• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19 
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37 
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
40 
41 #define DRIVER_NAME "mxc_nand"
42 
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA	(host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT		(host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
66 
67 #define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST		(1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE		(1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT		(1 << 11)
77 
78 #define NFC_V1_V2_CONFIG2_INT		(1 << 15)
79 
80 /*
81  * Operation modes for the NFC. Valid for v1, v2 and v3
82  * type controllers.
83  */
84 #define NFC_CMD				(1 << 0)
85 #define NFC_ADDR			(1 << 1)
86 #define NFC_INPUT			(1 << 2)
87 #define NFC_OUTPUT			(1 << 3)
88 #define NFC_ID				(1 << 4)
89 #define NFC_STATUS			(1 << 5)
90 
91 #define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
93 
94 #define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN		(1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
97 
98 #define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
99 
100 #define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
101 
102 #define NFC_V3_WRPROT			(host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
104 #define NFC_V3_WRPROT_LOCK		(1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK		(1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
107 
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
109 
110 #define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512			(0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048			(1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096			(2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
124 
125 #define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8			(1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
132 
133 #define NFC_V3_IPC			(host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ			(1 << 0)
135 #define NFC_V3_IPC_INT			(1 << 31)
136 
137 #define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
138 
139 struct mxc_nand_host;
140 
141 struct mxc_nand_devtype_data {
142 	void (*preset)(struct mtd_info *);
143 	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 	void (*send_page)(struct mtd_info *, unsigned int);
146 	void (*send_read_id)(struct mxc_nand_host *);
147 	uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 	int (*check_int)(struct mxc_nand_host *);
149 	void (*irq_control)(struct mxc_nand_host *, int);
150 	u32 (*get_ecc_status)(struct mxc_nand_host *);
151 	struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
152 	void (*select_chip)(struct mtd_info *mtd, int chip);
153 	int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 			u_char *read_ecc, u_char *calc_ecc);
155 
156 	/*
157 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
158 	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
159 	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
160 	 */
161 	int irqpending_quirk;
162 	int needs_ip;
163 
164 	size_t regs_offset;
165 	size_t spare0_offset;
166 	size_t axi_offset;
167 
168 	int spare_len;
169 	int eccbytes;
170 	int eccsize;
171 	int ppb_shift;
172 };
173 
174 struct mxc_nand_host {
175 	struct mtd_info		mtd;
176 	struct nand_chip	nand;
177 	struct device		*dev;
178 
179 	void __iomem		*spare0;
180 	void __iomem		*main_area0;
181 
182 	void __iomem		*base;
183 	void __iomem		*regs;
184 	void __iomem		*regs_axi;
185 	void __iomem		*regs_ip;
186 	int			status_request;
187 	struct clk		*clk;
188 	int			clk_act;
189 	int			irq;
190 	int			eccsize;
191 	int			active_cs;
192 
193 	struct completion	op_completion;
194 
195 	uint8_t			*data_buf;
196 	unsigned int		buf_start;
197 
198 	const struct mxc_nand_devtype_data *devtype_data;
199 	struct mxc_nand_platform_data pdata;
200 };
201 
202 /* OOB placement block for use with hardware ecc generation */
203 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
204 	.eccbytes = 5,
205 	.eccpos = {6, 7, 8, 9, 10},
206 	.oobfree = {{0, 5}, {12, 4}, }
207 };
208 
209 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
210 	.eccbytes = 20,
211 	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
212 		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
213 	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
214 };
215 
216 /* OOB description for 512 byte pages with 16 byte OOB */
217 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
218 	.eccbytes = 1 * 9,
219 	.eccpos = {
220 		 7,  8,  9, 10, 11, 12, 13, 14, 15
221 	},
222 	.oobfree = {
223 		{.offset = 0, .length = 5}
224 	}
225 };
226 
227 /* OOB description for 2048 byte pages with 64 byte OOB */
228 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
229 	.eccbytes = 4 * 9,
230 	.eccpos = {
231 		 7,  8,  9, 10, 11, 12, 13, 14, 15,
232 		23, 24, 25, 26, 27, 28, 29, 30, 31,
233 		39, 40, 41, 42, 43, 44, 45, 46, 47,
234 		55, 56, 57, 58, 59, 60, 61, 62, 63
235 	},
236 	.oobfree = {
237 		{.offset = 2, .length = 4},
238 		{.offset = 16, .length = 7},
239 		{.offset = 32, .length = 7},
240 		{.offset = 48, .length = 7}
241 	}
242 };
243 
244 /* OOB description for 4096 byte pages with 128 byte OOB */
245 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
246 	.eccbytes = 8 * 9,
247 	.eccpos = {
248 		7,  8,  9, 10, 11, 12, 13, 14, 15,
249 		23, 24, 25, 26, 27, 28, 29, 30, 31,
250 		39, 40, 41, 42, 43, 44, 45, 46, 47,
251 		55, 56, 57, 58, 59, 60, 61, 62, 63,
252 		71, 72, 73, 74, 75, 76, 77, 78, 79,
253 		87, 88, 89, 90, 91, 92, 93, 94, 95,
