1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 #include <linux/uid_stat.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/ip6_route.h>
279 #include <net/ipv6.h>
280 #include <net/transp_v6.h>
281 #include <net/netdma.h>
282 #include <net/sock.h>
283
284 #include <asm/uaccess.h>
285 #include <asm/ioctls.h>
286
287 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
288
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294
295 EXPORT_SYMBOL(sysctl_tcp_rmem);
296 EXPORT_SYMBOL(sysctl_tcp_wmem);
297
298 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
299 EXPORT_SYMBOL(tcp_memory_allocated);
300
301 /*
302 * Current number of TCP sockets.
303 */
304 struct percpu_counter tcp_sockets_allocated;
305 EXPORT_SYMBOL(tcp_sockets_allocated);
306
307 /*
308 * TCP splice context
309 */
310 struct tcp_splice_state {
311 struct pipe_inode_info *pipe;
312 size_t len;
313 unsigned int flags;
314 };
315
316 /*
317 * Pressure flag: try to collapse.
318 * Technical note: it is used by multiple contexts non atomically.
319 * All the __sk_mem_schedule() is of this nature: accounting
320 * is strict, actions are advisory and have some latency.
321 */
322 int tcp_memory_pressure __read_mostly;
323 EXPORT_SYMBOL(tcp_memory_pressure);
324
tcp_enter_memory_pressure(struct sock * sk)325 void tcp_enter_memory_pressure(struct sock *sk)
326 {
327 if (!tcp_memory_pressure) {
328 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
329 tcp_memory_pressure = 1;
330 }
331 }
332 EXPORT_SYMBOL(tcp_enter_memory_pressure);
333
334 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)335 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
336 {
337 u8 res = 0;
338
339 if (seconds > 0) {
340 int period = timeout;
341
342 res = 1;
343 while (seconds > period && res < 255) {
344 res++;
345 timeout <<= 1;
346 if (timeout > rto_max)
347 timeout = rto_max;
348 period += timeout;
349 }
350 }
351 return res;
352 }
353
354 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)355 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
356 {
357 int period = 0;
358
359 if (retrans > 0) {
360 period = timeout;
361 while (--retrans) {
362 timeout <<= 1;
363 if (timeout > rto_max)
364 timeout = rto_max;
365 period += timeout;
366 }
367 }
368 return period;
369 }
370
371 /* Address-family independent initialization for a tcp_sock.
372 *
373 * NOTE: A lot of things set to zero explicitly by call to
374 * sk_alloc() so need not be done here.
375 */
tcp_init_sock(struct sock * sk)376 void tcp_init_sock(struct sock *sk)
377 {
378 struct inet_connection_sock *icsk = inet_csk(sk);
379 struct tcp_sock *tp = tcp_sk(sk);
380
381 skb_queue_head_init(&tp->out_of_order_queue);
382 tcp_init_xmit_timers(sk);
383 tcp_prequeue_init(tp);
384 INIT_LIST_HEAD(&tp->tsq_node);
385
386 icsk->icsk_rto = TCP_TIMEOUT_INIT;
387 tp->mdev = TCP_TIMEOUT_INIT;
388
389 /* So many TCP implementations out there (incorrectly) count the
390 * initial SYN frame in their delayed-ACK and congestion control
391 * algorithms that we must have the following bandaid to talk
392 * efficiently to them. -DaveM
393 */
394 tp->snd_cwnd = TCP_INIT_CWND;
395
396 /* See draft-stevens-tcpca-spec-01 for discussion of the
397 * initialization of these values.
398 */
399 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
400 tp->snd_cwnd_clamp = ~0;
401 tp->mss_cache = TCP_MSS_DEFAULT;
402
403 tp->reordering = sysctl_tcp_reordering;
404 tcp_enable_early_retrans(tp);
405 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
406
407 tp->tsoffset = 0;
408
409 sk->sk_state = TCP_CLOSE;
410
411 sk->sk_write_space = sk_stream_write_space;
412 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
413
414 icsk->icsk_sync_mss = tcp_sync_mss;
415
416 /* Presumed zeroed, in order of appearance:
417 * cookie_in_always, cookie_out_never,
418 * s_data_constant, s_data_in, s_data_out
419 */
420 sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422
423 local_bh_disable();
424 sock_update_memcg(sk);
425 sk_sockets_allocated_inc(sk);
426 local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429
430 /*
431 * Wait for a TCP event.
432 *
433 * Note that we don't need to lock the socket, as the upper poll layers
434 * take care of normal races (between the test and the event) and we don't
435 * go look at any of the socket buffers directly.
436 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)437 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
438 {
439 unsigned int mask;
440 struct sock *sk = sock->sk;
441 const struct tcp_sock *tp = tcp_sk(sk);
442
443 sock_poll_wait(file, sk_sleep(sk), wait);
444 if (sk->sk_state == TCP_LISTEN)
445 return inet_csk_listen_poll(sk);
446
447 /* Socket is not locked. We are protected from async events
448 * by poll logic and correct handling of state changes
449 * made by other threads is impossible in any case.
450 */
451
452 mask = 0;
453
454 /*
455 * POLLHUP is certainly not done right. But poll() doesn't
456 * have a notion of HUP in just one direction, and for a
457 * socket the read side is more interesting.
458 *
459 * Some poll() documentation says that POLLHUP is incompatible
460 * with the POLLOUT/POLLWR flags, so somebody should check this
461 * all. But careful, it tends to be safer to return too many
462 * bits than too few, and you can easily break real applications
463 * if you don't tell them that something has hung up!
464 *
465 * Check-me.
466 *
467 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
468 * our fs/select.c). It means that after we received EOF,
469 * poll always returns immediately, making impossible poll() on write()
470 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
471 * if and only if shutdown has been made in both directions.
472 * Actually, it is interesting to look how Solaris and DUX
473 * solve this dilemma. I would prefer, if POLLHUP were maskable,
474 * then we could set it on SND_SHUTDOWN. BTW examples given
475 * in Stevens' books assume exactly this behaviour, it explains
476 * why POLLHUP is incompatible with POLLOUT. --ANK
477 *
478 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
479 * blocking on fresh not-connected or disconnected socket. --ANK
480 */
481 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
482 mask |= POLLHUP;
483 if (sk->sk_shutdown & RCV_SHUTDOWN)
484 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
485
486 /* Connected or passive Fast Open socket? */
487 if (sk->sk_state != TCP_SYN_SENT &&
488 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
489 int target = sock_rcvlowat(sk, 0, INT_MAX);
490
491 if (tp->urg_seq == tp->copied_seq &&
492 !sock_flag(sk, SOCK_URGINLINE) &&
493 tp->urg_data)
494 target++;
495
496 /* Potential race condition. If read of tp below will
497 * escape above sk->sk_state, we can be illegally awaken
498 * in SYN_* states. */
499 if (tp->rcv_nxt - tp->copied_seq >= target)
500 mask |= POLLIN | POLLRDNORM;
501
502 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
503 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
504 mask |= POLLOUT | POLLWRNORM;
505 } else { /* send SIGIO later */
506 set_bit(SOCK_ASYNC_NOSPACE,
507 &sk->sk_socket->flags);
508 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
509
510 /* Race breaker. If space is freed after
511 * wspace test but before the flags are set,
512 * IO signal will be lost.
513 */
514 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
515 mask |= POLLOUT | POLLWRNORM;
516 }
517 } else
518 mask |= POLLOUT | POLLWRNORM;
519
520 if (tp->urg_data & TCP_URG_VALID)
521 mask |= POLLPRI;
522 }
523 /* This barrier is coupled with smp_wmb() in tcp_reset() */
524 smp_rmb();
525 if (sk->sk_err)
526 mask |= POLLERR;
527
528 return mask;
529 }
530 EXPORT_SYMBOL(tcp_poll);
531
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)532 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
533 {
534 struct tcp_sock *tp = tcp_sk(sk);
535 int answ;
536 bool slow;
537
538 switch (cmd) {
539 case SIOCINQ:
540 if (sk->sk_state == TCP_LISTEN)
541 return -EINVAL;
542
543 slow = lock_sock_fast(sk);
544 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
545 answ = 0;
546 else if (sock_flag(sk, SOCK_URGINLINE) ||
547 !tp->urg_data ||
548 before(tp->urg_seq, tp->copied_seq) ||
549 !before(tp->urg_seq, tp->rcv_nxt)) {
550
551 answ = tp->rcv_nxt - tp->copied_seq;
552
553 /* Subtract 1, if FIN was received */
554 if (answ && sock_flag(sk, SOCK_DONE))
555 answ--;
556 } else
557 answ = tp->urg_seq - tp->copied_seq;
558 unlock_sock_fast(sk, slow);
559 break;
560 case SIOCATMARK:
561 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
562 break;
563 case SIOCOUTQ:
564 if (sk->sk_state == TCP_LISTEN)
565 return -EINVAL;
566
567 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
568 answ = 0;
569 else
570 answ = tp->write_seq - tp->snd_una;
571 break;
572 case SIOCOUTQNSD:
573 if (sk->sk_state == TCP_LISTEN)
574 return -EINVAL;
575
576 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
577 answ = 0;
578 else
579 answ = tp->write_seq - tp->snd_nxt;
580 break;
581 default:
582 return -ENOIOCTLCMD;
583 }
584
585 return put_user(answ, (int __user *)arg);
586 }
587 EXPORT_SYMBOL(tcp_ioctl);
588
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)589 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
590 {
591 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
592 tp->pushed_seq = tp->write_seq;
593 }
594
forced_push(const struct tcp_sock * tp)595 static inline bool forced_push(const struct tcp_sock *tp)
596 {
597 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
598 }
599
skb_entail(struct sock * sk,struct sk_buff * skb)600 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
604
605 skb->csum = 0;
606 tcb->seq = tcb->end_seq = tp->write_seq;
607 tcb->tcp_flags = TCPHDR_ACK;
608 tcb->sacked = 0;
609 skb_header_release(skb);
610 tcp_add_write_queue_tail(sk, skb);
611 sk->sk_wmem_queued += skb->truesize;
612 sk_mem_charge(sk, skb->truesize);
613 if (tp->nonagle & TCP_NAGLE_PUSH)
614 tp->nonagle &= ~TCP_NAGLE_PUSH;
615 }
616
tcp_mark_urg(struct tcp_sock * tp,int flags)617 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
618 {
619 if (flags & MSG_OOB)
620 tp->snd_up = tp->write_seq;
621 }
622
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle)623 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
624 int nonagle)
625 {
626 if (tcp_send_head(sk)) {
627 struct tcp_sock *tp = tcp_sk(sk);
628
629 if (!(flags & MSG_MORE) || forced_push(tp))
630 tcp_mark_push(tp, tcp_write_queue_tail(sk));
631
632 tcp_mark_urg(tp, flags);
633 __tcp_push_pending_frames(sk, mss_now,
634 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
635 }
636 }
637
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)638 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
639 unsigned int offset, size_t len)
640 {
641 struct tcp_splice_state *tss = rd_desc->arg.data;
642 int ret;
643
644 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
645 tss->flags);
646 if (ret > 0)
647 rd_desc->count -= ret;
648 return ret;
649 }
650
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)651 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
652 {
653 /* Store TCP splice context information in read_descriptor_t. */
654 read_descriptor_t rd_desc = {
655 .arg.data = tss,
656 .count = tss->len,
657 };
658
659 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
660 }
661
662 /**
663 * tcp_splice_read - splice data from TCP socket to a pipe
664 * @sock: socket to splice from
665 * @ppos: position (not valid)
666 * @pipe: pipe to splice to
667 * @len: number of bytes to splice
668 * @flags: splice modifier flags
669 *
670 * Description:
671 * Will read pages from given socket and fill them into a pipe.
672 *
673 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)674 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
675 struct pipe_inode_info *pipe, size_t len,
676 unsigned int flags)
677 {
678 struct sock *sk = sock->sk;
679 struct tcp_splice_state tss = {
680 .pipe = pipe,
681 .len = len,
682 .flags = flags,
683 };
684 long timeo;
685 ssize_t spliced;
686 int ret;
687
688 sock_rps_record_flow(sk);
689 /*
690 * We can't seek on a socket input
691 */
692 if (unlikely(*ppos))
693 return -ESPIPE;
694
695 ret = spliced = 0;
696
697 lock_sock(sk);
698
699 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
700 while (tss.len) {
701 ret = __tcp_splice_read(sk, &tss);
702 if (ret < 0)
703 break;
704 else if (!ret) {
705 if (spliced)
706 break;
707 if (sock_flag(sk, SOCK_DONE))
708 break;
709 if (sk->sk_err) {
710 ret = sock_error(sk);
711 break;
712 }
713 if (sk->sk_shutdown & RCV_SHUTDOWN)
714 break;
715 if (sk->sk_state == TCP_CLOSE) {
716 /*
717 * This occurs when user tries to read
718 * from never connected socket.
