1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 *
26 */
27
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
34
35 #ifdef CONFIG_PM
calc_residency(struct drm_device * dev,const u32 reg)36 static u32 calc_residency(struct drm_device *dev, const u32 reg)
37 {
38 struct drm_i915_private *dev_priv = dev->dev_private;
39 u64 raw_time; /* 32b value may overflow during fixed point math */
40
41 if (!intel_enable_rc6(dev))
42 return 0;
43
44 raw_time = I915_READ(reg) * 128ULL;
45 return DIV_ROUND_UP_ULL(raw_time, 100000);
46 }
47
48 static ssize_t
show_rc6_mask(struct device * kdev,struct device_attribute * attr,char * buf)49 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
50 {
51 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
52 return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
53 }
54
55 static ssize_t
show_rc6_ms(struct device * kdev,struct device_attribute * attr,char * buf)56 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
57 {
58 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
59 u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
60 return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
61 }
62
63 static ssize_t
show_rc6p_ms(struct device * kdev,struct device_attribute * attr,char * buf)64 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
65 {
66 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
67 u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
68 return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
69 }
70
71 static ssize_t
show_rc6pp_ms(struct device * kdev,struct device_attribute * attr,char * buf)72 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
73 {
74 struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
75 u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
76 return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
77 }
78
79 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
80 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
81 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
82 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
83
84 static struct attribute *rc6_attrs[] = {
85 &dev_attr_rc6_enable.attr,
86 &dev_attr_rc6_residency_ms.attr,
87 &dev_attr_rc6p_residency_ms.attr,
88 &dev_attr_rc6pp_residency_ms.attr,
89 NULL
90 };
91
92 static struct attribute_group rc6_attr_group = {
93 .name = power_group_name,
94 .attrs = rc6_attrs
95 };
96 #endif
97
l3_access_valid(struct drm_device * dev,loff_t offset)98 static int l3_access_valid(struct drm_device *dev, loff_t offset)
99 {
100 if (!HAS_L3_GPU_CACHE(dev))
101 return -EPERM;
102
103 if (offset % 4 != 0)
104 return -EINVAL;
105
106 if (offset >= GEN7_L3LOG_SIZE)
107 return -ENXIO;
108
109 return 0;
110 }
111
112 static ssize_t
i915_l3_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t offset,size_t count)113 i915_l3_read(struct file *filp, struct kobject *kobj,
114 struct bin_attribute *attr, char *buf,
115 loff_t offset, size_t count)
116 {
117 struct device *dev = container_of(kobj, struct device, kobj);
118 struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
119 struct drm_device *drm_dev = dminor->dev;
120 struct drm_i915_private *dev_priv = drm_dev->dev_private;
121 uint32_t misccpctl;
122 int i, ret;
123
124 ret = l3_access_valid(drm_dev, offset);
125 if (ret)
126 return ret;
127
128 ret = i915_mutex_lock_interruptible(drm_dev);
129 if (ret)
130 return ret;
131
132 misccpctl = I915_READ(GEN7_MISCCPCTL);
133 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
134
135 for (i = offset; count >= 4 && i < GEN7_L3LOG_SIZE; i += 4, count -= 4)
136 *((uint32_t *)(&buf[i])) = I915_READ(GEN7_L3LOG_BASE + i);
137
138 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
139
140 mutex_unlock(&drm_dev->struct_mutex);
141
142 return i - offset;
143 }
144
145 static ssize_t
i915_l3_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t offset,size_t count)146 i915_l3_write(struct file *filp, struct kobject *kobj,
147 struct bin_attribute *attr, char *buf,
148 loff_t offset, size_t count)
149 {
150 struct device *dev = container_of(kobj, struct device, kobj);
151 struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
152 struct drm_device *drm_dev = dminor->dev;
153 struct drm_i915_private *dev_priv = drm_dev->dev_private;
154 u32 *temp = NULL; /* Just here to make handling failures easy */
155 int ret;
156
157 ret = l3_access_valid(drm_dev, offset);
158 if (ret)
159 return ret;
160
161 ret = i915_mutex_lock_interruptible(drm_dev);
162 if (ret)
163 return ret;
164
165 if (!dev_priv->l3_parity.remap_info) {
166 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
167 if (!temp) {
168 mutex_unlock(&drm_dev->struct_mutex);
169 return -ENOMEM;
170 }
171 }
172
173 ret = i915_gpu_idle(drm_dev);
174 if (ret) {
175 kfree(temp);
176 mutex_unlock(&drm_dev->struct_mutex);
177 return ret;
178 }
179
180 /* TODO: Ideally we really want a GPU reset here to make sure errors
181 * aren't propagated. Since I cannot find a stable way to reset the GPU
182 * at this point it is left as a TODO.