254 		103, 104, 105, 106, 107, 108, 109, 110, 111,
255 		119, 120, 121, 122, 123, 124, 125, 126, 127,
256 	},
257 	.oobfree = {
258 		{.offset = 2, .length = 4},
259 		{.offset = 16, .length = 7},
260 		{.offset = 32, .length = 7},
261 		{.offset = 48, .length = 7},
262 		{.offset = 64, .length = 7},
263 		{.offset = 80, .length = 7},
264 		{.offset = 96, .length = 7},
265 		{.offset = 112, .length = 7},
266 	}
267 };
268 
269 static const char const *part_probes[] = {
270 	"cmdlinepart", "RedBoot", "ofpart", NULL };
271 
memcpy32_fromio(void * trg,const void __iomem * src,size_t size)272 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
273 {
274 	int i;
275 	u32 *t = trg;
276 	const __iomem u32 *s = src;
277 
278 	for (i = 0; i < (size >> 2); i++)
279 		*t++ = __raw_readl(s++);
280 }
281 
memcpy32_toio(void __iomem * trg,const void * src,int size)282 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
283 {
284 	int i;
285 	u32 __iomem *t = trg;
286 	const u32 *s = src;
287 
288 	for (i = 0; i < (size >> 2); i++)
289 		__raw_writel(*s++, t++);
290 }
291 
check_int_v3(struct mxc_nand_host * host)292 static int check_int_v3(struct mxc_nand_host *host)
293 {
294 	uint32_t tmp;
295 
296 	tmp = readl(NFC_V3_IPC);
297 	if (!(tmp & NFC_V3_IPC_INT))
298 		return 0;
299 
300 	tmp &= ~NFC_V3_IPC_INT;
301 	writel(tmp, NFC_V3_IPC);
302 
303 	return 1;
304 }
305 
check_int_v1_v2(struct mxc_nand_host * host)306 static int check_int_v1_v2(struct mxc_nand_host *host)
307 {
308 	uint32_t tmp;
309 
310 	tmp = readw(NFC_V1_V2_CONFIG2);
311 	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
312 		return 0;
313 
314 	if (!host->devtype_data->irqpending_quirk)
315 		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
316 
317 	return 1;
318 }
319 
irq_control_v1_v2(struct mxc_nand_host * host,int activate)320 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
321 {
322 	uint16_t tmp;
323 
324 	tmp = readw(NFC_V1_V2_CONFIG1);
325 
326 	if (activate)
327 		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
328 	else
329 		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
330 
331 	writew(tmp, NFC_V1_V2_CONFIG1);
332 }
333 
irq_control_v3(struct mxc_nand_host * host,int activate)334 static void irq_control_v3(struct mxc_nand_host *host, int activate)
335 {
336 	uint32_t tmp;
337 
338 	tmp = readl(NFC_V3_CONFIG2);
339 
340 	if (activate)
341 		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
342 	else
343 		tmp |= NFC_V3_CONFIG2_INT_MSK;
344 
345 	writel(tmp, NFC_V3_CONFIG2);
346 }
347 
irq_control(struct mxc_nand_host * host,int activate)348 static void irq_control(struct mxc_nand_host *host, int activate)
349 {
350 	if (host->devtype_data->irqpending_quirk) {
351 		if (activate)
352 			enable_irq(host->irq);
353 		else
354 			disable_irq_nosync(host->irq);
355 	} else {
356 		host->devtype_data->irq_control(host, activate);
357 	}
358 }
359 
get_ecc_status_v1(struct mxc_nand_host * host)360 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
361 {
362 	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
363 }
364 
get_ecc_status_v2(struct mxc_nand_host * host)365 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
366 {
367 	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
368 }
369 
get_ecc_status_v3(struct mxc_nand_host * host)370 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
371 {
372 	return readl(NFC_V3_ECC_STATUS_RESULT);
373 }
374 
mxc_nfc_irq(int irq,void * dev_id)375 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
376 {
377 	struct mxc_nand_host *host = dev_id;
378 
379 	if (!host->devtype_data->check_int(host))
380 		return IRQ_NONE;
381 
382 	irq_control(host, 0);
383 
384 	complete(&host->op_completion);
385 
386 	return IRQ_HANDLED;
387 }
388 
389 /* This function polls the NANDFC to wait for the basic operation to
390  * complete by checking the INT bit of config2 register.
391  */
wait_op_done(struct mxc_nand_host * host,int useirq)392 static void wait_op_done(struct mxc_nand_host *host, int useirq)
393 {
394 	int max_retries = 8000;
395 
396 	if (useirq) {
397 		if (!host->devtype_data->check_int(host)) {
398 			INIT_COMPLETION(host->op_completion);
399 			irq_control(host, 1);
400 			wait_for_completion(&host->op_completion);
401 		}
402 	} else {
403 		while (max_retries-- > 0) {
404 			if (host->devtype_data->check_int(host))
405 				break;
406 
407 			udelay(1);
408 		}
409 		if (max_retries < 0)
410 			pr_debug("%s: INT not set\n", __func__);
411 	}
412 }
413 
send_cmd_v3(struct mxc_nand_host * host,uint16_t cmd,int useirq)414 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
415 {
416 	/* fill command */
417 	writel(cmd, NFC_V3_FLASH_CMD);
418 
419 	/* send out command */
420 	writel(NFC_CMD, NFC_V3_LAUNCH);
421 
422 	/* Wait for operation to complete */
423 	wait_op_done(host, useirq);
424 }
425 
426 /* This function issues the specified command to the NAND device and
427  * waits for completion. */
send_cmd_v1_v2(struct mxc_nand_host * host,uint16_t cmd,int useirq)428 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
429 {
430 	pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
431 
432 	writew(cmd, NFC_V1_V2_FLASH_CMD);
433 	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
434 
435 	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
436 		int max_retries = 100;
437 		/* Reset completion is indicated by NFC_CONFIG2 */
438 		/* being set to 0 */
439 		while (max_retries-- > 0) {
440 			if (readw(NFC_V1_V2_CONFIG2) == 0) {
441 				break;
442 			}
443 			udelay(1);
444 		}
445 		if (max_retries < 0)
446 			pr_debug("%s: RESET failed\n", __func__);
