1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <linux/string.h>
29 #include <linux/bitops.h>
30 #include <drm/drmP.h>
31 #include <drm/i915_drm.h>
32 #include "i915_drv.h"
33
34 /** @file i915_gem_tiling.c
35 *
36 * Support for managing tiling state of buffer objects.
37 *
38 * The idea behind tiling is to increase cache hit rates by rearranging
39 * pixel data so that a group of pixel accesses are in the same cacheline.
40 * Performance improvement from doing this on the back/depth buffer are on
41 * the order of 30%.
42 *
43 * Intel architectures make this somewhat more complicated, though, by
44 * adjustments made to addressing of data when the memory is in interleaved
45 * mode (matched pairs of DIMMS) to improve memory bandwidth.
46 * For interleaved memory, the CPU sends every sequential 64 bytes
47 * to an alternate memory channel so it can get the bandwidth from both.
48 *
49 * The GPU also rearranges its accesses for increased bandwidth to interleaved
50 * memory, and it matches what the CPU does for non-tiled. However, when tiled
51 * it does it a little differently, since one walks addresses not just in the
52 * X direction but also Y. So, along with alternating channels when bit
53 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
54 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55 * are common to both the 915 and 965-class hardware.
56 *
57 * The CPU also sometimes XORs in higher bits as well, to improve
58 * bandwidth doing strided access like we do so frequently in graphics. This
59 * is called "Channel XOR Randomization" in the MCH documentation. The result
60 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61 * decode.
62 *
63 * All of this bit 6 XORing has an effect on our memory management,
64 * as we need to make sure that the 3d driver can correctly address object
65 * contents.
66 *
67 * If we don't have interleaved memory, all tiling is safe and no swizzling is
68 * required.
69 *
70 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
71 * 17 is not just a page offset, so as we page an objet out and back in,
72 * individual pages in it will have different bit 17 addresses, resulting in
73 * each 64 bytes being swapped with its neighbor!
74 *
75 * Otherwise, if interleaved, we have to tell the 3d driver what the address
76 * swizzling it needs to do is, since it's writing with the CPU to the pages
77 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80 * to match what the GPU expects.
81 */
82
83 /**
84 * Detects bit 6 swizzling of address lookup between IGD access and CPU
85 * access through main memory.
86 */
87 void
i915_gem_detect_bit_6_swizzle(struct drm_device * dev)88 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
89 {
90 drm_i915_private_t *dev_priv = dev->dev_private;
91 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
92 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
93
94 if (IS_VALLEYVIEW(dev)) {
95 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
96 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
97 } else if (INTEL_INFO(dev)->gen >= 6) {
98 uint32_t dimm_c0, dimm_c1;
99 dimm_c0 = I915_READ(MAD_DIMM_C0);
100 dimm_c1 = I915_READ(MAD_DIMM_C1);
101 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
102 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103 /* Enable swizzling when the channels are populated with
104 * identically sized dimms. We don't need to check the 3rd
105 * channel because no cpu with gpu attached ships in that
106 * configuration. Also, swizzling only makes sense for 2
107 * channels anyway. */
108 if (dimm_c0 == dimm_c1) {
109 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
110 swizzle_y = I915_BIT_6_SWIZZLE_9;
111 } else {
112 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
113 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
114 }
115 } else if (IS_GEN5(dev)) {
116 /* On Ironlake whatever DRAM config, GPU always do
117 * same swizzling setup.
118 */
119 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
120 swizzle_y = I915_BIT_6_SWIZZLE_9;
121 } else if (IS_GEN2(dev)) {
122 /* As far as we know, the 865 doesn't have these bit 6
123 * swizzling issues.
124 */
125 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
126 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
127 } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
128 uint32_t dcc;
129
130 /* On 9xx chipsets, channel interleave by the CPU is
131 * determined by DCC. For single-channel, neither the CPU
132 * nor the GPU do swizzling. For dual channel interleaved,
133 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
134 * 9 for Y tiled. The CPU's interleave is independent, and
135 * can be based on either bit 11 (haven't seen this yet) or
136 * bit 17 (common).