719 */
720 if (!sock_flag(sk, SOCK_DONE))
721 ret = -ENOTCONN;
722 break;
723 }
724 if (!timeo) {
725 ret = -EAGAIN;
726 break;
727 }
728 /* if __tcp_splice_read() got nothing while we have
729 * an skb in receive queue, we do not want to loop.
730 * This might happen with URG data.
731 */
732 if (!skb_queue_empty(&sk->sk_receive_queue))
733 break;
734 sk_wait_data(sk, &timeo);
735 if (signal_pending(current)) {
736 ret = sock_intr_errno(timeo);
737 break;
738 }
739 continue;
740 }
741 tss.len -= ret;
742 spliced += ret;
743
744 if (!timeo)
745 break;
746 release_sock(sk);
747 lock_sock(sk);
748
749 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
750 (sk->sk_shutdown & RCV_SHUTDOWN) ||
751 signal_pending(current))
752 break;
753 }
754
755 release_sock(sk);
756
757 if (spliced)
758 return spliced;
759
760 return ret;
761 }
762 EXPORT_SYMBOL(tcp_splice_read);
763
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)764 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
765 {
766 struct sk_buff *skb;
767
768 /* The TCP header must be at least 32-bit aligned. */
769 size = ALIGN(size, 4);
770
771 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
772 if (skb) {
773 if (sk_wmem_schedule(sk, skb->truesize)) {
774 skb_reserve(skb, sk->sk_prot->max_header);
775 /*
776 * Make sure that we have exactly size bytes
777 * available to the caller, no more, no less.
778 */
779 skb->reserved_tailroom = skb->end - skb->tail - size;
780 return skb;
781 }
782 __kfree_skb(skb);
783 } else {
784 sk->sk_prot->enter_memory_pressure(sk);
785 sk_stream_moderate_sndbuf(sk);
786 }
787 return NULL;
788 }
789
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)790 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
791 int large_allowed)
792 {
793 struct tcp_sock *tp = tcp_sk(sk);
794 u32 xmit_size_goal, old_size_goal;
795
796 xmit_size_goal = mss_now;
797
798 if (large_allowed && sk_can_gso(sk)) {
799 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
800 inet_csk(sk)->icsk_af_ops->net_header_len -
801 inet_csk(sk)->icsk_ext_hdr_len -
802 tp->tcp_header_len);
803
804 /* TSQ : try to have two TSO segments in flight */
805 xmit_size_goal = min_t(u32, xmit_size_goal,
806 sysctl_tcp_limit_output_bytes >> 1);
807
808 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
809
810 /* We try hard to avoid divides here */
811 old_size_goal = tp->xmit_size_goal_segs * mss_now;
812
813 if (likely(old_size_goal <= xmit_size_goal &&
814 old_size_goal + mss_now > xmit_size_goal)) {
815 xmit_size_goal = old_size_goal;
816 } else {
817 tp->xmit_size_goal_segs =
818 min_t(u16, xmit_size_goal / mss_now,
819 sk->sk_gso_max_segs);
820 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
821 }
822 }
823
824 return max(xmit_size_goal, mss_now);
825 }
826
tcp_send_mss(struct sock * sk,int * size_goal,int flags)827 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
828 {
829 int mss_now;
830
831 mss_now = tcp_current_mss(sk);
832 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
833
834 return mss_now;
835 }
836
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)837 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
838 size_t size, int flags)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 int mss_now, size_goal;
842 int err;
843 ssize_t copied;
844 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
845
846 /* Wait for a connection to finish. One exception is TCP Fast Open
847 * (passive side) where data is allowed to be sent before a connection
848 * is fully established.
849 */
850 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
851 !tcp_passive_fastopen(sk)) {
852 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
853 goto out_err;
854 }
855
856 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
857
858 mss_now = tcp_send_mss(sk, &size_goal, flags);
859 copied = 0;
860
861 err = -EPIPE;
862 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
863 goto out_err;
864
865 while (size > 0) {
866 struct sk_buff *skb = tcp_write_queue_tail(sk);
867 int copy, i;
868 bool can_coalesce;
869
870 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
871 new_segment:
872 if (!sk_stream_memory_free(sk))
873 goto wait_for_sndbuf;
874
875 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
876 if (!skb)
877 goto wait_for_memory;
878
879 skb_entail(sk, skb);
880 copy = size_goal;
881 }
882
883 if (copy > size)
884 copy = size;
885
886 i = skb_shinfo(skb)->nr_frags;
887 can_coalesce = skb_can_coalesce(skb, i, page, offset);
888 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
889 tcp_mark_push(tp, skb);
890 goto new_segment;
891 }
892 if (!sk_wmem_schedule(sk, copy))
893 goto wait_for_memory;
894
895 if (can_coalesce) {
896 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
897 } else {
898 get_page(page);
899 skb_fill_page_desc(skb, i, page, offset, copy);
900 }
901 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
902
903 skb->len += copy;
904 skb->data_len += copy;
905 skb->truesize += copy;
906 sk->sk_wmem_queued += copy;
907 sk_mem_charge(sk, copy);
908 skb->ip_summed = CHECKSUM_PARTIAL;
909 tp->write_seq += copy;
910 TCP_SKB_CB(skb)->end_seq += copy;
911 skb_shinfo(skb)->gso_segs = 0;
912
913 if (!copied)
914 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
915
916 copied += copy;
917 offset += copy;
918 if (!(size -= copy))
919 goto out;
920
921 if (skb->len < size_goal || (flags & MSG_OOB))
922 continue;
923
924 if (forced_push(tp)) {
925 tcp_mark_push(tp, skb);
926 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
927 } else if (skb == tcp_send_head(sk))
928 tcp_push_one(sk, mss_now);
929 continue;
930
931 wait_for_sndbuf:
932 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
933 wait_for_memory:
934 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
935
936 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
937 goto do_error;
938
939 mss_now = tcp_send_mss(sk, &size_goal, flags);
940 }
941
942 out:
943 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
944 tcp_push(sk, flags, mss_now, tp->nonagle);
945 return copied;
946
947 do_error:
948 if (copied)
949 goto out;
950 out_err:
951 return sk_stream_error(sk, flags, err);
952 }
953
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)954 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
955 size_t size, int flags)
956 {
957 ssize_t res;
958
959 if (!(sk->sk_route_caps & NETIF_F_SG) ||
960 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
961 return sock_no_sendpage(sk->sk_socket, page, offset, size,
962 flags);
963
964 lock_sock(sk);
965 res = do_tcp_sendpages(sk, page, offset, size, flags);
966 release_sock(sk);
967 return res;
968 }
969 EXPORT_SYMBOL(tcp_sendpage);
970
select_size(const struct sock * sk,bool sg)971 static inline int select_size(const struct sock *sk, bool sg)
972 {
973 const struct tcp_sock *tp = tcp_sk(sk);
974 int tmp = tp->mss_cache;
975
976 if (sg) {
977 if (sk_can_gso(sk)) {
978 /* Small frames wont use a full page:
979 * Payload will immediately follow tcp header.
980 */
981 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
982 } else {
983 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
984
985 if (tmp >= pgbreak &&
986 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
987 tmp = pgbreak;
988 }
989 }
990
991 return tmp;
992 }
993
tcp_free_fastopen_req(struct tcp_sock * tp)994 void tcp_free_fastopen_req(struct tcp_sock *tp)
995 {
996 if (tp->fastopen_req != NULL) {
997 kfree(tp->fastopen_req);
998 tp->fastopen_req = NULL;
999 }
1000 }
1001
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * size)1002 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1003 {
1004 struct tcp_sock *tp = tcp_sk(sk);
1005 int err, flags;
1006
1007 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1008 return -EOPNOTSUPP;
1009 if (tp->fastopen_req != NULL)
1010 return -EALREADY; /* Another Fast Open is in progress */
1011
1012 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1013 sk->sk_allocation);
1014 if (unlikely(tp->fastopen_req == NULL))
1015 return -ENOBUFS;
1016 tp->fastopen_req->data = msg;
1017
1018 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1019 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1020 msg->msg_namelen, flags);
1021 *size = tp->fastopen_req->copied;
1022 tcp_free_fastopen_req(tp);
1023 return err;
1024 }
1025
tcp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t size)1026 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1027 size_t size)
1028 {
1029 struct iovec *iov;
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 struct sk_buff *skb;
1032 int iovlen, flags, err, copied = 0;
1033 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1034 bool sg;
1035 long timeo;
1036
1037 lock_sock(sk);
1038
1039 flags = msg->msg_flags;
1040 if (flags & MSG_FASTOPEN) {
1041 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1042 if (err == -EINPROGRESS && copied_syn > 0)
1043 goto out;
1044 else if (err)
1045 goto out_err;
1046 offset = copied_syn;
1047 }
1048
1049 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1050
1051 /* Wait for a connection to finish. One exception is TCP Fast Open
1052 * (passive side) where data is allowed to be sent before a connection
1053 * is fully established.
1054 */
1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 !tcp_passive_fastopen(sk)) {
1057 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1058 goto do_error;
1059 }
1060
1061 if (unlikely(tp->repair)) {
1062 if (tp->repair_queue == TCP_RECV_QUEUE) {
1063 copied = tcp_send_rcvq(sk, msg, size);
1064 goto out;
1065 }
1066
1067 err = -EINVAL;
1068 if (tp->repair_queue == TCP_NO_QUEUE)
1069 goto out_err;
1070
1071 /* 'common' sending to sendq */
1072 }
1073
1074 /* This should be in poll */
1075 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1076
1077 mss_now = tcp_send_mss(sk, &size_goal, flags);
1078
1079 /* Ok commence sending. */
1080 iovlen = msg->msg_iovlen;
1081 iov = msg->msg_iov;
1082 copied = 0;
1083
1084 err = -EPIPE;
1085 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1086 goto out_err;
1087
1088 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1089
1090 while (--iovlen >= 0) {
1091 size_t seglen = iov->iov_len;
1092 unsigned char __user *from = iov->iov_base;
1093
1094 iov++;
1095 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1096 if (offset >= seglen) {
1097 offset -= seglen;
1098 continue;
1099 }
1100 seglen -= offset;
1101 from += offset;
1102 offset = 0;
1103 }
1104
1105 while (seglen > 0) {
1106 int copy = 0;
1107 int max = size_goal;
1108
1109 skb = tcp_write_queue_tail(sk);
1110 if (tcp_send_head(sk)) {
1111 if (skb->ip_summed == CHECKSUM_NONE)
1112 max = mss_now;
1113 copy = max - skb->len;
1114 }
1115
1116 if (copy <= 0) {
1117 new_segment:
1118 /* Allocate new segment. If the interface is SG,
1119 * allocate skb fitting to single page.
1120 */
1121 if (!sk_stream_memory_free(sk))
1122 goto wait_for_sndbuf;
1123
1124 skb = sk_stream_alloc_skb(sk,
1125 select_size(sk, sg),
1126 sk->sk_allocation);
1127 if (!skb)
1128 goto wait_for_memory;
1129
1130 /*
1131 * Check whether we can use HW checksum.
1132 */
1133 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1134 skb->ip_summed = CHECKSUM_PARTIAL;
1135
1136 skb_entail(sk, skb);
1137 copy = size_goal;
1138 max = size_goal;
1139 }
1140
1141 /* Try to append data to the end of skb. */
1142 if (copy > seglen)
1143 copy = seglen;
1144
1145 /* Where to copy to? */
1146 if (skb_availroom(skb) > 0) {
1147 /* We have some space in skb head. Superb! */
1148 copy = min_t(int, copy, skb_availroom(skb));
1149 err = skb_add_data_nocache(sk, skb, from, copy);
1150 if (err)
1151 goto do_fault;
1152 } else {
1153 bool merge = true;
1154 int i = skb_shinfo(skb)->nr_frags;
1155 struct page_frag *pfrag = sk_page_frag(sk);
1156
1157 if (!sk_page_frag_refill(sk, pfrag))
1158 goto wait_for_memory;
1159
1160 if (!skb_can_coalesce(skb, i, pfrag->page,
1161 pfrag->offset)) {
1162 if (i == MAX_SKB_FRAGS || !sg) {
1163 tcp_mark_push(tp, skb);
1164 goto new_segment;
1165 }
1166 merge = false;
1167 }
1168
1169 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1170
1171 if (!sk_wmem_schedule(sk, copy))
1172 goto wait_for_memory;
1173
1174 err = skb_copy_to_page_nocache(sk, from, skb,
1175 pfrag->page,
1176 pfrag->offset,
1177 copy);
1178 if (err)
1179 goto do_error;
1180
1181 /* Update the skb. */
1182 if (merge) {
1183 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1184 } else {
1185 skb_fill_page_desc(skb, i, pfrag->page,
1186 pfrag->offset, copy);
1187 get_page(pfrag->page);
1188 }
1189 pfrag->offset += copy;
1190 }
1191
1192 if (!copied)
1193 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1194
1195 tp->write_seq += copy;
1196 TCP_SKB_CB(skb)->end_seq += copy;
1197 skb_shinfo(skb)->gso_segs = 0;
1198
1199 from += copy;
1200 copied += copy;
1201 if ((seglen -= copy) == 0 && iovlen == 0)
1202 goto out;
1203
1204 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1205 continue;
1206
1207 if (forced_push(tp)) {
1208 tcp_mark_push(tp, skb);
1209 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1210 } else if (skb == tcp_send_head(sk))
1211 tcp_push_one(sk, mss_now);
1212 continue;
1213
1214 wait_for_sndbuf:
1215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1216 wait_for_memory:
1217 if (copied)
1218 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1219
1220 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1221 goto do_error;
1222
1223 mss_now = tcp_send_mss(sk, &size_goal, flags);
1224 }
1225 }
1226
1227 out:
1228 if (copied)
1229 tcp_push(sk, flags, mss_now, tp->nonagle);
1230 release_sock(sk);
1231
1232 if (copied + copied_syn)
1233 uid_stat_tcp_snd(current_uid(), copied + copied_syn);
1234 return copied + copied_syn;
1235
1236 do_fault:
1237 if (!skb->len) {
1238 tcp_unlink_write_queue(skb, sk);
1239 /* It is the one place in all of TCP, except connection
1240 * reset, where we can be unlinking the send_head.
