• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _SPARC64_HYPERVISOR_H
2 #define _SPARC64_HYPERVISOR_H
3 
4 /* Sun4v hypervisor interfaces and defines.
5  *
6  * Hypervisor calls are made via traps to software traps number 0x80
7  * and above.  Registers %o0 to %o5 serve as argument, status, and
8  * return value registers.
9  *
10  * There are two kinds of these traps.  First there are the normal
11  * "fast traps" which use software trap 0x80 and encode the function
12  * to invoke by number in register %o5.  Argument and return value
13  * handling is as follows:
14  *
15  * -----------------------------------------------
16  * |  %o5  | function number |     undefined     |
17  * |  %o0  |   argument 0    |   return status   |
18  * |  %o1  |   argument 1    |   return value 1  |
19  * |  %o2  |   argument 2    |   return value 2  |
20  * |  %o3  |   argument 3    |   return value 3  |
21  * |  %o4  |   argument 4    |   return value 4  |
22  * -----------------------------------------------
23  *
24  * The second type are "hyper-fast traps" which encode the function
25  * number in the software trap number itself.  So these use trap
26  * numbers > 0x80.  The register usage for hyper-fast traps is as
27  * follows:
28  *
29  * -----------------------------------------------
30  * |  %o0  |   argument 0    |   return status   |
31  * |  %o1  |   argument 1    |   return value 1  |
32  * |  %o2  |   argument 2    |   return value 2  |
33  * |  %o3  |   argument 3    |   return value 3  |
34  * |  %o4  |   argument 4    |   return value 4  |
35  * -----------------------------------------------
36  *
37  * Registers providing explicit arguments to the hypervisor calls
38  * are volatile across the call.  Upon return their values are
39  * undefined unless explicitly specified as containing a particular
40  * return value by the specific call.  The return status is always
41  * returned in register %o0, zero indicates a successful execution of
42  * the hypervisor call and other values indicate an error status as
43  * defined below.  So, for example, if a hyper-fast trap takes
44  * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
45  * the call and %o3, %o4, and %o5 would be preserved.
46  *
47  * If the hypervisor trap is invalid, or the fast trap function number
48  * is invalid, HV_EBADTRAP will be returned in %o0.  Also, all 64-bits
49  * of the argument and return values are significant.
50  */
51 
52 /* Trap numbers.  */
53 #define HV_FAST_TRAP		0x80
54 #define HV_MMU_MAP_ADDR_TRAP	0x83
55 #define HV_MMU_UNMAP_ADDR_TRAP	0x84
56 #define HV_TTRACE_ADDENTRY_TRAP	0x85
57 #define HV_CORE_TRAP		0xff
58 
59 /* Error codes.  */
60 #define HV_EOK				0  /* Successful return            */
61 #define HV_ENOCPU			1  /* Invalid CPU id               */
62 #define HV_ENORADDR			2  /* Invalid real address         */
63 #define HV_ENOINTR			3  /* Invalid interrupt id         */
64 #define HV_EBADPGSZ			4  /* Invalid pagesize encoding    */
65 #define HV_EBADTSB			5  /* Invalid TSB description      */
66 #define HV_EINVAL			6  /* Invalid argument             */
67 #define HV_EBADTRAP			7  /* Invalid function number      */
68 #define HV_EBADALIGN			8  /* Invalid address alignment    */
69 #define HV_EWOULDBLOCK			9  /* Cannot complete w/o blocking */
70 #define HV_ENOACCESS			10 /* No access to resource        */
71 #define HV_EIO				11 /* I/O error                    */
72 #define HV_ECPUERROR			12 /* CPU in error state           */
73 #define HV_ENOTSUPPORTED		13 /* Function not supported       */
74 #define HV_ENOMAP			14 /* No mapping found             */
75 #define HV_ETOOMANY			15 /* Too many items specified     */
76 #define HV_ECHANNEL			16 /* Invalid LDC channel          */
77 #define HV_EBUSY			17 /* Resource busy                */
78 
79 /* mach_exit()
80  * TRAP:	HV_FAST_TRAP
81  * FUNCTION:	HV_FAST_MACH_EXIT
82  * ARG0:	exit code
83  * ERRORS:	This service does not return.
84  *
85  * Stop all CPUs in the virtual domain and place them into the stopped
86  * state.  The 64-bit exit code may be passed to a service entity as
87  * the domain's exit status.  On systems without a service entity, the
88  * domain will undergo a reset, and the boot firmware will be
89  * reloaded.
90  *
91  * This function will never return to the guest that invokes it.
92  *
93  * Note: By convention an exit code of zero denotes a successful exit by
94  *       the guest code.  A non-zero exit code denotes a guest specific
95  *       error indication.
96  *
97  */
98 #define HV_FAST_MACH_EXIT		0x00
99 
100 #ifndef __ASSEMBLY__
101 extern void sun4v_mach_exit(unsigned long exit_code);
102 #endif
103 
104 /* Domain services.  */
105 
106 /* mach_desc()
107  * TRAP:	HV_FAST_TRAP
108  * FUNCTION:	HV_FAST_MACH_DESC
109  * ARG0:	buffer
110  * ARG1:	length
111  * RET0:	status
112  * RET1:	length
113  * ERRORS:	HV_EBADALIGN	Buffer is badly aligned
114  *		HV_ENORADDR	Buffer is to an illegal real address.
115  *		HV_EINVAL	Buffer length is too small for complete
116  *				machine description.
117  *
118  * Copy the most current machine description into the buffer indicated
119  * by the real address in ARG0.  The buffer provided must be 16 byte
120  * aligned.  Upon success or HV_EINVAL, this service returns the
121  * actual size of the machine description in the RET1 return value.
122  *
123  * Note: A method of determining the appropriate buffer size for the
124  *       machine description is to first call this service with a buffer
125  *       length of 0 bytes.
126  */
127 #define HV_FAST_MACH_DESC		0x01
128 
129 #ifndef __ASSEMBLY__
130 extern unsigned long sun4v_mach_desc(unsigned long buffer_pa,
131 				     unsigned long buf_len,
132 				     unsigned long *real_buf_len);
133 #endif
134 
135 /* mach_sir()
136  * TRAP:	HV_FAST_TRAP
137  * FUNCTION:	HV_FAST_MACH_SIR
138  * ERRORS:	This service does not return.
139  *
140  * Perform a software initiated reset of the virtual machine domain.
141  * All CPUs are captured as soon as possible, all hardware devices are
142  * returned to the entry default state, and the domain is restarted at
143  * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
144  * of the CPUs.  The single CPU restarted is selected as determined by
145  * platform specific policy.  Memory is preserved across this
146  * operation.
147  */
148 #define HV_FAST_MACH_SIR		0x02
149 
150 #ifndef __ASSEMBLY__
151 extern void sun4v_mach_sir(void);
152 #endif
153 
154 /* mach_set_watchdog()
155  * TRAP:	HV_FAST_TRAP
156  * FUNCTION:	HV_FAST_MACH_SET_WATCHDOG
157  * ARG0:	timeout in milliseconds
158  * RET0:	status
159  * RET1:	time remaining in milliseconds
160  *
161  * A guest uses this API to set a watchdog timer.  Once the gues has set
162  * the timer, it must call the timer service again either to disable or
163  * postpone the expiration.  If the timer expires before being reset or
164  * disabled, then the hypervisor take a platform specific action leading
165  * to guest termination within a bounded time period.  The platform action
166  * may include recovery actions such as reporting the expiration to a
167  * Service Processor, and/or automatically restarting the gues.
168  *
169  * The 'timeout' parameter is specified in milliseconds, however the
170  * implementated granularity is given by the 'watchdog-resolution'
171  * property in the 'platform' node of the guest's machine description.
172  * The largest allowed timeout value is specified by the
173  * 'watchdog-max-timeout' property of the 'platform' node.
174  *
175  * If the 'timeout' argument is not zero, the watchdog timer is set to
176  * expire after a minimum of 'timeout' milliseconds.
177  *
178  * If the 'timeout' argument is zero, the watchdog timer is disabled.
179  *
180  * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
181  * property, the hypervisor leaves the watchdog timer state unchanged,
182  * and returns a status of EINVAL.
183  *
184  * The 'time remaining' return value is valid regardless of whether the
185  * return status is EOK or EINVAL.  A non-zero return value indicates the
186  * number of milliseconds that were remaining until the timer was to expire.
187  * If less than one millisecond remains, the return value is '1'.  If the
188  * watchdog timer was disabled at the time of the call, the return value is
189  * zero.
190  *
191  * If the hypervisor cannot support the exact timeout value requested, but
192  * can support a larger timeout value, the hypervisor may round the actual
193  * timeout to a value larger than the requested timeout, consequently the
194  * 'time remaining' return value may be larger than the previously requested
195  * timeout value.
196  *
197  * Any guest OS debugger should be aware that the watchdog service may be in
198  * use.  Consequently, it is recommended that the watchdog service is
199  * disabled upon debugger entry (e.g. reaching a breakpoint), and then
200  * re-enabled upon returning to normal execution.  The API has been designed
201  * with this in mind, and the 'time remaining' result of the disable call may
202  * be used directly as the timeout argument of the re-enable call.
203  */
204 #define HV_FAST_MACH_SET_WATCHDOG	0x05
205 
206 #ifndef __ASSEMBLY__
207 extern unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
208 					     unsigned long *orig_timeout);
209 #endif
210 
211 /* CPU services.
212  *
213  * CPUs represent devices that can execute software threads.  A single
214  * chip that contains multiple cores or strands is represented as
215  * multiple CPUs with unique CPU identifiers.  CPUs are exported to
216  * OBP via the machine description (and to the OS via the OBP device
217  * tree).  CPUs are always in one of three states: stopped, running,
218  * or error.
219  *
220  * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
221  * CPU within a logical domain.  Operations that are to be performed
222  * on multiple CPUs specify them via a CPU list.  A CPU list is an
223  * array in real memory, of which each 16-bit word is a CPU ID.  CPU
224  * lists are passed through the API as two arguments.  The first is
225  * the number of entries (16-bit words) in the CPU list, and the
226  * second is the (real address) pointer to the CPU ID list.
227  */
228 
229 /* cpu_start()
230  * TRAP:	HV_FAST_TRAP
231  * FUNCTION:	HV_FAST_CPU_START
232  * ARG0:	CPU ID
233  * ARG1:	PC
234  * ARG2:	RTBA
235  * ARG3:	target ARG0
236  * RET0:	status
237  * ERRORS:	ENOCPU		Invalid CPU ID
238  *		EINVAL		Target CPU ID is not in the stopped state
239  *		ENORADDR	Invalid PC or RTBA real address
240  *		EBADALIGN	Unaligned PC or unaligned RTBA
241  *		EWOULDBLOCK	Starting resources are not available
242  *
243  * Start CPU with given CPU ID with PC in %pc and with a real trap
244  * base address value of RTBA.  The indicated CPU must be in the
245  * stopped state.  The supplied RTBA must be aligned on a 256 byte
246  * boundary.  On successful completion, the specified CPU will be in
247  * the running state and will be supplied with "target ARG0" in %o0
248  * and RTBA in %tba.
249  */
250 #define HV_FAST_CPU_START		0x10
251 
252 #ifndef __ASSEMBLY__
253 extern unsigned long sun4v_cpu_start(unsigned long cpuid,
254 				     unsigned long pc,
255 				     unsigned long rtba,
256 				     unsigned long arg0);
257 #endif
258 
259 /* cpu_stop()
260  * TRAP:	HV_FAST_TRAP
261  * FUNCTION:	HV_FAST_CPU_STOP
262  * ARG0:	CPU ID
263  * RET0:	status
264  * ERRORS:	ENOCPU		Invalid CPU ID
265  *		EINVAL		Target CPU ID is the current cpu
266  *		EINVAL		Target CPU ID is not in the running state
267  *		EWOULDBLOCK	Stopping resources are not available
268  *		ENOTSUPPORTED	Not supported on this platform
269  *
270  * The specified CPU is stopped.  The indicated CPU must be in the
271  * running state.  On completion, it will be in the stopped state.  It
272  * is not legal to stop the current CPU.
273  *
274  * Note: As this service cannot be used to stop the current cpu, this service
275  *       may not be used to stop the last running CPU in a domain.  To stop
276  *       and exit a running domain, a guest must use the mach_exit() service.
277  */
278 #define HV_FAST_CPU_STOP		0x11
279 
280 #ifndef __ASSEMBLY__
281 extern unsigned long sun4v_cpu_stop(unsigned long cpuid);
282 #endif
283 
284 /* cpu_yield()
285  * TRAP:	HV_FAST_TRAP
286  * FUNCTION:	HV_FAST_CPU_YIELD
287  * RET0:	status
288  * ERRORS:	No possible error.
289  *
290  * Suspend execution on the current CPU.  Execution will resume when
291  * an interrupt (device, %stick_compare, or cross-call) is targeted to
292  * the CPU.  On some CPUs, this API may be used by the hypervisor to
293  * save power by disabling hardware strands.
