• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * EDMA3 support for DaVinci
3  *
4  * Copyright (C) 2006-2009 Texas Instruments.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/platform_device.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 
28 #include <mach/edma.h>
29 
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT		0x00
32 #define PARM_SRC		0x04
33 #define PARM_A_B_CNT		0x08
34 #define PARM_DST		0x0c
35 #define PARM_SRC_DST_BIDX	0x10
36 #define PARM_LINK_BCNTRLD	0x14
37 #define PARM_SRC_DST_CIDX	0x18
38 #define PARM_CCNT		0x1c
39 
40 #define PARM_SIZE		0x20
41 
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER		0x00	/* 64 bits */
44 #define SH_ECR		0x08	/* 64 bits */
45 #define SH_ESR		0x10	/* 64 bits */
46 #define SH_CER		0x18	/* 64 bits */
47 #define SH_EER		0x20	/* 64 bits */
48 #define SH_EECR		0x28	/* 64 bits */
49 #define SH_EESR		0x30	/* 64 bits */
50 #define SH_SER		0x38	/* 64 bits */
51 #define SH_SECR		0x40	/* 64 bits */
52 #define SH_IER		0x50	/* 64 bits */
53 #define SH_IECR		0x58	/* 64 bits */
54 #define SH_IESR		0x60	/* 64 bits */
55 #define SH_IPR		0x68	/* 64 bits */
56 #define SH_ICR		0x70	/* 64 bits */
57 #define SH_IEVAL	0x78
58 #define SH_QER		0x80
59 #define SH_QEER		0x84
60 #define SH_QEECR	0x88
61 #define SH_QEESR	0x8c
62 #define SH_QSER		0x90
63 #define SH_QSECR	0x94
64 #define SH_SIZE		0x200
65 
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV	0x0000
68 #define EDMA_CCCFG	0x0004
69 #define EDMA_QCHMAP	0x0200	/* 8 registers */
70 #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM	0x0260
72 #define EDMA_QUETCMAP	0x0280
73 #define EDMA_QUEPRI	0x0284
74 #define EDMA_EMR	0x0300	/* 64 bits */
75 #define EDMA_EMCR	0x0308	/* 64 bits */
76 #define EDMA_QEMR	0x0310
77 #define EDMA_QEMCR	0x0314
78 #define EDMA_CCERR	0x0318
79 #define EDMA_CCERRCLR	0x031c
80 #define EDMA_EEVAL	0x0320
81 #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/
82 #define EDMA_QRAE	0x0380	/* 4 registers */
83 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
84 #define EDMA_QSTAT	0x0600	/* 2 registers */
85 #define EDMA_QWMTHRA	0x0620
86 #define EDMA_QWMTHRB	0x0624
87 #define EDMA_CCSTAT	0x0640
88 
89 #define EDMA_M		0x1000	/* global channel registers */
90 #define EDMA_ECR	0x1008
91 #define EDMA_ECRH	0x100C
92 #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */
93 #define EDMA_PARM	0x4000	/* 128 param entries */
94 
95 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
96 
97 #define EDMA_DCHMAP	0x0100  /* 64 registers */
98 #define CHMAP_EXIST	BIT(24)
99 
100 #define EDMA_MAX_DMACH           64
101 #define EDMA_MAX_PARAMENTRY     512
102 
103 /*****************************************************************************/
104 
105 static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
106 
edma_read(unsigned ctlr,int offset)107 static inline unsigned int edma_read(unsigned ctlr, int offset)
108 {
109 	return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
110 }
111 
edma_write(unsigned ctlr,int offset,int val)112 static inline void edma_write(unsigned ctlr, int offset, int val)
113 {
114 	__raw_writel(val, edmacc_regs_base[ctlr] + offset);
115 }
edma_modify(unsigned ctlr,int offset,unsigned and,unsigned or)116 static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
117 		unsigned or)
118 {
119 	unsigned val = edma_read(ctlr, offset);
120 	val &= and;
121 	val |= or;
122 	edma_write(ctlr, offset, val);
123 }
edma_and(unsigned ctlr,int offset,unsigned and)124 static inline void edma_and(unsigned ctlr, int offset, unsigned and)
125 {
126 	unsigned val = edma_read(ctlr, offset);
127 	val &= and;
128 	edma_write(ctlr, offset, val);
129 }
edma_or(unsigned ctlr,int offset,unsigned or)130 static inline void edma_or(unsigned ctlr, int offset, unsigned or)
131 {
132 	unsigned val = edma_read(ctlr, offset);
133 	val |= or;
134 	edma_write(ctlr, offset, val);
135 }
edma_read_array(unsigned ctlr,int offset,int i)136 static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
137 {
138 	return edma_read(ctlr, offset + (i << 2));
139 }
edma_write_array(unsigned ctlr,int offset,int i,unsigned val)140 static inline void edma_write_array(unsigned ctlr, int offset, int i,
141 		unsigned val)
142 {
143 	edma_write(ctlr, offset + (i << 2), val);
144 }
edma_modify_array(unsigned ctlr,int offset,int i,unsigned and,unsigned or)145 static inline void edma_modify_array(unsigned ctlr, int offset, int i,
146 		unsigned and, unsigned or)
147 {
148 	edma_modify(ctlr, offset + (i << 2), and, or);
149 }
edma_or_array(unsigned ctlr,int offset,int i,unsigned or)150 static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
151 {
152 	edma_or(ctlr, offset + (i << 2), or);
153 }
edma_or_array2(unsigned ctlr,int offset,int i,int j,unsigned or)154 static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
155 		unsigned or)
156 {
157 	edma_or(ctlr, offset + ((i*2 + j) << 2), or);
158 }
edma_write_array2(unsigned ctlr,int offset,int i,int j,unsigned val)159 static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
160 		unsigned val)
161 {
162 	edma_write(ctlr, offset + ((i*2 + j) << 2), val);
163 }
edma_shadow0_read(unsigned ctlr,int offset)164 static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
165 {
166 	return edma_read(ctlr, EDMA_SHADOW0 + offset);
167 }
edma_shadow0_read_array(unsigned ctlr,int offset,int i)168 static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
169 		int i)
170 {
171 	return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
172 }
edma_shadow0_write(unsigned ctlr,int offset,unsigned val)173 static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
174 {
175 	edma_write(ctlr, EDMA_SHADOW0 + offset, val);
176 }
edma_shadow0_write_array(unsigned ctlr,int offset,int i,unsigned val)177 static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
178 		unsigned val)
179 {
180 	edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
181 }
edma_parm_read(unsigned ctlr,int offset,int param_no)182 static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
183 		int param_no)
184 {
185 	return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
186 }
edma_parm_write(unsigned ctlr,int offset,int param_no,unsigned val)187 static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
188 		unsigned val)
189 {
190 	edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
191 }
edma_parm_modify(unsigned ctlr,int offset,int param_no,unsigned and,unsigned or)192 static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
193 		unsigned and, unsigned or)
194 {
195 	edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
196 }
edma_parm_and(unsigned ctlr,int offset,int param_no,unsigned and)197 static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
198 		unsigned and)
199 {
200 	edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
201 }
edma_parm_or(unsigned ctlr,int offset,int param_no,unsigned or)202 static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
203 		unsigned or)
204 {
205 	edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
206 }
207 
set_bits(int offset,int len,unsigned long * p)208 static inline void set_bits(int offset, int len, unsigned long *p)
209 {
210 	for (; len > 0; len--)
211 		set_bit(offset + (len - 1), p);
212 }
213 
clear_bits(int offset,int len,unsigned long * p)214 static inline void clear_bits(int offset, int len, unsigned long *p)
215 {
216 	for (; len > 0; len--)
217 		clear_bit(offset + (len - 1), p);
218 }
219 
220 /*****************************************************************************/
221 
222 /* actual number of DMA channels and slots on this silicon */
223 struct edma {
224 	/* how many dma resources of each type */
225 	unsigned	num_channels;
226 	unsigned	num_region;
227 	unsigned	num_slots;
228 	unsigned	num_tc;
229 	unsigned	num_cc;
230 	enum dma_event_q 	default_queue;
231 
232 	/* list of channels with no even trigger; terminated by "-1" */
233 	const s8	*noevent;
234 
235 	/* The edma_inuse bit for each PaRAM slot is clear unless the
236 	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
237 	 */
238 	DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
239 
240 	/* The edma_unused bit for each channel is clear unless
241 	 * it is not being used on this platform. It uses a bit
242 	 * of SOC-specific initialization code.