137 */
138 dcc = I915_READ(DCC);
139 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
140 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
141 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
142 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
143 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
144 break;
145 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
146 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
147 /* This is the base swizzling by the GPU for
148 * tiled buffers.
149 */
150 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
151 swizzle_y = I915_BIT_6_SWIZZLE_9;
152 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
153 /* Bit 11 swizzling by the CPU in addition. */
154 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
155 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
156 } else {
157 /* Bit 17 swizzling by the CPU in addition. */
158 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
159 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
160 }
161 break;
162 }
163 if (dcc == 0xffffffff) {
164 DRM_ERROR("Couldn't read from MCHBAR. "
165 "Disabling tiling.\n");
166 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
167 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
168 }
169 } else {
170 /* The 965, G33, and newer, have a very flexible memory
171 * configuration. It will enable dual-channel mode
172 * (interleaving) on as much memory as it can, and the GPU
173 * will additionally sometimes enable different bit 6
174 * swizzling for tiled objects from the CPU.
175 *
176 * Here's what I found on the G965:
177 * slot fill memory size swizzling
178 * 0A 0B 1A 1B 1-ch 2-ch
179 * 512 0 0 0 512 0 O
180 * 512 0 512 0 16 1008 X
181 * 512 0 0 512 16 1008 X
182 * 0 512 0 512 16 1008 X
183 * 1024 1024 1024 0 2048 1024 O
184 *
185 * We could probably detect this based on either the DRB
186 * matching, which was the case for the swizzling required in
187 * the table above, or from the 1-ch value being less than
188 * the minimum size of a rank.
189 */
190 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
191 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
192 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
193 } else {
194 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
195 swizzle_y = I915_BIT_6_SWIZZLE_9;
196 }
197 }
198
199 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
200 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
201 }
202
203 /* Check pitch constriants for all chips & tiling formats */
204 static bool
i915_tiling_ok(struct drm_device * dev,int stride,int size,int tiling_mode)205 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
206 {
207 int tile_width;
208
209 /* Linear is always fine */
210 if (tiling_mode == I915_TILING_NONE)
211 return true;
212
213 if (IS_GEN2(dev) ||
214 (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
215 tile_width = 128;
216 else
217 tile_width = 512;
218
219 /* check maximum stride & object size */
220 /* i965+ stores the end address of the gtt mapping in the fence
221 * reg, so dont bother to check the size */
222 if (INTEL_INFO(dev)->gen >= 7) {
223 if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
224 return false;
225 } else if (INTEL_INFO(dev)->gen >= 4) {
226 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
227 return false;
228 } else {
229 if (stride > 8192)
230 return false;
231
232 if (IS_GEN3(dev)) {
233 if (size > I830_FENCE_MAX_SIZE_VAL << 20)
234 return false;
235 } else {
236 if (size > I830_FENCE_MAX_SIZE_VAL << 19)
237 return false;
238 }
239 }
240
241 if (stride < tile_width)
242 return false;
243
244 /* 965+ just needs multiples of tile width */
245 if (INTEL_INFO(dev)->gen >= 4) {
246 if (stride & (tile_width - 1))
247 return false;
248 return true;
249 }
250
251 /* Pre-965 needs power of two tile widths */
252 if (stride & (stride - 1))
253 return false;
254
255 return true;
256 }
257
258 /* Is the current GTT allocation valid for the change in tiling? */
259 static bool
i915_gem_object_fence_ok(struct drm_i915_gem_object * obj,int tiling_mode)260 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
261 {
262 u32 size;
263
264 if (tiling_mode == I915_TILING_NONE)
265 return true;
266
267 if (INTEL_INFO(obj->base.dev)->gen >= 4)
268 return true;
269
270 if (INTEL_INFO(obj->base.dev)->gen == 3) {
271 if (obj->gtt_offset & ~I915_FENCE_START_MASK)
272 return false;
273 } else {
274 if (obj->gtt_offset & ~I830_FENCE_START_MASK)
275 return false;
276 }
277
278 size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
279 if (obj->gtt_space->size != size)
280 return false;
281
282 if (obj->gtt_offset & (size - 1))
283 return false;
284
285 return true;
286 }
287
288 /**
289 * Sets the tiling mode of an object, returning the required swizzling of
290 * bit 6 of addresses in the object.