294  */
295 #define HV_FAST_CPU_YIELD		0x12
296 
297 #ifndef __ASSEMBLY__
298 extern unsigned long sun4v_cpu_yield(void);
299 #endif
300 
301 /* cpu_qconf()
302  * TRAP:	HV_FAST_TRAP
303  * FUNCTION:	HV_FAST_CPU_QCONF
304  * ARG0:	queue
305  * ARG1:	base real address
306  * ARG2:	number of entries
307  * RET0:	status
308  * ERRORS:	ENORADDR	Invalid base real address
309  *		EINVAL		Invalid queue or number of entries is less
310  *				than 2 or too large.
311  *		EBADALIGN	Base real address is not correctly aligned
312  *				for size.
313  *
314  * Configure the given queue to be placed at the given base real
315  * address, with the given number of entries.  The number of entries
316  * must be a power of 2.  The base real address must be aligned
317  * exactly to match the queue size.  Each queue entry is 64 bytes
318  * long, so for example a 32 entry queue must be aligned on a 2048
319  * byte real address boundary.
320  *
321  * The specified queue is unconfigured if the number of entries is given
322  * as zero.
323  *
324  * For the current version of this API service, the argument queue is defined
325  * as follows:
326  *
327  *	queue		description
328  *	-----		-------------------------
329  *	0x3c		cpu mondo queue
330  *	0x3d		device mondo queue
331  *	0x3e		resumable error queue
332  *	0x3f		non-resumable error queue
333  *
334  * Note: The maximum number of entries for each queue for a specific cpu may
335  *       be determined from the machine description.
336  */
337 #define HV_FAST_CPU_QCONF		0x14
338 #define  HV_CPU_QUEUE_CPU_MONDO		 0x3c
339 #define  HV_CPU_QUEUE_DEVICE_MONDO	 0x3d
340 #define  HV_CPU_QUEUE_RES_ERROR		 0x3e
341 #define  HV_CPU_QUEUE_NONRES_ERROR	 0x3f
342 
343 #ifndef __ASSEMBLY__
344 extern unsigned long sun4v_cpu_qconf(unsigned long type,
345 				     unsigned long queue_paddr,
346 				     unsigned long num_queue_entries);
347 #endif
348 
349 /* cpu_qinfo()
350  * TRAP:	HV_FAST_TRAP
351  * FUNCTION:	HV_FAST_CPU_QINFO
352  * ARG0:	queue
353  * RET0:	status
354  * RET1:	base real address
355  * RET1:	number of entries
356  * ERRORS:	EINVAL		Invalid queue
357  *
358  * Return the configuration info for the given queue.  The base real
359  * address and number of entries of the defined queue are returned.
360  * The queue argument values are the same as for cpu_qconf() above.
361  *
362  * If the specified queue is a valid queue number, but no queue has
363  * been defined, the number of entries will be set to zero and the
364  * base real address returned is undefined.
365  */
366 #define HV_FAST_CPU_QINFO		0x15
367 
368 /* cpu_mondo_send()
369  * TRAP:	HV_FAST_TRAP
370  * FUNCTION:	HV_FAST_CPU_MONDO_SEND
371  * ARG0-1:	CPU list
372  * ARG2:	data real address
373  * RET0:	status
374  * ERRORS:	EBADALIGN	Mondo data is not 64-byte aligned or CPU list
375  *				is not 2-byte aligned.
376  *		ENORADDR	Invalid data mondo address, or invalid cpu list
377  *				address.
378  *		ENOCPU		Invalid cpu in CPU list
379  *		EWOULDBLOCK	Some or all of the listed CPUs did not receive
380  *				the mondo
381  *		ECPUERROR	One or more of the listed CPUs are in error
382  *				state, use HV_FAST_CPU_STATE to see which ones
383  *		EINVAL		CPU list includes caller's CPU ID
384  *
385  * Send a mondo interrupt to the CPUs in the given CPU list with the
386  * 64-bytes at the given data real address.  The data must be 64-byte
387  * aligned.  The mondo data will be delivered to the cpu_mondo queues
388  * of the recipient CPUs.
389  *
390  * In all cases, error or not, the CPUs in the CPU list to which the
391  * mondo has been successfully delivered will be indicated by having
392  * their entry in CPU list updated with the value 0xffff.
393  */
394 #define HV_FAST_CPU_MONDO_SEND		0x42
395 
396 #ifndef __ASSEMBLY__
397 extern unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, unsigned long cpu_list_pa, unsigned long mondo_block_pa);
398 #endif
399 
400 /* cpu_myid()
401  * TRAP:	HV_FAST_TRAP
402  * FUNCTION:	HV_FAST_CPU_MYID
403  * RET0:	status
404  * RET1:	CPU ID
405  * ERRORS:	No errors defined.
406  *
407  * Return the hypervisor ID handle for the current CPU.  Use by a
408  * virtual CPU to discover it's own identity.
409  */
410 #define HV_FAST_CPU_MYID		0x16
411 
412 /* cpu_state()
413  * TRAP:	HV_FAST_TRAP
414  * FUNCTION:	HV_FAST_CPU_STATE
415  * ARG0:	CPU ID
416  * RET0:	status
417  * RET1:	state
418  * ERRORS:	ENOCPU		Invalid CPU ID
419  *
420  * Retrieve the current state of the CPU with the given CPU ID.
421  */
422 #define HV_FAST_CPU_STATE		0x17
423 #define  HV_CPU_STATE_STOPPED		 0x01
424 #define  HV_CPU_STATE_RUNNING		 0x02
425 #define  HV_CPU_STATE_ERROR		 0x03
426 
427 #ifndef __ASSEMBLY__
428 extern long sun4v_cpu_state(unsigned long cpuid);
429 #endif
430 
431 /* cpu_set_rtba()
432  * TRAP:	HV_FAST_TRAP
433  * FUNCTION:	HV_FAST_CPU_SET_RTBA
434  * ARG0:	RTBA
435  * RET0:	status
436  * RET1:	previous RTBA
437  * ERRORS:	ENORADDR	Invalid RTBA real address
438  *		EBADALIGN	RTBA is incorrectly aligned for a trap table
439  *
440  * Set the real trap base address of the local cpu to the given RTBA.
441  * The supplied RTBA must be aligned on a 256 byte boundary.  Upon
442  * success the previous value of the RTBA is returned in RET1.
443  *
444  * Note: This service does not affect %tba
445  */
446 #define HV_FAST_CPU_SET_RTBA		0x18
447 
448 /* cpu_set_rtba()
449  * TRAP:	HV_FAST_TRAP
450  * FUNCTION:	HV_FAST_CPU_GET_RTBA
451  * RET0:	status
452  * RET1:	previous RTBA
453  * ERRORS:	No possible error.
454  *
455  * Returns the current value of RTBA in RET1.
456  */
457 #define HV_FAST_CPU_GET_RTBA		0x19
458 
459 /* MMU services.
460  *
461  * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
462  */
463 #ifndef __ASSEMBLY__
464 struct hv_tsb_descr {
465 	unsigned short		pgsz_idx;
466 	unsigned short		assoc;
467 	unsigned int		num_ttes;	/* in TTEs */
468 	unsigned int		ctx_idx;
469 	unsigned int		pgsz_mask;
470 	unsigned long		tsb_base;
471 	unsigned long		resv;
472 };
473 #endif
474 #define HV_TSB_DESCR_PGSZ_IDX_OFFSET	0x00
475 #define HV_TSB_DESCR_ASSOC_OFFSET	0x02
476 #define HV_TSB_DESCR_NUM_TTES_OFFSET	0x04
477 #define HV_TSB_DESCR_CTX_IDX_OFFSET	0x08
478 #define HV_TSB_DESCR_PGSZ_MASK_OFFSET	0x0c
479 #define HV_TSB_DESCR_TSB_BASE_OFFSET	0x10
480 #define HV_TSB_DESCR_RESV_OFFSET	0x18
481 
482 /* Page size bitmask.  */
483 #define HV_PGSZ_MASK_8K			(1 << 0)
484 #define HV_PGSZ_MASK_64K		(1 << 1)
485 #define HV_PGSZ_MASK_512K		(1 << 2)
486 #define HV_PGSZ_MASK_4MB		(1 << 3)
487 #define HV_PGSZ_MASK_32MB		(1 << 4)
488 #define HV_PGSZ_MASK_256MB		(1 << 5)
489 #define HV_PGSZ_MASK_2GB		(1 << 6)
490 #define HV_PGSZ_MASK_16GB		(1 << 7)
491 
492 /* Page size index.  The value given in the TSB descriptor must correspond
493  * to the smallest page size specified in the pgsz_mask page size bitmask.
494  */
495 #define HV_PGSZ_IDX_8K			0
496 #define HV_PGSZ_IDX_64K			1
497 #define HV_PGSZ_IDX_512K		2
498 #define HV_PGSZ_IDX_4MB			3
499 #define HV_PGSZ_IDX_32MB		4
500 #define HV_PGSZ_IDX_256MB		5
501 #define HV_PGSZ_IDX_2GB			6
502 #define HV_PGSZ_IDX_16GB		7
503 
504 /* MMU fault status area.
505  *
506  * MMU related faults have their status and fault address information
507  * placed into a memory region made available by privileged code.  Each
508  * virtual processor must make a mmu_fault_area_conf() call to tell the
509  * hypervisor where that processor's fault status should be stored.
510  *
511  * The fault status block is a multiple of 64-bytes and must be aligned
512  * on a 64-byte boundary.
513  */
514 #ifndef __ASSEMBLY__
515 struct hv_fault_status {
516 	unsigned long		i_fault_type;
517 	unsigned long		i_fault_addr;
518 	unsigned long		i_fault_ctx;
519 	unsigned long		i_reserved[5];
520 	unsigned long		d_fault_type;
521 	unsigned long		d_fault_addr;
522 	unsigned long		d_fault_ctx;
523 	unsigned long		d_reserved[5];
524 };
525 #endif
526 #define HV_FAULT_I_TYPE_OFFSET	0x00
527 #define HV_FAULT_I_ADDR_OFFSET	0x08
528 #define HV_FAULT_I_CTX_OFFSET	0x10
529 #define HV_FAULT_D_TYPE_OFFSET	0x40
530 #define HV_FAULT_D_ADDR_OFFSET	0x48
531 #define HV_FAULT_D_CTX_OFFSET	0x50
532 
533 #define HV_FAULT_TYPE_FAST_MISS	1
534 #define HV_FAULT_TYPE_FAST_PROT	2
535 #define HV_FAULT_TYPE_MMU_MISS	3
536 #define HV_FAULT_TYPE_INV_RA	4
537 #define HV_FAULT_TYPE_PRIV_VIOL	5
538 #define HV_FAULT_TYPE_PROT_VIOL	6
539 #define HV_FAULT_TYPE_NFO	7
540 #define HV_FAULT_TYPE_NFO_SEFF	8
541 #define HV_FAULT_TYPE_INV_VA	9
542 #define HV_FAULT_TYPE_INV_ASI	10
543 #define HV_FAULT_TYPE_NC_ATOMIC	11
544 #define HV_FAULT_TYPE_PRIV_ACT	12
545 #define HV_FAULT_TYPE_RESV1	13
546 #define HV_FAULT_TYPE_UNALIGNED	14
547 #define HV_FAULT_TYPE_INV_PGSZ	15
548 /* Values 16 --> -2 are reserved.  */
549 #define HV_FAULT_TYPE_MULTIPLE	-1
550 
551 /* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
552  * and mmu_{map,unmap}_perm_addr().
553  */
554 #define HV_MMU_DMMU			0x01
555 #define HV_MMU_IMMU			0x02
556 #define HV_MMU_ALL			(HV_MMU_DMMU | HV_MMU_IMMU)
557 
558 /* mmu_map_addr()
559  * TRAP:	HV_MMU_MAP_ADDR_TRAP
560  * ARG0:	virtual address
561  * ARG1:	mmu context
562  * ARG2:	TTE
563  * ARG3:	flags (HV_MMU_{IMMU,DMMU})
564  * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
565  *		EBADPGSZ	Invalid page size value
566  *		ENORADDR	Invalid real address in TTE
567  *
568  * Create a non-permanent mapping using the given TTE, virtual
569  * address, and mmu context.  The flags argument determines which
570  * (data, or instruction, or both) TLB the mapping gets loaded into.
571  *
572  * The behavior is undefined if the valid bit is clear in the TTE.
573  *
574  * Note: This API call is for privileged code to specify temporary translation
575  *       mappings without the need to create and manage a TSB.
576  */
577 
578 /* mmu_unmap_addr()
579  * TRAP:	HV_MMU_UNMAP_ADDR_TRAP
580  * ARG0:	virtual address
581  * ARG1:	mmu context
582  * ARG2:	flags (HV_MMU_{IMMU,DMMU})
583  * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
584  *
585  * Demaps the given virtual address in the given mmu context on this
586  * CPU.  This function is intended to be used to demap pages mapped
587  * with mmu_map_addr.  This service is equivalent to invoking
588  * mmu_demap_page() with only the current CPU in the CPU list. The
589  * flags argument determines which (data, or instruction, or both) TLB
590  * the mapping gets unmapped from.
