1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
key_user_lookup(kuid_t uid)54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
key_user_put(struct key_user * user)123 void key_user_put(struct key_user *user)
124 {
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
key_alloc_serial(struct key * key)137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags)224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
227 {
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
232
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
236
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
242 }
243 }
244
245 desclen = strlen(desc) + 1;
246 quotalen = desclen + type->def_datalen;
247
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
252
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
260
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 >= maxkeys ||
264 user->qnbytes + quotalen >= maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
267 }
268
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
272 }
273
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
278
279 if (desc) {
280 key->description = kmemdup(desc, desclen, GFP_KERNEL);
281 if (!key->description)
282 goto no_memory_3;
283 }
284
285 atomic_set(&key->usage, 1);
286 init_rwsem(&key->sem);
287 lockdep_set_class(&key->sem, &type->lock_class);
288 key->type = type;
289 key->user = user;
290 key->quotalen = quotalen;
291 key->datalen = type->def_datalen;
292 key->uid = uid;
293 key->gid = gid;
294 key->perm = perm;
295 key->flags = 0;
296 key->expiry = 0;
297 key->payload.data = NULL;
298 key->security = NULL;
299
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302
303 memset(&key->type_data, 0, sizeof(key->type_data));
304
305 #ifdef KEY_DEBUGGING
306 key->magic = KEY_DEBUG_MAGIC;
307 #endif
308
309 /* let the security module know about the key */
310 ret = security_key_alloc(key, cred, flags);
311 if (ret < 0)
312 goto security_error;
313
314 /* publish the key by giving it a serial number */
315 atomic_inc(&user->nkeys);
316 key_alloc_serial(key);
317
318 error:
319 return key;
320
321 security_error:
322 kfree(key->description);
323 kmem_cache_free(key_jar, key);
324 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
325 spin_lock(&user->lock);
326 user->qnkeys--;
327 user->qnbytes -= quotalen;
328 spin_unlock(&user->lock);
329 }
330 key_user_put(user);
331 key = ERR_PTR(ret);
332 goto error;
333
334 no_memory_3:
335 kmem_cache_free(key_jar, key);
336 no_memory_2:
337 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
338 spin_lock(&user->lock);
339 user->qnkeys--;
340 user->qnbytes -= quotalen;
341 spin_unlock(&user->lock);
342 }
343 key_user_put(user);
344 no_memory_1:
345 key = ERR_PTR(-ENOMEM);
346 goto error;
347
348 no_quota:
349 spin_unlock(&user->lock);
350 key_user_put(user);
351 key = ERR_PTR(-EDQUOT);
352 goto error;
353 }
354 EXPORT_SYMBOL(key_alloc);
355
356 /**
357 * key_payload_reserve - Adjust data quota reservation for the key's payload
358 * @key: The key to make the reservation for.
359 * @datalen: The amount of data payload the caller now wants.
360 *
361 * Adjust the amount of the owning user's key data quota that a key reserves.
362 * If the amount is increased, then -EDQUOT may be returned if there isn't
363 * enough free quota available.
364 *
365 * If successful, 0 is returned.
366 */
key_payload_reserve(struct key * key,size_t datalen)367 int key_payload_reserve(struct key *key, size_t datalen)
368 {
369 int delta = (int)datalen - key->datalen;
370 int ret = 0;
371
372 key_check(key);
373
374 /* contemplate the quota adjustment */
375 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
376 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
377 key_quota_root_maxbytes : key_quota_maxbytes;
378
379 spin_lock(&key->user->lock);
380
381 if (delta > 0 &&
382 (key->user->qnbytes + delta >= maxbytes ||
383 key->user->qnbytes + delta < key->user->qnbytes)) {
384 ret = -EDQUOT;
385 }
386 else {
387 key->user->qnbytes += delta;
388 key->quotalen += delta;
389 }
390 spin_unlock(&key->user->lock);
391 }
392
393 /* change the recorded data length if that didn't generate an error */
394 if (ret == 0)
395 key->datalen = datalen;
396
397 return ret;
398 }
399 EXPORT_SYMBOL(key_payload_reserve);
400
401 /*
402 * Instantiate a key and link it into the target keyring atomically. Must be
403 * called with the target keyring's semaphore writelocked. The target key's
404 * semaphore need not be locked as instantiation is serialised by
405 * key_construction_mutex.