1241 */
1242 tcp_check_send_head(sk, skb);
1243 sk_wmem_free_skb(sk, skb);
1244 }
1245
1246 do_error:
1247 if (copied + copied_syn)
1248 goto out;
1249 out_err:
1250 err = sk_stream_error(sk, flags, err);
1251 release_sock(sk);
1252 return err;
1253 }
1254 EXPORT_SYMBOL(tcp_sendmsg);
1255
1256 /*
1257 * Handle reading urgent data. BSD has very simple semantics for
1258 * this, no blocking and very strange errors 8)
1259 */
1260
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1261 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1262 {
1263 struct tcp_sock *tp = tcp_sk(sk);
1264
1265 /* No URG data to read. */
1266 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1267 tp->urg_data == TCP_URG_READ)
1268 return -EINVAL; /* Yes this is right ! */
1269
1270 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1271 return -ENOTCONN;
1272
1273 if (tp->urg_data & TCP_URG_VALID) {
1274 int err = 0;
1275 char c = tp->urg_data;
1276
1277 if (!(flags & MSG_PEEK))
1278 tp->urg_data = TCP_URG_READ;
1279
1280 /* Read urgent data. */
1281 msg->msg_flags |= MSG_OOB;
1282
1283 if (len > 0) {
1284 if (!(flags & MSG_TRUNC))
1285 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1286 len = 1;
1287 } else
1288 msg->msg_flags |= MSG_TRUNC;
1289
1290 return err ? -EFAULT : len;
1291 }
1292
1293 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1294 return 0;
1295
1296 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1297 * the available implementations agree in this case:
1298 * this call should never block, independent of the
1299 * blocking state of the socket.
1300 * Mike <pall@rz.uni-karlsruhe.de>
1301 */
1302 return -EAGAIN;
1303 }
1304
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1305 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1306 {
1307 struct sk_buff *skb;
1308 int copied = 0, err = 0;
1309
1310 /* XXX -- need to support SO_PEEK_OFF */
1311
1312 skb_queue_walk(&sk->sk_write_queue, skb) {
1313 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1314 if (err)
1315 break;
1316
1317 copied += skb->len;
1318 }
1319
1320 return err ?: copied;
1321 }
1322
1323 /* Clean up the receive buffer for full frames taken by the user,
1324 * then send an ACK if necessary. COPIED is the number of bytes
1325 * tcp_recvmsg has given to the user so far, it speeds up the
1326 * calculation of whether or not we must ACK for the sake of
1327 * a window update.
1328 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1329 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1330 {
1331 struct tcp_sock *tp = tcp_sk(sk);
1332 bool time_to_ack = false;
1333
1334 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1335
1336 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1337 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1338 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1339
1340 if (inet_csk_ack_scheduled(sk)) {
1341 const struct inet_connection_sock *icsk = inet_csk(sk);
1342 /* Delayed ACKs frequently hit locked sockets during bulk
1343 * receive. */
1344 if (icsk->icsk_ack.blocked ||
1345 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1346 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1347 /*
1348 * If this read emptied read buffer, we send ACK, if
1349 * connection is not bidirectional, user drained
1350 * receive buffer and there was a small segment
1351 * in queue.
1352 */
1353 (copied > 0 &&
1354 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1355 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1356 !icsk->icsk_ack.pingpong)) &&
1357 !atomic_read(&sk->sk_rmem_alloc)))
1358 time_to_ack = true;
1359 }
1360
1361 /* We send an ACK if we can now advertise a non-zero window
1362 * which has been raised "significantly".
1363 *
1364 * Even if window raised up to infinity, do not send window open ACK
1365 * in states, where we will not receive more. It is useless.
1366 */
1367 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1368 __u32 rcv_window_now = tcp_receive_window(tp);
1369
1370 /* Optimize, __tcp_select_window() is not cheap. */
1371 if (2*rcv_window_now <= tp->window_clamp) {
1372 __u32 new_window = __tcp_select_window(sk);
1373
1374 /* Send ACK now, if this read freed lots of space
1375 * in our buffer. Certainly, new_window is new window.
1376 * We can advertise it now, if it is not less than current one.
1377 * "Lots" means "at least twice" here.
1378 */
1379 if (new_window && new_window >= 2 * rcv_window_now)
1380 time_to_ack = true;
1381 }
1382 }
1383 if (time_to_ack)
1384 tcp_send_ack(sk);
1385 }
1386
tcp_prequeue_process(struct sock * sk)1387 static void tcp_prequeue_process(struct sock *sk)
1388 {
1389 struct sk_buff *skb;
1390 struct tcp_sock *tp = tcp_sk(sk);
1391
1392 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1393
1394 /* RX process wants to run with disabled BHs, though it is not
1395 * necessary */
1396 local_bh_disable();
1397 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1398 sk_backlog_rcv(sk, skb);
1399 local_bh_enable();
1400
1401 /* Clear memory counter. */
1402 tp->ucopy.memory = 0;
1403 }
1404
1405 #ifdef CONFIG_NET_DMA
tcp_service_net_dma(struct sock * sk,bool wait)1406 static void tcp_service_net_dma(struct sock *sk, bool wait)
1407 {
1408 dma_cookie_t done, used;
1409 dma_cookie_t last_issued;
1410 struct tcp_sock *tp = tcp_sk(sk);
1411
1412 if (!tp->ucopy.dma_chan)
1413 return;
1414
1415 last_issued = tp->ucopy.dma_cookie;
1416 dma_async_issue_pending(tp->ucopy.dma_chan);
1417
1418 do {
1419 if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1420 last_issued, &done,
1421 &used) == DMA_SUCCESS) {
1422 /* Safe to free early-copied skbs now */
1423 __skb_queue_purge(&sk->sk_async_wait_queue);
1424 break;
1425 } else {
1426 struct sk_buff *skb;
1427 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1428 (dma_async_is_complete(skb->dma_cookie, done,
1429 used) == DMA_SUCCESS)) {
1430 __skb_dequeue(&sk->sk_async_wait_queue);
1431 kfree_skb(skb);
1432 }
1433 }
1434 } while (wait);
1435 }
1436 #endif
1437
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1438 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1439 {
1440 struct sk_buff *skb;
1441 u32 offset;
1442
1443 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1444 offset = seq - TCP_SKB_CB(skb)->seq;
1445 if (tcp_hdr(skb)->syn)
1446 offset--;
1447 if (offset < skb->len || tcp_hdr(skb)->fin) {
1448 *off = offset;
1449 return skb;
1450 }
1451 /* This looks weird, but this can happen if TCP collapsing
1452 * splitted a fat GRO packet, while we released socket lock
1453 * in skb_splice_bits()
1454 */
1455 sk_eat_skb(sk, skb, false);
1456 }
1457 return NULL;
1458 }
1459
1460 /*
1461 * This routine provides an alternative to tcp_recvmsg() for routines
1462 * that would like to handle copying from skbuffs directly in 'sendfile'
1463 * fashion.
1464 * Note:
1465 * - It is assumed that the socket was locked by the caller.
1466 * - The routine does not block.
1467 * - At present, there is no support for reading OOB data
1468 * or for 'peeking' the socket using this routine
1469 * (although both would be easy to implement).
1470 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1471 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1472 sk_read_actor_t recv_actor)
1473 {
1474 struct sk_buff *skb;
1475 struct tcp_sock *tp = tcp_sk(sk);
1476 u32 seq = tp->copied_seq;
1477 u32 offset;
1478 int copied = 0;
1479
1480 if (sk->sk_state == TCP_LISTEN)
1481 return -ENOTCONN;
1482 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1483 if (offset < skb->len) {
1484 int used;
1485 size_t len;
1486
1487 len = skb->len - offset;
1488 /* Stop reading if we hit a patch of urgent data */
1489 if (tp->urg_data) {
1490 u32 urg_offset = tp->urg_seq - seq;
1491 if (urg_offset < len)
1492 len = urg_offset;
1493 if (!len)
1494 break;
1495 }
1496 used = recv_actor(desc, skb, offset, len);
1497 if (used <= 0) {
1498 if (!copied)
1499 copied = used;
1500 break;
1501 } else if (used <= len) {
1502 seq += used;
1503 copied += used;
1504 offset += used;
1505 }
1506 /* If recv_actor drops the lock (e.g. TCP splice
1507 * receive) the skb pointer might be invalid when
1508 * getting here: tcp_collapse might have deleted it
1509 * while aggregating skbs from the socket queue.
1510 */
1511 skb = tcp_recv_skb(sk, seq - 1, &offset);
1512 if (!skb)
1513 break;
1514 /* TCP coalescing might have appended data to the skb.
1515 * Try to splice more frags
1516 */
1517 if (offset + 1 != skb->len)
1518 continue;
1519 }
1520 if (tcp_hdr(skb)->fin) {
1521 sk_eat_skb(sk, skb, false);
1522 ++seq;
1523 break;
1524 }
1525 sk_eat_skb(sk, skb, false);
1526 if (!desc->count)
1527 break;
1528 tp->copied_seq = seq;
1529 }
1530 tp->copied_seq = seq;
1531
1532 tcp_rcv_space_adjust(sk);
1533
1534 /* Clean up data we have read: This will do ACK frames. */
1535 if (copied > 0) {
1536 tcp_recv_skb(sk, seq, &offset);
1537 tcp_cleanup_rbuf(sk, copied);
1538 uid_stat_tcp_rcv(current_uid(), copied);
1539 }
1540 return copied;
1541 }
1542 EXPORT_SYMBOL(tcp_read_sock);
1543
1544 /*
1545 * This routine copies from a sock struct into the user buffer.
1546 *
1547 * Technical note: in 2.3 we work on _locked_ socket, so that
1548 * tricks with *seq access order and skb->users are not required.
1549 * Probably, code can be easily improved even more.
1550 */
1551
tcp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1552 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1553 size_t len, int nonblock, int flags, int *addr_len)
1554 {
1555 struct tcp_sock *tp = tcp_sk(sk);
1556 int copied = 0;
1557 u32 peek_seq;
1558 u32 *seq;
1559 unsigned long used;
1560 int err;
1561 int target; /* Read at least this many bytes */
1562 long timeo;
1563 struct task_struct *user_recv = NULL;
1564 bool copied_early = false;
1565 struct sk_buff *skb;
1566 u32 urg_hole = 0;
1567
1568 lock_sock(sk);
1569
1570 err = -ENOTCONN;
1571 if (sk->sk_state == TCP_LISTEN)
1572 goto out;
1573
1574 timeo = sock_rcvtimeo(sk, nonblock);
1575
1576 /* Urgent data needs to be handled specially. */
1577 if (flags & MSG_OOB)
1578 goto recv_urg;
1579
1580 if (unlikely(tp->repair)) {
1581 err = -EPERM;
1582 if (!(flags & MSG_PEEK))
1583 goto out;
1584
1585 if (tp->repair_queue == TCP_SEND_QUEUE)
1586 goto recv_sndq;
1587
1588 err = -EINVAL;
1589 if (tp->repair_queue == TCP_NO_QUEUE)
1590 goto out;
1591
1592 /* 'common' recv queue MSG_PEEK-ing */
1593 }
1594
1595 seq = &tp->copied_seq;
1596 if (flags & MSG_PEEK) {
1597 peek_seq = tp->copied_seq;
1598 seq = &peek_seq;
1599 }
1600
1601 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1602
1603 #ifdef CONFIG_NET_DMA
1604 tp->ucopy.dma_chan = NULL;
1605 preempt_disable();
1606 skb = skb_peek_tail(&sk->sk_receive_queue);
1607 {
1608 int available = 0;
1609
1610 if (skb)
1611 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1612 if ((available < target) &&
1613 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1614 !sysctl_tcp_low_latency &&
1615 net_dma_find_channel()) {
1616 preempt_enable_no_resched();
1617 tp->ucopy.pinned_list =
1618 dma_pin_iovec_pages(msg->msg_iov, len);
1619 } else {
1620 preempt_enable_no_resched();
1621 }
1622 }
1623 #endif
1624
1625 do {
1626 u32 offset;
1627
1628 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1629 if (tp->urg_data && tp->urg_seq == *seq) {
1630 if (copied)
1631 break;
1632 if (signal_pending(current)) {
1633 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1634 break;
1635 }
1636 }
1637
1638 /* Next get a buffer. */
1639
1640 skb_queue_walk(&sk->sk_receive_queue, skb) {
1641 /* Now that we have two receive queues this
1642 * shouldn't happen.