291 */
292 int
i915_gem_set_tiling(struct drm_device * dev,void * data,struct drm_file * file)293 i915_gem_set_tiling(struct drm_device *dev, void *data,
294 struct drm_file *file)
295 {
296 struct drm_i915_gem_set_tiling *args = data;
297 drm_i915_private_t *dev_priv = dev->dev_private;
298 struct drm_i915_gem_object *obj;
299 int ret = 0;
300
301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
302 if (&obj->base == NULL)
303 return -ENOENT;
304
305 if (!i915_tiling_ok(dev,
306 args->stride, obj->base.size, args->tiling_mode)) {
307 drm_gem_object_unreference_unlocked(&obj->base);
308 return -EINVAL;
309 }
310
311 if (obj->pin_count) {
312 drm_gem_object_unreference_unlocked(&obj->base);
313 return -EBUSY;
314 }
315
316 if (args->tiling_mode == I915_TILING_NONE) {
317 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
318 args->stride = 0;
319 } else {
320 if (args->tiling_mode == I915_TILING_X)
321 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
322 else
323 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
324
325 /* Hide bit 17 swizzling from the user. This prevents old Mesa
326 * from aborting the application on sw fallbacks to bit 17,
327 * and we use the pread/pwrite bit17 paths to swizzle for it.
328 * If there was a user that was relying on the swizzle
329 * information for drm_intel_bo_map()ed reads/writes this would
330 * break it, but we don't have any of those.
331 */
332 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
333 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
334 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
335 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
336
337 /* If we can't handle the swizzling, make it untiled. */
338 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
339 args->tiling_mode = I915_TILING_NONE;
340 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
341 args->stride = 0;
342 }
343 }
344
345 mutex_lock(&dev->struct_mutex);
346 if (args->tiling_mode != obj->tiling_mode ||
347 args->stride != obj->stride) {
348 /* We need to rebind the object if its current allocation
349 * no longer meets the alignment restrictions for its new
350 * tiling mode. Otherwise we can just leave it alone, but
351 * need to ensure that any fence register is updated before
352 * the next fenced (either through the GTT or by the BLT unit
353 * on older GPUs) access.
354 *
355 * After updating the tiling parameters, we then flag whether
356 * we need to update an associated fence register. Note this
357 * has to also include the unfenced register the GPU uses
358 * whilst executing a fenced command for an untiled object.
359 */
360
361 obj->map_and_fenceable =
362 obj->gtt_space == NULL ||
363 (obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end &&
364 i915_gem_object_fence_ok(obj, args->tiling_mode));
365
366 /* Rebind if we need a change of alignment */
367 if (!obj->map_and_fenceable) {
368 u32 unfenced_alignment =
369 i915_gem_get_gtt_alignment(dev, obj->base.size,
370 args->tiling_mode,
371 false);
372 if (obj->gtt_offset & (unfenced_alignment - 1))
373 ret = i915_gem_object_unbind(obj);
374 }
375
376 if (ret == 0) {
377 obj->fence_dirty =
378 obj->fenced_gpu_access ||
379 obj->fence_reg != I915_FENCE_REG_NONE;
380
381 obj->tiling_mode = args->tiling_mode;
382 obj->stride = args->stride;
383
384 /* Force the fence to be reacquired for GTT access */
385 i915_gem_release_mmap(obj);
386 }
387 }
388 /* we have to maintain this existing ABI... */
389 args->stride = obj->stride;
390 args->tiling_mode = obj->tiling_mode;
391
392 /* Try to preallocate memory required to save swizzling on put-pages */
393 if (i915_gem_object_needs_bit17_swizzle(obj)) {
394 if (obj->bit_17 == NULL) {
395 obj->bit_17 = kmalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT) *
396 sizeof(long), GFP_KERNEL);
397 }
398 } else {
399 kfree(obj->bit_17);
400 obj->bit_17 = NULL;
401 }
402
403 drm_gem_object_unreference(&obj->base);
404 mutex_unlock(&dev->struct_mutex);
405
406 return ret;
407 }
408
409 /**
410 * Returns the current tiling mode and required bit 6 swizzling for the object.