243 	 */
244 	DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
245 
246 	unsigned	irq_res_start;
247 	unsigned	irq_res_end;
248 
249 	struct dma_interrupt_data {
250 		void (*callback)(unsigned channel, unsigned short ch_status,
251 				void *data);
252 		void *data;
253 	} intr_data[EDMA_MAX_DMACH];
254 };
255 
256 static struct edma *edma_cc[EDMA_MAX_CC];
257 static int arch_num_cc;
258 
259 /* dummy param set used to (re)initialize parameter RAM slots */
260 static const struct edmacc_param dummy_paramset = {
261 	.link_bcntrld = 0xffff,
262 	.ccnt = 1,
263 };
264 
265 /*****************************************************************************/
266 
map_dmach_queue(unsigned ctlr,unsigned ch_no,enum dma_event_q queue_no)267 static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
268 		enum dma_event_q queue_no)
269 {
270 	int bit = (ch_no & 0x7) * 4;
271 
272 	/* default to low priority queue */
273 	if (queue_no == EVENTQ_DEFAULT)
274 		queue_no = edma_cc[ctlr]->default_queue;
275 
276 	queue_no &= 7;
277 	edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
278 			~(0x7 << bit), queue_no << bit);
279 }
280 
map_queue_tc(unsigned ctlr,int queue_no,int tc_no)281 static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
282 {
283 	int bit = queue_no * 4;
284 	edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
285 }
286 
assign_priority_to_queue(unsigned ctlr,int queue_no,int priority)287 static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
288 		int priority)
289 {
290 	int bit = queue_no * 4;
291 	edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
292 			((priority & 0x7) << bit));
293 }
294 
295 /**
296  * map_dmach_param - Maps channel number to param entry number
297  *
298  * This maps the dma channel number to param entry numberter. In
299  * other words using the DMA channel mapping registers a param entry
300  * can be mapped to any channel
301  *
302  * Callers are responsible for ensuring the channel mapping logic is
303  * included in that particular EDMA variant (Eg : dm646x)
304  *
305  */
map_dmach_param(unsigned ctlr)306 static void __init map_dmach_param(unsigned ctlr)
307 {
308 	int i;
309 	for (i = 0; i < EDMA_MAX_DMACH; i++)
310 		edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
311 }
312 
313 static inline void
setup_dma_interrupt(unsigned lch,void (* callback)(unsigned channel,u16 ch_status,void * data),void * data)314 setup_dma_interrupt(unsigned lch,
315 	void (*callback)(unsigned channel, u16 ch_status, void *data),
316 	void *data)
317 {
318 	unsigned ctlr;
319 
320 	ctlr = EDMA_CTLR(lch);
321 	lch = EDMA_CHAN_SLOT(lch);
322 
323 	if (!callback)
324 		edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
325 				BIT(lch & 0x1f));
326 
327 	edma_cc[ctlr]->intr_data[lch].callback = callback;
328 	edma_cc[ctlr]->intr_data[lch].data = data;
329 
330 	if (callback) {
331 		edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
332 				BIT(lch & 0x1f));
333 		edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
334 				BIT(lch & 0x1f));
335 	}
336 }
337 
irq2ctlr(int irq)338 static int irq2ctlr(int irq)
339 {
340 	if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
341 		return 0;
342 	else if (irq >= edma_cc[1]->irq_res_start &&
343 		irq <= edma_cc[1]->irq_res_end)
344 		return 1;
345 
346 	return -1;
347 }
348 
349 /******************************************************************************
350  *
351  * DMA interrupt handler
352  *
353  *****************************************************************************/
dma_irq_handler(int irq,void * data)354 static irqreturn_t dma_irq_handler(int irq, void *data)
355 {
356 	int ctlr;
357 	u32 sh_ier;
358 	u32 sh_ipr;
359 	u32 bank;
360 
361 	ctlr = irq2ctlr(irq);
362 	if (ctlr < 0)
363 		return IRQ_NONE;
364 
365 	dev_dbg(data, "dma_irq_handler\n");
366 
367 	sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
368 	if (!sh_ipr) {
369 		sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
370 		if (!sh_ipr)
371 			return IRQ_NONE;
372 		sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
373 		bank = 1;
374 	} else {
375 		sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
376 		bank = 0;
377 	}
378 
379 	do {
380 		u32 slot;
381 		u32 channel;
382 
383 		dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
384 
385 		slot = __ffs(sh_ipr);
386 		sh_ipr &= ~(BIT(slot));
387 
388 		if (sh_ier & BIT(slot)) {
389 			channel = (bank << 5) | slot;
390 			/* Clear the corresponding IPR bits */
391 			edma_shadow0_write_array(ctlr, SH_ICR, bank,
392 					BIT(slot));
393 			if (edma_cc[ctlr]->intr_data[channel].callback)
394 				edma_cc[ctlr]->intr_data[channel].callback(
395 					channel, DMA_COMPLETE,
396 					edma_cc[ctlr]->intr_data[channel].data);
397 		}
398 	} while (sh_ipr);
399 
400 	edma_shadow0_write(ctlr, SH_IEVAL, 1);
401 	return IRQ_HANDLED;
402 }
403 
404 /******************************************************************************
405  *
406  * DMA error interrupt handler
407  *
408  *****************************************************************************/
dma_ccerr_handler(int irq,void * data)409 static irqreturn_t dma_ccerr_handler(int irq, void *data)
410 {
411 	int i;
412 	int ctlr;
413 	unsigned int cnt = 0;
414 
415 	ctlr = irq2ctlr(irq);
416 	if (ctlr < 0)
417 		return IRQ_NONE;
418 
419 	dev_dbg(data, "dma_ccerr_handler\n");
420 
421 	if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
422 	    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
423 	    (edma_read(ctlr, EDMA_QEMR) == 0) &&
424 	    (edma_read(ctlr, EDMA_CCERR) == 0))
425 		return IRQ_NONE;
426 
427 	while (1) {
428 		int j = -1;
429 		if (edma_read_array(ctlr, EDMA_EMR, 0))
430 			j = 0;
431 		else if (edma_read_array(ctlr, EDMA_EMR, 1))
432 			j = 1;
433 		if (j >= 0) {
434 			dev_dbg(data, "EMR%d %08x\n", j,
435 					edma_read_array(ctlr, EDMA_EMR, j));
436 			for (i = 0; i < 32; i++) {
437 				int k = (j << 5) + i;
438 				if (edma_read_array(ctlr, EDMA_EMR, j) &
439 							BIT(i)) {
440 					/* Clear the corresponding EMR bits */
441 					edma_write_array(ctlr, EDMA_EMCR, j,
442 							BIT(i));
443 					/* Clear any SER */
444 					edma_shadow0_write_array(ctlr, SH_SECR,
445 								j, BIT(i));
446 					if (edma_cc[ctlr]->intr_data[k].