591  *
592  * Attempting to perform an unmap operation for a previously defined
593  * permanent mapping will have undefined results.
594  */
595 
596 /* mmu_tsb_ctx0()
597  * TRAP:	HV_FAST_TRAP
598  * FUNCTION:	HV_FAST_MMU_TSB_CTX0
599  * ARG0:	number of TSB descriptions
600  * ARG1:	TSB descriptions pointer
601  * RET0:	status
602  * ERRORS:	ENORADDR		Invalid TSB descriptions pointer or
603  *					TSB base within a descriptor
604  *		EBADALIGN		TSB descriptions pointer is not aligned
605  *					to an 8-byte boundary, or TSB base
606  *					within a descriptor is not aligned for
607  *					the given TSB size
608  *		EBADPGSZ		Invalid page size in a TSB descriptor
609  *		EBADTSB			Invalid associativity or size in a TSB
610  *					descriptor
611  *		EINVAL			Invalid number of TSB descriptions, or
612  *					invalid context index in a TSB
613  *					descriptor, or index page size not
614  *					equal to smallest page size in page
615  *					size bitmask field.
616  *
617  * Configures the TSBs for the current CPU for virtual addresses with
618  * context zero.  The TSB descriptions pointer is a pointer to an
619  * array of the given number of TSB descriptions.
620  *
621  * Note: The maximum number of TSBs available to a virtual CPU is given by the
622  *       mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
623  *       machine description.
624  */
625 #define HV_FAST_MMU_TSB_CTX0		0x20
626 
627 #ifndef __ASSEMBLY__
628 extern unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
629 					unsigned long tsb_desc_ra);
630 #endif
631 
632 /* mmu_tsb_ctxnon0()
633  * TRAP:	HV_FAST_TRAP
634  * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0
635  * ARG0:	number of TSB descriptions
636  * ARG1:	TSB descriptions pointer
637  * RET0:	status
638  * ERRORS:	Same as for mmu_tsb_ctx0() above.
639  *
640  * Configures the TSBs for the current CPU for virtual addresses with
641  * non-zero contexts.  The TSB descriptions pointer is a pointer to an
642  * array of the given number of TSB descriptions.
643  *
644  * Note: A maximum of 16 TSBs may be specified in the TSB description list.
645  */
646 #define HV_FAST_MMU_TSB_CTXNON0		0x21
647 
648 /* mmu_demap_page()
649  * TRAP:	HV_FAST_TRAP
650  * FUNCTION:	HV_FAST_MMU_DEMAP_PAGE
651  * ARG0:	reserved, must be zero
652  * ARG1:	reserved, must be zero
653  * ARG2:	virtual address
654  * ARG3:	mmu context
655  * ARG4:	flags (HV_MMU_{IMMU,DMMU})
656  * RET0:	status
657  * ERRORS:	EINVAL			Invalid virtual address, context, or
658  *					flags value
659  *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
660  *
661  * Demaps any page mapping of the given virtual address in the given
662  * mmu context for the current virtual CPU.  Any virtually tagged
663  * caches are guaranteed to be kept consistent.  The flags argument
664  * determines which TLB (instruction, or data, or both) participate in
665  * the operation.
666  *
667  * ARG0 and ARG1 are both reserved and must be set to zero.
668  */
669 #define HV_FAST_MMU_DEMAP_PAGE		0x22
670 
671 /* mmu_demap_ctx()
672  * TRAP:	HV_FAST_TRAP
673  * FUNCTION:	HV_FAST_MMU_DEMAP_CTX
674  * ARG0:	reserved, must be zero
675  * ARG1:	reserved, must be zero
676  * ARG2:	mmu context
677  * ARG3:	flags (HV_MMU_{IMMU,DMMU})
678  * RET0:	status
679  * ERRORS:	EINVAL			Invalid context or flags value
680  *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
681  *
682  * Demaps all non-permanent virtual page mappings previously specified
683  * for the given context for the current virtual CPU.  Any virtual
684  * tagged caches are guaranteed to be kept consistent.  The flags
685  * argument determines which TLB (instruction, or data, or both)
686  * participate in the operation.
687  *
688  * ARG0 and ARG1 are both reserved and must be set to zero.
689  */
690 #define HV_FAST_MMU_DEMAP_CTX		0x23
691 
692 /* mmu_demap_all()
693  * TRAP:	HV_FAST_TRAP
694  * FUNCTION:	HV_FAST_MMU_DEMAP_ALL
695  * ARG0:	reserved, must be zero
696  * ARG1:	reserved, must be zero
697  * ARG2:	flags (HV_MMU_{IMMU,DMMU})
698  * RET0:	status
699  * ERRORS:	EINVAL			Invalid flags value
700  *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
701  *
702  * Demaps all non-permanent virtual page mappings previously specified
703  * for the current virtual CPU.  Any virtual tagged caches are
704  * guaranteed to be kept consistent.  The flags argument determines
705  * which TLB (instruction, or data, or both) participate in the
706  * operation.
707  *
708  * ARG0 and ARG1 are both reserved and must be set to zero.
709  */
710 #define HV_FAST_MMU_DEMAP_ALL		0x24
711 
712 #ifndef __ASSEMBLY__
713 extern void sun4v_mmu_demap_all(void);
714 #endif
715 
716 /* mmu_map_perm_addr()
717  * TRAP:	HV_FAST_TRAP
718  * FUNCTION:	HV_FAST_MMU_MAP_PERM_ADDR
719  * ARG0:	virtual address
720  * ARG1:	reserved, must be zero
721  * ARG2:	TTE
722  * ARG3:	flags (HV_MMU_{IMMU,DMMU})
723  * RET0:	status
724  * ERRORS:	EINVAL			Invalid virtual address or flags value
725  *		EBADPGSZ		Invalid page size value
726  *		ENORADDR		Invalid real address in TTE
727  *		ETOOMANY		Too many mappings (max of 8 reached)
728  *
729  * Create a permanent mapping using the given TTE and virtual address
730  * for context 0 on the calling virtual CPU.  A maximum of 8 such
731  * permanent mappings may be specified by privileged code.  Mappings
732  * may be removed with mmu_unmap_perm_addr().
733  *
734  * The behavior is undefined if a TTE with the valid bit clear is given.
735  *
736  * Note: This call is used to specify address space mappings for which
737  *       privileged code does not expect to receive misses.  For example,
738  *       this mechanism can be used to map kernel nucleus code and data.
739  */
740 #define HV_FAST_MMU_MAP_PERM_ADDR	0x25
741 
742 #ifndef __ASSEMBLY__
743 extern unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
744 					     unsigned long set_to_zero,
745 					     unsigned long tte,
746 					     unsigned long flags);
747 #endif
748 
749 /* mmu_fault_area_conf()
750  * TRAP:	HV_FAST_TRAP
751  * FUNCTION:	HV_FAST_MMU_FAULT_AREA_CONF
752  * ARG0:	real address
753  * RET0:	status
754  * RET1:	previous mmu fault area real address
755  * ERRORS:	ENORADDR		Invalid real address
756  *		EBADALIGN		Invalid alignment for fault area
757  *
758  * Configure the MMU fault status area for the calling CPU.  A 64-byte
759  * aligned real address specifies where MMU fault status information
760  * is placed.  The return value is the previously specified area, or 0
761  * for the first invocation.  Specifying a fault area at real address
762  * 0 is not allowed.
763  */
764 #define HV_FAST_MMU_FAULT_AREA_CONF	0x26
765 
766 /* mmu_enable()
767  * TRAP:	HV_FAST_TRAP
768  * FUNCTION:	HV_FAST_MMU_ENABLE
769  * ARG0:	enable flag
770  * ARG1:	return target address
771  * RET0:	status
772  * ERRORS:	ENORADDR		Invalid real address when disabling
773  *					translation.
774  *		EBADALIGN		The return target address is not
775  *					aligned to an instruction.
776  *		EINVAL			The enable flag request the current
777  *					operating mode (e.g. disable if already
778  *					disabled)
779  *
780  * Enable or disable virtual address translation for the calling CPU
781  * within the virtual machine domain.  If the enable flag is zero,
782  * translation is disabled, any non-zero value will enable
783  * translation.
784  *
785  * When this function returns, the newly selected translation mode
786  * will be active.  If the mmu is being enabled, then the return
787  * target address is a virtual address else it is a real address.
788  *
789  * Upon successful completion, control will be returned to the given
790  * return target address (ie. the cpu will jump to that address).  On
791  * failure, the previous mmu mode remains and the trap simply returns
792  * as normal with the appropriate error code in RET0.
793  */
794 #define HV_FAST_MMU_ENABLE		0x27
795 
796 /* mmu_unmap_perm_addr()
797  * TRAP:	HV_FAST_TRAP
798  * FUNCTION:	HV_FAST_MMU_UNMAP_PERM_ADDR
799  * ARG0:	virtual address
800  * ARG1:	reserved, must be zero
801  * ARG2:	flags (HV_MMU_{IMMU,DMMU})
802  * RET0:	status
803  * ERRORS:	EINVAL			Invalid virtual address or flags value
804  *		ENOMAP			Specified mapping was not found
805  *
806  * Demaps any permanent page mapping (established via
807  * mmu_map_perm_addr()) at the given virtual address for context 0 on
808  * the current virtual CPU.  Any virtual tagged caches are guaranteed
809  * to be kept consistent.
810  */
811 #define HV_FAST_MMU_UNMAP_PERM_ADDR	0x28
812 
813 /* mmu_tsb_ctx0_info()
814  * TRAP:	HV_FAST_TRAP
815  * FUNCTION:	HV_FAST_MMU_TSB_CTX0_INFO
816  * ARG0:	max TSBs
817  * ARG1:	buffer pointer
818  * RET0:	status
819  * RET1:	number of TSBs
820  * ERRORS:	EINVAL			Supplied buffer is too small
821  *		EBADALIGN		The buffer pointer is badly aligned
822  *		ENORADDR		Invalid real address for buffer pointer
823  *
824  * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
825  * into the provided buffer.  The size of the buffer is given in ARG1
826  * in terms of the number of TSB description entries.
827  *
828  * Upon return, RET1 always contains the number of TSB descriptions
829  * previously configured.  If zero TSBs were configured, EOK is
830  * returned with RET1 containing 0.
831  */
832 #define HV_FAST_MMU_TSB_CTX0_INFO	0x29
833 
834 /* mmu_tsb_ctxnon0_info()
835  * TRAP:	HV_FAST_TRAP
836  * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0_INFO
837  * ARG0:	max TSBs
838  * ARG1:	buffer pointer
839  * RET0:	status
840  * RET1:	number of TSBs
841  * ERRORS:	EINVAL			Supplied buffer is too small
842  *		EBADALIGN		The buffer pointer is badly aligned
843  *		ENORADDR		Invalid real address for buffer pointer
844  *
845  * Return the TSB configuration as previous defined by
846  * mmu_tsb_ctxnon0() into the provided buffer.  The size of the buffer
847  * is given in ARG1 in terms of the number of TSB description entries.
848  *
849  * Upon return, RET1 always contains the number of TSB descriptions
850  * previously configured.  If zero TSBs were configured, EOK is
851  * returned with RET1 containing 0.
852  */
853 #define HV_FAST_MMU_TSB_CTXNON0_INFO	0x2a
854 
855 /* mmu_fault_area_info()
856  * TRAP:	HV_FAST_TRAP
857  * FUNCTION:	HV_FAST_MMU_FAULT_AREA_INFO
858  * RET0:	status
859  * RET1:	fault area real address
860  * ERRORS:	No errors defined.
861  *
862  * Return the currently defined MMU fault status area for the current
863  * CPU.  The real address of the fault status area is returned in
864  * RET1, or 0 is returned in RET1 if no fault status area is defined.
865  *
866  * Note: mmu_fault_area_conf() may be called with the return value (RET1)
867  *       from this service if there is a need to save and restore the fault
868  *	 area for a cpu.
869  */
870 #define HV_FAST_MMU_FAULT_AREA_INFO	0x2b
871 
872 /* Cache and Memory services. */
873 
874 /* mem_scrub()
875  * TRAP:	HV_FAST_TRAP
876  * FUNCTION:	HV_FAST_MEM_SCRUB
877  * ARG0:	real address
878  * ARG1:	length
879  * RET0:	status
880  * RET1:	length scrubbed
881  * ERRORS:	ENORADDR	Invalid real address
882  *		EBADALIGN	Start address or length are not correctly
883  *				aligned
884  *		EINVAL		Length is zero
885  *
886  * Zero the memory contents in the range real address to real address
887  * plus length minus 1.  Also, valid ECC will be generated for that
888  * memory address range.  Scrubbing is started at the given real
889  * address, but may not scrub the entire given length.  The actual
890  * length scrubbed will be returned in RET1.