1643 */
1644 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1645 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1646 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1647 flags))
1648 break;
1649
1650 offset = *seq - TCP_SKB_CB(skb)->seq;
1651 if (tcp_hdr(skb)->syn)
1652 offset--;
1653 if (offset < skb->len)
1654 goto found_ok_skb;
1655 if (tcp_hdr(skb)->fin)
1656 goto found_fin_ok;
1657 WARN(!(flags & MSG_PEEK),
1658 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1659 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1660 }
1661
1662 /* Well, if we have backlog, try to process it now yet. */
1663
1664 if (copied >= target && !sk->sk_backlog.tail)
1665 break;
1666
1667 if (copied) {
1668 if (sk->sk_err ||
1669 sk->sk_state == TCP_CLOSE ||
1670 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1671 !timeo ||
1672 signal_pending(current))
1673 break;
1674 } else {
1675 if (sock_flag(sk, SOCK_DONE))
1676 break;
1677
1678 if (sk->sk_err) {
1679 copied = sock_error(sk);
1680 break;
1681 }
1682
1683 if (sk->sk_shutdown & RCV_SHUTDOWN)
1684 break;
1685
1686 if (sk->sk_state == TCP_CLOSE) {
1687 if (!sock_flag(sk, SOCK_DONE)) {
1688 /* This occurs when user tries to read
1689 * from never connected socket.
1690 */
1691 copied = -ENOTCONN;
1692 break;
1693 }
1694 break;
1695 }
1696
1697 if (!timeo) {
1698 copied = -EAGAIN;
1699 break;
1700 }
1701
1702 if (signal_pending(current)) {
1703 copied = sock_intr_errno(timeo);
1704 break;
1705 }
1706 }
1707
1708 tcp_cleanup_rbuf(sk, copied);
1709
1710 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1711 /* Install new reader */
1712 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1713 user_recv = current;
1714 tp->ucopy.task = user_recv;
1715 tp->ucopy.iov = msg->msg_iov;
1716 }
1717
1718 tp->ucopy.len = len;
1719
1720 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1721 !(flags & (MSG_PEEK | MSG_TRUNC)));
1722
1723 /* Ugly... If prequeue is not empty, we have to
1724 * process it before releasing socket, otherwise
1725 * order will be broken at second iteration.
1726 * More elegant solution is required!!!
1727 *
1728 * Look: we have the following (pseudo)queues:
1729 *
1730 * 1. packets in flight
1731 * 2. backlog
1732 * 3. prequeue
1733 * 4. receive_queue
1734 *
1735 * Each queue can be processed only if the next ones
1736 * are empty. At this point we have empty receive_queue.
1737 * But prequeue _can_ be not empty after 2nd iteration,
1738 * when we jumped to start of loop because backlog
1739 * processing added something to receive_queue.
1740 * We cannot release_sock(), because backlog contains
1741 * packets arrived _after_ prequeued ones.
1742 *
1743 * Shortly, algorithm is clear --- to process all
1744 * the queues in order. We could make it more directly,
1745 * requeueing packets from backlog to prequeue, if
1746 * is not empty. It is more elegant, but eats cycles,
1747 * unfortunately.
1748 */
1749 if (!skb_queue_empty(&tp->ucopy.prequeue))
1750 goto do_prequeue;
1751
1752 /* __ Set realtime policy in scheduler __ */
1753 }
1754
1755 #ifdef CONFIG_NET_DMA
1756 if (tp->ucopy.dma_chan) {
1757 if (tp->rcv_wnd == 0 &&
1758 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1759 tcp_service_net_dma(sk, true);
1760 tcp_cleanup_rbuf(sk, copied);
1761 } else
1762 dma_async_issue_pending(tp->ucopy.dma_chan);
1763 }
1764 #endif
1765 if (copied >= target) {
1766 /* Do not sleep, just process backlog. */
1767 release_sock(sk);
1768 lock_sock(sk);
1769 } else
1770 sk_wait_data(sk, &timeo);
1771
1772 #ifdef CONFIG_NET_DMA
1773 tcp_service_net_dma(sk, false); /* Don't block */
1774 tp->ucopy.wakeup = 0;
1775 #endif
1776
1777 if (user_recv) {
1778 int chunk;
1779
1780 /* __ Restore normal policy in scheduler __ */
1781
1782 if ((chunk = len - tp->ucopy.len) != 0) {
1783 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1784 len -= chunk;
1785 copied += chunk;
1786 }
1787
1788 if (tp->rcv_nxt == tp->copied_seq &&
1789 !skb_queue_empty(&tp->ucopy.prequeue)) {
1790 do_prequeue:
1791 tcp_prequeue_process(sk);
1792
1793 if ((chunk = len - tp->ucopy.len) != 0) {
1794 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1795 len -= chunk;
1796 copied += chunk;
1797 }
1798 }
1799 }
1800 if ((flags & MSG_PEEK) &&
1801 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1802 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1803 current->comm,
1804 task_pid_nr(current));
1805 peek_seq = tp->copied_seq;
1806 }
1807 continue;
1808
1809 found_ok_skb:
1810 /* Ok so how much can we use? */
1811 used = skb->len - offset;
1812 if (len < used)
1813 used = len;
1814
1815 /* Do we have urgent data here? */
1816 if (tp->urg_data) {
1817 u32 urg_offset = tp->urg_seq - *seq;
1818 if (urg_offset < used) {
1819 if (!urg_offset) {
1820 if (!sock_flag(sk, SOCK_URGINLINE)) {
1821 ++*seq;
1822 urg_hole++;
1823 offset++;
1824 used--;
1825 if (!used)
1826 goto skip_copy;
1827 }
1828 } else
1829 used = urg_offset;
1830 }
1831 }
1832
1833 if (!(flags & MSG_TRUNC)) {
1834 #ifdef CONFIG_NET_DMA
1835 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1836 tp->ucopy.dma_chan = net_dma_find_channel();
1837
1838 if (tp->ucopy.dma_chan) {
1839 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1840 tp->ucopy.dma_chan, skb, offset,
1841 msg->msg_iov, used,
1842 tp->ucopy.pinned_list);
1843
1844 if (tp->ucopy.dma_cookie < 0) {
1845
1846 pr_alert("%s: dma_cookie < 0\n",
1847 __func__);
1848
1849 /* Exception. Bailout! */
1850 if (!copied)
1851 copied = -EFAULT;
1852 break;
1853 }
1854
1855 dma_async_issue_pending(tp->ucopy.dma_chan);
1856
1857 if ((offset + used) == skb->len)
1858 copied_early = true;
1859
1860 } else
1861 #endif
1862 {
1863 err = skb_copy_datagram_iovec(skb, offset,
1864 msg->msg_iov, used);
1865 if (err) {
1866 /* Exception. Bailout! */
1867 if (!copied)
1868 copied = -EFAULT;
1869 break;
1870 }
1871 }
1872 }
1873
1874 *seq += used;
1875 copied += used;
1876 len -= used;
1877
1878 tcp_rcv_space_adjust(sk);
1879
1880 skip_copy:
1881 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1882 tp->urg_data = 0;
1883 tcp_fast_path_check(sk);
1884 }
1885 if (used + offset < skb->len)
1886 continue;
1887
1888 if (tcp_hdr(skb)->fin)
1889 goto found_fin_ok;
1890 if (!(flags & MSG_PEEK)) {
1891 sk_eat_skb(sk, skb, copied_early);
1892 copied_early = false;
1893 }
1894 continue;
1895
1896 found_fin_ok:
1897 /* Process the FIN. */
1898 ++*seq;
1899 if (!(flags & MSG_PEEK)) {
1900 sk_eat_skb(sk, skb, copied_early);
1901 copied_early = false;
1902 }
1903 break;
1904 } while (len > 0);
1905
1906 if (user_recv) {
1907 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1908 int chunk;
1909
1910 tp->ucopy.len = copied > 0 ? len : 0;
1911
1912 tcp_prequeue_process(sk);
1913
1914 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1915 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1916 len -= chunk;
1917 copied += chunk;
1918 }
1919 }
1920
1921 tp->ucopy.task = NULL;
1922 tp->ucopy.len = 0;
1923 }
1924
1925 #ifdef CONFIG_NET_DMA
1926 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1927 tp->ucopy.dma_chan = NULL;
1928
1929 if (tp->ucopy.pinned_list) {
1930 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1931 tp->ucopy.pinned_list = NULL;
1932 }
1933 #endif
1934
1935 /* According to UNIX98, msg_name/msg_namelen are ignored
1936 * on connected socket. I was just happy when found this 8) --ANK
1937 */
1938
1939 /* Clean up data we have read: This will do ACK frames. */
1940 tcp_cleanup_rbuf(sk, copied);
1941
1942 release_sock(sk);
1943
1944 if (copied > 0)
1945 uid_stat_tcp_rcv(current_uid(), copied);
1946 return copied;
1947
1948 out:
1949 release_sock(sk);
1950 return err;
1951
1952 recv_urg:
1953 err = tcp_recv_urg(sk, msg, len, flags);
1954 if (err > 0)
1955 uid_stat_tcp_rcv(current_uid(), err);
1956 goto out;
1957
1958 recv_sndq:
1959 err = tcp_peek_sndq(sk, msg, len);
1960 goto out;
1961 }
1962 EXPORT_SYMBOL(tcp_recvmsg);
1963
tcp_set_state(struct sock * sk,int state)1964 void tcp_set_state(struct sock *sk, int state)
1965 {
1966 int oldstate = sk->sk_state;
1967
1968 switch (state) {
1969 case TCP_ESTABLISHED:
1970 if (oldstate != TCP_ESTABLISHED)
1971 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1972 break;
1973
1974 case TCP_CLOSE:
1975 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1976 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1977
1978 sk->sk_prot->unhash(sk);
1979 if (inet_csk(sk)->icsk_bind_hash &&
1980 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1981 inet_put_port(sk);
1982 /* fall through */
1983 default:
1984 if (oldstate == TCP_ESTABLISHED)
1985 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1986 }
1987
1988 /* Change state AFTER socket is unhashed to avoid closed
1989 * socket sitting in hash tables.
1990 */
1991 sk->sk_state = state;
1992
1993 #ifdef STATE_TRACE
1994 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1995 #endif
1996 }
1997 EXPORT_SYMBOL_GPL(tcp_set_state);
1998
1999 /*
2000 * State processing on a close. This implements the state shift for
2001 * sending our FIN frame. Note that we only send a FIN for some
2002 * states. A shutdown() may have already sent the FIN, or we may be
2003 * closed.
2004 */
2005
2006 static const unsigned char new_state[16] = {
2007 /* current state: new state: action: */
2008 /* (Invalid) */ TCP_CLOSE,
2009 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2010 /* TCP_SYN_SENT */ TCP_CLOSE,
2011 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2012 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2013 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2014 /* TCP_TIME_WAIT */ TCP_CLOSE,
2015 /* TCP_CLOSE */ TCP_CLOSE,
2016 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2017 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2018 /* TCP_LISTEN */ TCP_CLOSE,
2019 /* TCP_CLOSING */ TCP_CLOSING,
2020 };
2021
tcp_close_state(struct sock * sk)2022 static int tcp_close_state(struct sock *sk)
2023 {
2024 int next = (int)new_state[sk->sk_state];
2025 int ns = next & TCP_STATE_MASK;
2026
2027 tcp_set_state(sk, ns);
2028
2029 return next & TCP_ACTION_FIN;
2030 }
2031
2032 /*
2033 * Shutdown the sending side of a connection. Much like close except
2034 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2035 */
2036
tcp_shutdown(struct sock * sk,int how)2037 void tcp_shutdown(struct sock *sk, int how)
2038 {
2039 /* We need to grab some memory, and put together a FIN,
2040 * and then put it into the queue to be sent.