447 	} else {
448 		/* Wait for operation to complete */
449 		wait_op_done(host, useirq);
450 	}
451 }
452 
send_addr_v3(struct mxc_nand_host * host,uint16_t addr,int islast)453 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
454 {
455 	/* fill address */
456 	writel(addr, NFC_V3_FLASH_ADDR0);
457 
458 	/* send out address */
459 	writel(NFC_ADDR, NFC_V3_LAUNCH);
460 
461 	wait_op_done(host, 0);
462 }
463 
464 /* This function sends an address (or partial address) to the
465  * NAND device. The address is used to select the source/destination for
466  * a NAND command. */
send_addr_v1_v2(struct mxc_nand_host * host,uint16_t addr,int islast)467 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
468 {
469 	pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
470 
471 	writew(addr, NFC_V1_V2_FLASH_ADDR);
472 	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
473 
474 	/* Wait for operation to complete */
475 	wait_op_done(host, islast);
476 }
477 
send_page_v3(struct mtd_info * mtd,unsigned int ops)478 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
479 {
480 	struct nand_chip *nand_chip = mtd->priv;
481 	struct mxc_nand_host *host = nand_chip->priv;
482 	uint32_t tmp;
483 
484 	tmp = readl(NFC_V3_CONFIG1);
485 	tmp &= ~(7 << 4);
486 	writel(tmp, NFC_V3_CONFIG1);
487 
488 	/* transfer data from NFC ram to nand */
489 	writel(ops, NFC_V3_LAUNCH);
490 
491 	wait_op_done(host, false);
492 }
493 
send_page_v2(struct mtd_info * mtd,unsigned int ops)494 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
495 {
496 	struct nand_chip *nand_chip = mtd->priv;
497 	struct mxc_nand_host *host = nand_chip->priv;
498 
499 	/* NANDFC buffer 0 is used for page read/write */
500 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
501 
502 	writew(ops, NFC_V1_V2_CONFIG2);
503 
504 	/* Wait for operation to complete */
505 	wait_op_done(host, true);
506 }
507 
send_page_v1(struct mtd_info * mtd,unsigned int ops)508 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
509 {
510 	struct nand_chip *nand_chip = mtd->priv;
511 	struct mxc_nand_host *host = nand_chip->priv;
512 	int bufs, i;
513 
514 	if (mtd->writesize > 512)
515 		bufs = 4;
516 	else
517 		bufs = 1;
518 
519 	for (i = 0; i < bufs; i++) {
520 
521 		/* NANDFC buffer 0 is used for page read/write */
522 		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
523 
524 		writew(ops, NFC_V1_V2_CONFIG2);
525 
526 		/* Wait for operation to complete */
527 		wait_op_done(host, true);
528 	}
529 }
530 
send_read_id_v3(struct mxc_nand_host * host)531 static void send_read_id_v3(struct mxc_nand_host *host)
532 {
533 	struct nand_chip *this = &host->nand;
534 
535 	/* Read ID into main buffer */
536 	writel(NFC_ID, NFC_V3_LAUNCH);
537 
538 	wait_op_done(host, true);
539 
540 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
541 
542 	if (this->options & NAND_BUSWIDTH_16) {
543 		/* compress the ID info */
544 		host->data_buf[1] = host->data_buf[2];
545 		host->data_buf[2] = host->data_buf[4];
546 		host->data_buf[3] = host->data_buf[6];
547 		host->data_buf[4] = host->data_buf[8];
548 		host->data_buf[5] = host->data_buf[10];
549 	}
550 }
551 
552 /* Request the NANDFC to perform a read of the NAND device ID. */
send_read_id_v1_v2(struct mxc_nand_host * host)553 static void send_read_id_v1_v2(struct mxc_nand_host *host)
554 {
555 	struct nand_chip *this = &host->nand;
556 
557 	/* NANDFC buffer 0 is used for device ID output */
558 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
559 
560 	writew(NFC_ID, NFC_V1_V2_CONFIG2);
561 
562 	/* Wait for operation to complete */
563 	wait_op_done(host, true);
564 
565 	memcpy32_fromio(host->data_buf, host->main_area0, 16);
566 
567 	if (this->options & NAND_BUSWIDTH_16) {
568 		/* compress the ID info */
569 		host->data_buf[1] = host->data_buf[2];
570 		host->data_buf[2] = host->data_buf[4];
571 		host->data_buf[3] = host->data_buf[6];
572 		host->data_buf[4] = host->data_buf[8];
573 		host->data_buf[5] = host->data_buf[10];
574 	}
575 }
576 
get_dev_status_v3(struct mxc_nand_host * host)577 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
578 {
579 	writew(NFC_STATUS, NFC_V3_LAUNCH);
580 	wait_op_done(host, true);
581 
582 	return readl(NFC_V3_CONFIG1) >> 16;
583 }
584 
585 /* This function requests the NANDFC to perform a read of the
586  * NAND device status and returns the current status. */
get_dev_status_v1_v2(struct mxc_nand_host * host)587 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
588 {
589 	void __iomem *main_buf = host->main_area0;
590 	uint32_t store;
591 	uint16_t ret;
592 
593 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
594 
595 	/*
596 	 * The device status is stored in main_area0. To
597 	 * prevent corruption of the buffer save the value
598 	 * and restore it afterwards.
599 	 */
600 	store = readl(main_buf);
601 
602 	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
603 	wait_op_done(host, true);
604 
605 	ret = readw(main_buf);
606 
607 	writel(store, main_buf);
608 
609 	return ret;
610 }
611 
612 /* This functions is used by upper layer to checks if device is ready */
mxc_nand_dev_ready(struct mtd_info * mtd)613 static int mxc_nand_dev_ready(struct mtd_info *mtd)
614 {
615 	/*
616 	 * NFC handles R/B internally. Therefore, this function
617 	 * always returns status as ready.
618 	 */
619 	return 1;
620 }
621 
mxc_nand_enable_hwecc(struct mtd_info * mtd,int mode)622 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
623 {
624 	/*
625 	 * If HW ECC is enabled, we turn it on during init. There is
626 	 * no need to enable again here.