891  *
892  * The real address and length must be aligned on an 8K boundary, or
893  * contain the start address and length from a sun4v error report.
894  *
895  * Note: There are two uses for this function.  The first use is to block clear
896  *       and initialize memory and the second is to scrub an u ncorrectable
897  *       error reported via a resumable or non-resumable trap.  The second
898  *       use requires the arguments to be equal to the real address and length
899  *       provided in a sun4v memory error report.
900  */
901 #define HV_FAST_MEM_SCRUB		0x31
902 
903 /* mem_sync()
904  * TRAP:	HV_FAST_TRAP
905  * FUNCTION:	HV_FAST_MEM_SYNC
906  * ARG0:	real address
907  * ARG1:	length
908  * RET0:	status
909  * RET1:	length synced
910  * ERRORS:	ENORADDR	Invalid real address
911  *		EBADALIGN	Start address or length are not correctly
912  *				aligned
913  *		EINVAL		Length is zero
914  *
915  * Force the next access within the real address to real address plus
916  * length minus 1 to be fetches from main system memory.  Less than
917  * the given length may be synced, the actual amount synced is
918  * returned in RET1.  The real address and length must be aligned on
919  * an 8K boundary.
920  */
921 #define HV_FAST_MEM_SYNC		0x32
922 
923 /* Time of day services.
924  *
925  * The hypervisor maintains the time of day on a per-domain basis.
926  * Changing the time of day in one domain does not affect the time of
927  * day on any other domain.
928  *
929  * Time is described by a single unsigned 64-bit word which is the
930  * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
931  * 1970).
932  */
933 
934 /* tod_get()
935  * TRAP:	HV_FAST_TRAP
936  * FUNCTION:	HV_FAST_TOD_GET
937  * RET0:	status
938  * RET1:	TOD
939  * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
940  *		ENOTSUPPORTED	If TOD not supported on this platform
941  *
942  * Return the current time of day.  May block if TOD access is
943  * temporarily not possible.
944  */
945 #define HV_FAST_TOD_GET			0x50
946 
947 #ifndef __ASSEMBLY__
948 extern unsigned long sun4v_tod_get(unsigned long *time);
949 #endif
950 
951 /* tod_set()
952  * TRAP:	HV_FAST_TRAP
953  * FUNCTION:	HV_FAST_TOD_SET
954  * ARG0:	TOD
955  * RET0:	status
956  * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
957  *		ENOTSUPPORTED	If TOD not supported on this platform
958  *
959  * The current time of day is set to the value specified in ARG0.  May
960  * block if TOD access is temporarily not possible.
961  */
962 #define HV_FAST_TOD_SET			0x51
963 
964 #ifndef __ASSEMBLY__
965 extern unsigned long sun4v_tod_set(unsigned long time);
966 #endif
967 
968 /* Console services */
969 
970 /* con_getchar()
971  * TRAP:	HV_FAST_TRAP
972  * FUNCTION:	HV_FAST_CONS_GETCHAR
973  * RET0:	status
974  * RET1:	character
975  * ERRORS:	EWOULDBLOCK	No character available.
976  *
977  * Returns a character from the console device.  If no character is
978  * available then an EWOULDBLOCK error is returned.  If a character is
979  * available, then the returned status is EOK and the character value
980  * is in RET1.
981  *
982  * A virtual BREAK is represented by the 64-bit value -1.
983  *
984  * A virtual HUP signal is represented by the 64-bit value -2.
985  */
986 #define HV_FAST_CONS_GETCHAR		0x60
987 
988 /* con_putchar()
989  * TRAP:	HV_FAST_TRAP
990  * FUNCTION:	HV_FAST_CONS_PUTCHAR
991  * ARG0:	character
992  * RET0:	status
993  * ERRORS:	EINVAL		Illegal character
994  *		EWOULDBLOCK	Output buffer currently full, would block
995  *
996  * Send a character to the console device.  Only character values
997  * between 0 and 255 may be used.  Values outside this range are
998  * invalid except for the 64-bit value -1 which is used to send a
999  * virtual BREAK.
1000  */
1001 #define HV_FAST_CONS_PUTCHAR		0x61
1002 
1003 /* con_read()
1004  * TRAP:	HV_FAST_TRAP
1005  * FUNCTION:	HV_FAST_CONS_READ
1006  * ARG0:	buffer real address
1007  * ARG1:	buffer size in bytes
1008  * RET0:	status
1009  * RET1:	bytes read or BREAK or HUP
1010  * ERRORS:	EWOULDBLOCK	No character available.
1011  *
1012  * Reads characters into a buffer from the console device.  If no
1013  * character is available then an EWOULDBLOCK error is returned.
1014  * If a character is available, then the returned status is EOK
1015  * and the number of bytes read into the given buffer is provided
1016  * in RET1.
1017  *
1018  * A virtual BREAK is represented by the 64-bit RET1 value -1.
1019  *
1020  * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1021  *
1022  * If BREAK or HUP are indicated, no bytes were read into buffer.
1023  */
1024 #define HV_FAST_CONS_READ		0x62
1025 
1026 /* con_write()
1027  * TRAP:	HV_FAST_TRAP
1028  * FUNCTION:	HV_FAST_CONS_WRITE
1029  * ARG0:	buffer real address
1030  * ARG1:	buffer size in bytes
1031  * RET0:	status
1032  * RET1:	bytes written
1033  * ERRORS:	EWOULDBLOCK	Output buffer currently full, would block
1034  *
1035  * Send a characters in buffer to the console device.  Breaks must be
1036  * sent using con_putchar().
1037  */
1038 #define HV_FAST_CONS_WRITE		0x63
1039 
1040 #ifndef __ASSEMBLY__
1041 extern long sun4v_con_getchar(long *status);
1042 extern long sun4v_con_putchar(long c);
1043 extern long sun4v_con_read(unsigned long buffer,
1044 			   unsigned long size,
1045 			   unsigned long *bytes_read);
1046 extern unsigned long sun4v_con_write(unsigned long buffer,
1047 				     unsigned long size,
1048 				     unsigned long *bytes_written);
1049 #endif
1050 
1051 /* mach_set_soft_state()
1052  * TRAP:	HV_FAST_TRAP
1053  * FUNCTION:	HV_FAST_MACH_SET_SOFT_STATE
1054  * ARG0:	software state
1055  * ARG1:	software state description pointer
1056  * RET0:	status
1057  * ERRORS:	EINVAL		software state not valid or software state
1058  *				description is not NULL terminated
1059  *		ENORADDR	software state description pointer is not a
1060  *				valid real address
1061  *		EBADALIGNED	software state description is not correctly
1062  *				aligned
1063  *
1064  * This allows the guest to report it's soft state to the hypervisor.  There
1065  * are two primary components to this state.  The first part states whether
1066  * the guest software is running or not.  The second containts optional
1067  * details specific to the software.
1068  *
1069  * The software state argument is defined below in HV_SOFT_STATE_*, and
1070  * indicates whether the guest is operating normally or in a transitional
1071  * state.
1072  *
1073  * The software state description argument is a real address of a data buffer
1074  * of size 32-bytes aligned on a 32-byte boundary.  It is treated as a NULL
1075  * terminated 7-bit ASCII string of up to 31 characters not including the
1076  * NULL termination.
1077  */
1078 #define HV_FAST_MACH_SET_SOFT_STATE	0x70
1079 #define  HV_SOFT_STATE_NORMAL		 0x01
1080 #define  HV_SOFT_STATE_TRANSITION	 0x02
1081 
1082 #ifndef __ASSEMBLY__
1083 extern unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1084 					       unsigned long msg_string_ra);
1085 #endif
1086 
1087 /* mach_get_soft_state()
1088  * TRAP:	HV_FAST_TRAP
1089  * FUNCTION:	HV_FAST_MACH_GET_SOFT_STATE
1090  * ARG0:	software state description pointer
1091  * RET0:	status
1092  * RET1:	software state
1093  * ERRORS:	ENORADDR	software state description pointer is not a
1094  *				valid real address
1095  *		EBADALIGNED	software state description is not correctly
1096  *				aligned
1097  *
1098  * Retrieve the current value of the guest's software state.  The rules
1099  * for the software state pointer are the same as for mach_set_soft_state()
1100  * above.
1101  */
1102 #define HV_FAST_MACH_GET_SOFT_STATE	0x71
1103 
1104 /* svc_send()
1105  * TRAP:	HV_FAST_TRAP
1106  * FUNCTION:	HV_FAST_SVC_SEND
1107  * ARG0:	service ID
1108  * ARG1:	buffer real address
1109  * ARG2:	buffer size
1110  * RET0:	STATUS
1111  * RET1:	sent_bytes
1112  *
1113  * Be careful, all output registers are clobbered by this operation,
1114  * so for example it is not possible to save away a value in %o4
1115  * across the trap.
1116  */
1117 #define HV_FAST_SVC_SEND		0x80
1118 
1119 /* svc_recv()
1120  * TRAP:	HV_FAST_TRAP
1121  * FUNCTION:	HV_FAST_SVC_RECV
1122  * ARG0:	service ID
1123  * ARG1:	buffer real address
1124  * ARG2:	buffer size
1125  * RET0:	STATUS
1126  * RET1:	recv_bytes
1127  *
1128  * Be careful, all output registers are clobbered by this operation,
1129  * so for example it is not possible to save away a value in %o4
1130  * across the trap.
1131  */
1132 #define HV_FAST_SVC_RECV		0x81
1133 
1134 /* svc_getstatus()
1135  * TRAP:	HV_FAST_TRAP
1136  * FUNCTION:	HV_FAST_SVC_GETSTATUS
1137  * ARG0:	service ID
1138  * RET0:	STATUS
1139  * RET1:	status bits
1140  */
1141 #define HV_FAST_SVC_GETSTATUS		0x82
1142 
1143 /* svc_setstatus()
1144  * TRAP:	HV_FAST_TRAP
1145  * FUNCTION:	HV_FAST_SVC_SETSTATUS
1146  * ARG0:	service ID
1147  * ARG1:	bits to set
1148  * RET0:	STATUS
1149  */
1150 #define HV_FAST_SVC_SETSTATUS		0x83
1151 
1152 /* svc_clrstatus()
1153  * TRAP:	HV_FAST_TRAP
1154  * FUNCTION:	HV_FAST_SVC_CLRSTATUS
1155  * ARG0:	service ID
1156  * ARG1:	bits to clear
1157  * RET0:	STATUS
1158  */
1159 #define HV_FAST_SVC_CLRSTATUS		0x84
1160 
1161 #ifndef __ASSEMBLY__
1162 extern unsigned long sun4v_svc_send(unsigned long svc_id,
1163 				    unsigned long buffer,
1164 				    unsigned long buffer_size,
1165 				    unsigned long *sent_bytes);
1166 extern unsigned long sun4v_svc_recv(unsigned long svc_id,
1167 				    unsigned long buffer,
1168 				    unsigned long buffer_size,
1169 				    unsigned long *recv_bytes);
1170 extern unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1171 					 unsigned long *status_bits);
1172 extern unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1173 					 unsigned long status_bits);
1174 extern unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1175 					 unsigned long status_bits);
1176 #endif
1177 
1178 /* Trap trace services.
1179  *
1180  * The hypervisor provides a trap tracing capability for privileged
1181  * code running on each virtual CPU.  Privileged code provides a
1182  * round-robin trap trace queue within which the hypervisor writes
1183  * 64-byte entries detailing hyperprivileged traps taken n behalf of
1184  * privileged code.  This is provided as a debugging capability for
1185  * privileged code.
1186  *
1187  * The trap trace control structure is 64-bytes long and placed at the
1188  * start (offset 0) of the trap trace buffer, and is described as
1189  * follows:
1190  */
1191 #ifndef __ASSEMBLY__
1192 struct hv_trap_trace_control {
1193 	unsigned long		head_offset;
1194 	unsigned long		tail_offset;
1195 	unsigned long		__reserved[0x30 / sizeof(unsigned long)];
1196 };
1197 #endif
1198 #define HV_TRAP_TRACE_CTRL_HEAD_OFFSET	0x00
1199 #define HV_TRAP_TRACE_CTRL_TAIL_OFFSET	0x08
1200 
1201 /* The head offset is the offset of the most recently completed entry
1202  * in the trap-trace buffer.  The tail offset is the offset of the
1203  * next entry to be written.  The control structure is owned and
1204  * modified by the hypervisor.  A guest may not modify the control
1205  * structure contents.  Attempts to do so will result in undefined
1206  * behavior for the guest.