447 								callback) {
448 						edma_cc[ctlr]->intr_data[k].
449 						callback(k,
450 						DMA_CC_ERROR,
451 						edma_cc[ctlr]->intr_data
452 						[k].data);
453 					}
454 				}
455 			}
456 		} else if (edma_read(ctlr, EDMA_QEMR)) {
457 			dev_dbg(data, "QEMR %02x\n",
458 				edma_read(ctlr, EDMA_QEMR));
459 			for (i = 0; i < 8; i++) {
460 				if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
461 					/* Clear the corresponding IPR bits */
462 					edma_write(ctlr, EDMA_QEMCR, BIT(i));
463 					edma_shadow0_write(ctlr, SH_QSECR,
464 								BIT(i));
465 
466 					/* NOTE:  not reported!! */
467 				}
468 			}
469 		} else if (edma_read(ctlr, EDMA_CCERR)) {
470 			dev_dbg(data, "CCERR %08x\n",
471 				edma_read(ctlr, EDMA_CCERR));
472 			/* FIXME:  CCERR.BIT(16) ignored!  much better
473 			 * to just write CCERRCLR with CCERR value...
474 			 */
475 			for (i = 0; i < 8; i++) {
476 				if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
477 					/* Clear the corresponding IPR bits */
478 					edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
479 
480 					/* NOTE:  not reported!! */
481 				}
482 			}
483 		}
484 		if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
485 		    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
486 		    (edma_read(ctlr, EDMA_QEMR) == 0) &&
487 		    (edma_read(ctlr, EDMA_CCERR) == 0))
488 			break;
489 		cnt++;
490 		if (cnt > 10)
491 			break;
492 	}
493 	edma_write(ctlr, EDMA_EEVAL, 1);
494 	return IRQ_HANDLED;
495 }
496 
497 /******************************************************************************
498  *
499  * Transfer controller error interrupt handlers
500  *
501  *****************************************************************************/
502 
503 #define tc_errs_handled	false	/* disabled as long as they're NOPs */
504 
dma_tc0err_handler(int irq,void * data)505 static irqreturn_t dma_tc0err_handler(int irq, void *data)
506 {
507 	dev_dbg(data, "dma_tc0err_handler\n");
508 	return IRQ_HANDLED;
509 }
510 
dma_tc1err_handler(int irq,void * data)511 static irqreturn_t dma_tc1err_handler(int irq, void *data)
512 {
513 	dev_dbg(data, "dma_tc1err_handler\n");
514 	return IRQ_HANDLED;
515 }
516 
reserve_contiguous_slots(int ctlr,unsigned int id,unsigned int num_slots,unsigned int start_slot)517 static int reserve_contiguous_slots(int ctlr, unsigned int id,
518 				     unsigned int num_slots,
519 				     unsigned int start_slot)
520 {
521 	int i, j;
522 	unsigned int count = num_slots;
523 	int stop_slot = start_slot;
524 	DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
525 
526 	for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
527 		j = EDMA_CHAN_SLOT(i);
528 		if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
529 			/* Record our current beginning slot */
530 			if (count == num_slots)
531 				stop_slot = i;
532 
533 			count--;
534 			set_bit(j, tmp_inuse);
535 
536 			if (count == 0)
537 				break;
538 		} else {
539 			clear_bit(j, tmp_inuse);
540 
541 			if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
542 				stop_slot = i;
543 				break;
544 			} else {
545 				count = num_slots;
546 			}
547 		}
548 	}
549 
550 	/*
551 	 * We have to clear any bits that we set
552 	 * if we run out parameter RAM slots, i.e we do find a set
553 	 * of contiguous parameter RAM slots but do not find the exact number
554 	 * requested as we may reach the total number of parameter RAM slots
555 	 */
556 	if (i == edma_cc[ctlr]->num_slots)
557 		stop_slot = i;
558 
559 	j = start_slot;
560 	for_each_set_bit_from(j, tmp_inuse, stop_slot)
561 		clear_bit(j, edma_cc[ctlr]->edma_inuse);
562 
563 	if (count)
564 		return -EBUSY;
565 
566 	for (j = i - num_slots + 1; j <= i; ++j)
567 		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
568 			&dummy_paramset, PARM_SIZE);
569 
570 	return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
571 }
572 
prepare_unused_channel_list(struct device * dev,void * data)573 static int prepare_unused_channel_list(struct device *dev, void *data)
574 {
575 	struct platform_device *pdev = to_platform_device(dev);
576 	int i, ctlr;
577 
578 	for (i = 0; i < pdev->num_resources; i++) {
579 		if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
580 				(int)pdev->resource[i].start >= 0) {
581 			ctlr = EDMA_CTLR(pdev->resource[i].start);
582 			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
583 					edma_cc[ctlr]->edma_unused);
584 		}
585 	}
586 
587 	return 0;
588 }
589 
590 /*-----------------------------------------------------------------------*/
591 
592 static bool unused_chan_list_done;
593 
594 /* Resource alloc/free:  dma channels, parameter RAM slots */
595 
596 /**
597  * edma_alloc_channel - allocate DMA channel and paired parameter RAM
598  * @channel: specific channel to allocate; negative for "any unmapped channel"
599  * @callback: optional; to be issued on DMA completion or errors
600  * @data: passed to callback
601  * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
602  *	Controller (TC) executes requests using this channel.  Use
603  *	EVENTQ_DEFAULT unless you really need a high priority queue.
604  *
605  * This allocates a DMA channel and its associated parameter RAM slot.
606  * The parameter RAM is initialized to hold a dummy transfer.
607  *
608  * Normal use is to pass a specific channel number as @channel, to make
609  * use of hardware events mapped to that channel.  When the channel will
610  * be used only for software triggering or event chaining, channels not
611  * mapped to hardware events (or mapped to unused events) are preferable.
612  *
613  * DMA transfers start from a channel using edma_start(), or by
614  * chaining.  When the transfer described in that channel's parameter RAM
615  * slot completes, that slot's data may be reloaded through a link.