627 	 */
628 }
629 
mxc_nand_correct_data_v1(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)630 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
631 				 u_char *read_ecc, u_char *calc_ecc)
632 {
633 	struct nand_chip *nand_chip = mtd->priv;
634 	struct mxc_nand_host *host = nand_chip->priv;
635 
636 	/*
637 	 * 1-Bit errors are automatically corrected in HW.  No need for
638 	 * additional correction.  2-Bit errors cannot be corrected by
639 	 * HW ECC, so we need to return failure
640 	 */
641 	uint16_t ecc_status = get_ecc_status_v1(host);
642 
643 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
644 		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
645 		return -1;
646 	}
647 
648 	return 0;
649 }
650 
mxc_nand_correct_data_v2_v3(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)651 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
652 				 u_char *read_ecc, u_char *calc_ecc)
653 {
654 	struct nand_chip *nand_chip = mtd->priv;
655 	struct mxc_nand_host *host = nand_chip->priv;
656 	u32 ecc_stat, err;
657 	int no_subpages = 1;
658 	int ret = 0;
659 	u8 ecc_bit_mask, err_limit;
660 
661 	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
662 	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
663 
664 	no_subpages = mtd->writesize >> 9;
665 
666 	ecc_stat = host->devtype_data->get_ecc_status(host);
667 
668 	do {
669 		err = ecc_stat & ecc_bit_mask;
670 		if (err > err_limit) {
671 			printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
672 			return -1;
673 		} else {
674 			ret += err;
675 		}
676 		ecc_stat >>= 4;
677 	} while (--no_subpages);
678 
679 	mtd->ecc_stats.corrected += ret;
680 	pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
681 
682 	return ret;
683 }
684 
mxc_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)685 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
686 				  u_char *ecc_code)
687 {
688 	return 0;
689 }
690 
mxc_nand_read_byte(struct mtd_info * mtd)691 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
692 {
693 	struct nand_chip *nand_chip = mtd->priv;
694 	struct mxc_nand_host *host = nand_chip->priv;
695 	uint8_t ret;
696 
697 	/* Check for status request */
698 	if (host->status_request)
699 		return host->devtype_data->get_dev_status(host) & 0xFF;
700 
701 	ret = *(uint8_t *)(host->data_buf + host->buf_start);
702 	host->buf_start++;
703 
704 	return ret;
705 }
706 
mxc_nand_read_word(struct mtd_info * mtd)707 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
708 {
709 	struct nand_chip *nand_chip = mtd->priv;
710 	struct mxc_nand_host *host = nand_chip->priv;
711 	uint16_t ret;
712 
713 	ret = *(uint16_t *)(host->data_buf + host->buf_start);
714 	host->buf_start += 2;
715 
716 	return ret;
717 }
718 
719 /* Write data of length len to buffer buf. The data to be
720  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
721  * Operation by the NFC, the data is written to NAND Flash */
mxc_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)722 static void mxc_nand_write_buf(struct mtd_info *mtd,
723 				const u_char *buf, int len)
724 {
725 	struct nand_chip *nand_chip = mtd->priv;
726 	struct mxc_nand_host *host = nand_chip->priv;
727 	u16 col = host->buf_start;
728 	int n = mtd->oobsize + mtd->writesize - col;
729 
730 	n = min(n, len);
731 
732 	memcpy(host->data_buf + col, buf, n);
733 
734 	host->buf_start += n;
735 }
736 
737 /* Read the data buffer from the NAND Flash. To read the data from NAND
738  * Flash first the data output cycle is initiated by the NFC, which copies
739  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
740  */
mxc_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)741 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
742 {
743 	struct nand_chip *nand_chip = mtd->priv;
744 	struct mxc_nand_host *host = nand_chip->priv;
745 	u16 col = host->buf_start;
746 	int n = mtd->oobsize + mtd->writesize - col;
747 
748 	n = min(n, len);
749 
750 	memcpy(buf, host->data_buf + col, n);
751 
752 	host->buf_start += n;
753 }
754 
755 /* This function is used by upper layer for select and
756  * deselect of the NAND chip */
mxc_nand_select_chip_v1_v3(struct mtd_info * mtd,int chip)757 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
758 {
759 	struct nand_chip *nand_chip = mtd->priv;
760 	struct mxc_nand_host *host = nand_chip->priv;
761 
762 	if (chip == -1) {
763 		/* Disable the NFC clock */
764 		if (host->clk_act) {
765 			clk_disable_unprepare(host->clk);
766 			host->clk_act = 0;
767 		}
768 		return;
769 	}
770 
771 	if (!host->clk_act) {
772 		/* Enable the NFC clock */
773 		clk_prepare_enable(host->clk);
774 		host->clk_act = 1;
775 	}
776 }
777 
mxc_nand_select_chip_v2(struct mtd_info * mtd,int chip)778 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
779 {
780 	struct nand_chip *nand_chip = mtd->priv;
781 	struct mxc_nand_host *host = nand_chip->priv;
782 
783 	if (chip == -1) {
784 		/* Disable the NFC clock */
785 		if (host->clk_act) {
786 			clk_disable_unprepare(host->clk);
787 			host->clk_act = 0;
788 		}
789 		return;
790 	}
791 
792 	if (!host->clk_act) {
793 		/* Enable the NFC clock */
794 		clk_prepare_enable(host->clk);
795 		host->clk_act = 1;
796 	}
797 
798 	host->active_cs = chip;
799 	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
800 }
801 
802 /*
803  * Function to transfer data to/from spare area.
804  */
copy_spare(struct mtd_info * mtd,bool bfrom)805 static void copy_spare(struct mtd_info *mtd, bool bfrom)
806 {
807 	struct nand_chip *this = mtd->priv;
808 	struct mxc_nand_host *host = this->priv;
809 	u16 i, j;
810 	u16 n = mtd->writesize >> 9;
811 	u8 *d = host->data_buf + mtd->writesize;
812 	u8 __iomem *s = host->spare0;
813 	u16 t = host->devtype_data->spare_len;
814 
815 	j = (mtd->oobsize / n >> 1) << 1;
816 
817 	if (bfrom) {
818 		for (i = 0; i < n - 1; i++)
819 			memcpy32_fromio(d + i * j, s + i * t, j);
820 
821 		/* the last section */
822 		memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
823 	} else {
824 		for (i = 0; i < n - 1; i++)
825 			memcpy32_toio(&s[i * t], &d[i * j], j);
826 
827 		/* the last section */
828 		memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
829 	}
830 }
831 
mxc_do_addr_cycle(struct mtd_info * mtd,int column,int page_addr)832 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
833 {
834 	struct nand_chip *nand_chip = mtd->priv;
835 	struct mxc_nand_host *host = nand_chip->priv;
836 
837 	/* Write out column address, if necessary */
838 	if (column != -1) {
839 		/*
840 		 * MXC NANDFC can only perform full page+spare or
841 		 * spare-only read/write.  When the upper layers
842 		 * perform a read/write buf operation, the saved column
843 		  * address is used to index into the full page.
844 		 */
845 		host->devtype_data->send_addr(host, 0, page_addr == -1);
846 		if (mtd->writesize > 512)
847 			/* another col addr cycle for 2k page */
848 			host->devtype_data->send_addr(host, 0, false);
849 	}
850 
851 	/* Write out page address, if necessary */
852 	if (page_addr != -1) {
853 		/* paddr_0 - p_addr_7 */
854 		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
855 
856 		if (mtd->writesize > 512) {
857 			if (mtd->size >= 0x10000000) {
858 				/* paddr_8 - paddr_15 */
859 				host->devtype_data->send_addr(host,
860 						(page_addr >> 8) & 0xff,
861 						false);
862 				host->devtype_data->send_addr(host,
863 						(page_addr >> 16) & 0xff,
864 						true);
865 			} else
866 				/* paddr_8 - paddr_15 */
867 				host->devtype_data->send_addr(host,
868 						(page_addr >> 8) & 0xff, true);
869 		} else {
870 			/* One more address cycle for higher density devices */
871 			if (mtd->size >= 0x4000000) {
872 				/* paddr_8 - paddr_15 */
873 				host->devtype_data->send_addr(host,
874 						(page_addr >> 8) & 0xff,
875 						false);
876 				host->devtype_data->send_addr(host,
877 						(page_addr >> 16) & 0xff,
878 						true);
879 			} else
880 				/* paddr_8 - paddr_15 */
881 				host->devtype_data->send_addr(host,
882 						(page_addr >> 8) & 0xff, true);
883 		}
884 	}
885 }
886 
887 /*
888  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
889  * on how much oob the nand chip has. For 8bit ecc we need at least
890  * 26 bytes of oob data per 512 byte block.