1207  *
1208  * Each trap trace buffer entry is laid out as follows:
1209  */
1210 #ifndef __ASSEMBLY__
1211 struct hv_trap_trace_entry {
1212 	unsigned char	type;		/* Hypervisor or guest entry?	*/
1213 	unsigned char	hpstate;	/* Hyper-privileged state	*/
1214 	unsigned char	tl;		/* Trap level			*/
1215 	unsigned char	gl;		/* Global register level	*/
1216 	unsigned short	tt;		/* Trap type			*/
1217 	unsigned short	tag;		/* Extended trap identifier	*/
1218 	unsigned long	tstate;		/* Trap state			*/
1219 	unsigned long	tick;		/* Tick				*/
1220 	unsigned long	tpc;		/* Trap PC			*/
1221 	unsigned long	f1;		/* Entry specific		*/
1222 	unsigned long	f2;		/* Entry specific		*/
1223 	unsigned long	f3;		/* Entry specific		*/
1224 	unsigned long	f4;		/* Entry specific		*/
1225 };
1226 #endif
1227 #define HV_TRAP_TRACE_ENTRY_TYPE	0x00
1228 #define HV_TRAP_TRACE_ENTRY_HPSTATE	0x01
1229 #define HV_TRAP_TRACE_ENTRY_TL		0x02
1230 #define HV_TRAP_TRACE_ENTRY_GL		0x03
1231 #define HV_TRAP_TRACE_ENTRY_TT		0x04
1232 #define HV_TRAP_TRACE_ENTRY_TAG		0x06
1233 #define HV_TRAP_TRACE_ENTRY_TSTATE	0x08
1234 #define HV_TRAP_TRACE_ENTRY_TICK	0x10
1235 #define HV_TRAP_TRACE_ENTRY_TPC		0x18
1236 #define HV_TRAP_TRACE_ENTRY_F1		0x20
1237 #define HV_TRAP_TRACE_ENTRY_F2		0x28
1238 #define HV_TRAP_TRACE_ENTRY_F3		0x30
1239 #define HV_TRAP_TRACE_ENTRY_F4		0x38
1240 
1241 /* The type field is encoded as follows.  */
1242 #define HV_TRAP_TYPE_UNDEF		0x00 /* Entry content undefined     */
1243 #define HV_TRAP_TYPE_HV			0x01 /* Hypervisor trap entry       */
1244 #define HV_TRAP_TYPE_GUEST		0xff /* Added via ttrace_addentry() */
1245 
1246 /* ttrace_buf_conf()
1247  * TRAP:	HV_FAST_TRAP
1248  * FUNCTION:	HV_FAST_TTRACE_BUF_CONF
1249  * ARG0:	real address
1250  * ARG1:	number of entries
1251  * RET0:	status
1252  * RET1:	number of entries
1253  * ERRORS:	ENORADDR	Invalid real address
1254  *		EINVAL		Size is too small
1255  *		EBADALIGN	Real address not aligned on 64-byte boundary
1256  *
1257  * Requests hypervisor trap tracing and declares a virtual CPU's trap
1258  * trace buffer to the hypervisor.  The real address supplies the real
1259  * base address of the trap trace queue and must be 64-byte aligned.
1260  * Specifying a value of 0 for the number of entries disables trap
1261  * tracing for the calling virtual CPU.  The buffer allocated must be
1262  * sized for a power of two number of 64-byte trap trace entries plus
1263  * an initial 64-byte control structure.
1264  *
1265  * This may be invoked any number of times so that a virtual CPU may
1266  * relocate a trap trace buffer or create "snapshots" of information.
1267  *
1268  * If the real address is illegal or badly aligned, then trap tracing
1269  * is disabled and an error is returned.
1270  *
1271  * Upon failure with EINVAL, this service call returns in RET1 the
1272  * minimum number of buffer entries required.  Upon other failures
1273  * RET1 is undefined.
1274  */
1275 #define HV_FAST_TTRACE_BUF_CONF		0x90
1276 
1277 /* ttrace_buf_info()
1278  * TRAP:	HV_FAST_TRAP
1279  * FUNCTION:	HV_FAST_TTRACE_BUF_INFO
1280  * RET0:	status
1281  * RET1:	real address
1282  * RET2:	size
1283  * ERRORS:	None defined.
1284  *
1285  * Returns the size and location of the previously declared trap-trace
1286  * buffer.  In the event that no buffer was previously defined, or the
1287  * buffer is disabled, this call will return a size of zero bytes.
1288  */
1289 #define HV_FAST_TTRACE_BUF_INFO		0x91
1290 
1291 /* ttrace_enable()
1292  * TRAP:	HV_FAST_TRAP
1293  * FUNCTION:	HV_FAST_TTRACE_ENABLE
1294  * ARG0:	enable
1295  * RET0:	status
1296  * RET1:	previous enable state
1297  * ERRORS:	EINVAL		No trap trace buffer currently defined
1298  *
1299  * Enable or disable trap tracing, and return the previous enabled
1300  * state in RET1.  Future systems may define various flags for the
1301  * enable argument (ARG0), for the moment a guest should pass
1302  * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1303  * tracing - which will ensure future compatibility.
1304  */
1305 #define HV_FAST_TTRACE_ENABLE		0x92
1306 
1307 /* ttrace_freeze()
1308  * TRAP:	HV_FAST_TRAP
1309  * FUNCTION:	HV_FAST_TTRACE_FREEZE
1310  * ARG0:	freeze
1311  * RET0:	status
1312  * RET1:	previous freeze state
1313  * ERRORS:	EINVAL		No trap trace buffer currently defined
1314  *
1315  * Freeze or unfreeze trap tracing, returning the previous freeze
1316  * state in RET1.  A guest should pass a non-zero value to freeze and
1317  * a zero value to unfreeze all tracing.  The returned previous state
1318  * is 0 for not frozen and 1 for frozen.
1319  */
1320 #define HV_FAST_TTRACE_FREEZE		0x93
1321 
1322 /* ttrace_addentry()
1323  * TRAP:	HV_TTRACE_ADDENTRY_TRAP
1324  * ARG0:	tag (16-bits)
1325  * ARG1:	data word 0
1326  * ARG2:	data word 1
1327  * ARG3:	data word 2
1328  * ARG4:	data word 3
1329  * RET0:	status
1330  * ERRORS:	EINVAL		No trap trace buffer currently defined
1331  *
1332  * Add an entry to the trap trace buffer.  Upon return only ARG0/RET0
1333  * is modified - none of the other registers holding arguments are
1334  * volatile across this hypervisor service.
1335  */
1336 
1337 /* Core dump services.
1338  *
1339  * Since the hypervisor viraulizes and thus obscures a lot of the
1340  * physical machine layout and state, traditional OS crash dumps can
1341  * be difficult to diagnose especially when the problem is a
1342  * configuration error of some sort.
1343  *
1344  * The dump services provide an opaque buffer into which the
1345  * hypervisor can place it's internal state in order to assist in
1346  * debugging such situations.  The contents are opaque and extremely
1347  * platform and hypervisor implementation specific.  The guest, during
1348  * a core dump, requests that the hypervisor update any information in
1349  * the dump buffer in preparation to being dumped as part of the
1350  * domain's memory image.
1351  */
1352 
1353 /* dump_buf_update()
1354  * TRAP:	HV_FAST_TRAP
1355  * FUNCTION:	HV_FAST_DUMP_BUF_UPDATE
1356  * ARG0:	real address
1357  * ARG1:	size
1358  * RET0:	status
1359  * RET1:	required size of dump buffer
1360  * ERRORS:	ENORADDR	Invalid real address
1361  *		EBADALIGN	Real address is not aligned on a 64-byte
1362  *				boundary
1363  *		EINVAL		Size is non-zero but less than minimum size
1364  *				required
1365  *		ENOTSUPPORTED	Operation not supported on current logical
1366  *				domain
1367  *
1368  * Declare a domain dump buffer to the hypervisor.  The real address
1369  * provided for the domain dump buffer must be 64-byte aligned.  The
1370  * size specifies the size of the dump buffer and may be larger than
1371  * the minimum size specified in the machine description.  The
1372  * hypervisor will fill the dump buffer with opaque data.
1373  *
1374  * Note: A guest may elect to include dump buffer contents as part of a crash
1375  *       dump to assist with debugging.  This function may be called any number
1376  *       of times so that a guest may relocate a dump buffer, or create
1377  *       "snapshots" of any dump-buffer information.  Each call to
1378  *       dump_buf_update() atomically declares the new dump buffer to the
1379  *       hypervisor.
1380  *
1381  * A specified size of 0 unconfigures the dump buffer.  If the real
1382  * address is illegal or badly aligned, then any currently active dump
1383  * buffer is disabled and an error is returned.
1384  *
1385  * In the event that the call fails with EINVAL, RET1 contains the
1386  * minimum size requires by the hypervisor for a valid dump buffer.
1387  */
1388 #define HV_FAST_DUMP_BUF_UPDATE		0x94
1389 
1390 /* dump_buf_info()
1391  * TRAP:	HV_FAST_TRAP
1392  * FUNCTION:	HV_FAST_DUMP_BUF_INFO
1393  * RET0:	status
1394  * RET1:	real address of current dump buffer
1395  * RET2:	size of current dump buffer
1396  * ERRORS:	No errors defined.
1397  *
1398  * Return the currently configures dump buffer description.  A
1399  * returned size of 0 bytes indicates an undefined dump buffer.  In
1400  * this case the return address in RET1 is undefined.
1401  */
1402 #define HV_FAST_DUMP_BUF_INFO		0x95
1403 
1404 /* Device interrupt services.
1405  *
1406  * Device interrupts are allocated to system bus bridges by the hypervisor,
1407  * and described to OBP in the machine description.  OBP then describes
1408  * these interrupts to the OS via properties in the device tree.
1409  *
1410  * Terminology:
1411  *
1412  *	cpuid		Unique opaque value which represents a target cpu.
1413  *
1414  *	devhandle	Device handle.  It uniquely identifies a device, and
1415  *			consistes of the lower 28-bits of the hi-cell of the
1416  *			first entry of the device's "reg" property in the
1417  *			OBP device tree.
1418  *
1419  *	devino		Device interrupt number.  Specifies the relative
1420  *			interrupt number within the device.  The unique
1421  *			combination of devhandle and devino are used to
1422  *			identify a specific device interrupt.
1423  *
1424  *			Note: The devino value is the same as the values in the
1425  *			      "interrupts" property or "interrupt-map" property
1426  *			      in the OBP device tree for that device.
1427  *
1428  *	sysino		System interrupt number.  A 64-bit unsigned interger
1429  *			representing a unique interrupt within a virtual
1430  *			machine.
1431  *
1432  *	intr_state	A flag representing the interrupt state for a given
1433  *			sysino.  The state values are defined below.
1434  *
1435  *	intr_enabled	A flag representing the 'enabled' state for a given
1436  *			sysino.  The enable values are defined below.
1437  */
1438 
1439 #define HV_INTR_STATE_IDLE		0 /* Nothing pending */
1440 #define HV_INTR_STATE_RECEIVED		1 /* Interrupt received by hardware */
1441 #define HV_INTR_STATE_DELIVERED		2 /* Interrupt delivered to queue */
1442 
1443 #define HV_INTR_DISABLED		0 /* sysino not enabled */
1444 #define HV_INTR_ENABLED			1 /* sysino enabled */
1445 
1446 /* intr_devino_to_sysino()
1447  * TRAP:	HV_FAST_TRAP
1448  * FUNCTION:	HV_FAST_INTR_DEVINO2SYSINO
1449  * ARG0:	devhandle
1450  * ARG1:	devino
1451  * RET0:	status
1452  * RET1:	sysino
1453  * ERRORS:	EINVAL		Invalid devhandle/devino
1454  *
1455  * Converts a device specific interrupt number of the given
1456  * devhandle/devino into a system specific ino (sysino).
1457  */
1458 #define HV_FAST_INTR_DEVINO2SYSINO	0xa0
1459 
1460 #ifndef __ASSEMBLY__
1461 extern unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1462 					    unsigned long devino);
1463 #endif
1464 
1465 /* intr_getenabled()
1466  * TRAP:	HV_FAST_TRAP
1467  * FUNCTION:	HV_FAST_INTR_GETENABLED
1468  * ARG0:	sysino
1469  * RET0:	status
1470  * RET1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1471  * ERRORS:	EINVAL		Invalid sysino
1472  *
1473  * Returns interrupt enabled state in RET1 for the interrupt defined
1474  * by the given sysino.
1475  */
1476 #define HV_FAST_INTR_GETENABLED		0xa1
1477 
1478 #ifndef __ASSEMBLY__
1479 extern unsigned long sun4v_intr_getenabled(unsigned long sysino);
1480 #endif
1481 
1482 /* intr_setenabled()
1483  * TRAP:	HV_FAST_TRAP
1484  * FUNCTION:	HV_FAST_INTR_SETENABLED
1485  * ARG0:	sysino
1486  * ARG1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1487  * RET0:	status
1488  * ERRORS:	EINVAL		Invalid sysino or intr_enabled value
1489  *
1490  * Set the 'enabled' state of the interrupt sysino.