183 */
184 if (temp)
185 dev_priv->l3_parity.remap_info = temp;
186
187 memcpy(dev_priv->l3_parity.remap_info + (offset/4),
188 buf + (offset/4),
189 count);
190
191 i915_gem_l3_remap(drm_dev);
192
193 mutex_unlock(&drm_dev->struct_mutex);
194
195 return count;
196 }
197
198 static struct bin_attribute dpf_attrs = {
199 .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
200 .size = GEN7_L3LOG_SIZE,
201 .read = i915_l3_read,
202 .write = i915_l3_write,
203 .mmap = NULL
204 };
205
gt_cur_freq_mhz_show(struct device * kdev,struct device_attribute * attr,char * buf)206 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
207 struct device_attribute *attr, char *buf)
208 {
209 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
210 struct drm_device *dev = minor->dev;
211 struct drm_i915_private *dev_priv = dev->dev_private;
212 int ret;
213
214 mutex_lock(&dev_priv->rps.hw_lock);
215 ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
216 mutex_unlock(&dev_priv->rps.hw_lock);
217
218 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
219 }
220
gt_max_freq_mhz_show(struct device * kdev,struct device_attribute * attr,char * buf)221 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
222 {
223 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
224 struct drm_device *dev = minor->dev;
225 struct drm_i915_private *dev_priv = dev->dev_private;
226 int ret;
227
228 mutex_lock(&dev_priv->rps.hw_lock);
229 ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
230 mutex_unlock(&dev_priv->rps.hw_lock);
231
232 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
233 }
234
gt_max_freq_mhz_store(struct device * kdev,struct device_attribute * attr,const char * buf,size_t count)235 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
236 struct device_attribute *attr,
237 const char *buf, size_t count)
238 {
239 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
240 struct drm_device *dev = minor->dev;
241 struct drm_i915_private *dev_priv = dev->dev_private;
242 u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
243 ssize_t ret;
244
245 ret = kstrtou32(buf, 0, &val);
246 if (ret)
247 return ret;
248
249 val /= GT_FREQUENCY_MULTIPLIER;
250
251 mutex_lock(&dev_priv->rps.hw_lock);
252
253 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
254 hw_max = dev_priv->rps.hw_max;
255 non_oc_max = (rp_state_cap & 0xff);
256 hw_min = ((rp_state_cap & 0xff0000) >> 16);
257
258 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_delay) {
259 mutex_unlock(&dev_priv->rps.hw_lock);
260 return -EINVAL;
261 }
262
263 if (val > non_oc_max)
264 DRM_DEBUG("User requested overclocking to %d\n",
265 val * GT_FREQUENCY_MULTIPLIER);
266
267 if (dev_priv->rps.cur_delay > val)
268 gen6_set_rps(dev_priv->dev, val);
269
270 dev_priv->rps.max_delay = val;
271
272 mutex_unlock(&dev_priv->rps.hw_lock);
273
274 return count;
275 }
276
gt_min_freq_mhz_show(struct device * kdev,struct device_attribute * attr,char * buf)277 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
278 {
279 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
280 struct drm_device *dev = minor->dev;
281 struct drm_i915_private *dev_priv = dev->dev_private;
282 int ret;
283
284 mutex_lock(&dev_priv->rps.hw_lock);
285 ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
286 mutex_unlock(&dev_priv->rps.hw_lock);
287
288 return snprintf(buf, PAGE_SIZE, "%d\n", ret);
289 }
290
gt_min_freq_mhz_store(struct device * kdev,struct device_attribute * attr,const char * buf,size_t count)291 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
292 struct device_attribute *attr,