406 */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,unsigned long * _prealloc)407 static int __key_instantiate_and_link(struct key *key,
408 struct key_preparsed_payload *prep,
409 struct key *keyring,
410 struct key *authkey,
411 unsigned long *_prealloc)
412 {
413 int ret, awaken;
414
415 key_check(key);
416 key_check(keyring);
417
418 awaken = 0;
419 ret = -EBUSY;
420
421 mutex_lock(&key_construction_mutex);
422
423 /* can't instantiate twice */
424 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
425 /* instantiate the key */
426 ret = key->type->instantiate(key, prep);
427
428 if (ret == 0) {
429 /* mark the key as being instantiated */
430 atomic_inc(&key->user->nikeys);
431 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
432
433 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
434 awaken = 1;
435
436 /* and link it into the destination keyring */
437 if (keyring)
438 __key_link(keyring, key, _prealloc);
439
440 /* disable the authorisation key */
441 if (authkey)
442 key_revoke(authkey);
443 }
444 }
445
446 mutex_unlock(&key_construction_mutex);
447
448 /* wake up anyone waiting for a key to be constructed */
449 if (awaken)
450 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
451
452 return ret;
453 }
454
455 /**
456 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
457 * @key: The key to instantiate.
458 * @data: The data to use to instantiate the keyring.
459 * @datalen: The length of @data.
460 * @keyring: Keyring to create a link in on success (or NULL).
461 * @authkey: The authorisation token permitting instantiation.
462 *
463 * Instantiate a key that's in the uninstantiated state using the provided data
464 * and, if successful, link it in to the destination keyring if one is
465 * supplied.
466 *
467 * If successful, 0 is returned, the authorisation token is revoked and anyone
468 * waiting for the key is woken up. If the key was already instantiated,
469 * -EBUSY will be returned.
470 */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)471 int key_instantiate_and_link(struct key *key,
472 const void *data,
473 size_t datalen,
474 struct key *keyring,
475 struct key *authkey)
476 {
477 struct key_preparsed_payload prep;
478 unsigned long prealloc;
479 int ret;
480
481 memset(&prep, 0, sizeof(prep));
482 prep.data = data;
483 prep.datalen = datalen;
484 prep.quotalen = key->type->def_datalen;
485 if (key->type->preparse) {
486 ret = key->type->preparse(&prep);
487 if (ret < 0)
488 goto error;
489 }
490
491 if (keyring) {
492 ret = __key_link_begin(keyring, key->type, key->description,
493 &prealloc);
494 if (ret < 0)
495 goto error_free_preparse;
496 }
497
498 ret = __key_instantiate_and_link(key, &prep, keyring, authkey,
499 &prealloc);
500
501 if (keyring)
502 __key_link_end(keyring, key->type, prealloc);
503
504 error_free_preparse:
505 if (key->type->preparse)
506 key->type->free_preparse(&prep);
507 error:
508 return ret;
509 }
510
511 EXPORT_SYMBOL(key_instantiate_and_link);
512
513 /**
514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
515 * @key: The key to instantiate.
516 * @timeout: The timeout on the negative key.
517 * @error: The error to return when the key is hit.
518 * @keyring: Keyring to create a link in on success (or NULL).
519 * @authkey: The authorisation token permitting instantiation.
520 *
521 * Negatively instantiate a key that's in the uninstantiated state and, if
522 * successful, set its timeout and stored error and link it in to the
523 * destination keyring if one is supplied. The key and any links to the key
524 * will be automatically garbage collected after the timeout expires.
525 *
526 * Negative keys are used to rate limit repeated request_key() calls by causing
527 * them to return the stored error code (typically ENOKEY) until the negative
528 * key expires.
529 *
530 * If successful, 0 is returned, the authorisation token is revoked and anyone
531 * waiting for the key is woken up. If the key was already instantiated,
532 * -EBUSY will be returned.