616  *
617  * DMA errors are only reported to the @callback associated with the
618  * channel driving that transfer, but transfer completion callbacks can
619  * be sent to another channel under control of the TCC field in
620  * the option word of the transfer's parameter RAM set.  Drivers must not
621  * use DMA transfer completion callbacks for channels they did not allocate.
622  * (The same applies to TCC codes used in transfer chaining.)
623  *
624  * Returns the number of the channel, else negative errno.
625  */
edma_alloc_channel(int channel,void (* callback)(unsigned channel,u16 ch_status,void * data),void * data,enum dma_event_q eventq_no)626 int edma_alloc_channel(int channel,
627 		void (*callback)(unsigned channel, u16 ch_status, void *data),
628 		void *data,
629 		enum dma_event_q eventq_no)
630 {
631 	unsigned i, done = 0, ctlr = 0;
632 	int ret = 0;
633 
634 	if (!unused_chan_list_done) {
635 		/*
636 		 * Scan all the platform devices to find out the EDMA channels
637 		 * used and clear them in the unused list, making the rest
638 		 * available for ARM usage.
639 		 */
640 		ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
641 				prepare_unused_channel_list);
642 		if (ret < 0)
643 			return ret;
644 
645 		unused_chan_list_done = true;
646 	}
647 
648 	if (channel >= 0) {
649 		ctlr = EDMA_CTLR(channel);
650 		channel = EDMA_CHAN_SLOT(channel);
651 	}
652 
653 	if (channel < 0) {
654 		for (i = 0; i < arch_num_cc; i++) {
655 			channel = 0;
656 			for (;;) {
657 				channel = find_next_bit(edma_cc[i]->edma_unused,
658 						edma_cc[i]->num_channels,
659 						channel);
660 				if (channel == edma_cc[i]->num_channels)
661 					break;
662 				if (!test_and_set_bit(channel,
663 						edma_cc[i]->edma_inuse)) {
664 					done = 1;
665 					ctlr = i;
666 					break;
667 				}
668 				channel++;
669 			}
670 			if (done)
671 				break;
672 		}
673 		if (!done)
674 			return -ENOMEM;
675 	} else if (channel >= edma_cc[ctlr]->num_channels) {
676 		return -EINVAL;
677 	} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
678 		return -EBUSY;
679 	}
680 
681 	/* ensure access through shadow region 0 */
682 	edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
683 
684 	/* ensure no events are pending */
685 	edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
686 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
687 			&dummy_paramset, PARM_SIZE);
688 
689 	if (callback)
690 		setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
691 					callback, data);
692 
693 	map_dmach_queue(ctlr, channel, eventq_no);
694 
695 	return EDMA_CTLR_CHAN(ctlr, channel);
696 }
697 EXPORT_SYMBOL(edma_alloc_channel);
698 
699 
700 /**
701  * edma_free_channel - deallocate DMA channel
702  * @channel: dma channel returned from edma_alloc_channel()
703  *
704  * This deallocates the DMA channel and associated parameter RAM slot
705  * allocated by edma_alloc_channel().
706  *
707  * Callers are responsible for ensuring the channel is inactive, and
708  * will not be reactivated by linking, chaining, or software calls to
709  * edma_start().
710  */
edma_free_channel(unsigned channel)711 void edma_free_channel(unsigned channel)
712 {
713 	unsigned ctlr;
714 
715 	ctlr = EDMA_CTLR(channel);
716 	channel = EDMA_CHAN_SLOT(channel);
717 
718 	if (channel >= edma_cc[ctlr]->num_channels)
719 		return;
720 
721 	setup_dma_interrupt(channel, NULL, NULL);
722 	/* REVISIT should probably take out of shadow region 0 */
723 
724 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
725 			&dummy_paramset, PARM_SIZE);
726 	clear_bit(channel, edma_cc[ctlr]->edma_inuse);
727 }
728 EXPORT_SYMBOL(edma_free_channel);
729 
730 /**
731  * edma_alloc_slot - allocate DMA parameter RAM
732  * @slot: specific slot to allocate; negative for "any unused slot"
733  *
734  * This allocates a parameter RAM slot, initializing it to hold a
735  * dummy transfer.  Slots allocated using this routine have not been
736  * mapped to a hardware DMA channel, and will normally be used by
737  * linking to them from a slot associated with a DMA channel.
738  *
739  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
740  * slots may be allocated on behalf of DSP firmware.
741  *
742  * Returns the number of the slot, else negative errno.
743  */
edma_alloc_slot(unsigned ctlr,int slot)744 int edma_alloc_slot(unsigned ctlr, int slot)
745 {
746 	if (!edma_cc[ctlr])
747 		return -EINVAL;
748 
749 	if (slot >= 0)
750 		slot = EDMA_CHAN_SLOT(slot);
751 
752 	if (slot < 0) {
753 		slot = edma_cc[ctlr]->num_channels;
754 		for (;;) {
755 			slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
756 					edma_cc[ctlr]->num_slots, slot);
757 			if (slot == edma_cc[ctlr]->num_slots)
758 				return -ENOMEM;
759 			if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
760 				break;
761 		}
762 	} else if (slot < edma_cc[ctlr]->num_channels ||
763 			slot >= edma_cc[ctlr]->num_slots) {
764 		return -EINVAL;
765 	} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
766 		return -EBUSY;
767 	}
768 
769 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
770 			&dummy_paramset, PARM_SIZE);
771 
772 	return EDMA_CTLR_CHAN(ctlr, slot);
773 }
774 EXPORT_SYMBOL(edma_alloc_slot);
775 
776 /**
777  * edma_free_slot - deallocate DMA parameter RAM
778  * @slot: parameter RAM slot returned from edma_alloc_slot()
779  *
780  * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
781  * Callers are responsible for ensuring the slot is inactive, and will
782  * not be activated.
783  */
edma_free_slot(unsigned slot)784 void edma_free_slot(unsigned slot)
785 {
786 	unsigned ctlr;
787 
788 	ctlr = EDMA_CTLR(slot);
789 	slot = EDMA_CHAN_SLOT(slot);
790 
791 	if (slot < edma_cc[ctlr]->num_channels ||
792 		slot >= edma_cc[ctlr]->num_slots)
793 		return;
794 
795 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
796 			&dummy_paramset, PARM_SIZE);
797 	clear_bit(slot, edma_cc[ctlr]->edma_inuse);
798 }
799 EXPORT_SYMBOL(edma_free_slot);
800 
801 
802 /**
803  * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
804  * The API will return the starting point of a set of
805  * contiguous parameter RAM slots that have been requested
806  *
807  * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
808  * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
809  * @count: number of contiguous Paramter RAM slots
810  * @slot  - the start value of Parameter RAM slot that should be passed if id
811  * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
812  *
813  * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
814  * contiguous Parameter RAM slots from parameter RAM 64 in the case of
815  * DaVinci SOCs and 32 in the case of DA8xx SOCs.
816  *
817  * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
818  * set of contiguous parameter RAM slots from the "slot" that is passed as an
819  * argument to the API.