891  */
get_eccsize(struct mtd_info * mtd)892 static int get_eccsize(struct mtd_info *mtd)
893 {
894 	int oobbytes_per_512 = 0;
895 
896 	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
897 
898 	if (oobbytes_per_512 < 26)
899 		return 4;
900 	else
901 		return 8;
902 }
903 
preset_v1(struct mtd_info * mtd)904 static void preset_v1(struct mtd_info *mtd)
905 {
906 	struct nand_chip *nand_chip = mtd->priv;
907 	struct mxc_nand_host *host = nand_chip->priv;
908 	uint16_t config1 = 0;
909 
910 	if (nand_chip->ecc.mode == NAND_ECC_HW)
911 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
912 
913 	if (!host->devtype_data->irqpending_quirk)
914 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
915 
916 	host->eccsize = 1;
917 
918 	writew(config1, NFC_V1_V2_CONFIG1);
919 	/* preset operation */
920 
921 	/* Unlock the internal RAM Buffer */
922 	writew(0x2, NFC_V1_V2_CONFIG);
923 
924 	/* Blocks to be unlocked */
925 	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
926 	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
927 
928 	/* Unlock Block Command for given address range */
929 	writew(0x4, NFC_V1_V2_WRPROT);
930 }
931 
preset_v2(struct mtd_info * mtd)932 static void preset_v2(struct mtd_info *mtd)
933 {
934 	struct nand_chip *nand_chip = mtd->priv;
935 	struct mxc_nand_host *host = nand_chip->priv;
936 	uint16_t config1 = 0;
937 
938 	if (nand_chip->ecc.mode == NAND_ECC_HW)
939 		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
940 
941 	config1 |= NFC_V2_CONFIG1_FP_INT;
942 
943 	if (!host->devtype_data->irqpending_quirk)
944 		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
945 
946 	if (mtd->writesize) {
947 		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
948 
949 		host->eccsize = get_eccsize(mtd);
950 		if (host->eccsize == 4)
951 			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
952 
953 		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
954 	} else {
955 		host->eccsize = 1;
956 	}
957 
958 	writew(config1, NFC_V1_V2_CONFIG1);
959 	/* preset operation */
960 
961 	/* Unlock the internal RAM Buffer */
962 	writew(0x2, NFC_V1_V2_CONFIG);
963 
964 	/* Blocks to be unlocked */
965 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
966 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
967 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
968 	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
969 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
970 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
971 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
972 	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
973 
974 	/* Unlock Block Command for given address range */
975 	writew(0x4, NFC_V1_V2_WRPROT);
976 }
977 
preset_v3(struct mtd_info * mtd)978 static void preset_v3(struct mtd_info *mtd)
979 {
980 	struct nand_chip *chip = mtd->priv;
981 	struct mxc_nand_host *host = chip->priv;
982 	uint32_t config2, config3;
983 	int i, addr_phases;
984 
985 	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
986 	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
987 
988 	/* Unlock the internal RAM Buffer */
989 	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
990 			NFC_V3_WRPROT);
991 
992 	/* Blocks to be unlocked */
993 	for (i = 0; i < NAND_MAX_CHIPS; i++)
994 		writel(0x0 |	(0xffff << 16),
995 				NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
996 
997 	writel(0, NFC_V3_IPC);
998 
999 	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1000 		NFC_V3_CONFIG2_2CMD_PHASES |
1001 		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1002 		NFC_V3_CONFIG2_ST_CMD(0x70) |
1003 		NFC_V3_CONFIG2_INT_MSK |
1004 		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005 
1006 	if (chip->ecc.mode == NAND_ECC_HW)
1007 		config2 |= NFC_V3_CONFIG2_ECC_EN;
1008 
1009 	addr_phases = fls(chip->pagemask) >> 3;
1010 
1011 	if (mtd->writesize == 2048) {
1012 		config2 |= NFC_V3_CONFIG2_PS_2048;
1013 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1014 	} else if (mtd->writesize == 4096) {
1015 		config2 |= NFC_V3_CONFIG2_PS_4096;
1016 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1017 	} else {
1018 		config2 |= NFC_V3_CONFIG2_PS_512;
1019 		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1020 	}
1021 
1022 	if (mtd->writesize) {
1023 		config2 |= NFC_V3_CONFIG2_PPB(
1024 				ffs(mtd->erasesize / mtd->writesize) - 6,
1025 				host->devtype_data->ppb_shift);
1026 		host->eccsize = get_eccsize(mtd);
1027 		if (host->eccsize == 8)
1028 			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1029 	}
1030 
1031 	writel(config2, NFC_V3_CONFIG2);
1032 
1033 	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1034 			NFC_V3_CONFIG3_NO_SDMA |
1035 			NFC_V3_CONFIG3_RBB_MODE |
1036 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1037 			NFC_V3_CONFIG3_ADD_OP(0);
1038 
1039 	if (!(chip->options & NAND_BUSWIDTH_16))
1040 		config3 |= NFC_V3_CONFIG3_FW8;
1041 
1042 	writel(config3, NFC_V3_CONFIG3);
1043 
1044 	writel(0, NFC_V3_DELAY_LINE);
1045 }
1046 
1047 /* Used by the upper layer to write command to NAND Flash for
1048  * different operations to be carried out on NAND Flash */
mxc_nand_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)1049 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1050 				int column, int page_addr)
1051 {
1052 	struct nand_chip *nand_chip = mtd->priv;
1053 	struct mxc_nand_host *host = nand_chip->priv;
1054 
1055 	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1056 	      command, column, page_addr);
1057 
1058 	/* Reset command state information */
1059 	host->status_request = false;
1060 
1061 	/* Command pre-processing step */