533 */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)534 int key_reject_and_link(struct key *key,
535 unsigned timeout,
536 unsigned error,
537 struct key *keyring,
538 struct key *authkey)
539 {
540 unsigned long prealloc;
541 struct timespec now;
542 int ret, awaken, link_ret = 0;
543
544 key_check(key);
545 key_check(keyring);
546
547 awaken = 0;
548 ret = -EBUSY;
549
550 if (keyring)
551 link_ret = __key_link_begin(keyring, key->type,
552 key->description, &prealloc);
553
554 mutex_lock(&key_construction_mutex);
555
556 /* can't instantiate twice */
557 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
558 /* mark the key as being negatively instantiated */
559 atomic_inc(&key->user->nikeys);
560 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
561 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
562 key->type_data.reject_error = -error;
563 now = current_kernel_time();
564 key->expiry = now.tv_sec + timeout;
565 key_schedule_gc(key->expiry + key_gc_delay);
566
567 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
568 awaken = 1;
569
570 ret = 0;
571
572 /* and link it into the destination keyring */
573 if (keyring && link_ret == 0)
574 __key_link(keyring, key, &prealloc);
575
576 /* disable the authorisation key */
577 if (authkey)
578 key_revoke(authkey);
579 }
580
581 mutex_unlock(&key_construction_mutex);
582
583 if (keyring && link_ret == 0)
584 __key_link_end(keyring, key->type, prealloc);
585
586 /* wake up anyone waiting for a key to be constructed */
587 if (awaken)
588 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
589
590 return ret == 0 ? link_ret : ret;
591 }
592 EXPORT_SYMBOL(key_reject_and_link);
593
594 /**
595 * key_put - Discard a reference to a key.
596 * @key: The key to discard a reference from.
597 *
598 * Discard a reference to a key, and when all the references are gone, we
599 * schedule the cleanup task to come and pull it out of the tree in process
600 * context at some later time.
601 */
key_put(struct key * key)602 void key_put(struct key *key)
603 {
604 if (key) {
605 key_check(key);
606
607 if (atomic_dec_and_test(&key->usage))
608 schedule_work(&key_gc_work);
609 }
610 }
611 EXPORT_SYMBOL(key_put);
612
613 /*
614 * Find a key by its serial number.
615 */
key_lookup(key_serial_t id)616 struct key *key_lookup(key_serial_t id)
617 {
618 struct rb_node *n;
619 struct key *key;
620
621 spin_lock(&key_serial_lock);
622
623 /* search the tree for the specified key */
624 n = key_serial_tree.rb_node;
625 while (n) {
626 key = rb_entry(n, struct key, serial_node);
627
628 if (id < key->serial)
629 n = n->rb_left;
630 else if (id > key->serial)
631 n = n->rb_right;
632 else
633 goto found;
634 }
635
636 not_found:
637 key = ERR_PTR(-ENOKEY);
638 goto error;
639
640 found:
641 /* pretend it doesn't exist if it is awaiting deletion */
642 if (atomic_read(&key->usage) == 0)
643 goto not_found;
644
645 /* this races with key_put(), but that doesn't matter since key_put()
646 * doesn't actually change the key
647 */
648 atomic_inc(&key->usage);
649
650 error:
651 spin_unlock(&key_serial_lock);
652 return key;
653 }
654
655 /*
656 * Find and lock the specified key type against removal.
657 *
658 * We return with the sem read-locked if successful. If the type wasn't
659 * available -ENOKEY is returned instead.
660 */
key_type_lookup(const char * type)661 struct key_type *key_type_lookup(const char *type)
662 {
663 struct key_type *ktype;
664
665 down_read(&key_types_sem);
666
667 /* look up the key type to see if it's one of the registered kernel
668 * types */
669 list_for_each_entry(ktype, &key_types_list, link) {
670 if (strcmp(ktype->name, type) == 0)
671 goto found_kernel_type;
672 }
673
674 up_read(&key_types_sem);
675 ktype = ERR_PTR(-ENOKEY);
676
677 found_kernel_type:
678 return ktype;
679 }
680
key_set_timeout(struct key * key,unsigned timeout)681 void key_set_timeout(struct key *key, unsigned timeout)
682 {
683 struct timespec now;
684 time_t expiry = 0;
685
686 /* make the changes with the locks held to prevent races */
687 down_write(&key->sem);
688
689 if (timeout > 0) {
690 now = current_kernel_time();
691 expiry = now.tv_sec + timeout;
692 }
693
694 key->expiry = expiry;
695 key_schedule_gc(key->expiry + key_gc_delay);
696
697 up_write(&key->sem);
698 }
699 EXPORT_SYMBOL_GPL(key_set_timeout);
700
701 /*
702 * Unlock a key type locked by key_type_lookup().