820  *
821  * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
822  * starts looking for a set of contiguous parameter RAMs from the "slot"
823  * that is passed as an argument to the API. On failure the API will try to
824  * find a set of contiguous Parameter RAM slots from the remaining Parameter
825  * RAM slots
826  */
edma_alloc_cont_slots(unsigned ctlr,unsigned int id,int slot,int count)827 int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
828 {
829 	/*
830 	 * The start slot requested should be greater than
831 	 * the number of channels and lesser than the total number
832 	 * of slots
833 	 */
834 	if ((id != EDMA_CONT_PARAMS_ANY) &&
835 		(slot < edma_cc[ctlr]->num_channels ||
836 		slot >= edma_cc[ctlr]->num_slots))
837 		return -EINVAL;
838 
839 	/*
840 	 * The number of parameter RAM slots requested cannot be less than 1
841 	 * and cannot be more than the number of slots minus the number of
842 	 * channels
843 	 */
844 	if (count < 1 || count >
845 		(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
846 		return -EINVAL;
847 
848 	switch (id) {
849 	case EDMA_CONT_PARAMS_ANY:
850 		return reserve_contiguous_slots(ctlr, id, count,
851 						 edma_cc[ctlr]->num_channels);
852 	case EDMA_CONT_PARAMS_FIXED_EXACT:
853 	case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
854 		return reserve_contiguous_slots(ctlr, id, count, slot);
855 	default:
856 		return -EINVAL;
857 	}
858 
859 }
860 EXPORT_SYMBOL(edma_alloc_cont_slots);
861 
862 /**
863  * edma_free_cont_slots - deallocate DMA parameter RAM slots
864  * @slot: first parameter RAM of a set of parameter RAM slots to be freed
865  * @count: the number of contiguous parameter RAM slots to be freed
866  *
867  * This deallocates the parameter RAM slots allocated by
868  * edma_alloc_cont_slots.
869  * Callers/applications need to keep track of sets of contiguous
870  * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
871  * API.
872  * Callers are responsible for ensuring the slots are inactive, and will
873  * not be activated.
874  */
edma_free_cont_slots(unsigned slot,int count)875 int edma_free_cont_slots(unsigned slot, int count)
876 {
877 	unsigned ctlr, slot_to_free;
878 	int i;
879 
880 	ctlr = EDMA_CTLR(slot);
881 	slot = EDMA_CHAN_SLOT(slot);
882 
883 	if (slot < edma_cc[ctlr]->num_channels ||
884 		slot >= edma_cc[ctlr]->num_slots ||
885 		count < 1)
886 		return -EINVAL;
887 
888 	for (i = slot; i < slot + count; ++i) {
889 		ctlr = EDMA_CTLR(i);
890 		slot_to_free = EDMA_CHAN_SLOT(i);
891 
892 		memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
893 			&dummy_paramset, PARM_SIZE);
894 		clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
895 	}
896 
897 	return 0;
898 }
899 EXPORT_SYMBOL(edma_free_cont_slots);
900 
901 /*-----------------------------------------------------------------------*/
902 
903 /* Parameter RAM operations (i) -- read/write partial slots */
904 
905 /**
906  * edma_set_src - set initial DMA source address in parameter RAM slot
907  * @slot: parameter RAM slot being configured
908  * @src_port: physical address of source (memory, controller FIFO, etc)
909  * @addressMode: INCR, except in very rare cases
910  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
911  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
912  *
913  * Note that the source address is modified during the DMA transfer
914  * according to edma_set_src_index().
915  */
edma_set_src(unsigned slot,dma_addr_t src_port,enum address_mode mode,enum fifo_width width)916 void edma_set_src(unsigned slot, dma_addr_t src_port,
917 				enum address_mode mode, enum fifo_width width)
918 {
919 	unsigned ctlr;
920 
921 	ctlr = EDMA_CTLR(slot);
922 	slot = EDMA_CHAN_SLOT(slot);
923 
924 	if (slot < edma_cc[ctlr]->num_slots) {
925 		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
926 
927 		if (mode) {
928 			/* set SAM and program FWID */
929 			i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
930 		} else {
931 			/* clear SAM */
932 			i &= ~SAM;
933 		}
934 		edma_parm_write(ctlr, PARM_OPT, slot, i);
935 
936 		/* set the source port address
937 		   in source register of param structure */
938 		edma_parm_write(ctlr, PARM_SRC, slot, src_port);
939 	}
940 }
941 EXPORT_SYMBOL(edma_set_src);
942 
943 /**
944  * edma_set_dest - set initial DMA destination address in parameter RAM slot
945  * @slot: parameter RAM slot being configured
946  * @dest_port: physical address of destination (memory, controller FIFO, etc)
947  * @addressMode: INCR, except in very rare cases
948  * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
949  *	width to use when addressing the fifo (e.g. W8BIT, W32BIT)
950  *
951  * Note that the destination address is modified during the DMA transfer
952  * according to edma_set_dest_index().
953  */
edma_set_dest(unsigned slot,dma_addr_t dest_port,enum address_mode mode,enum fifo_width width)954 void edma_set_dest(unsigned slot, dma_addr_t dest_port,
955 				 enum address_mode mode, enum fifo_width width)
956 {
957 	unsigned ctlr;
958 
959 	ctlr = EDMA_CTLR(slot);
960 	slot = EDMA_CHAN_SLOT(slot);
961 
962 	if (slot < edma_cc[ctlr]->num_slots) {
963 		unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
964 
965 		if (mode) {
966 			/* set DAM and program FWID */
967 			i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
968 		} else {
969 			/* clear DAM */
970 			i &= ~DAM;
971 		}
972 		edma_parm_write(ctlr, PARM_OPT, slot, i);
973 		/* set the destination port address
974 		   in dest register of param structure */
975 		edma_parm_write(ctlr, PARM_DST, slot, dest_port);
976 	}
977 }
978 EXPORT_SYMBOL(edma_set_dest);
979 
980 /**
981  * edma_get_position - returns the current transfer points
982  * @slot: parameter RAM slot being examined
983  * @src: pointer to source port position
984  * @dst: pointer to destination port position
985  *
986  * Returns current source and destination addresses for a particular
987  * parameter RAM slot.  Its channel should not be active when this is called.
988  */
edma_get_position(unsigned slot,dma_addr_t * src,dma_addr_t * dst)989 void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
990 {
991 	struct edmacc_param temp;
992 	unsigned ctlr;
993 
994 	ctlr = EDMA_CTLR(slot);
995 	slot = EDMA_CHAN_SLOT(slot);
996 
997 	edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
998 	if (src != NULL)
999 		*src = temp.src;
1000 	if (dst != NULL)
1001 		*dst = temp.dst;
1002 }
1003 EXPORT_SYMBOL(edma_get_position);
1004 
1005 /**
1006  * edma_set_src_index - configure DMA source address indexing
1007  * @slot: parameter RAM slot being configured
1008  * @src_bidx: byte offset between source arrays in a frame
1009  * @src_cidx: byte offset between source frames in a block
1010  *
1011  * Offsets are specified to support either contiguous or discontiguous
1012  * memory transfers, or repeated access to a hardware register, as needed.
1013  * When accessing hardware registers, both offsets are normally zero.