1062 	switch (command) {
1063 	case NAND_CMD_RESET:
1064 		host->devtype_data->preset(mtd);
1065 		host->devtype_data->send_cmd(host, command, false);
1066 		break;
1067 
1068 	case NAND_CMD_STATUS:
1069 		host->buf_start = 0;
1070 		host->status_request = true;
1071 
1072 		host->devtype_data->send_cmd(host, command, true);
1073 		mxc_do_addr_cycle(mtd, column, page_addr);
1074 		break;
1075 
1076 	case NAND_CMD_READ0:
1077 	case NAND_CMD_READOOB:
1078 		if (command == NAND_CMD_READ0)
1079 			host->buf_start = column;
1080 		else
1081 			host->buf_start = column + mtd->writesize;
1082 
1083 		command = NAND_CMD_READ0; /* only READ0 is valid */
1084 
1085 		host->devtype_data->send_cmd(host, command, false);
1086 		mxc_do_addr_cycle(mtd, column, page_addr);
1087 
1088 		if (mtd->writesize > 512)
1089 			host->devtype_data->send_cmd(host,
1090 					NAND_CMD_READSTART, true);
1091 
1092 		host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093 
1094 		memcpy32_fromio(host->data_buf, host->main_area0,
1095 				mtd->writesize);
1096 		copy_spare(mtd, true);
1097 		break;
1098 
1099 	case NAND_CMD_SEQIN:
1100 		if (column >= mtd->writesize)
1101 			/* call ourself to read a page */
1102 			mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103 
1104 		host->buf_start = column;
1105 
1106 		host->devtype_data->send_cmd(host, command, false);
1107 		mxc_do_addr_cycle(mtd, column, page_addr);
1108 		break;
1109 
1110 	case NAND_CMD_PAGEPROG:
1111 		memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1112 		copy_spare(mtd, false);
1113 		host->devtype_data->send_page(mtd, NFC_INPUT);
1114 		host->devtype_data->send_cmd(host, command, true);
1115 		mxc_do_addr_cycle(mtd, column, page_addr);
1116 		break;
1117 
1118 	case NAND_CMD_READID:
1119 		host->devtype_data->send_cmd(host, command, true);
1120 		mxc_do_addr_cycle(mtd, column, page_addr);
1121 		host->devtype_data->send_read_id(host);
1122 		host->buf_start = column;
1123 		break;
1124 
1125 	case NAND_CMD_ERASE1:
1126 	case NAND_CMD_ERASE2:
1127 		host->devtype_data->send_cmd(host, command, false);
1128 		mxc_do_addr_cycle(mtd, column, page_addr);
1129 
1130 		break;
1131 	}
1132 }
1133 
1134 /*
1135  * The generic flash bbt decriptors overlap with our ecc
1136  * hardware, so define some i.MX specific ones.
1137  */
1138 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1139 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140 
1141 static struct nand_bbt_descr bbt_main_descr = {
1142 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1143 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144 	.offs = 0,
1145 	.len = 4,
1146 	.veroffs = 4,
1147 	.maxblocks = 4,
1148 	.pattern = bbt_pattern,
1149 };
1150 
1151 static struct nand_bbt_descr bbt_mirror_descr = {
1152 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1153 	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1154 	.offs = 0,
1155 	.len = 4,
1156 	.veroffs = 4,
1157 	.maxblocks = 4,
1158 	.pattern = mirror_pattern,
1159 };
1160 
1161 /* v1 + irqpending_quirk: i.MX21 */
1162 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1163 	.preset = preset_v1,
1164 	.send_cmd = send_cmd_v1_v2,
1165 	.send_addr = send_addr_v1_v2,
1166 	.send_page = send_page_v1,
1167 	.send_read_id = send_read_id_v1_v2,
1168 	.get_dev_status = get_dev_status_v1_v2,
1169 	.check_int = check_int_v1_v2,
1170 	.irq_control = irq_control_v1_v2,
1171 	.get_ecc_status = get_ecc_status_v1,
1172 	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1173 	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1174 	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1175 	.select_chip = mxc_nand_select_chip_v1_v3,
1176 	.correct_data = mxc_nand_correct_data_v1,
1177 	.irqpending_quirk = 1,
1178 	.needs_ip = 0,
1179 	.regs_offset = 0xe00,
1180 	.spare0_offset = 0x800,
1181 	.spare_len = 16,
1182 	.eccbytes = 3,
1183 	.eccsize = 1,
1184 };
1185 
1186 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1187 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1188 	.preset = preset_v1,
1189 	.send_cmd = send_cmd_v1_v2,
1190 	.send_addr = send_addr_v1_v2,
1191 	.send_page = send_page_v1,
1192 	.send_read_id = send_read_id_v1_v2,
1193 	.get_dev_status = get_dev_status_v1_v2,
1194 	.check_int = check_int_v1_v2,
1195 	.irq_control = irq_control_v1_v2,
1196 	.get_ecc_status = get_ecc_status_v1,
1197 	.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1198 	.ecclayout_2k = &nandv1_hw_eccoob_largepage,
1199 	.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1200 	.select_chip = mxc_nand_select_chip_v1_v3,
1201 	.correct_data = mxc_nand_correct_data_v1,
1202 	.irqpending_quirk = 0,
1203 	.needs_ip = 0,
1204 	.regs_offset = 0xe00,
1205 	.spare0_offset = 0x800,
1206 	.axi_offset = 0,
1207 	.spare_len = 16,
1208 	.eccbytes = 3,
1209 	.eccsize = 1,
1210 };
1211 
1212 /* v21: i.MX25, i.MX35 */
1213 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1214 	.preset = preset_v2,
1215 	.send_cmd = send_cmd_v1_v2,
1216 	.send_addr = send_addr_v1_v2,
1217 	.send_page = send_page_v2,
1218 	.send_read_id = send_read_id_v1_v2,
1219 	.get_dev_status = get_dev_status_v1_v2,
1220 	.check_int = check_int_v1_v2,
1221 	.irq_control = irq_control_v1_v2,
1222 	.get_ecc_status = get_ecc_status_v2,
1223 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1224 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1225 	.ecclayout_4k = &nandv2_hw_eccoob_4k,
1226 	.select_chip = mxc_nand_select_chip_v2,
1227 	.correct_data = mxc_nand_correct_data_v2_v3,
1228 	.irqpending_quirk = 0,
1229 	.needs_ip = 0,
1230 	.regs_offset = 0x1e00,
1231 	.spare0_offset = 0x1000,
1232 	.axi_offset = 0,