703 */
key_type_put(struct key_type * ktype)704 void key_type_put(struct key_type *ktype)
705 {
706 up_read(&key_types_sem);
707 }
708
709 /*
710 * Attempt to update an existing key.
711 *
712 * The key is given to us with an incremented refcount that we need to discard
713 * if we get an error.
714 */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)715 static inline key_ref_t __key_update(key_ref_t key_ref,
716 struct key_preparsed_payload *prep)
717 {
718 struct key *key = key_ref_to_ptr(key_ref);
719 int ret;
720
721 /* need write permission on the key to update it */
722 ret = key_permission(key_ref, KEY_WRITE);
723 if (ret < 0)
724 goto error;
725
726 ret = -EEXIST;
727 if (!key->type->update)
728 goto error;
729
730 down_write(&key->sem);
731
732 ret = key->type->update(key, prep);
733 if (ret == 0)
734 /* updating a negative key instantiates it */
735 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
736
737 up_write(&key->sem);
738
739 if (ret < 0)
740 goto error;
741 out:
742 return key_ref;
743
744 error:
745 key_put(key);
746 key_ref = ERR_PTR(ret);
747 goto out;
748 }
749
750 /**
751 * key_create_or_update - Update or create and instantiate a key.
752 * @keyring_ref: A pointer to the destination keyring with possession flag.
753 * @type: The type of key.
754 * @description: The searchable description for the key.
755 * @payload: The data to use to instantiate or update the key.
756 * @plen: The length of @payload.
757 * @perm: The permissions mask for a new key.
758 * @flags: The quota flags for a new key.
759 *
760 * Search the destination keyring for a key of the same description and if one
761 * is found, update it, otherwise create and instantiate a new one and create a
762 * link to it from that keyring.
763 *
764 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
765 * concocted.
766 *
767 * Returns a pointer to the new key if successful, -ENODEV if the key type
768 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
769 * caller isn't permitted to modify the keyring or the LSM did not permit
770 * creation of the key.
771 *
772 * On success, the possession flag from the keyring ref will be tacked on to
773 * the key ref before it is returned.
774 */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)775 key_ref_t key_create_or_update(key_ref_t keyring_ref,
776 const char *type,
777 const char *description,
778 const void *payload,
779 size_t plen,
780 key_perm_t perm,
781 unsigned long flags)
782 {
783 unsigned long prealloc;
784 struct key_preparsed_payload prep;
785 const struct cred *cred = current_cred();
786 struct key_type *ktype;
787 struct key *keyring, *key = NULL;
788 key_ref_t key_ref;
789 int ret;
790
791 /* look up the key type to see if it's one of the registered kernel
792 * types */
793 ktype = key_type_lookup(type);
794 if (IS_ERR(ktype)) {
795 key_ref = ERR_PTR(-ENODEV);
796 goto error;
797 }
798
799 key_ref = ERR_PTR(-EINVAL);
800 if (!ktype->match || !ktype->instantiate ||
801 (!description && !ktype->preparse))
802 goto error_put_type;
803
804 keyring = key_ref_to_ptr(keyring_ref);
805
806 key_check(keyring);
807
808 key_ref = ERR_PTR(-ENOTDIR);
809 if (keyring->type != &key_type_keyring)
810 goto error_put_type;
811
812 memset(&prep, 0, sizeof(prep));
813 prep.data = payload;
814 prep.datalen = plen;
815 prep.quotalen = ktype->def_datalen;
816 if (ktype->preparse) {
817 ret = ktype->preparse(&prep);
818 if (ret < 0) {
819 key_ref = ERR_PTR(ret);
820 goto error_put_type;
821 }
822 if (!description)
823 description = prep.description;
824 key_ref = ERR_PTR(-EINVAL);
825 if (!description)
826 goto error_free_prep;
827 }
828
829 ret = __key_link_begin(keyring, ktype, description, &prealloc);
830 if (ret < 0) {
831 key_ref = ERR_PTR(ret);
832 goto error_free_prep;
833 }
834
835 /* if we're going to allocate a new key, we're going to have
836 * to modify the keyring */