1014  */
edma_set_src_index(unsigned slot,s16 src_bidx,s16 src_cidx)1015 void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1016 {
1017 	unsigned ctlr;
1018 
1019 	ctlr = EDMA_CTLR(slot);
1020 	slot = EDMA_CHAN_SLOT(slot);
1021 
1022 	if (slot < edma_cc[ctlr]->num_slots) {
1023 		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1024 				0xffff0000, src_bidx);
1025 		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1026 				0xffff0000, src_cidx);
1027 	}
1028 }
1029 EXPORT_SYMBOL(edma_set_src_index);
1030 
1031 /**
1032  * edma_set_dest_index - configure DMA destination address indexing
1033  * @slot: parameter RAM slot being configured
1034  * @dest_bidx: byte offset between destination arrays in a frame
1035  * @dest_cidx: byte offset between destination frames in a block
1036  *
1037  * Offsets are specified to support either contiguous or discontiguous
1038  * memory transfers, or repeated access to a hardware register, as needed.
1039  * When accessing hardware registers, both offsets are normally zero.
1040  */
edma_set_dest_index(unsigned slot,s16 dest_bidx,s16 dest_cidx)1041 void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1042 {
1043 	unsigned ctlr;
1044 
1045 	ctlr = EDMA_CTLR(slot);
1046 	slot = EDMA_CHAN_SLOT(slot);
1047 
1048 	if (slot < edma_cc[ctlr]->num_slots) {
1049 		edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1050 				0x0000ffff, dest_bidx << 16);
1051 		edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1052 				0x0000ffff, dest_cidx << 16);
1053 	}
1054 }
1055 EXPORT_SYMBOL(edma_set_dest_index);
1056 
1057 /**
1058  * edma_set_transfer_params - configure DMA transfer parameters
1059  * @slot: parameter RAM slot being configured
1060  * @acnt: how many bytes per array (at least one)
1061  * @bcnt: how many arrays per frame (at least one)
1062  * @ccnt: how many frames per block (at least one)
1063  * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1064  *	the value to reload into bcnt when it decrements to zero
1065  * @sync_mode: ASYNC or ABSYNC
1066  *
1067  * See the EDMA3 documentation to understand how to configure and link
1068  * transfers using the fields in PaRAM slots.  If you are not doing it
1069  * all at once with edma_write_slot(), you will use this routine
1070  * plus two calls each for source and destination, setting the initial
1071  * address and saying how to index that address.
1072  *
1073  * An example of an A-Synchronized transfer is a serial link using a
1074  * single word shift register.  In that case, @acnt would be equal to
1075  * that word size; the serial controller issues a DMA synchronization
1076  * event to transfer each word, and memory access by the DMA transfer
1077  * controller will be word-at-a-time.
1078  *
1079  * An example of an AB-Synchronized transfer is a device using a FIFO.
1080  * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1081  * The controller with the FIFO issues DMA synchronization events when
1082  * the FIFO threshold is reached, and the DMA transfer controller will
1083  * transfer one frame to (or from) the FIFO.  It will probably use
1084  * efficient burst modes to access memory.
1085  */
edma_set_transfer_params(unsigned slot,u16 acnt,u16 bcnt,u16 ccnt,u16 bcnt_rld,enum sync_dimension sync_mode)1086 void edma_set_transfer_params(unsigned slot,
1087 		u16 acnt, u16 bcnt, u16 ccnt,
1088 		u16 bcnt_rld, enum sync_dimension sync_mode)
1089 {
1090 	unsigned ctlr;
1091 
1092 	ctlr = EDMA_CTLR(slot);
1093 	slot = EDMA_CHAN_SLOT(slot);
1094 
1095 	if (slot < edma_cc[ctlr]->num_slots) {
1096 		edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1097 				0x0000ffff, bcnt_rld << 16);
1098 		if (sync_mode == ASYNC)
1099 			edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1100 		else
1101 			edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1102 		/* Set the acount, bcount, ccount registers */
1103 		edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1104 		edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1105 	}
1106 }
1107 EXPORT_SYMBOL(edma_set_transfer_params);
1108 
1109 /**
1110  * edma_link - link one parameter RAM slot to another
1111  * @from: parameter RAM slot originating the link
1112  * @to: parameter RAM slot which is the link target
1113  *
1114  * The originating slot should not be part of any active DMA transfer.
1115  */
edma_link(unsigned from,unsigned to)1116 void edma_link(unsigned from, unsigned to)
1117 {
1118 	unsigned ctlr_from, ctlr_to;
1119 
1120 	ctlr_from = EDMA_CTLR(from);
1121 	from = EDMA_CHAN_SLOT(from);
1122 	ctlr_to = EDMA_CTLR(to);
1123 	to = EDMA_CHAN_SLOT(to);
1124 
1125 	if (from >= edma_cc[ctlr_from]->num_slots)
1126 		return;
1127 	if (to >= edma_cc[ctlr_to]->num_slots)
1128 		return;
1129 	edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1130 				PARM_OFFSET(to));
1131 }
1132 EXPORT_SYMBOL(edma_link);
1133 
1134 /**
1135  * edma_unlink - cut link from one parameter RAM slot
1136  * @from: parameter RAM slot originating the link
1137  *
1138  * The originating slot should not be part of any active DMA transfer.
1139  * Its link is set to 0xffff.
1140  */
edma_unlink(unsigned from)1141 void edma_unlink(unsigned from)
1142 {
1143 	unsigned ctlr;
1144 
1145 	ctlr = EDMA_CTLR(from);
1146 	from = EDMA_CHAN_SLOT(from);
1147 
1148 	if (from >= edma_cc[ctlr]->num_slots)
1149 		return;
1150 	edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1151 }
1152 EXPORT_SYMBOL(edma_unlink);
1153 
1154 /*-----------------------------------------------------------------------*/
1155 
1156 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1157 
1158 /**
1159  * edma_write_slot - write parameter RAM data for slot
1160  * @slot: number of parameter RAM slot being modified
1161  * @param: data to be written into parameter RAM slot
1162  *
1163  * Use this to assign all parameters of a transfer at once.  This
1164  * allows more efficient setup of transfers than issuing multiple
1165  * calls to set up those parameters in small pieces, and provides
1166  * complete control over all transfer options.
1167  */
edma_write_slot(unsigned slot,const struct edmacc_param * param)1168 void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1169 {
1170 	unsigned ctlr;
1171 
1172 	ctlr = EDMA_CTLR(slot);
1173 	slot = EDMA_CHAN_SLOT(slot);
1174 
1175 	if (slot >= edma_cc[ctlr]->num_slots)
1176 		return;
1177 	memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1178 			PARM_SIZE);
1179 }
1180 EXPORT_SYMBOL(edma_write_slot);
1181 
1182 /**
1183  * edma_read_slot - read parameter RAM data from slot
1184  * @slot: number of parameter RAM slot being copied
1185  * @param: where to store copy of parameter RAM data
1186  *
1187  * Use this to read data from a parameter RAM slot, perhaps to
1188  * save them as a template for later reuse.