1233 	.spare_len = 64,
1234 	.eccbytes = 9,
1235 	.eccsize = 0,
1236 };
1237 
1238 /* v3.2a: i.MX51 */
1239 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1240 	.preset = preset_v3,
1241 	.send_cmd = send_cmd_v3,
1242 	.send_addr = send_addr_v3,
1243 	.send_page = send_page_v3,
1244 	.send_read_id = send_read_id_v3,
1245 	.get_dev_status = get_dev_status_v3,
1246 	.check_int = check_int_v3,
1247 	.irq_control = irq_control_v3,
1248 	.get_ecc_status = get_ecc_status_v3,
1249 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1250 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1251 	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1252 	.select_chip = mxc_nand_select_chip_v1_v3,
1253 	.correct_data = mxc_nand_correct_data_v2_v3,
1254 	.irqpending_quirk = 0,
1255 	.needs_ip = 1,
1256 	.regs_offset = 0,
1257 	.spare0_offset = 0x1000,
1258 	.axi_offset = 0x1e00,
1259 	.spare_len = 64,
1260 	.eccbytes = 0,
1261 	.eccsize = 0,
1262 	.ppb_shift = 7,
1263 };
1264 
1265 /* v3.2b: i.MX53 */
1266 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1267 	.preset = preset_v3,
1268 	.send_cmd = send_cmd_v3,
1269 	.send_addr = send_addr_v3,
1270 	.send_page = send_page_v3,
1271 	.send_read_id = send_read_id_v3,
1272 	.get_dev_status = get_dev_status_v3,
1273 	.check_int = check_int_v3,
1274 	.irq_control = irq_control_v3,
1275 	.get_ecc_status = get_ecc_status_v3,
1276 	.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1277 	.ecclayout_2k = &nandv2_hw_eccoob_largepage,
1278 	.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1279 	.select_chip = mxc_nand_select_chip_v1_v3,
1280 	.correct_data = mxc_nand_correct_data_v2_v3,
1281 	.irqpending_quirk = 0,
1282 	.needs_ip = 1,
1283 	.regs_offset = 0,
1284 	.spare0_offset = 0x1000,
1285 	.axi_offset = 0x1e00,
1286 	.spare_len = 64,
1287 	.eccbytes = 0,
1288 	.eccsize = 0,
1289 	.ppb_shift = 8,
1290 };
1291 
is_imx21_nfc(struct mxc_nand_host * host)1292 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293 {
1294 	return host->devtype_data == &imx21_nand_devtype_data;
1295 }
1296 
is_imx27_nfc(struct mxc_nand_host * host)1297 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298 {
1299 	return host->devtype_data == &imx27_nand_devtype_data;
1300 }
1301 
is_imx25_nfc(struct mxc_nand_host * host)1302 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303 {
1304 	return host->devtype_data == &imx25_nand_devtype_data;
1305 }
1306 
is_imx51_nfc(struct mxc_nand_host * host)1307 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308 {
1309 	return host->devtype_data == &imx51_nand_devtype_data;
1310 }
1311 
is_imx53_nfc(struct mxc_nand_host * host)1312 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313 {
1314 	return host->devtype_data == &imx53_nand_devtype_data;
1315 }
1316 
1317 static struct platform_device_id mxcnd_devtype[] = {
1318 	{
1319 		.name = "imx21-nand",
1320 		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1321 	}, {
1322 		.name = "imx27-nand",
1323 		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1324 	}, {
1325 		.name = "imx25-nand",
1326 		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1327 	}, {
1328 		.name = "imx51-nand",
1329 		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1330 	}, {
1331 		.name = "imx53-nand",
1332 		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1333 	}, {
1334 		/* sentinel */
1335 	}
1336 };
1337 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338 
1339 #ifdef CONFIG_OF_MTD
1340 static const struct of_device_id mxcnd_dt_ids[] = {
1341 	{
1342 		.compatible = "fsl,imx21-nand",
1343 		.data = &imx21_nand_devtype_data,
1344 	}, {
1345 		.compatible = "fsl,imx27-nand",
1346 		.data = &imx27_nand_devtype_data,
1347 	}, {
1348 		.compatible = "fsl,imx25-nand",
1349 		.data = &imx25_nand_devtype_data,
1350 	}, {
1351 		.compatible = "fsl,imx51-nand",
1352 		.data = &imx51_nand_devtype_data,
1353 	}, {
1354 		.compatible = "fsl,imx53-nand",
1355 		.data = &imx53_nand_devtype_data,
1356 	},
1357 	{ /* sentinel */ }
1358 };
1359 
mxcnd_probe_dt(struct mxc_nand_host * host)1360 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361 {
1362 	struct device_node *np = host->dev->of_node;
1363 	struct mxc_nand_platform_data *pdata = &host->pdata;
1364 	const struct of_device_id *of_id =
1365 		of_match_device(mxcnd_dt_ids, host->dev);
1366 	int buswidth;
1367 
1368 	if (!np)
1369 		return 1;
1370 
1371 	if (of_get_nand_ecc_mode(np) >= 0)
1372 		pdata->hw_ecc = 1;
1373 
1374 	pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375 
1376 	buswidth = of_get_nand_bus_width(np);
1377 	if (buswidth < 0)
1378 		return buswidth;
1379 
1380 	pdata->width = buswidth / 8;
1381 
1382 	host->devtype_data = of_id->data;
1383 
1384 	return 0;
1385 }
1386 #else
mxcnd_probe_dt(struct mxc_nand_host * host)1387 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388 {
1389 	return 1;
1390 }
1391 #endif
1392 
mxcnd_probe(struct platform_device * pdev)1393 static int mxcnd_probe(struct platform_device *pdev)
1394 {
1395 	struct nand_chip *this;
1396 	struct mtd_info *mtd;
1397 	struct mxc_nand_host *host;
1398 	struct resource *res;
1399 	int err = 0;
1400 
1401 	/* Allocate memory for MTD device structure and private data */
1402 	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1403 			NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1404 	if (!host)
1405 		return -ENOMEM;
1406 
1407 	host->data_buf = (uint8_t *)(host + 1);
1408 
1409 	host->dev = &pdev->dev;
1410 	/* structures must be linked */
1411 	this = &host->nand;
1412 	mtd = &host->mtd;
1413 	mtd->priv = this;
1414 	mtd->owner = THIS_MODULE;
1415 	mtd->dev.parent = &pdev->dev;