837 ret = key_permission(keyring_ref, KEY_WRITE);
838 if (ret < 0) {
839 key_ref = ERR_PTR(ret);
840 goto error_link_end;
841 }
842
843 /* if it's possible to update this type of key, search for an existing
844 * key of the same type and description in the destination keyring and
845 * update that instead if possible
846 */
847 if (ktype->update) {
848 key_ref = __keyring_search_one(keyring_ref, ktype, description,
849 0);
850 if (!IS_ERR(key_ref))
851 goto found_matching_key;
852 }
853
854 /* if the client doesn't provide, decide on the permissions we want */
855 if (perm == KEY_PERM_UNDEF) {
856 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
857 perm |= KEY_USR_VIEW;
858
859 if (ktype->read)
860 perm |= KEY_POS_READ;
861
862 if (ktype == &key_type_keyring || ktype->update)
863 perm |= KEY_POS_WRITE;
864 }
865
866 /* allocate a new key */
867 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
868 perm, flags);
869 if (IS_ERR(key)) {
870 key_ref = ERR_CAST(key);
871 goto error_link_end;
872 }
873
874 /* instantiate it and link it into the target keyring */
875 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &prealloc);
876 if (ret < 0) {
877 key_put(key);
878 key_ref = ERR_PTR(ret);
879 goto error_link_end;
880 }
881
882 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
883
884 error_link_end:
885 __key_link_end(keyring, ktype, prealloc);
886 error_free_prep:
887 if (ktype->preparse)
888 ktype->free_preparse(&prep);
889 error_put_type:
890 key_type_put(ktype);
891 error:
892 return key_ref;
893
894 found_matching_key:
895 /* we found a matching key, so we're going to try to update it
896 * - we can drop the locks first as we have the key pinned
897 */
898 __key_link_end(keyring, ktype, prealloc);
899
900 key_ref = __key_update(key_ref, &prep);
901 goto error_free_prep;
902 }
903 EXPORT_SYMBOL(key_create_or_update);
904
905 /**
906 * key_update - Update a key's contents.
907 * @key_ref: The pointer (plus possession flag) to the key.
908 * @payload: The data to be used to update the key.
909 * @plen: The length of @payload.
910 *
911 * Attempt to update the contents of a key with the given payload data. The
912 * caller must be granted Write permission on the key. Negative keys can be
913 * instantiated by this method.
914 *
915 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
916 * type does not support updating. The key type may return other errors.
917 */
key_update(key_ref_t key_ref,const void * payload,size_t plen)918 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
919 {
920 struct key_preparsed_payload prep;
921 struct key *key = key_ref_to_ptr(key_ref);
922 int ret;
923
924 key_check(key);
925
926 /* the key must be writable */
927 ret = key_permission(key_ref, KEY_WRITE);
928 if (ret < 0)
929 goto error;
930
931 /* attempt to update it if supported */
932 ret = -EOPNOTSUPP;
933 if (!key->type->update)
934 goto error;
935
936 memset(&prep, 0, sizeof(prep));
937 prep.data = payload;
938 prep.datalen = plen;
939 prep.quotalen = key->type->def_datalen;
940 if (key->type->preparse) {
941 ret = key->type->preparse(&prep);
942 if (ret < 0)
943 goto error;
944 }
945
946 down_write(&key->sem);
947
948 ret = key->type->update(key, &prep);
949 if (ret == 0)
950 /* updating a negative key instantiates it */
951 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
952
953 up_write(&key->sem);
954
955 if (key->type->preparse)
956 key->type->free_preparse(&prep);
957 error:
958 return ret;
959 }
960 EXPORT_SYMBOL(key_update);
961
962 /**
963 * key_revoke - Revoke a key.
964 * @key: The key to be revoked.
965 *
966 * Mark a key as being revoked and ask the type to free up its resources. The
967 * revocation timeout is set and the key and all its links will be
968 * automatically garbage collected after key_gc_delay amount of time if they
969 * are not manually dealt with first.
