
523 	 * which is equivalent to the below.
524 	 * max_cycles < (2^63)/(cs->mult + cs->maxadj)
525 	 * max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
526 	 * max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
527 	 * max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
528 	 * max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
529 	 * Please note that we add 1 to the result of the log2 to account for
530 	 * any rounding errors, ensure the above inequality is satisfied and
531 	 * no overflow will occur.
532 	 */
533 	max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
534 
535 	/*
536 	 * The actual maximum number of cycles we can defer the clocksource is
537 	 * determined by the minimum of max_cycles and cs->mask.
538 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
539 	 * too long if there's a large negative adjustment.
540 	 */
541 	max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
542 	max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
543 					cs->shift);
544 
545 	/*
546 	 * To ensure that the clocksource does not wrap whilst we are idle,
547 	 * limit the time the clocksource can be deferred by 12.5%. Please
548 	 * note a margin of 12.5% is used because this can be computed with
549 	 * a shift, versus say 10% which would require division.
550 	 */
551 	return max_nsecs - (max_nsecs >> 3);
552 }
553 
554 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
555 
556 /**
557  * clocksource_select - Select the best clocksource available
558  *
559  * Private function. Must hold clocksource_mutex when called.
560  *
561  * Select the clocksource with the best rating, or the clocksource,
562  * which is selected by userspace override.
563  */
clocksource_select(void)564 static void clocksource_select(void)
565 {
566 	struct clocksource *best, *cs;
567 
568 	if (!finished_booting || list_empty(&clocksource_list))
569 		return;
570 	/* First clocksource on the list has the best rating. */
571 	best = list_first_entry(&clocksource_list, struct clocksource, list);
572 	/* Check for the override clocksource. */
573 	list_for_each_entry(cs, &clocksource_list, list) {
574 		if (strcmp(cs->name, override_name) != 0)
575 			continue;
576 		/*
577 		 * Check to make sure we don't switch to a non-highres
578 		 * capable clocksource if the tick code is in oneshot
579 		 * mode (highres or nohz)
580 		 */
581 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
582 		    tick_oneshot_mode_active()) {
583 			/* Override clocksource cannot be used. */
584 			printk(KERN_WARNING "Override clocksource %s is not "
585 			       "HRT compatible. Cannot switch while in "
586 			       "HRT/NOHZ mode\n", cs->name);
587 			override_name[0] = 0;
588 		} else
589 			/* Override clocksource can be used. */
590 			best = cs;
591 		break;
592 	}
593 	if (curr_clocksource != best) {
594 		printk(KERN_INFO "Switching to clocksource %s\n", best->name);
595 		curr_clocksource = best;
596 		timekeeping_notify(curr_clocksource);
597 	}
598 }
599 
600 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
601 
clocksource_select(void)602 static inline void clocksource_select(void) { }
603 
604 #endif
605 
606 /*
607  * clocksource_done_booting - Called near the end of core bootup
608  *
609  * Hack to avoid lots of clocksource churn at boot time.
610  * We use fs_initcall because we want this to start before
611  * device_initcall but after subsys_initcall.
612  */
clocksource_done_booting(void)613 static int __init clocksource_done_booting(void)
614 {
615 	mutex_lock(&clocksource_mutex);
616 	curr_clocksource = clocksource_default_clock();
617 	mutex_unlock(&clocksource_mutex);
618 
619 	finished_booting = 1;
620 
621 	/*
622 	 * Run the watchdog first to eliminate unstable clock sources
623 	 */
624 	clocksource_watchdog_kthread(NULL);
625 
626 	mutex_lock(&clocksource_mutex);
627 	clocksource_select();
628 	mutex_unlock(&clocksource_mutex);
629 	return 0;
630 }
631 fs_initcall(clocksource_done_booting);
632 
633 /*
634  * Enqueue the clocksource sorted by rating
635  */
clocksource_enqueue(struct clocksource * cs)636 static void clocksource_enqueue(struct clocksource *cs)
637 {
638 	struct list_head *entry = &clocksource_list;
639 	struct clocksource *tmp;
640 
641 	list_for_each_entry(tmp, &clocksource_list, list)
642 		/* Keep track of the place, where to insert */
643 		if (tmp->rating >= cs->rating)
644 			entry = &tmp->list;
645 	list_add(&cs->list, entry);
646 }
647 
648 /**
649  * __clocksource_updatefreq_scale - Used update clocksource with new freq
650  * @cs:		clocksource to be registered
651  * @scale:	Scale factor multiplied against freq to get clocksource hz
652  * @freq:	clocksource frequency (cycles per second) divided by scale
653  *
654  * This should only be called from the clocksource->enable() method.