2041 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2042 */
2043 if (!(how & SEND_SHUTDOWN))
2044 return;
2045
2046 /* If we've already sent a FIN, or it's a closed state, skip this. */
2047 if ((1 << sk->sk_state) &
2048 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2049 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2050 /* Clear out any half completed packets. FIN if needed. */
2051 if (tcp_close_state(sk))
2052 tcp_send_fin(sk);
2053 }
2054 }
2055 EXPORT_SYMBOL(tcp_shutdown);
2056
tcp_check_oom(struct sock * sk,int shift)2057 bool tcp_check_oom(struct sock *sk, int shift)
2058 {
2059 bool too_many_orphans, out_of_socket_memory;
2060
2061 too_many_orphans = tcp_too_many_orphans(sk, shift);
2062 out_of_socket_memory = tcp_out_of_memory(sk);
2063
2064 if (too_many_orphans)
2065 net_info_ratelimited("too many orphaned sockets\n");
2066 if (out_of_socket_memory)
2067 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2068 return too_many_orphans || out_of_socket_memory;
2069 }
2070
tcp_close(struct sock * sk,long timeout)2071 void tcp_close(struct sock *sk, long timeout)
2072 {
2073 struct sk_buff *skb;
2074 int data_was_unread = 0;
2075 int state;
2076
2077 lock_sock(sk);
2078 sk->sk_shutdown = SHUTDOWN_MASK;
2079
2080 if (sk->sk_state == TCP_LISTEN) {
2081 tcp_set_state(sk, TCP_CLOSE);
2082
2083 /* Special case. */
2084 inet_csk_listen_stop(sk);
2085
2086 goto adjudge_to_death;
2087 }
2088
2089 /* We need to flush the recv. buffs. We do this only on the
2090 * descriptor close, not protocol-sourced closes, because the
2091 * reader process may not have drained the data yet!
2092 */
2093 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2094 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2095 tcp_hdr(skb)->fin;
2096 data_was_unread += len;
2097 __kfree_skb(skb);
2098 }
2099
2100 sk_mem_reclaim(sk);
2101
2102 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2103 if (sk->sk_state == TCP_CLOSE)
2104 goto adjudge_to_death;
2105
2106 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2107 * data was lost. To witness the awful effects of the old behavior of
2108 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2109 * GET in an FTP client, suspend the process, wait for the client to
2110 * advertise a zero window, then kill -9 the FTP client, wheee...
2111 * Note: timeout is always zero in such a case.
2112 */
2113 if (unlikely(tcp_sk(sk)->repair)) {
2114 sk->sk_prot->disconnect(sk, 0);
2115 } else if (data_was_unread) {
2116 /* Unread data was tossed, zap the connection. */
2117 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2118 tcp_set_state(sk, TCP_CLOSE);
2119 tcp_send_active_reset(sk, sk->sk_allocation);
2120 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2121 /* Check zero linger _after_ checking for unread data. */
2122 sk->sk_prot->disconnect(sk, 0);
2123 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2124 } else if (tcp_close_state(sk)) {
2125 /* We FIN if the application ate all the data before
2126 * zapping the connection.
2127 */
2128
2129 /* RED-PEN. Formally speaking, we have broken TCP state
2130 * machine. State transitions:
2131 *
2132 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2133 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2134 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2135 *
2136 * are legal only when FIN has been sent (i.e. in window),
2137 * rather than queued out of window. Purists blame.
2138 *
2139 * F.e. "RFC state" is ESTABLISHED,
2140 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2141 *
2142 * The visible declinations are that sometimes
2143 * we enter time-wait state, when it is not required really
2144 * (harmless), do not send active resets, when they are
2145 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2146 * they look as CLOSING or LAST_ACK for Linux)
2147 * Probably, I missed some more holelets.
2148 * --ANK
2149 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2150 * in a single packet! (May consider it later but will
2151 * probably need API support or TCP_CORK SYN-ACK until
2152 * data is written and socket is closed.)
2153 */
2154 tcp_send_fin(sk);
2155 }
2156
2157 sk_stream_wait_close(sk, timeout);
2158
2159 adjudge_to_death:
2160 state = sk->sk_state;
2161 sock_hold(sk);
2162 sock_orphan(sk);
2163
2164 /* It is the last release_sock in its life. It will remove backlog. */
2165 release_sock(sk);
2166
2167
2168 /* Now socket is owned by kernel and we acquire BH lock
2169 to finish close. No need to check for user refs.
2170 */
2171 local_bh_disable();
2172 bh_lock_sock(sk);
2173 WARN_ON(sock_owned_by_user(sk));
2174
2175 percpu_counter_inc(sk->sk_prot->orphan_count);
2176
2177 /* Have we already been destroyed by a softirq or backlog? */
2178 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2179 goto out;
2180
2181 /* This is a (useful) BSD violating of the RFC. There is a
2182 * problem with TCP as specified in that the other end could
2183 * keep a socket open forever with no application left this end.
2184 * We use a 3 minute timeout (about the same as BSD) then kill
2185 * our end. If they send after that then tough - BUT: long enough
2186 * that we won't make the old 4*rto = almost no time - whoops
2187 * reset mistake.
2188 *
2189 * Nope, it was not mistake. It is really desired behaviour
2190 * f.e. on http servers, when such sockets are useless, but
2191 * consume significant resources. Let's do it with special
2192 * linger2 option. --ANK
2193 */
2194
2195 if (sk->sk_state == TCP_FIN_WAIT2) {
2196 struct tcp_sock *tp = tcp_sk(sk);
2197 if (tp->linger2 < 0) {
2198 tcp_set_state(sk, TCP_CLOSE);
2199 tcp_send_active_reset(sk, GFP_ATOMIC);
2200 NET_INC_STATS_BH(sock_net(sk),
2201 LINUX_MIB_TCPABORTONLINGER);
2202 } else {
2203 const int tmo = tcp_fin_time(sk);
2204
2205 if (tmo > TCP_TIMEWAIT_LEN) {
2206 inet_csk_reset_keepalive_timer(sk,
2207 tmo - TCP_TIMEWAIT_LEN);
2208 } else {
2209 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2210 goto out;
2211 }
2212 }
2213 }
2214 if (sk->sk_state != TCP_CLOSE) {
2215 sk_mem_reclaim(sk);
2216 if (tcp_check_oom(sk, 0)) {
2217 tcp_set_state(sk, TCP_CLOSE);
2218 tcp_send_active_reset(sk, GFP_ATOMIC);
2219 NET_INC_STATS_BH(sock_net(sk),
2220 LINUX_MIB_TCPABORTONMEMORY);
2221 }
2222 }
2223
2224 if (sk->sk_state == TCP_CLOSE) {
2225 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2226 /* We could get here with a non-NULL req if the socket is
2227 * aborted (e.g., closed with unread data) before 3WHS
2228 * finishes.
2229 */
2230 if (req != NULL)
2231 reqsk_fastopen_remove(sk, req, false);
2232 inet_csk_destroy_sock(sk);
2233 }
2234 /* Otherwise, socket is reprieved until protocol close. */
2235
2236 out:
2237 bh_unlock_sock(sk);
2238 local_bh_enable();
2239 sock_put(sk);
2240 }
2241 EXPORT_SYMBOL(tcp_close);
2242
2243 /* These states need RST on ABORT according to RFC793 */
2244
tcp_need_reset(int state)2245 static inline bool tcp_need_reset(int state)
2246 {
2247 return (1 << state) &
2248 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2249 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2250 }
2251
tcp_disconnect(struct sock * sk,int flags)2252 int tcp_disconnect(struct sock *sk, int flags)
2253 {
2254 struct inet_sock *inet = inet_sk(sk);
2255 struct inet_connection_sock *icsk = inet_csk(sk);
2256 struct tcp_sock *tp = tcp_sk(sk);
2257 int err = 0;
2258 int old_state = sk->sk_state;
2259
2260 if (old_state != TCP_CLOSE)
2261 tcp_set_state(sk, TCP_CLOSE);
2262
2263 /* ABORT function of RFC793 */
2264 if (old_state == TCP_LISTEN) {
2265 inet_csk_listen_stop(sk);
2266 } else if (unlikely(tp->repair)) {
2267 sk->sk_err = ECONNABORTED;
2268 } else if (tcp_need_reset(old_state) ||
2269 (tp->snd_nxt != tp->write_seq &&
2270 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2271 /* The last check adjusts for discrepancy of Linux wrt. RFC
2272 * states
2273 */
2274 tcp_send_active_reset(sk, gfp_any());
2275 sk->sk_err = ECONNRESET;
2276 } else if (old_state == TCP_SYN_SENT)
2277 sk->sk_err = ECONNRESET;
2278
2279 tcp_clear_xmit_timers(sk);
2280 __skb_queue_purge(&sk->sk_receive_queue);
2281 tcp_write_queue_purge(sk);
2282 __skb_queue_purge(&tp->out_of_order_queue);
2283 #ifdef CONFIG_NET_DMA
2284 __skb_queue_purge(&sk->sk_async_wait_queue);
2285 #endif
2286
2287 inet->inet_dport = 0;
2288
2289 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2290 inet_reset_saddr(sk);
2291
2292 sk->sk_shutdown = 0;
2293 sock_reset_flag(sk, SOCK_DONE);
2294 tp->srtt = 0;
2295 if ((tp->write_seq += tp->max_window + 2) == 0)
2296 tp->write_seq = 1;
2297 icsk->icsk_backoff = 0;
2298 tp->snd_cwnd = 2;
2299 icsk->icsk_probes_out = 0;
2300 tp->packets_out = 0;
2301 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2302 tp->snd_cwnd_cnt = 0;
2303 tp->window_clamp = 0;
2304 tcp_set_ca_state(sk, TCP_CA_Open);
2305 tcp_clear_retrans(tp);
2306 inet_csk_delack_init(sk);
2307 tcp_init_send_head(sk);
2308 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2309 __sk_dst_reset(sk);
2310
2311 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2312
2313 sk->sk_error_report(sk);
2314 return err;
2315 }
2316 EXPORT_SYMBOL(tcp_disconnect);
2317
tcp_sock_destruct(struct sock * sk)2318 void tcp_sock_destruct(struct sock *sk)
2319 {
2320 inet_sock_destruct(sk);
2321
2322 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2323 }
2324
tcp_can_repair_sock(const struct sock * sk)2325 static inline bool tcp_can_repair_sock(const struct sock *sk)
2326 {
2327 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2328 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2329 }
2330
tcp_repair_options_est(struct tcp_sock * tp,struct tcp_repair_opt __user * optbuf,unsigned int len)2331 static int tcp_repair_options_est(struct tcp_sock *tp,
2332 struct tcp_repair_opt __user *optbuf, unsigned int len)
2333 {
2334 struct tcp_repair_opt opt;
2335
2336 while (len >= sizeof(opt)) {
2337 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2338 return -EFAULT;
2339
2340 optbuf++;
2341 len -= sizeof(opt);
2342
2343 switch (opt.opt_code) {
2344 case TCPOPT_MSS:
2345 tp->rx_opt.mss_clamp = opt.opt_val;
2346 break;
2347 case TCPOPT_WINDOW:
2348 {
2349 u16 snd_wscale = opt.opt_val & 0xFFFF;
2350 u16 rcv_wscale = opt.opt_val >> 16;
2351
2352 if (snd_wscale > 14 || rcv_wscale > 14)
2353 return -EFBIG;
2354
2355 tp->rx_opt.snd_wscale = snd_wscale;
2356 tp->rx_opt.rcv_wscale = rcv_wscale;
2357 tp->rx_opt.wscale_ok = 1;
2358 }
2359 break;
2360 case TCPOPT_SACK_PERM:
2361 if (opt.opt_val != 0)
2362 return -EINVAL;
2363
2364 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2365 if (sysctl_tcp_fack)
2366 tcp_enable_fack(tp);
2367 break;
2368 case TCPOPT_TIMESTAMP:
2369 if (opt.opt_val != 0)
2370 return -EINVAL;
2371
2372 tp->rx_opt.tstamp_ok = 1;
2373 break;
2374 }
2375 }
2376
2377 return 0;
2378 }
2379
2380 /*
2381 * Socket option code for TCP.
2382 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2383 static int do_tcp_setsockopt(struct sock *sk, int level,
2384 int optname, char __user *optval, unsigned int optlen)
2385 {
2386 struct tcp_sock *tp = tcp_sk(sk);
2387 struct inet_connection_sock *icsk = inet_csk(sk);
2388 int val;
2389 int err = 0;
2390
2391 /* These are data/string values, all the others are ints */
2392 switch (optname) {
2393 case TCP_CONGESTION: {
2394 char name[TCP_CA_NAME_MAX];
2395
2396 if (optlen < 1)
2397 return -EINVAL;
2398
2399 val = strncpy_from_user(name, optval,
2400 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2401 if (val < 0)
2402 return -EFAULT;
2403 name[val] = 0;
2404
2405 lock_sock(sk);
2406 err = tcp_set_congestion_control(sk, name);
2407 release_sock(sk);
2408 return err;
2409 }
2410 default:
2411 /* fallthru */
2412 break;
2413 }
2414
2415 if (optlen < sizeof(int))
2416 return -EINVAL;
2417
2418 if (get_user(val, (int __user *)optval))
2419 return -EFAULT;
2420
2421 lock_sock(sk);
2422
2423 switch (optname) {
2424 case TCP_MAXSEG:
2425 /* Values greater than interface MTU won't take effect. However
2426 * at the point when this call is done we typically don't yet
2427 * know which interface is going to be used */
2428 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2429 err = -EINVAL;
2430 break;
2431 }
2432 tp->rx_opt.user_mss = val;
2433 break;
2434
2435 case TCP_NODELAY:
2436 if (val) {
2437 /* TCP_NODELAY is weaker than TCP_CORK, so that
2438 * this option on corked socket is remembered, but
2439 * it is not activated until cork is cleared.