1416 	mtd->name = DRIVER_NAME;
1417 
1418 	/* 50 us command delay time */
1419 	this->chip_delay = 5;
1420 
1421 	this->priv = host;
1422 	this->dev_ready = mxc_nand_dev_ready;
1423 	this->cmdfunc = mxc_nand_command;
1424 	this->read_byte = mxc_nand_read_byte;
1425 	this->read_word = mxc_nand_read_word;
1426 	this->write_buf = mxc_nand_write_buf;
1427 	this->read_buf = mxc_nand_read_buf;
1428 
1429 	host->clk = devm_clk_get(&pdev->dev, NULL);
1430 	if (IS_ERR(host->clk))
1431 		return PTR_ERR(host->clk);
1432 
1433 	err = mxcnd_probe_dt(host);
1434 	if (err > 0) {
1435 		struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
1436 		if (pdata) {
1437 			host->pdata = *pdata;
1438 			host->devtype_data = (struct mxc_nand_devtype_data *)
1439 						pdev->id_entry->driver_data;
1440 		} else {
1441 			err = -ENODEV;
1442 		}
1443 	}
1444 	if (err < 0)
1445 		return err;
1446 
1447 	if (host->devtype_data->needs_ip) {
1448 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449 		if (!res)
1450 			return -ENODEV;
1451 		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1452 		if (IS_ERR(host->regs_ip))
1453 			return PTR_ERR(host->regs_ip);
1454 
1455 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1456 	} else {
1457 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458 	}
1459 
1460 	if (!res)
1461 		return -ENODEV;
1462 
1463 	host->base = devm_ioremap_resource(&pdev->dev, res);
1464 	if (IS_ERR(host->base))
1465 		return PTR_ERR(host->base);
1466 
1467 	host->main_area0 = host->base;
1468 
1469 	if (host->devtype_data->regs_offset)
1470 		host->regs = host->base + host->devtype_data->regs_offset;
1471 	host->spare0 = host->base + host->devtype_data->spare0_offset;
1472 	if (host->devtype_data->axi_offset)
1473 		host->regs_axi = host->base + host->devtype_data->axi_offset;
1474 
1475 	this->ecc.bytes = host->devtype_data->eccbytes;
1476 	host->eccsize = host->devtype_data->eccsize;
1477 
1478 	this->select_chip = host->devtype_data->select_chip;
1479 	this->ecc.size = 512;
1480 	this->ecc.layout = host->devtype_data->ecclayout_512;
1481 
1482 	if (host->pdata.hw_ecc) {
1483 		this->ecc.calculate = mxc_nand_calculate_ecc;
1484 		this->ecc.hwctl = mxc_nand_enable_hwecc;
1485 		this->ecc.correct = host->devtype_data->correct_data;
1486 		this->ecc.mode = NAND_ECC_HW;
1487 	} else {
1488 		this->ecc.mode = NAND_ECC_SOFT;
1489 	}
1490 
1491 	/* NAND bus width determines access functions used by upper layer */
1492 	if (host->pdata.width == 2)
1493 		this->options |= NAND_BUSWIDTH_16;
1494 
1495 	if (host->pdata.flash_bbt) {
1496 		this->bbt_td = &bbt_main_descr;
1497 		this->bbt_md = &bbt_mirror_descr;
1498 		/* update flash based bbt */
1499 		this->bbt_options |= NAND_BBT_USE_FLASH;
1500 	}
1501 
1502 	init_completion(&host->op_completion);
1503 
1504 	host->irq = platform_get_irq(pdev, 0);
1505 
1506 	/*
1507 	 * Use host->devtype_data->irq_control() here instead of irq_control()
1508 	 * because we must not disable_irq_nosync without having requested the
1509 	 * irq.
1510 	 */
1511 	host->devtype_data->irq_control(host, 0);
1512 
1513 	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1514 			IRQF_DISABLED, DRIVER_NAME, host);
1515 	if (err)
1516 		return err;
1517 
1518 	clk_prepare_enable(host->clk);
1519 	host->clk_act = 1;
1520 
1521 	/*
1522 	 * Now that we "own" the interrupt make sure the interrupt mask bit is
1523 	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1524 	 * on this machine.
1525 	 */
1526 	if (host->devtype_data->irqpending_quirk) {
1527 		disable_irq_nosync(host->irq);
1528 		host->devtype_data->irq_control(host, 1);
1529 	}
1530 
1531 	/* first scan to find the device and get the page size */
1532 	if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1533 		err = -ENXIO;
1534 		goto escan;
1535 	}
1536 
1537 	/* Call preset again, with correct writesize this time */
1538 	host->devtype_data->preset(mtd);
1539 
1540 	if (mtd->writesize == 2048)
1541 		this->ecc.layout = host->devtype_data->ecclayout_2k;
1542 	else if (mtd->writesize == 4096)
1543 		this->ecc.layout = host->devtype_data->ecclayout_4k;
1544 
1545 	if (this->ecc.mode == NAND_ECC_HW) {
1546 		if (is_imx21_nfc(host) || is_imx27_nfc(host))
1547 			this->ecc.strength = 1;
1548 		else
1549 			this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1550 	}
1551 
1552 	/* second phase scan */
1553 	if (nand_scan_tail(mtd)) {
1554 		err = -ENXIO;
1555 		goto escan;
1556 	}
1557 
1558 	/* Register the partitions */
1559 	mtd_device_parse_register(mtd, part_probes,
1560 			&(struct mtd_part_parser_data){
1561 				.of_node = pdev->dev.of_node,
1562 			},
1563 			host->pdata.parts,
1564 			host->pdata.nr_parts);
1565 
1566 	platform_set_drvdata(pdev, host);
1567 
1568 	return 0;
1569 
1570 escan:
1571 	if (host->clk_act)
1572 		clk_disable_unprepare(host->clk);
1573 
1574 	return err;
1575 }
1576 
mxcnd_remove(struct platform_device * pdev)1577 static int mxcnd_remove(struct platform_device *pdev)
1578 {
1579 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
1580 
1581 	platform_set_drvdata(pdev, NULL);
1582 
1583 	nand_release(&host->mtd);
1584 
1585 	return 0;
1586 }
1587 
1588 static struct platform_driver mxcnd_driver = {
1589 	.driver = {
1590 		   .name = DRIVER_NAME,
1591 		   .owner = THIS_MODULE,
1592 		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1593 	},
1594 	.id_table = mxcnd_devtype,
1595 	.probe = mxcnd_probe,
1596 	.remove = mxcnd_remove,
1597 };
1598 module_platform_driver(mxcnd_driver);
1599 
1600 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1601 MODULE_DESCRIPTION("MXC NAND MTD driver");
1602 MODULE_LICENSE("GPL");
1603