1491  */
1492 #define HV_FAST_INTR_SETENABLED		0xa2
1493 
1494 #ifndef __ASSEMBLY__
1495 extern unsigned long sun4v_intr_setenabled(unsigned long sysino, unsigned long intr_enabled);
1496 #endif
1497 
1498 /* intr_getstate()
1499  * TRAP:	HV_FAST_TRAP
1500  * FUNCTION:	HV_FAST_INTR_GETSTATE
1501  * ARG0:	sysino
1502  * RET0:	status
1503  * RET1:	intr_state (HV_INTR_STATE_*)
1504  * ERRORS:	EINVAL		Invalid sysino
1505  *
1506  * Returns current state of the interrupt defined by the given sysino.
1507  */
1508 #define HV_FAST_INTR_GETSTATE		0xa3
1509 
1510 #ifndef __ASSEMBLY__
1511 extern unsigned long sun4v_intr_getstate(unsigned long sysino);
1512 #endif
1513 
1514 /* intr_setstate()
1515  * TRAP:	HV_FAST_TRAP
1516  * FUNCTION:	HV_FAST_INTR_SETSTATE
1517  * ARG0:	sysino
1518  * ARG1:	intr_state (HV_INTR_STATE_*)
1519  * RET0:	status
1520  * ERRORS:	EINVAL		Invalid sysino or intr_state value
1521  *
1522  * Sets the current state of the interrupt described by the given sysino
1523  * value.
1524  *
1525  * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1526  *       interrupt for sysino.
1527  */
1528 #define HV_FAST_INTR_SETSTATE		0xa4
1529 
1530 #ifndef __ASSEMBLY__
1531 extern unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1532 #endif
1533 
1534 /* intr_gettarget()
1535  * TRAP:	HV_FAST_TRAP
1536  * FUNCTION:	HV_FAST_INTR_GETTARGET
1537  * ARG0:	sysino
1538  * RET0:	status
1539  * RET1:	cpuid
1540  * ERRORS:	EINVAL		Invalid sysino
1541  *
1542  * Returns CPU that is the current target of the interrupt defined by
1543  * the given sysino.  The CPU value returned is undefined if the target
1544  * has not been set via intr_settarget().
1545  */
1546 #define HV_FAST_INTR_GETTARGET		0xa5
1547 
1548 #ifndef __ASSEMBLY__
1549 extern unsigned long sun4v_intr_gettarget(unsigned long sysino);
1550 #endif
1551 
1552 /* intr_settarget()
1553  * TRAP:	HV_FAST_TRAP
1554  * FUNCTION:	HV_FAST_INTR_SETTARGET
1555  * ARG0:	sysino
1556  * ARG1:	cpuid
1557  * RET0:	status
1558  * ERRORS:	EINVAL		Invalid sysino
1559  *		ENOCPU		Invalid cpuid
1560  *
1561  * Set the target CPU for the interrupt defined by the given sysino.
1562  */
1563 #define HV_FAST_INTR_SETTARGET		0xa6
1564 
1565 #ifndef __ASSEMBLY__
1566 extern unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1567 #endif
1568 
1569 /* vintr_get_cookie()
1570  * TRAP:	HV_FAST_TRAP
1571  * FUNCTION:	HV_FAST_VINTR_GET_COOKIE
1572  * ARG0:	device handle
1573  * ARG1:	device ino
1574  * RET0:	status
1575  * RET1:	cookie
1576  */
1577 #define HV_FAST_VINTR_GET_COOKIE	0xa7
1578 
1579 /* vintr_set_cookie()
1580  * TRAP:	HV_FAST_TRAP
1581  * FUNCTION:	HV_FAST_VINTR_SET_COOKIE
1582  * ARG0:	device handle
1583  * ARG1:	device ino
1584  * ARG2:	cookie
1585  * RET0:	status
1586  */
1587 #define HV_FAST_VINTR_SET_COOKIE	0xa8
1588 
1589 /* vintr_get_valid()
1590  * TRAP:	HV_FAST_TRAP
1591  * FUNCTION:	HV_FAST_VINTR_GET_VALID
1592  * ARG0:	device handle
1593  * ARG1:	device ino
1594  * RET0:	status
1595  * RET1:	valid state
1596  */
1597 #define HV_FAST_VINTR_GET_VALID		0xa9
1598 
1599 /* vintr_set_valid()
1600  * TRAP:	HV_FAST_TRAP
1601  * FUNCTION:	HV_FAST_VINTR_SET_VALID
1602  * ARG0:	device handle
1603  * ARG1:	device ino
1604  * ARG2:	valid state
1605  * RET0:	status
1606  */
1607 #define HV_FAST_VINTR_SET_VALID		0xaa
1608 
1609 /* vintr_get_state()
1610  * TRAP:	HV_FAST_TRAP
1611  * FUNCTION:	HV_FAST_VINTR_GET_STATE
1612  * ARG0:	device handle
1613  * ARG1:	device ino
1614  * RET0:	status
1615  * RET1:	state
1616  */
1617 #define HV_FAST_VINTR_GET_STATE		0xab
1618 
1619 /* vintr_set_state()
1620  * TRAP:	HV_FAST_TRAP
1621  * FUNCTION:	HV_FAST_VINTR_SET_STATE
1622  * ARG0:	device handle
1623  * ARG1:	device ino
1624  * ARG2:	state
1625  * RET0:	status
1626  */
1627 #define HV_FAST_VINTR_SET_STATE		0xac
1628 
1629 /* vintr_get_target()
1630  * TRAP:	HV_FAST_TRAP
1631  * FUNCTION:	HV_FAST_VINTR_GET_TARGET
1632  * ARG0:	device handle
1633  * ARG1:	device ino
1634  * RET0:	status
1635  * RET1:	cpuid
1636  */
1637 #define HV_FAST_VINTR_GET_TARGET	0xad
1638 
1639 /* vintr_set_target()
1640  * TRAP:	HV_FAST_TRAP
1641  * FUNCTION:	HV_FAST_VINTR_SET_TARGET
1642  * ARG0:	device handle
1643  * ARG1:	device ino
1644  * ARG2:	cpuid
1645  * RET0:	status
1646  */
1647 #define HV_FAST_VINTR_SET_TARGET	0xae
1648 
1649 #ifndef __ASSEMBLY__
1650 extern unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1651 					    unsigned long dev_ino,
1652 					    unsigned long *cookie);
1653 extern unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1654 					    unsigned long dev_ino,
1655 					    unsigned long cookie);
1656 extern unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1657 					   unsigned long dev_ino,
1658 					   unsigned long *valid);
1659 extern unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1660 					   unsigned long dev_ino,
1661 					   unsigned long valid);
1662 extern unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1663 					   unsigned long dev_ino,
1664 					   unsigned long *state);
1665 extern unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1666 					   unsigned long dev_ino,
1667 					   unsigned long state);
1668 extern unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1669 					    unsigned long dev_ino,
1670 					    unsigned long *cpuid);
1671 extern unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1672 					    unsigned long dev_ino,
1673 					    unsigned long cpuid);
1674 #endif
1675 
1676 /* PCI IO services.
1677  *
1678  * See the terminology descriptions in the device interrupt services
1679  * section above as those apply here too.  Here are terminology
1680  * definitions specific to these PCI IO services:
1681  *
1682  *	tsbnum		TSB number.  Indentifies which io-tsb is used.
1683  *			For this version of the specification, tsbnum
1684  *			must be zero.
1685  *
1686  *	tsbindex	TSB index.  Identifies which entry in the TSB
1687  *			is used.  The first entry is zero.
1688  *
1689  *	tsbid		A 64-bit aligned data structure which contains
1690  *			a tsbnum and a tsbindex.  Bits 63:32 contain the
1691  *			tsbnum and bits 31:00 contain the tsbindex.
1692  *
1693  *			Use the HV_PCI_TSBID() macro to construct such
1694  * 			values.
1695  *
1696  *	io_attributes	IO attributes for IOMMU mappings.  One of more
1697  *			of the attritbute bits are stores in a 64-bit
1698  *			value.  The values are defined below.
1699  *
1700  *	r_addr		64-bit real address
1701  *
1702  *	pci_device	PCI device address.  A PCI device address identifies
1703  *			a specific device on a specific PCI bus segment.
1704  *			A PCI device address ia a 32-bit unsigned integer
1705  *			with the following format:
1706  *
1707  *				00000000.bbbbbbbb.dddddfff.00000000
1708  *
1709  *			Use the HV_PCI_DEVICE_BUILD() macro to construct
1710  *			such values.
1711  *
1712  *	pci_config_offset
1713  *			PCI configureation space offset.  For conventional
1714  *			PCI a value between 0 and 255.  For extended
1715  *			configuration space, a value between 0 and 4095.
1716  *
1717  *			Note: For PCI configuration space accesses, the offset
1718  *			      must be aligned to the access size.
1719  *
1720  *	error_flag	A return value which specifies if the action succeeded
1721  *			or failed.  0 means no error, non-0 means some error
1722  *			occurred while performing the service.
1723  *
1724  *	io_sync_direction
1725  *			Direction definition for pci_dma_sync(), defined
1726  *			below in HV_PCI_SYNC_*.
1727  *
1728  *	io_page_list	A list of io_page_addresses, an io_page_address is
1729  *			a real address.
1730  *
1731  *	io_page_list_p	A pointer to an io_page_list.
1732  *
1733  *	"size based byte swap" - Some functions do size based byte swapping
1734  *				 which allows sw to access pointers and
1735  *				 counters in native form when the processor
1736  *				 operates in a different endianness than the
1737  *				 IO bus.  Size-based byte swapping converts a
1738  *				 multi-byte field between big-endian and
1739  *				 little-endian format.
1740  */
1741 
1742 #define HV_PCI_MAP_ATTR_READ		0x01
1743 #define HV_PCI_MAP_ATTR_WRITE		0x02
1744 
1745 #define HV_PCI_DEVICE_BUILD(b,d,f)	\
1746 	((((b) & 0xff) << 16) | \
1747 	 (((d) & 0x1f) << 11) | \
1748 	 (((f) & 0x07) <<  8))
1749 
1750 #define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1751 	((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1752 
1753 #define HV_PCI_SYNC_FOR_DEVICE		0x01
1754 #define HV_PCI_SYNC_FOR_CPU		0x02
1755 
1756 /* pci_iommu_map()
1757  * TRAP:	HV_FAST_TRAP
1758  * FUNCTION:	HV_FAST_PCI_IOMMU_MAP
1759  * ARG0:	devhandle
1760  * ARG1:	tsbid
1761  * ARG2:	#ttes
1762  * ARG3:	io_attributes
1763  * ARG4:	io_page_list_p
1764  * RET0:	status
1765  * RET1:	#ttes mapped
1766  * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex/io_attributes
1767  *		EBADALIGN	Improperly aligned real address
1768  *		ENORADDR	Invalid real address
1769  *
1770  * Create IOMMU mappings in the sun4v device defined by the given
1771  * devhandle.  The mappings are created in the TSB defined by the
1772  * tsbnum component of the given tsbid.  The first mapping is created
1773  * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1774  * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1775  * the second at tsbnum, tsbindex + 1, etc.
1776  *
1777  * All mappings are created with the attributes defined by the io_attributes
1778  * argument.  The page mapping addresses are described in the io_page_list
1779  * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1780  * The first entry in the io_page_list is the address for the first iotte, the
1781  * 2nd for the 2nd iotte, and so on.
1782  *
1783  * Each io_page_address in the io_page_list must be appropriately aligned.
1784  * #ttes must be greater than zero.  For this version of the spec, the tsbnum
1785  * component of the given tsbid must be zero.
1786  *
1787  * Returns the actual number of mappings creates, which may be less than
1788  * or equal to the argument #ttes.  If the function returns a value which
1789  * is less than the #ttes, the caller may continus to call the function with
1790  * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1791  * mapped.
1792  *
1793  * Note: This function does not imply an iotte cache flush.  The guest must
1794  *       demap an entry before re-mapping it.
1795  */
1796 #define HV_FAST_PCI_IOMMU_MAP		0xb0
1797 
1798 /* pci_iommu_demap()
1799  * TRAP:	HV_FAST_TRAP
1800  * FUNCTION:	HV_FAST_PCI_IOMMU_DEMAP
1801  * ARG0:	devhandle
1802  * ARG1:	tsbid
1803  * ARG2:	#ttes
1804  * RET0:	status
1805  * RET1:	#ttes demapped
1806  * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1807  *
1808  * Demap and flush IOMMU mappings in the device defined by the given
1809  * devhandle.  Demaps up to #ttes entries in the TSB defined by the tsbnum
1810  * component of the given tsbid, starting at the TSB index defined by the
1811  * tsbindex component of the given tsbid.
1812  *
1813  * For this version of the spec, the tsbnum of the given tsbid must be zero.
1814  * #ttes must be greater than zero.
1815  *
1816  * Returns the actual number of ttes demapped, which may be less than or equal
1817  * to the argument #ttes.  If #ttes demapped is less than #ttes, the caller
1818  * may continue to call this function with updated tsbid and #ttes arguments
1819  * until all pages are demapped.
1820  *
1821  * Note: Entries do not have to be mapped to be demapped.  A demap of an
1822  *       unmapped page will flush the entry from the tte cache.