2440 *
2441 * However, when TCP_NODELAY is set we make
2442 * an explicit push, which overrides even TCP_CORK
2443 * for currently queued segments.
2444 */
2445 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2446 tcp_push_pending_frames(sk);
2447 } else {
2448 tp->nonagle &= ~TCP_NAGLE_OFF;
2449 }
2450 break;
2451
2452 case TCP_THIN_LINEAR_TIMEOUTS:
2453 if (val < 0 || val > 1)
2454 err = -EINVAL;
2455 else
2456 tp->thin_lto = val;
2457 break;
2458
2459 case TCP_THIN_DUPACK:
2460 if (val < 0 || val > 1)
2461 err = -EINVAL;
2462 else
2463 tp->thin_dupack = val;
2464 if (tp->thin_dupack)
2465 tcp_disable_early_retrans(tp);
2466 break;
2467
2468 case TCP_REPAIR:
2469 if (!tcp_can_repair_sock(sk))
2470 err = -EPERM;
2471 else if (val == 1) {
2472 tp->repair = 1;
2473 sk->sk_reuse = SK_FORCE_REUSE;
2474 tp->repair_queue = TCP_NO_QUEUE;
2475 } else if (val == 0) {
2476 tp->repair = 0;
2477 sk->sk_reuse = SK_NO_REUSE;
2478 tcp_send_window_probe(sk);
2479 } else
2480 err = -EINVAL;
2481
2482 break;
2483
2484 case TCP_REPAIR_QUEUE:
2485 if (!tp->repair)
2486 err = -EPERM;
2487 else if (val < TCP_QUEUES_NR)
2488 tp->repair_queue = val;
2489 else
2490 err = -EINVAL;
2491 break;
2492
2493 case TCP_QUEUE_SEQ:
2494 if (sk->sk_state != TCP_CLOSE)
2495 err = -EPERM;
2496 else if (tp->repair_queue == TCP_SEND_QUEUE)
2497 tp->write_seq = val;
2498 else if (tp->repair_queue == TCP_RECV_QUEUE)
2499 tp->rcv_nxt = val;
2500 else
2501 err = -EINVAL;
2502 break;
2503
2504 case TCP_REPAIR_OPTIONS:
2505 if (!tp->repair)
2506 err = -EINVAL;
2507 else if (sk->sk_state == TCP_ESTABLISHED)
2508 err = tcp_repair_options_est(tp,
2509 (struct tcp_repair_opt __user *)optval,
2510 optlen);
2511 else
2512 err = -EPERM;
2513 break;
2514
2515 case TCP_CORK:
2516 /* When set indicates to always queue non-full frames.
2517 * Later the user clears this option and we transmit
2518 * any pending partial frames in the queue. This is
2519 * meant to be used alongside sendfile() to get properly
2520 * filled frames when the user (for example) must write
2521 * out headers with a write() call first and then use
2522 * sendfile to send out the data parts.
2523 *
2524 * TCP_CORK can be set together with TCP_NODELAY and it is
2525 * stronger than TCP_NODELAY.
2526 */
2527 if (val) {
2528 tp->nonagle |= TCP_NAGLE_CORK;
2529 } else {
2530 tp->nonagle &= ~TCP_NAGLE_CORK;
2531 if (tp->nonagle&TCP_NAGLE_OFF)
2532 tp->nonagle |= TCP_NAGLE_PUSH;
2533 tcp_push_pending_frames(sk);
2534 }
2535 break;
2536
2537 case TCP_KEEPIDLE:
2538 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2539 err = -EINVAL;
2540 else {
2541 tp->keepalive_time = val * HZ;
2542 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2543 !((1 << sk->sk_state) &
2544 (TCPF_CLOSE | TCPF_LISTEN))) {
2545 u32 elapsed = keepalive_time_elapsed(tp);
2546 if (tp->keepalive_time > elapsed)
2547 elapsed = tp->keepalive_time - elapsed;
2548 else
2549 elapsed = 0;
2550 inet_csk_reset_keepalive_timer(sk, elapsed);
2551 }
2552 }
2553 break;
2554 case TCP_KEEPINTVL:
2555 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2556 err = -EINVAL;
2557 else
2558 tp->keepalive_intvl = val * HZ;
2559 break;
2560 case TCP_KEEPCNT:
2561 if (val < 1 || val > MAX_TCP_KEEPCNT)
2562 err = -EINVAL;
2563 else
2564 tp->keepalive_probes = val;
2565 break;
2566 case TCP_SYNCNT:
2567 if (val < 1 || val > MAX_TCP_SYNCNT)
2568 err = -EINVAL;
2569 else
2570 icsk->icsk_syn_retries = val;
2571 break;
2572
2573 case TCP_LINGER2:
2574 if (val < 0)
2575 tp->linger2 = -1;
2576 else if (val > sysctl_tcp_fin_timeout / HZ)
2577 tp->linger2 = 0;
2578 else
2579 tp->linger2 = val * HZ;
2580 break;
2581
2582 case TCP_DEFER_ACCEPT:
2583 /* Translate value in seconds to number of retransmits */
2584 icsk->icsk_accept_queue.rskq_defer_accept =
2585 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2586 TCP_RTO_MAX / HZ);
2587 break;
2588
2589 case TCP_WINDOW_CLAMP:
2590 if (!val) {
2591 if (sk->sk_state != TCP_CLOSE) {
2592 err = -EINVAL;
2593 break;
2594 }
2595 tp->window_clamp = 0;
2596 } else
2597 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2598 SOCK_MIN_RCVBUF / 2 : val;
2599 break;
2600
2601 case TCP_QUICKACK:
2602 if (!val) {
2603 icsk->icsk_ack.pingpong = 1;
2604 } else {
2605 icsk->icsk_ack.pingpong = 0;
2606 if ((1 << sk->sk_state) &
2607 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2608 inet_csk_ack_scheduled(sk)) {
2609 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2610 tcp_cleanup_rbuf(sk, 1);
2611 if (!(val & 1))
2612 icsk->icsk_ack.pingpong = 1;
2613 }
2614 }
2615 break;
2616
2617 #ifdef CONFIG_TCP_MD5SIG
2618 case TCP_MD5SIG:
2619 /* Read the IP->Key mappings from userspace */
2620 err = tp->af_specific->md5_parse(sk, optval, optlen);
2621 break;
2622 #endif
2623 case TCP_USER_TIMEOUT:
2624 /* Cap the max timeout in ms TCP will retry/retrans
2625 * before giving up and aborting (ETIMEDOUT) a connection.
2626 */
2627 if (val < 0)
2628 err = -EINVAL;
2629 else
2630 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2631 break;
2632
2633 case TCP_FASTOPEN:
2634 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2635 TCPF_LISTEN)))
2636 err = fastopen_init_queue(sk, val);
2637 else
2638 err = -EINVAL;
2639 break;
2640 case TCP_TIMESTAMP:
2641 if (!tp->repair)
2642 err = -EPERM;
2643 else
2644 tp->tsoffset = val - tcp_time_stamp;
2645 break;
2646 default:
2647 err = -ENOPROTOOPT;
2648 break;
2649 }
2650
2651 release_sock(sk);
2652 return err;
2653 }
2654
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2655 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2656 unsigned int optlen)
2657 {
2658 const struct inet_connection_sock *icsk = inet_csk(sk);
2659
2660 if (level != SOL_TCP)
2661 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2662 optval, optlen);
2663 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2664 }
2665 EXPORT_SYMBOL(tcp_setsockopt);
2666
2667 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2668 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2669 char __user *optval, unsigned int optlen)
2670 {
2671 if (level != SOL_TCP)
2672 return inet_csk_compat_setsockopt(sk, level, optname,
2673 optval, optlen);
2674 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2675 }
2676 EXPORT_SYMBOL(compat_tcp_setsockopt);
2677 #endif
2678
2679 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(const struct sock * sk,struct tcp_info * info)2680 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2681 {
2682 const struct tcp_sock *tp = tcp_sk(sk);
2683 const struct inet_connection_sock *icsk = inet_csk(sk);
2684 u32 now = tcp_time_stamp;
2685
2686 memset(info, 0, sizeof(*info));
2687
2688 info->tcpi_state = sk->sk_state;
2689 info->tcpi_ca_state = icsk->icsk_ca_state;
2690 info->tcpi_retransmits = icsk->icsk_retransmits;
2691 info->tcpi_probes = icsk->icsk_probes_out;
2692 info->tcpi_backoff = icsk->icsk_backoff;
2693
2694 if (tp->rx_opt.tstamp_ok)
2695 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2696 if (tcp_is_sack(tp))
2697 info->tcpi_options |= TCPI_OPT_SACK;
2698 if (tp->rx_opt.wscale_ok) {
2699 info->tcpi_options |= TCPI_OPT_WSCALE;
2700 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2701 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2702 }
2703
2704 if (tp->ecn_flags & TCP_ECN_OK)
2705 info->tcpi_options |= TCPI_OPT_ECN;
2706 if (tp->ecn_flags & TCP_ECN_SEEN)
2707 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2708 if (tp->syn_data_acked)
2709 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2710
2711 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2712 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2713 info->tcpi_snd_mss = tp->mss_cache;
2714 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2715
2716 if (sk->sk_state == TCP_LISTEN) {
2717 info->tcpi_unacked = sk->sk_ack_backlog;
2718 info->tcpi_sacked = sk->sk_max_ack_backlog;
2719 } else {
2720 info->tcpi_unacked = tp->packets_out;
2721 info->tcpi_sacked = tp->sacked_out;
2722 }
2723 info->tcpi_lost = tp->lost_out;
2724 info->tcpi_retrans = tp->retrans_out;
2725 info->tcpi_fackets = tp->fackets_out;
2726
2727 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2728 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2729 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2730
2731 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2732 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2733 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2734 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2735 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2736 info->tcpi_snd_cwnd = tp->snd_cwnd;
2737 info->tcpi_advmss = tp->advmss;
2738 info->tcpi_reordering = tp->reordering;
2739
2740 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2741 info->tcpi_rcv_space = tp->rcvq_space.space;
2742
2743 info->tcpi_total_retrans = tp->total_retrans;
2744 }
2745 EXPORT_SYMBOL_GPL(tcp_get_info);
2746
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2747 static int do_tcp_getsockopt(struct sock *sk, int level,
2748 int optname, char __user *optval, int __user *optlen)
2749 {
2750 struct inet_connection_sock *icsk = inet_csk(sk);
2751 struct tcp_sock *tp = tcp_sk(sk);
2752 int val, len;
2753
2754 if (get_user(len, optlen))
2755 return -EFAULT;
2756
2757 len = min_t(unsigned int, len, sizeof(int));
2758
2759 if (len < 0)
2760 return -EINVAL;
2761
2762 switch (optname) {
2763 case TCP_MAXSEG:
2764 val = tp->mss_cache;
2765 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2766 val = tp->rx_opt.user_mss;
2767 if (tp->repair)
2768 val = tp->rx_opt.mss_clamp;
2769 break;
2770 case TCP_NODELAY:
2771 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2772 break;
2773 case TCP_CORK:
2774 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2775 break;
2776 case TCP_KEEPIDLE:
2777 val = keepalive_time_when(tp) / HZ;
2778 break;
2779 case TCP_KEEPINTVL:
2780 val = keepalive_intvl_when(tp) / HZ;
2781 break;
2782 case TCP_KEEPCNT:
2783 val = keepalive_probes(tp);
2784 break;
2785 case TCP_SYNCNT:
2786 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2787 break;
2788 case TCP_LINGER2:
2789 val = tp->linger2;
2790 if (val >= 0)
2791 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2792 break;
2793 case TCP_DEFER_ACCEPT:
2794 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2795 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2796 break;
2797 case TCP_WINDOW_CLAMP:
2798 val = tp->window_clamp;
2799 break;
2800 case TCP_INFO: {
2801 struct tcp_info info;
2802
2803 if (get_user(len, optlen))
2804 return -EFAULT;
2805
2806 tcp_get_info(sk, &info);
2807
2808 len = min_t(unsigned int, len, sizeof(info));
2809 if (put_user(len, optlen))
2810 return -EFAULT;
2811 if (copy_to_user(optval, &info, len))
2812 return -EFAULT;
2813 return 0;
2814 }
2815 case TCP_QUICKACK:
2816 val = !icsk->icsk_ack.pingpong;
2817 break;
2818
2819 case TCP_CONGESTION:
2820 if (get_user(len, optlen))
2821 return -EFAULT;
2822 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2823 if (put_user(len, optlen))
2824 return -EFAULT;
2825 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2826 return -EFAULT;
2827 return 0;
2828
2829 case TCP_THIN_LINEAR_TIMEOUTS:
2830 val = tp->thin_lto;
2831 break;
2832 case TCP_THIN_DUPACK:
2833 val = tp->thin_dupack;
2834 break;
2835
2836 case TCP_REPAIR:
2837 val = tp->repair;
2838 break;
2839
2840 case TCP_REPAIR_QUEUE:
2841 if (tp->repair)
2842 val = tp->repair_queue;
2843 else
2844 return -EINVAL;
2845 break;
2846
2847 case TCP_QUEUE_SEQ:
2848 if (tp->repair_queue == TCP_SEND_QUEUE)
2849 val = tp->write_seq;
2850 else if (tp->repair_queue == TCP_RECV_QUEUE)
2851 val = tp->rcv_nxt;
2852 else
2853 return -EINVAL;
2854 break;
2855
2856 case TCP_USER_TIMEOUT:
2857 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2858 break;
2859 case TCP_TIMESTAMP:
2860 val = tcp_time_stamp + tp->tsoffset;
2861 break;
2862 default:
2863 return -ENOPROTOOPT;
2864 }
2865
2866 if (put_user(len, optlen))
2867 return -EFAULT;
2868 if (copy_to_user(optval, &val, len))
2869 return -EFAULT;
2870 return 0;
2871 }
2872
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2873 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2874 int __user *optlen)
2875 {
2876 struct inet_connection_sock *icsk = inet_csk(sk);
2877
2878 if (level != SOL_TCP)
2879 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2880 optval, optlen);
2881 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2882 }
2883 EXPORT_SYMBOL(tcp_getsockopt);
2884
2885 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2886 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2887 char __user *optval, int __user *optlen)
2888 {
2889 if (level != SOL_TCP)
2890 return inet_csk_compat_getsockopt(sk, level, optname,
2891 optval, optlen);
2892 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2893 }
2894 EXPORT_SYMBOL(compat_tcp_getsockopt);
2895 #endif
2896
tcp_tso_segment(struct sk_buff * skb,netdev_features_t features)2897 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2898 netdev_features_t features)
2899 {
2900 struct sk_buff *segs = ERR_PTR(-EINVAL);
2901 struct tcphdr *th;
2902 unsigned int thlen;
2903 unsigned int seq;
2904 __be32 delta;
2905 unsigned int oldlen;
2906 unsigned int mss;
2907 struct sk_buff *gso_skb = skb;
2908 __sum16 newcheck;
2909 bool ooo_okay, copy_destructor;
2910
2911 if (!pskb_may_pull(skb, sizeof(*th)))
2912 goto out;
2913
2914 th = tcp_hdr(skb);
2915 thlen = th->doff * 4;
2916 if (thlen < sizeof(*th))
2917 goto out;
2918
2919 if (!pskb_may_pull(skb, thlen))
2920 goto out;
2921
2922 oldlen = (u16)~skb->len;
2923 __skb_pull(skb, thlen);
2924
2925 mss = skb_shinfo(skb)->gso_size;
2926 if (unlikely(skb->len <= mss))
2927 goto out;
2928
2929 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2930 /* Packet is from an untrusted source, reset gso_segs. */
2931 int type = skb_shinfo(skb)->gso_type;
2932
2933 if (unlikely(type &
2934 ~(SKB_GSO_TCPV4 |
2935 SKB_GSO_DODGY |
2936 SKB_GSO_TCP_ECN |
2937 SKB_GSO_TCPV6 |
2938 SKB_GSO_GRE |
2939 SKB_GSO_UDP_TUNNEL |
2940 0) ||
2941 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2942 goto out;
2943
2944 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2945
2946 segs = NULL;
2947 goto out;
2948 }
2949
2950 copy_destructor = gso_skb->destructor == tcp_wfree;
2951 ooo_okay = gso_skb->ooo_okay;
2952 /* All segments but the first should have ooo_okay cleared */
2953 skb->ooo_okay = 0;
2954
2955 segs = skb_segment(skb, features);
2956 if (IS_ERR(segs))
2957 goto out;
2958
2959 /* Only first segment might have ooo_okay set */
2960 segs->ooo_okay = ooo_okay;
2961
2962 delta = htonl(oldlen + (thlen + mss));
2963
2964 skb = segs;
2965 th = tcp_hdr(skb);
2966 seq = ntohl(th->seq);
2967
2968 newcheck = ~csum_fold((__force __wsum)((__force u32)th->check +
2969 (__force u32)delta));
2970
2971 do {
2972 th->fin = th->psh = 0;
2973 th->check = newcheck;
2974
2975 if (skb->ip_summed != CHECKSUM_PARTIAL)
2976 th->check =
2977 csum_fold(csum_partial(skb_transport_header(skb),
2978 thlen, skb->csum));
2979
2980 seq += mss;
2981 if (copy_destructor) {
2982 skb->destructor = gso_skb->destructor;
2983 skb->sk = gso_skb->sk;
2984 /* {tcp|sock}_wfree() use exact truesize accounting :
2985 * sum(skb->truesize) MUST be exactly be gso_skb->truesize
2986 * So we account mss bytes of 'true size' for each segment.
2987 * The last segment will contain the remaining.
2988 */
2989 skb->truesize = mss;
2990 gso_skb->truesize -= mss;
2991 }
2992 skb = skb->next;
2993 th = tcp_hdr(skb);
2994
2995 th->seq = htonl(seq);
2996 th->cwr = 0;
2997 } while (skb->next);
2998
2999 /* Following permits TCP Small Queues to work well with GSO :
3000 * The callback to TCP stack will be called at the time last frag
3001 * is freed at TX completion, and not right now when gso_skb
3002 * is freed by GSO engine
3003 */
3004 if (copy_destructor) {
3005 swap(gso_skb->sk, skb->sk);
3006 swap(gso_skb->destructor, skb->destructor);
3007 swap(gso_skb->truesize, skb->truesize);
3008 }
3009
3010 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3011 skb->data_len);
3012 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3013 (__force u32)delta));
3014 if (skb->ip_summed != CHECKSUM_PARTIAL)
3015 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3016 thlen, skb->csum));
3017
3018 out:
3019 return segs;
3020 }
3021 EXPORT_SYMBOL(tcp_tso_segment);
3022
tcp_gro_receive(struct sk_buff ** head,struct sk_buff * skb)3023 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3024 {
3025 struct sk_buff **pp = NULL;
3026 struct sk_buff *p;
3027 struct tcphdr *th;
3028 struct tcphdr *th2;
3029 unsigned int len;
3030 unsigned int thlen;
3031 __be32 flags;
3032 unsigned int mss = 1;
3033 unsigned int hlen;
3034 unsigned int off;
3035 int flush = 1;
3036 int i;
3037
3038 off = skb_gro_offset(skb);
3039 hlen = off + sizeof(*th);
3040 th = skb_gro_header_fast(skb, off);
3041 if (skb_gro_header_hard(skb, hlen)) {
3042 th = skb_gro_header_slow(skb, hlen, off);
3043 if (unlikely(!th))
3044 goto out;
3045 }
3046
3047 thlen = th->doff * 4;
3048 if (thlen < sizeof(*th))
3049 goto out;
3050
3051 hlen = off + thlen;
3052 if (skb_gro_header_hard(skb, hlen)) {
3053 th = skb_gro_header_slow(skb, hlen, off);
3054 if (unlikely(!th))
3055 goto out;
3056 }
3057
3058 skb_gro_pull(skb, thlen);
3059
3060 len = skb_gro_len(skb);
3061 flags = tcp_flag_word(th);
3062
3063 for (; (p = *head); head = &p->next) {
3064 if (!NAPI_GRO_CB(p)->same_flow)
3065 continue;
3066
3067 th2 = tcp_hdr(p);
3068
3069 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3070 NAPI_GRO_CB(p)->same_flow = 0;
3071 continue;
3072 }
3073
3074 goto found;
3075 }
3076
3077 goto out_check_final;
3078
3079 found:
3080 flush = NAPI_GRO_CB(p)->flush;
3081 flush |= (__force int)(flags & TCP_FLAG_CWR);
3082 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3083 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3084 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3085 for (i = sizeof(*th); i < thlen; i += 4)
3086 flush |= *(u32 *)((u8 *)th + i) ^
3087 *(u32 *)((u8 *)th2 + i);
3088
3089 mss = skb_shinfo(p)->gso_size;
3090
3091 flush |= (len - 1) >= mss;
3092 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3093
3094 if (flush || skb_gro_receive(head, skb)) {
3095 mss = 1;
3096 goto out_check_final;
3097 }
3098
3099 p = *head;
3100 th2 = tcp_hdr(p);
3101 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3102
3103 out_check_final:
3104 flush = len < mss;
3105 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3106 TCP_FLAG_RST | TCP_FLAG_SYN |
3107 TCP_FLAG_FIN));
3108
3109 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3110 pp = head;
3111
3112 out:
3113 NAPI_GRO_CB(skb)->flush |= flush;
3114
3115 return pp;
3116 }
3117 EXPORT_SYMBOL(tcp_gro_receive);
3118
tcp_gro_complete(struct sk_buff * skb)3119 int tcp_gro_complete(struct sk_buff *skb)
3120 {
3121 struct tcphdr *th = tcp_hdr(skb);
3122
3123 skb->csum_start = skb_transport_header(skb) - skb->head;
3124 skb->csum_offset = offsetof(struct tcphdr, check);
3125 skb->ip_summed = CHECKSUM_PARTIAL;
3126
3127 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3128
3129 if (th->cwr)
3130 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3131
3132 return 0;
3133 }
3134 EXPORT_SYMBOL(tcp_gro_complete);
3135
3136 #ifdef CONFIG_TCP_MD5SIG
3137 static unsigned long tcp_md5sig_users;
3138 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3139 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3140
__tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu * pool)3141 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3142 {
3143 int cpu;
3144
3145 for_each_possible_cpu(cpu) {
3146 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3147
3148 if (p->md5_desc.tfm)
3149 crypto_free_hash(p->md5_desc.tfm);
3150 }
3151 free_percpu(pool);
3152 }
3153
tcp_free_md5sig_pool(void)3154 void tcp_free_md5sig_pool(void)
3155 {
3156 struct tcp_md5sig_pool __percpu *pool = NULL;
3157
3158 spin_lock_bh(&tcp_md5sig_pool_lock);
3159 if (--tcp_md5sig_users == 0) {
3160 pool = tcp_md5sig_pool;
3161 tcp_md5sig_pool = NULL;
3162 }
3163 spin_unlock_bh(&tcp_md5sig_pool_lock);
3164 if (pool)
3165 __tcp_free_md5sig_pool(pool);
3166 }
3167 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3168
3169 static struct tcp_md5sig_pool __percpu *
__tcp_alloc_md5sig_pool(struct sock * sk)3170 __tcp_alloc_md5sig_pool(struct sock *sk)
3171 {
3172 int cpu;
3173 struct tcp_md5sig_pool __percpu *pool;
3174
3175 pool = alloc_percpu(struct tcp_md5sig_pool);
3176 if (!pool)
3177 return NULL;
3178
3179 for_each_possible_cpu(cpu) {
3180 struct crypto_hash *hash;
3181
3182 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3183 if (IS_ERR_OR_NULL(hash))
3184 goto out_free;
3185
3186 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3187 }
3188 return pool;
3189 out_free:
3190 __tcp_free_md5sig_pool(pool);
3191 return NULL;
3192 }
3193
tcp_alloc_md5sig_pool(struct sock * sk)3194 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3195 {
3196 struct tcp_md5sig_pool __percpu *pool;
3197 bool alloc = false;
3198
3199 retry:
3200 spin_lock_bh(&tcp_md5sig_pool_lock);
3201 pool = tcp_md5sig_pool;
3202 if (tcp_md5sig_users++ == 0) {
3203 alloc = true;
3204 spin_unlock_bh(&tcp_md5sig_pool_lock);
3205 } else if (!pool) {
3206 tcp_md5sig_users--;
3207 spin_unlock_bh(&tcp_md5sig_pool_lock);
3208 cpu_relax();
3209 goto retry;
3210 } else
3211 spin_unlock_bh(&tcp_md5sig_pool_lock);
3212
3213 if (alloc) {
3214 /* we cannot hold spinlock here because this may sleep. */
3215 struct tcp_md5sig_pool __percpu *p;
3216
3217 p = __tcp_alloc_md5sig_pool(sk);
3218 spin_lock_bh(&tcp_md5sig_pool_lock);
3219 if (!p) {
3220 tcp_md5sig_users--;
3221 spin_unlock_bh(&tcp_md5sig_pool_lock);
3222 return NULL;
3223 }
3224 pool = tcp_md5sig_pool;
3225 if (pool) {
3226 /* oops, it has already been assigned. */
3227 spin_unlock_bh(&tcp_md5sig_pool_lock);
3228 __tcp_free_md5sig_pool(p);
3229 } else {
3230 tcp_md5sig_pool = pool = p;
3231 spin_unlock_bh(&tcp_md5sig_pool_lock);
3232 }
3233 }
3234 return pool;
3235 }
3236 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3237
3238
3239 /**
3240 * tcp_get_md5sig_pool - get md5sig_pool for this user
3241 *
3242 * We use percpu structure, so if we succeed, we exit with preemption
3243 * and BH disabled, to make sure another thread or softirq handling
3244 * wont try to get same context.