411 */
412 int
i915_gem_get_tiling(struct drm_device * dev,void * data,struct drm_file * file)413 i915_gem_get_tiling(struct drm_device *dev, void *data,
414 struct drm_file *file)
415 {
416 struct drm_i915_gem_get_tiling *args = data;
417 drm_i915_private_t *dev_priv = dev->dev_private;
418 struct drm_i915_gem_object *obj;
419
420 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
421 if (&obj->base == NULL)
422 return -ENOENT;
423
424 mutex_lock(&dev->struct_mutex);
425
426 args->tiling_mode = obj->tiling_mode;
427 switch (obj->tiling_mode) {
428 case I915_TILING_X:
429 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
430 break;
431 case I915_TILING_Y:
432 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
433 break;
434 case I915_TILING_NONE:
435 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
436 break;
437 default:
438 DRM_ERROR("unknown tiling mode\n");
439 }
440
441 /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
442 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
443 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
444 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
445 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
446
447 drm_gem_object_unreference(&obj->base);
448 mutex_unlock(&dev->struct_mutex);
449
450 return 0;
451 }
452
453 /**
454 * Swap every 64 bytes of this page around, to account for it having a new
455 * bit 17 of its physical address and therefore being interpreted differently
456 * by the GPU.
457 */
458 static void
i915_gem_swizzle_page(struct page * page)459 i915_gem_swizzle_page(struct page *page)
460 {
461 char temp[64];
462 char *vaddr;
463 int i;
464
465 vaddr = kmap(page);
466
467 for (i = 0; i < PAGE_SIZE; i += 128) {
468 memcpy(temp, &vaddr[i], 64);
469 memcpy(&vaddr[i], &vaddr[i + 64], 64);
470 memcpy(&vaddr[i + 64], temp, 64);
471 }
472
473 kunmap(page);
474 }
475
476 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj)477 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
478 {
479 struct sg_page_iter sg_iter;
480 int i;
481
482 if (obj->bit_17 == NULL)
483 return;
484
485 i = 0;
486 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
487 struct page *page = sg_page_iter_page(&sg_iter);
488 char new_bit_17 = page_to_phys(page) >> 17;
489 if ((new_bit_17 & 0x1) !=
490 (test_bit(i, obj->bit_17) != 0)) {
491 i915_gem_swizzle_page(page);
492 set_page_dirty(page);
493 }
494 i++;
495 }
496 }
497
498 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj)499 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
500 {
501 struct sg_page_iter sg_iter;
502 int page_count = obj->base.size >> PAGE_SHIFT;
503 int i;
504
505 if (obj->bit_17 == NULL) {
506 obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
507 sizeof(long), GFP_KERNEL);
508 if (obj->bit_17 == NULL) {
509 DRM_ERROR("Failed to allocate memory for bit 17 "
510 "record\n");
511 return;
512 }
513 }
514
515 i = 0;
516 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
517 if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
518 __set_bit(i, obj->bit_17);
519 else
520 __clear_bit(i, obj->bit_17);
521 i++;
522 }
523 }
524