1189  */
edma_read_slot(unsigned slot,struct edmacc_param * param)1190 void edma_read_slot(unsigned slot, struct edmacc_param *param)
1191 {
1192 	unsigned ctlr;
1193 
1194 	ctlr = EDMA_CTLR(slot);
1195 	slot = EDMA_CHAN_SLOT(slot);
1196 
1197 	if (slot >= edma_cc[ctlr]->num_slots)
1198 		return;
1199 	memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1200 			PARM_SIZE);
1201 }
1202 EXPORT_SYMBOL(edma_read_slot);
1203 
1204 /*-----------------------------------------------------------------------*/
1205 
1206 /* Various EDMA channel control operations */
1207 
1208 /**
1209  * edma_pause - pause dma on a channel
1210  * @channel: on which edma_start() has been called
1211  *
1212  * This temporarily disables EDMA hardware events on the specified channel,
1213  * preventing them from triggering new transfers on its behalf
1214  */
edma_pause(unsigned channel)1215 void edma_pause(unsigned channel)
1216 {
1217 	unsigned ctlr;
1218 
1219 	ctlr = EDMA_CTLR(channel);
1220 	channel = EDMA_CHAN_SLOT(channel);
1221 
1222 	if (channel < edma_cc[ctlr]->num_channels) {
1223 		unsigned int mask = BIT(channel & 0x1f);
1224 
1225 		edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1226 	}
1227 }
1228 EXPORT_SYMBOL(edma_pause);
1229 
1230 /**
1231  * edma_resume - resumes dma on a paused channel
1232  * @channel: on which edma_pause() has been called
1233  *
1234  * This re-enables EDMA hardware events on the specified channel.
1235  */
edma_resume(unsigned channel)1236 void edma_resume(unsigned channel)
1237 {
1238 	unsigned ctlr;
1239 
1240 	ctlr = EDMA_CTLR(channel);
1241 	channel = EDMA_CHAN_SLOT(channel);
1242 
1243 	if (channel < edma_cc[ctlr]->num_channels) {
1244 		unsigned int mask = BIT(channel & 0x1f);
1245 
1246 		edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1247 	}
1248 }
1249 EXPORT_SYMBOL(edma_resume);
1250 
1251 /**
1252  * edma_start - start dma on a channel
1253  * @channel: channel being activated
1254  *
1255  * Channels with event associations will be triggered by their hardware
1256  * events, and channels without such associations will be triggered by
1257  * software.  (At this writing there is no interface for using software
1258  * triggers except with channels that don't support hardware triggers.)
1259  *
1260  * Returns zero on success, else negative errno.
1261  */
edma_start(unsigned channel)1262 int edma_start(unsigned channel)
1263 {
1264 	unsigned ctlr;
1265 
1266 	ctlr = EDMA_CTLR(channel);
1267 	channel = EDMA_CHAN_SLOT(channel);
1268 
1269 	if (channel < edma_cc[ctlr]->num_channels) {
1270 		int j = channel >> 5;
1271 		unsigned int mask = BIT(channel & 0x1f);
1272 
1273 		/* EDMA channels without event association */
1274 		if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1275 			pr_debug("EDMA: ESR%d %08x\n", j,
1276 				edma_shadow0_read_array(ctlr, SH_ESR, j));
1277 			edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1278 			return 0;
1279 		}
1280 
1281 		/* EDMA channel with event association */
1282 		pr_debug("EDMA: ER%d %08x\n", j,
1283 			edma_shadow0_read_array(ctlr, SH_ER, j));
1284 		/* Clear any pending event or error */
1285 		edma_write_array(ctlr, EDMA_ECR, j, mask);
1286 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1287 		/* Clear any SER */
1288 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1289 		edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1290 		pr_debug("EDMA: EER%d %08x\n", j,
1291 			edma_shadow0_read_array(ctlr, SH_EER, j));
1292 		return 0;
1293 	}
1294 
1295 	return -EINVAL;
1296 }
1297 EXPORT_SYMBOL(edma_start);
1298 
1299 /**
1300  * edma_stop - stops dma on the channel passed
1301  * @channel: channel being deactivated
1302  *
1303  * When @lch is a channel, any active transfer is paused and
1304  * all pending hardware events are cleared.  The current transfer
1305  * may not be resumed, and the channel's Parameter RAM should be
1306  * reinitialized before being reused.
1307  */
edma_stop(unsigned channel)1308 void edma_stop(unsigned channel)
1309 {
1310 	unsigned ctlr;
1311 
1312 	ctlr = EDMA_CTLR(channel);
1313 	channel = EDMA_CHAN_SLOT(channel);
1314 
1315 	if (channel < edma_cc[ctlr]->num_channels) {
1316 		int j = channel >> 5;
1317 		unsigned int mask = BIT(channel & 0x1f);
1318 
1319 		edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1320 		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1321 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1322 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1323 
1324 		pr_debug("EDMA: EER%d %08x\n", j,
1325 				edma_shadow0_read_array(ctlr, SH_EER, j));
1326 
1327 		/* REVISIT:  consider guarding against inappropriate event
1328 		 * chaining by overwriting with dummy_paramset.
1329 		 */
1330 	}
1331 }
1332 EXPORT_SYMBOL(edma_stop);
1333 
1334 /******************************************************************************
1335  *
1336  * It cleans ParamEntry qand bring back EDMA to initial state if media has
1337  * been removed before EDMA has finished.It is usedful for removable media.
1338  * Arguments:
1339  *      ch_no     - channel no
1340  *
1341  * Return: zero on success, or corresponding error no on failure
1342  *
1343  * FIXME this should not be needed ... edma_stop() should suffice.