1823  */
1824 #define HV_FAST_PCI_IOMMU_DEMAP		0xb1
1825 
1826 /* pci_iommu_getmap()
1827  * TRAP:	HV_FAST_TRAP
1828  * FUNCTION:	HV_FAST_PCI_IOMMU_GETMAP
1829  * ARG0:	devhandle
1830  * ARG1:	tsbid
1831  * RET0:	status
1832  * RET1:	io_attributes
1833  * RET2:	real address
1834  * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1835  *		ENOMAP		Mapping is not valid, no translation exists
1836  *
1837  * Read and return the mapping in the device described by the given devhandle
1838  * and tsbid.  If successful, the io_attributes shall be returned in RET1
1839  * and the page address of the mapping shall be returned in RET2.
1840  *
1841  * For this version of the spec, the tsbnum component of the given tsbid
1842  * must be zero.
1843  */
1844 #define HV_FAST_PCI_IOMMU_GETMAP	0xb2
1845 
1846 /* pci_iommu_getbypass()
1847  * TRAP:	HV_FAST_TRAP
1848  * FUNCTION:	HV_FAST_PCI_IOMMU_GETBYPASS
1849  * ARG0:	devhandle
1850  * ARG1:	real address
1851  * ARG2:	io_attributes
1852  * RET0:	status
1853  * RET1:	io_addr
1854  * ERRORS:	EINVAL		Invalid devhandle/io_attributes
1855  *		ENORADDR	Invalid real address
1856  *		ENOTSUPPORTED	Function not supported in this implementation.
1857  *
1858  * Create a "special" mapping in the device described by the given devhandle,
1859  * for the given real address and attributes.  Return the IO address in RET1
1860  * if successful.
1861  */
1862 #define HV_FAST_PCI_IOMMU_GETBYPASS	0xb3
1863 
1864 /* pci_config_get()
1865  * TRAP:	HV_FAST_TRAP
1866  * FUNCTION:	HV_FAST_PCI_CONFIG_GET
1867  * ARG0:	devhandle
1868  * ARG1:	pci_device
1869  * ARG2:	pci_config_offset
1870  * ARG3:	size
1871  * RET0:	status
1872  * RET1:	error_flag
1873  * RET2:	data
1874  * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1875  *		EBADALIGN	pci_config_offset not size aligned
1876  *		ENOACCESS	Access to this offset is not permitted
1877  *
1878  * Read PCI configuration space for the adapter described by the given
1879  * devhandle.  Read size (1, 2, or 4) bytes of data from the given
1880  * pci_device, at pci_config_offset from the beginning of the device's
1881  * configuration space.  If there was no error, RET1 is set to zero and
1882  * RET2 is set to the data read.  Insignificant bits in RET2 are not
1883  * guaranteed to have any specific value and therefore must be ignored.
1884  *
1885  * The data returned in RET2 is size based byte swapped.
1886  *
1887  * If an error occurs during the read, set RET1 to a non-zero value.  The
1888  * given pci_config_offset must be 'size' aligned.
1889  */
1890 #define HV_FAST_PCI_CONFIG_GET		0xb4
1891 
1892 /* pci_config_put()
1893  * TRAP:	HV_FAST_TRAP
1894  * FUNCTION:	HV_FAST_PCI_CONFIG_PUT
1895  * ARG0:	devhandle
1896  * ARG1:	pci_device
1897  * ARG2:	pci_config_offset
1898  * ARG3:	size
1899  * ARG4:	data
1900  * RET0:	status
1901  * RET1:	error_flag
1902  * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1903  *		EBADALIGN	pci_config_offset not size aligned
1904  *		ENOACCESS	Access to this offset is not permitted
1905  *
1906  * Write PCI configuration space for the adapter described by the given
1907  * devhandle.  Write size (1, 2, or 4) bytes of data in a single operation,
1908  * at pci_config_offset from the beginning of the device's configuration
1909  * space.  The data argument contains the data to be written to configuration
1910  * space.  Prior to writing, the data is size based byte swapped.
1911  *
1912  * If an error occurs during the write access, do not generate an error
1913  * report, do set RET1 to a non-zero value.  Otherwise RET1 is zero.
1914  * The given pci_config_offset must be 'size' aligned.
1915  *
1916  * This function is permitted to read from offset zero in the configuration
1917  * space described by the given pci_device if necessary to ensure that the
1918  * write access to config space completes.
1919  */
1920 #define HV_FAST_PCI_CONFIG_PUT		0xb5
1921 
1922 /* pci_peek()
1923  * TRAP:	HV_FAST_TRAP
1924  * FUNCTION:	HV_FAST_PCI_PEEK
1925  * ARG0:	devhandle
1926  * ARG1:	real address
1927  * ARG2:	size
1928  * RET0:	status
1929  * RET1:	error_flag
1930  * RET2:	data
1931  * ERRORS:	EINVAL		Invalid devhandle or size
1932  *		EBADALIGN	Improperly aligned real address
1933  *		ENORADDR	Bad real address
1934  *		ENOACCESS	Guest access prohibited
1935  *
1936  * Attempt to read the IO address given by the given devhandle, real address,
1937  * and size.  Size must be 1, 2, 4, or 8.  The read is performed as a single
1938  * access operation using the given size.  If an error occurs when reading
1939  * from the given location, do not generate an error report, but return a
1940  * non-zero value in RET1.  If the read was successful, return zero in RET1
1941  * and return the actual data read in RET2.  The data returned is size based
1942  * byte swapped.
1943  *
1944  * Non-significant bits in RET2 are not guaranteed to have any specific value
1945  * and therefore must be ignored.  If RET1 is returned as non-zero, the data
1946  * value is not guaranteed to have any specific value and should be ignored.
1947  *
1948  * The caller must have permission to read from the given devhandle, real
1949  * address, which must be an IO address.  The argument real address must be a
1950  * size aligned address.
1951  *
1952  * The hypervisor implementation of this function must block access to any
1953  * IO address that the guest does not have explicit permission to access.
1954  */
1955 #define HV_FAST_PCI_PEEK		0xb6
1956 
1957 /* pci_poke()
1958  * TRAP:	HV_FAST_TRAP
1959  * FUNCTION:	HV_FAST_PCI_POKE
1960  * ARG0:	devhandle
1961  * ARG1:	real address
1962  * ARG2:	size
1963  * ARG3:	data
1964  * ARG4:	pci_device
1965  * RET0:	status
1966  * RET1:	error_flag
1967  * ERRORS:	EINVAL		Invalid devhandle, size, or pci_device
1968  *		EBADALIGN	Improperly aligned real address
1969  *		ENORADDR	Bad real address
1970  *		ENOACCESS	Guest access prohibited
1971  *		ENOTSUPPORTED	Function is not supported by implementation
1972  *
1973  * Attempt to write data to the IO address given by the given devhandle,
1974  * real address, and size.  Size must be 1, 2, 4, or 8.  The write is
1975  * performed as a single access operation using the given size. Prior to
1976  * writing the data is size based swapped.
1977  *
1978  * If an error occurs when writing to the given location, do not generate an
1979  * error report, but return a non-zero value in RET1.  If the write was
1980  * successful, return zero in RET1.
1981  *
1982  * pci_device describes the configuration address of the device being
1983  * written to.  The implementation may safely read from offset 0 with
1984  * the configuration space of the device described by devhandle and
1985  * pci_device in order to guarantee that the write portion of the operation
1986  * completes
1987  *
1988  * Any error that occurs due to the read shall be reported using the normal
1989  * error reporting mechanisms .. the read error is not suppressed.
1990  *
1991  * The caller must have permission to write to the given devhandle, real
1992  * address, which must be an IO address.  The argument real address must be a
1993  * size aligned address.  The caller must have permission to read from
1994  * the given devhandle, pci_device cofiguration space offset 0.
1995  *
1996  * The hypervisor implementation of this function must block access to any
1997  * IO address that the guest does not have explicit permission to access.
1998  */
1999 #define HV_FAST_PCI_POKE		0xb7
2000 
2001 /* pci_dma_sync()
2002  * TRAP:	HV_FAST_TRAP
2003  * FUNCTION:	HV_FAST_PCI_DMA_SYNC
2004  * ARG0:	devhandle
2005  * ARG1:	real address
2006  * ARG2:	size
2007  * ARG3:	io_sync_direction
2008  * RET0:	status
2009  * RET1:	#synced
2010  * ERRORS:	EINVAL		Invalid devhandle or io_sync_direction
2011  *		ENORADDR	Bad real address
2012  *
2013  * Synchronize a memory region described by the given real address and size,
2014  * for the device defined by the given devhandle using the direction(s)
2015  * defined by the given io_sync_direction.  The argument size is the size of
2016  * the memory region in bytes.
2017  *
2018  * Return the actual number of bytes synchronized in the return value #synced,
2019  * which may be less than or equal to the argument size.  If the return
2020  * value #synced is less than size, the caller must continue to call this
2021  * function with updated real address and size arguments until the entire
2022  * memory region is synchronized.
2023  */
2024 #define HV_FAST_PCI_DMA_SYNC		0xb8
2025 
2026 /* PCI MSI services.  */
2027 
2028 #define HV_MSITYPE_MSI32		0x00
2029 #define HV_MSITYPE_MSI64		0x01
2030 
2031 #define HV_MSIQSTATE_IDLE		0x00
2032 #define HV_MSIQSTATE_ERROR		0x01
2033 
2034 #define HV_MSIQ_INVALID			0x00
2035 #define HV_MSIQ_VALID			0x01
2036 
2037 #define HV_MSISTATE_IDLE		0x00
2038 #define HV_MSISTATE_DELIVERED		0x01
2039 
2040 #define HV_MSIVALID_INVALID		0x00
2041 #define HV_MSIVALID_VALID		0x01
2042 
2043 #define HV_PCIE_MSGTYPE_PME_MSG		0x18
2044 #define HV_PCIE_MSGTYPE_PME_ACK_MSG	0x1b
2045 #define HV_PCIE_MSGTYPE_CORR_MSG	0x30
2046 #define HV_PCIE_MSGTYPE_NONFATAL_MSG	0x31
2047 #define HV_PCIE_MSGTYPE_FATAL_MSG	0x33
2048 
2049 #define HV_MSG_INVALID			0x00
2050 #define HV_MSG_VALID			0x01
2051 
2052 /* pci_msiq_conf()
2053  * TRAP:	HV_FAST_TRAP
2054  * FUNCTION:	HV_FAST_PCI_MSIQ_CONF
2055  * ARG0:	devhandle
2056  * ARG1:	msiqid
2057  * ARG2:	real address
2058  * ARG3:	number of entries
2059  * RET0:	status
2060  * ERRORS:	EINVAL		Invalid devhandle, msiqid or nentries
2061  *		EBADALIGN	Improperly aligned real address
2062  *		ENORADDR	Bad real address
2063  *
2064  * Configure the MSI queue given by the devhandle and msiqid arguments,
2065  * and to be placed at the given real address and be of the given
2066  * number of entries.  The real address must be aligned exactly to match
2067  * the queue size.  Each queue entry is 64-bytes long, so f.e. a 32 entry
2068  * queue must be aligned on a 2048 byte real address boundary.  The MSI-EQ
2069  * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2070  *
2071  * Implementation Note: Certain implementations have fixed sized queues.  In
2072  *                      that case, number of entries must contain the correct
2073  *                      value.
2074  */
2075 #define HV_FAST_PCI_MSIQ_CONF		0xc0
2076 
2077 /* pci_msiq_info()
2078  * TRAP:	HV_FAST_TRAP
2079  * FUNCTION:	HV_FAST_PCI_MSIQ_INFO
2080  * ARG0:	devhandle
2081  * ARG1:	msiqid
2082  * RET0:	status
2083  * RET1:	real address
2084  * RET2:	number of entries
2085  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2086  *
2087  * Return the configuration information for the MSI queue described
2088  * by the given devhandle and msiqid.  The base address of the queue
2089  * is returned in ARG1 and the number of entries is returned in ARG2.
2090  * If the queue is unconfigured, the real address is undefined and the
2091  * number of entries will be returned as zero.
2092  */
2093 #define HV_FAST_PCI_MSIQ_INFO		0xc1
2094 
2095 /* pci_msiq_getvalid()
2096  * TRAP:	HV_FAST_TRAP
2097  * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2098  * ARG0:	devhandle
2099  * ARG1:	msiqid
2100  * RET0:	status
2101  * RET1:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2102  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2103  *
2104  * Get the valid state of the MSI-EQ described by the given devhandle and
2105  * msiqid.
2106  */
2107 #define HV_FAST_PCI_MSIQ_GETVALID	0xc2
2108 
2109 /* pci_msiq_setvalid()
2110  * TRAP:	HV_FAST_TRAP
2111  * FUNCTION:	HV_FAST_PCI_MSIQ_SETVALID
2112  * ARG0:	devhandle
2113  * ARG1:	msiqid
2114  * ARG2:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2115  * RET0:	status
2116  * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqvalid
2117  *				value or MSI EQ is uninitialized
2118  *
2119  * Set the valid state of the MSI-EQ described by the given devhandle and
2120  * msiqid to the given msiqvalid.