293 const char *buf, size_t count)
294 {
295 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
296 struct drm_device *dev = minor->dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 u32 val, rp_state_cap, hw_max, hw_min;
299 ssize_t ret;
300
301 ret = kstrtou32(buf, 0, &val);
302 if (ret)
303 return ret;
304
305 val /= GT_FREQUENCY_MULTIPLIER;
306
307 mutex_lock(&dev_priv->rps.hw_lock);
308
309 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
310 hw_max = dev_priv->rps.hw_max;
311 hw_min = ((rp_state_cap & 0xff0000) >> 16);
312
313 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
314 mutex_unlock(&dev_priv->rps.hw_lock);
315 return -EINVAL;
316 }
317
318 if (dev_priv->rps.cur_delay < val)
319 gen6_set_rps(dev_priv->dev, val);
320
321 dev_priv->rps.min_delay = val;
322
323 mutex_unlock(&dev_priv->rps.hw_lock);
324
325 return count;
326
327 }
328
329 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
330 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
331 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
332
333
334 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
335 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
336 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
337 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
338
339 /* For now we have a static number of RP states */
gt_rp_mhz_show(struct device * kdev,struct device_attribute * attr,char * buf)340 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
341 {
342 struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
343 struct drm_device *dev = minor->dev;
344 struct drm_i915_private *dev_priv = dev->dev_private;
345 u32 val, rp_state_cap;
346 ssize_t ret;
347
348 ret = mutex_lock_interruptible(&dev->struct_mutex);
349 if (ret)
350 return ret;
351 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
352 mutex_unlock(&dev->struct_mutex);
353
354 if (attr == &dev_attr_gt_RP0_freq_mhz) {
355 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
356 } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
357 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
358 } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
359 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
360 } else {
361 BUG();
362 }
363 return snprintf(buf, PAGE_SIZE, "%d\n", val);
364 }
365
366 static const struct attribute *gen6_attrs[] = {
367 &dev_attr_gt_cur_freq_mhz.attr,
368 &dev_attr_gt_max_freq_mhz.attr,
369 &dev_attr_gt_min_freq_mhz.attr,
370 &dev_attr_gt_RP0_freq_mhz.attr,
371 &dev_attr_gt_RP1_freq_mhz.attr,
372 &dev_attr_gt_RPn_freq_mhz.attr,
373 NULL,
374 };
375
i915_setup_sysfs(struct drm_device * dev)376 void i915_setup_sysfs(struct drm_device *dev)
377 {
378 int ret;
379
380 #ifdef CONFIG_PM
381 if (INTEL_INFO(dev)->gen >= 6) {
382 ret = sysfs_merge_group(&dev->primary->kdev.kobj,
383 &rc6_attr_group);
384 if (ret)
385 DRM_ERROR("RC6 residency sysfs setup failed\n");
386 }
387 #endif
388 if (HAS_L3_GPU_CACHE(dev)) {
389 ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs);
390 if (ret)
391 DRM_ERROR("l3 parity sysfs setup failed\n");
392 }
393
394 if (INTEL_INFO(dev)->gen >= 6) {
395 ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs);
396 if (ret)
397 DRM_ERROR("gen6 sysfs setup failed\n");
398 }
399 }
400
i915_teardown_sysfs(struct drm_device * dev)401 void i915_teardown_sysfs(struct drm_device *dev)
402 {
403 sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs);
404 device_remove_bin_file(&dev->primary->kdev, &dpf_attrs);
405 #ifdef CONFIG_PM
406 sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group);
407 #endif
408 }
409