655  *
656  * This *SHOULD NOT* be called directly! Please use the
657  * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
658  */
__clocksource_updatefreq_scale(struct clocksource * cs,u32 scale,u32 freq)659 void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
660 {
661 	u64 sec;
662 	/*
663 	 * Calc the maximum number of seconds which we can run before
664 	 * wrapping around. For clocksources which have a mask > 32bit
665 	 * we need to limit the max sleep time to have a good
666 	 * conversion precision. 10 minutes is still a reasonable
667 	 * amount. That results in a shift value of 24 for a
668 	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
669 	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
670 	 * margin as we do in clocksource_max_deferment()
671 	 */
672 	sec = (cs->mask - (cs->mask >> 3));
673 	do_div(sec, freq);
674 	do_div(sec, scale);
675 	if (!sec)
676 		sec = 1;
677 	else if (sec > 600 && cs->mask > UINT_MAX)
678 		sec = 600;
679 
680 	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
681 			       NSEC_PER_SEC / scale, sec * scale);
682 
683 	/*
684 	 * for clocksources that have large mults, to avoid overflow.
685 	 * Since mult may be adjusted by ntp, add an safety extra margin
686 	 *
687 	 */
688 	cs->maxadj = clocksource_max_adjustment(cs);
689 	while ((cs->mult + cs->maxadj < cs->mult)
690 		|| (cs->mult - cs->maxadj > cs->mult)) {
691 		cs->mult >>= 1;
692 		cs->shift--;
693 		cs->maxadj = clocksource_max_adjustment(cs);
694 	}
695 
696 	cs->max_idle_ns = clocksource_max_deferment(cs);
697 }
698 EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
699 
700 /**
701  * __clocksource_register_scale - Used to install new clocksources
702  * @cs:		clocksource to be registered
703  * @scale:	Scale factor multiplied against freq to get clocksource hz
704  * @freq:	clocksource frequency (cycles per second) divided by scale
705  *
706  * Returns -EBUSY if registration fails, zero otherwise.
707  *
708  * This *SHOULD NOT* be called directly! Please use the
709  * clocksource_register_hz() or clocksource_register_khz helper functions.
710  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)711 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
712 {
713 
714 	/* Initialize mult/shift and max_idle_ns */
715 	__clocksource_updatefreq_scale(cs, scale, freq);
716 
717 	/* Add clocksource to the clcoksource list */
718 	mutex_lock(&clocksource_mutex);
719 	clocksource_enqueue(cs);
720 	clocksource_enqueue_watchdog(cs);
721 	clocksource_select();
722 	mutex_unlock(&clocksource_mutex);
723 	return 0;
724 }
725 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
726 
727 
728 /**
729  * clocksource_register - Used to install new clocksources
730  * @cs:		clocksource to be registered
731  *
732  * Returns -EBUSY if registration fails, zero otherwise.
733  */
clocksource_register(struct clocksource * cs)734 int clocksource_register(struct clocksource *cs)
735 {
736 	/* calculate max adjustment for given mult/shift */
737 	cs->maxadj = clocksource_max_adjustment(cs);
738 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
739 		"Clocksource %s might overflow on 11%% adjustment\n",
740 		cs->name);
741 
742 	/* calculate max idle time permitted for this clocksource */
743 	cs->max_idle_ns = clocksource_max_deferment(cs);
744 
745 	mutex_lock(&clocksource_mutex);
746 	clocksource_enqueue(cs);
747 	clocksource_enqueue_watchdog(cs);
748 	clocksource_select();
749 	mutex_unlock(&clocksource_mutex);
750 	return 0;
751 }
752 EXPORT_SYMBOL(clocksource_register);
753 
__clocksource_change_rating(struct clocksource * cs,int rating)754 static void __clocksource_change_rating(struct clocksource *cs, int rating)
755 {
756 	list_del(&cs->list);
757 	cs->rating = rating;
758 	clocksource_enqueue(cs);
759 	clocksource_select();
760 }
761 
762 /**
763  * clocksource_change_rating - Change the rating of a registered clocksource
764  * @cs:		clocksource to be changed
765  * @rating:	new rating
766  */
clocksource_change_rating(struct clocksource * cs,int rating)767 void clocksource_change_rating(struct clocksource *cs, int rating)
768 {
769 	mutex_lock(&clocksource_mutex);
770 	__clocksource_change_rating(cs, rating);
771 	mutex_unlock(&clocksource_mutex);
772 }
773 EXPORT_SYMBOL(clocksource_change_rating);
774 
775 /**
776  * clocksource_unregister - remove a registered clocksource
777  * @cs:	clocksource to be unregistered
778  */
clocksource_unregister(struct clocksource * cs)779 void clocksource_unregister(struct clocksource *cs)
780 {
781 	mutex_lock(&clocksource_mutex);
782 	clocksource_dequeue_watchdog(cs);
783 	list_del(&cs->list);
784 	clocksource_select();
785 	mutex_unlock(&clocksource_mutex);
786 }
787 EXPORT_SYMBOL(clocksource_unregister);
788 
789 #ifdef CONFIG_SYSFS
790 /**
791  * sysfs_show_current_clocksources - sysfs interface for current clocksource
792  * @dev:	unused
793  * @attr:	unused
794  * @buf:	char buffer to be filled with clocksource list
795  *
796  * Provides sysfs interface for listing current clocksource.