1344  *
1345  *****************************************************************************/
1346 
edma_clean_channel(unsigned channel)1347 void edma_clean_channel(unsigned channel)
1348 {
1349 	unsigned ctlr;
1350 
1351 	ctlr = EDMA_CTLR(channel);
1352 	channel = EDMA_CHAN_SLOT(channel);
1353 
1354 	if (channel < edma_cc[ctlr]->num_channels) {
1355 		int j = (channel >> 5);
1356 		unsigned int mask = BIT(channel & 0x1f);
1357 
1358 		pr_debug("EDMA: EMR%d %08x\n", j,
1359 				edma_read_array(ctlr, EDMA_EMR, j));
1360 		edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1361 		/* Clear the corresponding EMR bits */
1362 		edma_write_array(ctlr, EDMA_EMCR, j, mask);
1363 		/* Clear any SER */
1364 		edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1365 		edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1366 	}
1367 }
1368 EXPORT_SYMBOL(edma_clean_channel);
1369 
1370 /*
1371  * edma_clear_event - clear an outstanding event on the DMA channel
1372  * Arguments:
1373  *	channel - channel number
1374  */
edma_clear_event(unsigned channel)1375 void edma_clear_event(unsigned channel)
1376 {
1377 	unsigned ctlr;
1378 
1379 	ctlr = EDMA_CTLR(channel);
1380 	channel = EDMA_CHAN_SLOT(channel);
1381 
1382 	if (channel >= edma_cc[ctlr]->num_channels)
1383 		return;
1384 	if (channel < 32)
1385 		edma_write(ctlr, EDMA_ECR, BIT(channel));
1386 	else
1387 		edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1388 }
1389 EXPORT_SYMBOL(edma_clear_event);
1390 
1391 /*-----------------------------------------------------------------------*/
1392 
edma_probe(struct platform_device * pdev)1393 static int __init edma_probe(struct platform_device *pdev)
1394 {
1395 	struct edma_soc_info	**info = pdev->dev.platform_data;
1396 	const s8		(*queue_priority_mapping)[2];
1397 	const s8		(*queue_tc_mapping)[2];
1398 	int			i, j, off, ln, found = 0;
1399 	int			status = -1;
1400 	const s16		(*rsv_chans)[2];
1401 	const s16		(*rsv_slots)[2];
1402 	int			irq[EDMA_MAX_CC] = {0, 0};
1403 	int			err_irq[EDMA_MAX_CC] = {0, 0};
1404 	struct resource		*r[EDMA_MAX_CC] = {NULL};
1405 	resource_size_t		len[EDMA_MAX_CC];
1406 	char			res_name[10];
1407 	char			irq_name[10];
1408 
1409 	if (!info)
1410 		return -ENODEV;
1411 
1412 	for (j = 0; j < EDMA_MAX_CC; j++) {
1413 		sprintf(res_name, "edma_cc%d", j);
1414 		r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1415 						res_name);
1416 		if (!r[j] || !info[j]) {
1417 			if (found)
1418 				break;
1419 			else
1420 				return -ENODEV;
1421 		} else {
1422 			found = 1;
1423 		}
1424 
1425 		len[j] = resource_size(r[j]);
1426 
1427 		r[j] = request_mem_region(r[j]->start, len[j],
1428 			dev_name(&pdev->dev));
1429 		if (!r[j]) {
1430 			status = -EBUSY;
1431 			goto fail1;
1432 		}
1433 
1434 		edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1435 		if (!edmacc_regs_base[j]) {
1436 			status = -EBUSY;
1437 			goto fail1;
1438 		}
1439 
1440 		edma_cc[j] = kzalloc(sizeof(struct edma), GFP_KERNEL);
1441 		if (!edma_cc[j]) {
1442 			status = -ENOMEM;
1443 			goto fail1;
1444 		}
1445 
1446 		edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1447 							EDMA_MAX_DMACH);
1448 		edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1449 							EDMA_MAX_PARAMENTRY);
1450 		edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1451 							EDMA_MAX_CC);
1452 
1453 		edma_cc[j]->default_queue = info[j]->default_queue;
1454 
1455 		dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1456 			edmacc_regs_base[j]);
1457 
1458 		for (i = 0; i < edma_cc[j]->num_slots; i++)
1459 			memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1460 					&dummy_paramset, PARM_SIZE);
1461 
1462 		/* Mark all channels as unused */
1463 		memset(edma_cc[j]->edma_unused, 0xff,
1464 			sizeof(edma_cc[j]->edma_unused));
1465 
1466 		if (info[j]->rsv) {
1467 
1468 			/* Clear the reserved channels in unused list */
1469 			rsv_chans = info[j]->rsv->rsv_chans;
1470 			if (rsv_chans) {
1471 				for (i = 0; rsv_chans[i][0] != -1; i++) {
1472 					off = rsv_chans[i][0];
1473 					ln = rsv_chans[i][1];
1474 					clear_bits(off, ln,
1475 						edma_cc[j]->edma_unused);
1476 				}
1477 			}
1478 
1479 			/* Set the reserved slots in inuse list */
1480 			rsv_slots = info[j]->rsv->rsv_slots;
1481 			if (rsv_slots) {
1482 				for (i = 0; rsv_slots[i][0] != -1; i++) {
1483 					off = rsv_slots[i][0];
1484 					ln = rsv_slots[i][1];
1485 					set_bits(off, ln,
1486 						edma_cc[j]->edma_inuse);
1487 				}
1488 			}
1489 		}
1490 
1491 		sprintf(irq_name, "edma%d", j);
1492 		irq[j] = platform_get_irq_byname(pdev, irq_name);
1493 		edma_cc[j]->irq_res_start = irq[j];
1494 		status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1495 					&pdev->dev);
1496 		if (status < 0) {
1497 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1498 				irq[j], status);
1499 			goto fail;
1500 		}
1501 
1502 		sprintf(irq_name, "edma%d_err", j);
1503 		err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1504 		edma_cc[j]->irq_res_end = err_irq[j];
1505 		status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1506 					"edma_error", &pdev->dev);
1507 		if (status < 0) {
1508 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1509 				err_irq[j], status);
1510 			goto fail;
1511 		}
1512 
1513 		for (i = 0; i < edma_cc[j]->num_channels; i++)
1514 			map_dmach_queue(j, i, info[j]->default_queue);
1515 
1516 		queue_tc_mapping = info[j]->queue_tc_mapping;
1517 		queue_priority_mapping = info[j]->queue_priority_mapping;
1518 
1519 		/* Event queue to TC mapping */
1520 		for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1521 			map_queue_tc(j, queue_tc_mapping[i][0],
1522 					queue_tc_mapping[i][1]);
1523 
1524 		/* Event queue priority mapping */
1525 		for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1526 			assign_priority_to_queue(j,
1527 						queue_priority_mapping[i][0],
1528 						queue_priority_mapping[i][1]);
1529 
1530 		/* Map the channel to param entry if channel mapping logic
1531 		 * exist
1532 		 */
1533 		if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1534 			map_dmach_param(j);
1535 
1536 		for (i = 0; i < info[j]->n_region; i++) {
1537 			edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1538 			edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1539 			edma_write_array(j, EDMA_QRAE, i, 0x0);
1540 		}
1541 		arch_num_cc++;
1542 	}
1543 
1544 	if (tc_errs_handled) {
1545 		status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1546 					"edma_tc0", &pdev->dev);
1547 		if (status < 0) {
1548 			dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1549 				IRQ_TCERRINT0, status);
1550 			return status;
1551 		}
1552 		status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1553 					"edma_tc1", &pdev->dev);
1554 		if (status < 0) {
1555 			dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1556 				IRQ_TCERRINT, status);
1557 			return status;
1558 		}
1559 	}
1560 
1561 	return 0;
1562 
1563 fail:
1564 	for (i = 0; i < EDMA_MAX_CC; i++) {
1565 		if (err_irq[i])
1566 			free_irq(err_irq[i], &pdev->dev);
1567 		if (irq[i])
1568 			free_irq(irq[i], &pdev->dev);
1569 	}
1570 fail1:
1571 	for (i = 0; i < EDMA_MAX_CC; i++) {
1572 		if (r[i])
1573 			release_mem_region(r[i]->start, len[i]);
1574 		if (edmacc_regs_base[i])
1575 			iounmap(edmacc_regs_base[i]);
1576 		kfree(edma_cc[i]);
1577 	}
1578 	return status;
1579 }
1580 
1581 
1582 static struct platform_driver edma_driver = {
1583 	.driver.name	= "edma",
1584 };
1585 
edma_init(void)1586 static int __init edma_init(void)
1587 {
1588 	return platform_driver_probe(&edma_driver, edma_probe);
1589 }
1590 arch_initcall(edma_init);
1591 
1592