970 */
key_revoke(struct key * key)971 void key_revoke(struct key *key)
972 {
973 struct timespec now;
974 time_t time;
975
976 key_check(key);
977
978 /* make sure no one's trying to change or use the key when we mark it
979 * - we tell lockdep that we might nest because we might be revoking an
980 * authorisation key whilst holding the sem on a key we've just
981 * instantiated
982 */
983 down_write_nested(&key->sem, 1);
984 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
985 key->type->revoke)
986 key->type->revoke(key);
987
988 /* set the death time to no more than the expiry time */
989 now = current_kernel_time();
990 time = now.tv_sec;
991 if (key->revoked_at == 0 || key->revoked_at > time) {
992 key->revoked_at = time;
993 key_schedule_gc(key->revoked_at + key_gc_delay);
994 }
995
996 up_write(&key->sem);
997 }
998 EXPORT_SYMBOL(key_revoke);
999
1000 /**
1001 * key_invalidate - Invalidate a key.
1002 * @key: The key to be invalidated.
1003 *
1004 * Mark a key as being invalidated and have it cleaned up immediately. The key
1005 * is ignored by all searches and other operations from this point.
1006 */
key_invalidate(struct key * key)1007 void key_invalidate(struct key *key)
1008 {
1009 kenter("%d", key_serial(key));
1010
1011 key_check(key);
1012
1013 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1014 down_write_nested(&key->sem, 1);
1015 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1016 key_schedule_gc_links();
1017 up_write(&key->sem);
1018 }
1019 }
1020 EXPORT_SYMBOL(key_invalidate);
1021
1022 /**
1023 * register_key_type - Register a type of key.
1024 * @ktype: The new key type.
1025 *
1026 * Register a new key type.
1027 *
1028 * Returns 0 on success or -EEXIST if a type of this name already exists.
1029 */
register_key_type(struct key_type * ktype)1030 int register_key_type(struct key_type *ktype)
1031 {
1032 struct key_type *p;
1033 int ret;
1034
1035 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1036
1037 ret = -EEXIST;
1038 down_write(&key_types_sem);
1039
1040 /* disallow key types with the same name */
1041 list_for_each_entry(p, &key_types_list, link) {
1042 if (strcmp(p->name, ktype->name) == 0)
1043 goto out;
1044 }
1045
1046 /* store the type */
1047 list_add(&ktype->link, &key_types_list);
1048
1049 pr_notice("Key type %s registered\n", ktype->name);
1050 ret = 0;
1051
1052 out:
1053 up_write(&key_types_sem);
1054 return ret;
1055 }
1056 EXPORT_SYMBOL(register_key_type);
1057
1058 /**
1059 * unregister_key_type - Unregister a type of key.
1060 * @ktype: The key type.
1061 *
1062 * Unregister a key type and mark all the extant keys of this type as dead.
1063 * Those keys of this type are then destroyed to get rid of their payloads and
1064 * they and their links will be garbage collected as soon as possible.
1065 */
unregister_key_type(struct key_type * ktype)1066 void unregister_key_type(struct key_type *ktype)
1067 {
1068 down_write(&key_types_sem);
1069 list_del_init(&ktype->link);
1070 downgrade_write(&key_types_sem);
1071 key_gc_keytype(ktype);
1072 pr_notice("Key type %s unregistered\n", ktype->name);
1073 up_read(&key_types_sem);
1074 }
1075 EXPORT_SYMBOL(unregister_key_type);
1076
1077 /*
1078 * Initialise the key management state.
1079 */
key_init(void)1080 void __init key_init(void)
1081 {
1082 /* allocate a slab in which we can store keys */
1083 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1084 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1085
1086 /* add the special key types */
1087 list_add_tail(&key_type_keyring.link, &key_types_list);
1088 list_add_tail(&key_type_dead.link, &key_types_list);
1089 list_add_tail(&key_type_user.link, &key_types_list);
1090 list_add_tail(&key_type_logon.link, &key_types_list);
1091
1092 /* record the root user tracking */
1093 rb_link_node(&root_key_user.node,
1094 NULL,
1095 &key_user_tree.rb_node);
1096
1097 rb_insert_color(&root_key_user.node,
1098 &key_user_tree);
1099 }
1100