797  */
798 static ssize_t
sysfs_show_current_clocksources(struct device * dev,struct device_attribute * attr,char * buf)799 sysfs_show_current_clocksources(struct device *dev,
800 				struct device_attribute *attr, char *buf)
801 {
802 	ssize_t count = 0;
803 
804 	mutex_lock(&clocksource_mutex);
805 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
806 	mutex_unlock(&clocksource_mutex);
807 
808 	return count;
809 }
810 
811 /**
812  * sysfs_override_clocksource - interface for manually overriding clocksource
813  * @dev:	unused
814  * @attr:	unused
815  * @buf:	name of override clocksource
816  * @count:	length of buffer
817  *
818  * Takes input from sysfs interface for manually overriding the default
819  * clocksource selection.
820  */
sysfs_override_clocksource(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)821 static ssize_t sysfs_override_clocksource(struct device *dev,
822 					  struct device_attribute *attr,
823 					  const char *buf, size_t count)
824 {
825 	size_t ret = count;
826 
827 	/* strings from sysfs write are not 0 terminated! */
828 	if (count >= sizeof(override_name))
829 		return -EINVAL;
830 
831 	/* strip of \n: */
832 	if (buf[count-1] == '\n')
833 		count--;
834 
835 	mutex_lock(&clocksource_mutex);
836 
837 	if (count > 0)
838 		memcpy(override_name, buf, count);
839 	override_name[count] = 0;
840 	clocksource_select();
841 
842 	mutex_unlock(&clocksource_mutex);
843 
844 	return ret;
845 }
846 
847 /**
848  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
849  * @dev:	unused
850  * @attr:	unused
851  * @buf:	char buffer to be filled with clocksource list
852  *
853  * Provides sysfs interface for listing registered clocksources
854  */
855 static ssize_t
sysfs_show_available_clocksources(struct device * dev,struct device_attribute * attr,char * buf)856 sysfs_show_available_clocksources(struct device *dev,
857 				  struct device_attribute *attr,
858 				  char *buf)
859 {
860 	struct clocksource *src;
861 	ssize_t count = 0;
862 
863 	mutex_lock(&clocksource_mutex);
864 	list_for_each_entry(src, &clocksource_list, list) {
865 		/*
866 		 * Don't show non-HRES clocksource if the tick code is
867 		 * in one shot mode (highres=on or nohz=on)
868 		 */
869 		if (!tick_oneshot_mode_active() ||
870 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
871 			count += snprintf(buf + count,
872 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
873 				  "%s ", src->name);
874 	}
875 	mutex_unlock(&clocksource_mutex);
876 
877 	count += snprintf(buf + count,
878 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
879 
880 	return count;
881 }
882 
883 /*
884  * Sysfs setup bits:
885  */
886 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
887 		   sysfs_override_clocksource);
888 
889 static DEVICE_ATTR(available_clocksource, 0444,
890 		   sysfs_show_available_clocksources, NULL);
891 
892 static struct bus_type clocksource_subsys = {
893 	.name = "clocksource",
894 	.dev_name = "clocksource",
895 };
896 
897 static struct device device_clocksource = {
898 	.id	= 0,
899 	.bus	= &clocksource_subsys,
900 };
901 
init_clocksource_sysfs(void)902 static int __init init_clocksource_sysfs(void)
903 {
904 	int error = subsys_system_register(&clocksource_subsys, NULL);
905 
906 	if (!error)
907 		error = device_register(&device_clocksource);
908 	if (!error)
909 		error = device_create_file(
910 				&device_clocksource,
911 				&dev_attr_current_clocksource);
912 	if (!error)
913 		error = device_create_file(
914 				&device_clocksource,
915 				&dev_attr_available_clocksource);
916 	return error;
917 }
918 
919 device_initcall(init_clocksource_sysfs);
920 #endif /* CONFIG_SYSFS */
921 
922 /**
923  * boot_override_clocksource - boot clock override
924  * @str:	override name
925  *
926  * Takes a clocksource= boot argument and uses it
927  * as the clocksource override name.
928  */
boot_override_clocksource(char * str)929 static int __init boot_override_clocksource(char* str)
930 {
931 	mutex_lock(&clocksource_mutex);
932 	if (str)
933 		strlcpy(override_name, str, sizeof(override_name));
934 	mutex_unlock(&clocksource_mutex);
935 	return 1;
936 }
937 
938 __setup("clocksource=", boot_override_clocksource);
939 
940 /**
941  * boot_override_clock - Compatibility layer for deprecated boot option
942  * @str:	override name
943  *
944  * DEPRECATED! Takes a clock= boot argument and uses it
945  * as the clocksource override name
946  */
boot_override_clock(char * str)947 static int __init boot_override_clock(char* str)
948 {
949 	if (!strcmp(str, "pmtmr")) {
950 		printk("Warning: clock=pmtmr is deprecated. "
951 			"Use clocksource=acpi_pm.\n");
952 		return boot_override_clocksource("acpi_pm");
953 	}
954 	printk("Warning! clock= boot option is deprecated. "
955 		"Use clocksource=xyz\n");
956 	return boot_override_clocksource(str);
957 }
958 
959 __setup("clock=", boot_override_clock);
960