3245 */
tcp_get_md5sig_pool(void)3246 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3247 {
3248 struct tcp_md5sig_pool __percpu *p;
3249
3250 local_bh_disable();
3251
3252 spin_lock(&tcp_md5sig_pool_lock);
3253 p = tcp_md5sig_pool;
3254 if (p)
3255 tcp_md5sig_users++;
3256 spin_unlock(&tcp_md5sig_pool_lock);
3257
3258 if (p)
3259 return this_cpu_ptr(p);
3260
3261 local_bh_enable();
3262 return NULL;
3263 }
3264 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3265
tcp_put_md5sig_pool(void)3266 void tcp_put_md5sig_pool(void)
3267 {
3268 local_bh_enable();
3269 tcp_free_md5sig_pool();
3270 }
3271 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3272
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,const struct tcphdr * th)3273 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3274 const struct tcphdr *th)
3275 {
3276 struct scatterlist sg;
3277 struct tcphdr hdr;
3278 int err;
3279
3280 /* We are not allowed to change tcphdr, make a local copy */
3281 memcpy(&hdr, th, sizeof(hdr));
3282 hdr.check = 0;
3283
3284 /* options aren't included in the hash */
3285 sg_init_one(&sg, &hdr, sizeof(hdr));
3286 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3287 return err;
3288 }
3289 EXPORT_SYMBOL(tcp_md5_hash_header);
3290
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3291 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3292 const struct sk_buff *skb, unsigned int header_len)
3293 {
3294 struct scatterlist sg;
3295 const struct tcphdr *tp = tcp_hdr(skb);
3296 struct hash_desc *desc = &hp->md5_desc;
3297 unsigned int i;
3298 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3299 skb_headlen(skb) - header_len : 0;
3300 const struct skb_shared_info *shi = skb_shinfo(skb);
3301 struct sk_buff *frag_iter;
3302
3303 sg_init_table(&sg, 1);
3304
3305 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3306 if (crypto_hash_update(desc, &sg, head_data_len))
3307 return 1;
3308
3309 for (i = 0; i < shi->nr_frags; ++i) {
3310 const struct skb_frag_struct *f = &shi->frags[i];
3311 unsigned int offset = f->page_offset;
3312 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3313
3314 sg_set_page(&sg, page, skb_frag_size(f),
3315 offset_in_page(offset));
3316 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3317 return 1;
3318 }
3319
3320 skb_walk_frags(skb, frag_iter)
3321 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3322 return 1;
3323
3324 return 0;
3325 }
3326 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3327
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3328 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3329 {
3330 struct scatterlist sg;
3331
3332 sg_init_one(&sg, key->key, key->keylen);
3333 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3334 }
3335 EXPORT_SYMBOL(tcp_md5_hash_key);
3336
3337 #endif
3338
tcp_done(struct sock * sk)3339 void tcp_done(struct sock *sk)
3340 {
3341 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3342
3343 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3344 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3345
3346 tcp_set_state(sk, TCP_CLOSE);
3347 tcp_clear_xmit_timers(sk);
3348 if (req != NULL)
3349 reqsk_fastopen_remove(sk, req, false);
3350
3351 sk->sk_shutdown = SHUTDOWN_MASK;
3352
3353 if (!sock_flag(sk, SOCK_DEAD))
3354 sk->sk_state_change(sk);
3355 else
3356 inet_csk_destroy_sock(sk);
3357 }
3358 EXPORT_SYMBOL_GPL(tcp_done);
3359
tcp_abort(struct sock * sk,int err)3360 int tcp_abort(struct sock *sk, int err)
3361 {
3362 if (sk->sk_state == TCP_TIME_WAIT) {
3363 inet_twsk_put((struct inet_timewait_sock *)sk);
3364 return -EOPNOTSUPP;
3365 }
3366
3367 /* Don't race with userspace socket closes such as tcp_close. */
3368 lock_sock(sk);
3369
3370 if (sk->sk_state == TCP_LISTEN) {
3371 tcp_set_state(sk, TCP_CLOSE);
3372 inet_csk_listen_stop(sk);
3373 }
3374
3375 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3376 local_bh_disable();
3377 bh_lock_sock(sk);
3378
3379 if (!sock_flag(sk, SOCK_DEAD)) {
3380 sk->sk_err = err;
3381 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3382 smp_wmb();
3383 sk->sk_error_report(sk);
3384 if (tcp_need_reset(sk->sk_state))
3385 tcp_send_active_reset(sk, GFP_ATOMIC);
3386 tcp_done(sk);
3387 }
3388
3389 bh_unlock_sock(sk);
3390 local_bh_enable();
3391 release_sock(sk);
3392 sock_put(sk);
3393 return 0;
3394 }
3395 EXPORT_SYMBOL_GPL(tcp_abort);
3396
3397 extern struct tcp_congestion_ops tcp_reno;
3398
3399 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3400 static int __init set_thash_entries(char *str)
3401 {
3402 ssize_t ret;
3403
3404 if (!str)
3405 return 0;
3406
3407 ret = kstrtoul(str, 0, &thash_entries);
3408 if (ret)
3409 return 0;
3410
3411 return 1;
3412 }
3413 __setup("thash_entries=", set_thash_entries);
3414
tcp_init_mem(struct net * net)3415 void tcp_init_mem(struct net *net)
3416 {
3417 unsigned long limit = nr_free_buffer_pages() / 8;
3418 limit = max(limit, 128UL);
3419 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3420 net->ipv4.sysctl_tcp_mem[1] = limit;
3421 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3422 }
3423
tcp_init(void)3424 void __init tcp_init(void)
3425 {
3426 struct sk_buff *skb = NULL;
3427 unsigned long limit;
3428 int max_rshare, max_wshare, cnt;
3429 unsigned int i;
3430
3431 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3432
3433 percpu_counter_init(&tcp_sockets_allocated, 0);
3434 percpu_counter_init(&tcp_orphan_count, 0);
3435 tcp_hashinfo.bind_bucket_cachep =
3436 kmem_cache_create("tcp_bind_bucket",
3437 sizeof(struct inet_bind_bucket), 0,
3438 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3439
3440 /* Size and allocate the main established and bind bucket
3441 * hash tables.
3442 *
3443 * The methodology is similar to that of the buffer cache.
3444 */
3445 tcp_hashinfo.ehash =
3446 alloc_large_system_hash("TCP established",
3447 sizeof(struct inet_ehash_bucket),
3448 thash_entries,
3449 17, /* one slot per 128 KB of memory */
3450 0,
3451 NULL,
3452 &tcp_hashinfo.ehash_mask,
3453 0,
3454 thash_entries ? 0 : 512 * 1024);
3455 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3456 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3457 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3458 }
3459 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3460 panic("TCP: failed to alloc ehash_locks");
3461 tcp_hashinfo.bhash =
3462 alloc_large_system_hash("TCP bind",
3463 sizeof(struct inet_bind_hashbucket),
3464 tcp_hashinfo.ehash_mask + 1,
3465 17, /* one slot per 128 KB of memory */
3466 0,
3467 &tcp_hashinfo.bhash_size,
3468 NULL,
3469 0,
3470 64 * 1024);
3471 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3472 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3473 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3474 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3475 }
3476
3477
3478 cnt = tcp_hashinfo.ehash_mask + 1;
3479
3480 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3481 sysctl_tcp_max_orphans = cnt / 2;
3482 sysctl_max_syn_backlog = max(128, cnt / 256);
3483
3484 tcp_init_mem(&init_net);
3485 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3486 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3487 max_wshare = min(4UL*1024*1024, limit);
3488 max_rshare = min(6UL*1024*1024, limit);
3489
3490 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3491 sysctl_tcp_wmem[1] = 16*1024;
3492 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3493
3494 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3495 sysctl_tcp_rmem[1] = 87380;
3496 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3497
3498 pr_info("Hash tables configured (established %u bind %u)\n",
3499 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3500
3501 tcp_metrics_init();
3502
3503 tcp_register_congestion_control(&tcp_reno);
3504
3505 tcp_tasklet_init();
3506 }
3507
tcp_is_local(struct net * net,__be32 addr)3508 static int tcp_is_local(struct net *net, __be32 addr) {
3509 struct rtable *rt;
3510 struct flowi4 fl4 = { .daddr = addr };
3511 int is_local;
3512 rt = ip_route_output_key(net, &fl4);
3513 if (IS_ERR_OR_NULL(rt))
3514 return 0;
3515
3516 is_local = rt->dst.dev && (rt->dst.dev->flags & IFF_LOOPBACK);
3517 ip_rt_put(rt);
3518 return is_local;
3519 }
3520
3521 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
tcp_is_local6(struct net * net,struct in6_addr * addr)3522 static int tcp_is_local6(struct net *net, struct in6_addr *addr) {
3523 struct rt6_info *rt6 = rt6_lookup(net, addr, addr, 0, 0);
3524 int is_local;
3525
3526 is_local = rt6 && rt6->dst.dev && (rt6->dst.dev->flags & IFF_LOOPBACK);
3527 ip6_rt_put(rt6);
3528 return is_local;
3529 }
3530 #endif
3531
3532 /*
3533 * tcp_nuke_addr - destroy all sockets on the given local address
3534 * if local address is the unspecified address (0.0.0.0 or ::), destroy all
3535 * sockets with local addresses that are not configured.
3536 */
tcp_nuke_addr(struct net * net,struct sockaddr * addr)3537 int tcp_nuke_addr(struct net *net, struct sockaddr *addr)
3538 {
3539 int family = addr->sa_family;
3540 unsigned int bucket;
3541
3542 struct in_addr *in;
3543 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3544 struct in6_addr *in6;
3545 #endif
3546 if (family == AF_INET) {
3547 in = &((struct sockaddr_in *)addr)->sin_addr;
3548 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3549 } else if (family == AF_INET6) {
3550 in6 = &((struct sockaddr_in6 *)addr)->sin6_addr;
3551 #endif
3552 } else {
3553 return -EAFNOSUPPORT;
3554 }
3555
3556 for (bucket = 0; bucket <= tcp_hashinfo.ehash_mask; bucket++) {
3557 struct hlist_nulls_node *node;
3558 struct sock *sk;
3559 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
3560
3561 restart:
3562 spin_lock_bh(lock);
3563 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
3564 struct inet_sock *inet = inet_sk(sk);
3565
3566 if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
3567 continue;
3568 if (sock_flag(sk, SOCK_DEAD))
3569 continue;
3570
3571 if (family == AF_INET) {
3572 __be32 s4 = inet->inet_rcv_saddr;
3573 if (s4 == LOOPBACK4_IPV6)
3574 continue;
3575
3576 if (in->s_addr != s4 &&
3577 !(in->s_addr == INADDR_ANY &&
3578 !tcp_is_local(net, s4)))
3579 continue;
3580 }
3581
3582 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3583 if (family == AF_INET6) {
3584 struct in6_addr *s6;
3585 if (!inet->pinet6)
3586 continue;
3587
3588 s6 = &inet->pinet6->rcv_saddr;
3589 if (ipv6_addr_type(s6) == IPV6_ADDR_MAPPED)
3590 continue;
3591
3592 if (!ipv6_addr_equal(in6, s6) &&
3593 !(ipv6_addr_equal(in6, &in6addr_any) &&
3594 !tcp_is_local6(net, s6)))
3595 continue;
3596 }
3597 #endif
3598
3599 sock_hold(sk);
3600 spin_unlock_bh(lock);
3601
3602 lock_sock(sk);
3603 local_bh_disable();
3604 bh_lock_sock(sk);
3605
3606 if (!sock_flag(sk, SOCK_DEAD)) {
3607 smp_wmb(); /* be consistent with tcp_reset */
3608 sk->sk_err = ETIMEDOUT;
3609 sk->sk_error_report(sk);
3610 tcp_done(sk);
3611 }
3612
3613 bh_unlock_sock(sk);
3614 local_bh_enable();
3615 release_sock(sk);
3616 sock_put(sk);
3617
3618 goto restart;
3619 }
3620 spin_unlock_bh(lock);
3621 }
3622
3623 return 0;
3624 }
3625