2121  */
2122 #define HV_FAST_PCI_MSIQ_SETVALID	0xc3
2123 
2124 /* pci_msiq_getstate()
2125  * TRAP:	HV_FAST_TRAP
2126  * FUNCTION:	HV_FAST_PCI_MSIQ_GETSTATE
2127  * ARG0:	devhandle
2128  * ARG1:	msiqid
2129  * RET0:	status
2130  * RET1:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2131  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2132  *
2133  * Get the state of the MSI-EQ described by the given devhandle and
2134  * msiqid.
2135  */
2136 #define HV_FAST_PCI_MSIQ_GETSTATE	0xc4
2137 
2138 /* pci_msiq_getvalid()
2139  * TRAP:	HV_FAST_TRAP
2140  * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2141  * ARG0:	devhandle
2142  * ARG1:	msiqid
2143  * ARG2:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2144  * RET0:	status
2145  * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqstate
2146  *				value or MSI EQ is uninitialized
2147  *
2148  * Set the state of the MSI-EQ described by the given devhandle and
2149  * msiqid to the given msiqvalid.
2150  */
2151 #define HV_FAST_PCI_MSIQ_SETSTATE	0xc5
2152 
2153 /* pci_msiq_gethead()
2154  * TRAP:	HV_FAST_TRAP
2155  * FUNCTION:	HV_FAST_PCI_MSIQ_GETHEAD
2156  * ARG0:	devhandle
2157  * ARG1:	msiqid
2158  * RET0:	status
2159  * RET1:	msiqhead
2160  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2161  *
2162  * Get the current MSI EQ queue head for the MSI-EQ described by the
2163  * given devhandle and msiqid.
2164  */
2165 #define HV_FAST_PCI_MSIQ_GETHEAD	0xc6
2166 
2167 /* pci_msiq_sethead()
2168  * TRAP:	HV_FAST_TRAP
2169  * FUNCTION:	HV_FAST_PCI_MSIQ_SETHEAD
2170  * ARG0:	devhandle
2171  * ARG1:	msiqid
2172  * ARG2:	msiqhead
2173  * RET0:	status
2174  * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqhead,
2175  *				or MSI EQ is uninitialized
2176  *
2177  * Set the current MSI EQ queue head for the MSI-EQ described by the
2178  * given devhandle and msiqid.
2179  */
2180 #define HV_FAST_PCI_MSIQ_SETHEAD	0xc7
2181 
2182 /* pci_msiq_gettail()
2183  * TRAP:	HV_FAST_TRAP
2184  * FUNCTION:	HV_FAST_PCI_MSIQ_GETTAIL
2185  * ARG0:	devhandle
2186  * ARG1:	msiqid
2187  * RET0:	status
2188  * RET1:	msiqtail
2189  * ERRORS:	EINVAL		Invalid devhandle or msiqid
2190  *
2191  * Get the current MSI EQ queue tail for the MSI-EQ described by the
2192  * given devhandle and msiqid.
2193  */
2194 #define HV_FAST_PCI_MSIQ_GETTAIL	0xc8
2195 
2196 /* pci_msi_getvalid()
2197  * TRAP:	HV_FAST_TRAP
2198  * FUNCTION:	HV_FAST_PCI_MSI_GETVALID
2199  * ARG0:	devhandle
2200  * ARG1:	msinum
2201  * RET0:	status
2202  * RET1:	msivalidstate
2203  * ERRORS:	EINVAL		Invalid devhandle or msinum
2204  *
2205  * Get the current valid/enabled state for the MSI defined by the
2206  * given devhandle and msinum.
2207  */
2208 #define HV_FAST_PCI_MSI_GETVALID	0xc9
2209 
2210 /* pci_msi_setvalid()
2211  * TRAP:	HV_FAST_TRAP
2212  * FUNCTION:	HV_FAST_PCI_MSI_SETVALID
2213  * ARG0:	devhandle
2214  * ARG1:	msinum
2215  * ARG2:	msivalidstate
2216  * RET0:	status
2217  * ERRORS:	EINVAL		Invalid devhandle or msinum or msivalidstate
2218  *
2219  * Set the current valid/enabled state for the MSI defined by the
2220  * given devhandle and msinum.
2221  */
2222 #define HV_FAST_PCI_MSI_SETVALID	0xca
2223 
2224 /* pci_msi_getmsiq()
2225  * TRAP:	HV_FAST_TRAP
2226  * FUNCTION:	HV_FAST_PCI_MSI_GETMSIQ
2227  * ARG0:	devhandle
2228  * ARG1:	msinum
2229  * RET0:	status
2230  * RET1:	msiqid
2231  * ERRORS:	EINVAL		Invalid devhandle or msinum or MSI is unbound
2232  *
2233  * Get the MSI EQ that the MSI defined by the given devhandle and
2234  * msinum is bound to.
2235  */
2236 #define HV_FAST_PCI_MSI_GETMSIQ		0xcb
2237 
2238 /* pci_msi_setmsiq()
2239  * TRAP:	HV_FAST_TRAP
2240  * FUNCTION:	HV_FAST_PCI_MSI_SETMSIQ
2241  * ARG0:	devhandle
2242  * ARG1:	msinum
2243  * ARG2:	msitype
2244  * ARG3:	msiqid
2245  * RET0:	status
2246  * ERRORS:	EINVAL		Invalid devhandle or msinum or msiqid
2247  *
2248  * Set the MSI EQ that the MSI defined by the given devhandle and
2249  * msinum is bound to.
2250  */
2251 #define HV_FAST_PCI_MSI_SETMSIQ		0xcc
2252 
2253 /* pci_msi_getstate()
2254  * TRAP:	HV_FAST_TRAP
2255  * FUNCTION:	HV_FAST_PCI_MSI_GETSTATE
2256  * ARG0:	devhandle
2257  * ARG1:	msinum
2258  * RET0:	status
2259  * RET1:	msistate
2260  * ERRORS:	EINVAL		Invalid devhandle or msinum
2261  *
2262  * Get the state of the MSI defined by the given devhandle and msinum.
2263  * If not initialized, return HV_MSISTATE_IDLE.
2264  */
2265 #define HV_FAST_PCI_MSI_GETSTATE	0xcd
2266 
2267 /* pci_msi_setstate()
2268  * TRAP:	HV_FAST_TRAP
2269  * FUNCTION:	HV_FAST_PCI_MSI_SETSTATE
2270  * ARG0:	devhandle
2271  * ARG1:	msinum
2272  * ARG2:	msistate
2273  * RET0:	status
2274  * ERRORS:	EINVAL		Invalid devhandle or msinum or msistate
2275  *
2276  * Set the state of the MSI defined by the given devhandle and msinum.
2277  */
2278 #define HV_FAST_PCI_MSI_SETSTATE	0xce
2279 
2280 /* pci_msg_getmsiq()
2281  * TRAP:	HV_FAST_TRAP
2282  * FUNCTION:	HV_FAST_PCI_MSG_GETMSIQ
2283  * ARG0:	devhandle
2284  * ARG1:	msgtype
2285  * RET0:	status
2286  * RET1:	msiqid
2287  * ERRORS:	EINVAL		Invalid devhandle or msgtype
2288  *
2289  * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2290  */
2291 #define HV_FAST_PCI_MSG_GETMSIQ		0xd0
2292 
2293 /* pci_msg_setmsiq()
2294  * TRAP:	HV_FAST_TRAP
2295  * FUNCTION:	HV_FAST_PCI_MSG_SETMSIQ
2296  * ARG0:	devhandle
2297  * ARG1:	msgtype
2298  * ARG2:	msiqid
2299  * RET0:	status
2300  * ERRORS:	EINVAL		Invalid devhandle, msgtype, or msiqid
2301  *
2302  * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2303  */
2304 #define HV_FAST_PCI_MSG_SETMSIQ		0xd1
2305 
2306 /* pci_msg_getvalid()
2307  * TRAP:	HV_FAST_TRAP
2308  * FUNCTION:	HV_FAST_PCI_MSG_GETVALID
2309  * ARG0:	devhandle
2310  * ARG1:	msgtype
2311  * RET0:	status
2312  * RET1:	msgvalidstate
2313  * ERRORS:	EINVAL		Invalid devhandle or msgtype
2314  *
2315  * Get the valid/enabled state of the MSG defined by the given
2316  * devhandle and msgtype.
2317  */
2318 #define HV_FAST_PCI_MSG_GETVALID	0xd2
2319 
2320 /* pci_msg_setvalid()
2321  * TRAP:	HV_FAST_TRAP
2322  * FUNCTION:	HV_FAST_PCI_MSG_SETVALID
2323  * ARG0:	devhandle
2324  * ARG1:	msgtype
2325  * ARG2:	msgvalidstate
2326  * RET0:	status
2327  * ERRORS:	EINVAL		Invalid devhandle or msgtype or msgvalidstate
2328  *
2329  * Set the valid/enabled state of the MSG defined by the given
2330  * devhandle and msgtype.
2331  */
2332 #define HV_FAST_PCI_MSG_SETVALID	0xd3
2333 
2334 /* Logical Domain Channel services.  */
2335 
2336 #define LDC_CHANNEL_DOWN		0
2337 #define LDC_CHANNEL_UP			1
2338 #define LDC_CHANNEL_RESETTING		2
2339 
2340 /* ldc_tx_qconf()
2341  * TRAP:	HV_FAST_TRAP
2342  * FUNCTION:	HV_FAST_LDC_TX_QCONF
2343  * ARG0:	channel ID
2344  * ARG1:	real address base of queue
2345  * ARG2:	num entries in queue
2346  * RET0:	status
2347  *
2348  * Configure transmit queue for the LDC endpoint specified by the
2349  * given channel ID, to be placed at the given real address, and
2350  * be of the given num entries.  Num entries must be a power of two.
2351  * The real address base of the queue must be aligned on the queue
2352  * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2353  * queue must be aligned on a 2048 byte real address boundary.
2354  *
2355  * Upon configuration of a valid transmit queue the head and tail
2356  * pointers are set to a hypervisor specific identical value indicating
2357  * that the queue initially is empty.
2358  *
2359  * The endpoint's transmit queue is un-configured if num entries is zero.
2360  *
2361  * The maximum number of entries for each queue for a specific cpu may be
2362  * determined from the machine description.  A transmit queue may be
2363  * specified even in the event that the LDC is down (peer endpoint has no
2364  * receive queue specified).  Transmission will begin as soon as the peer
2365  * endpoint defines a receive queue.
2366  *
2367  * It is recommended that a guest wait for a transmit queue to empty prior
2368  * to reconfiguring it, or un-configuring it.  Re or un-configuring of a
2369  * non-empty transmit queue behaves exactly as defined above, however it
2370  * is undefined as to how many of the pending entries in the original queue
2371  * will be delivered prior to the re-configuration taking effect.
2372  * Furthermore, as the queue configuration causes a reset of the head and
2373  * tail pointers there is no way for a guest to determine how many entries
2374  * have been sent after the configuration operation.
2375  */
2376 #define HV_FAST_LDC_TX_QCONF		0xe0
2377 
2378 /* ldc_tx_qinfo()
2379  * TRAP:	HV_FAST_TRAP
2380  * FUNCTION:	HV_FAST_LDC_TX_QINFO
2381  * ARG0:	channel ID
2382  * RET0:	status
2383  * RET1:	real address base of queue
2384  * RET2:	num entries in queue
2385  *
2386  * Return the configuration info for the transmit queue of LDC endpoint
2387  * defined by the given channel ID.  The real address is the currently
2388  * defined real address base of the defined queue, and num entries is the
2389  * size of the queue in terms of number of entries.
2390  *
2391  * If the specified channel ID is a valid endpoint number, but no transmit
2392  * queue has been defined this service will return success, but with num
2393  * entries set to zero and the real address will have an undefined value.
2394  */
2395 #define HV_FAST_LDC_TX_QINFO		0xe1
2396 
2397 /* ldc_tx_get_state()
2398  * TRAP:	HV_FAST_TRAP
2399  * FUNCTION:	HV_FAST_LDC_TX_GET_STATE
2400  * ARG0:	channel ID
2401  * RET0:	status
2402  * RET1:	head offset
2403  * RET2:	tail offset
2404  * RET3:	channel state
2405  *
2406  * Return the transmit state, and the head and tail queue pointers, for
2407  * the transmit queue of the LDC endpoint defined by the given channel ID.
2408  * The head and tail values are the byte offset of the head and tail
2409  * positions of the transmit queue for the specified endpoint.
2410  */
2411 #define HV_FAST_LDC_TX_GET_STATE	0xe2
2412 
2413 /* ldc_tx_set_qtail()
2414  * TRAP:	HV_FAST_TRAP
2415  * FUNCTION:	HV_FAST_LDC_TX_SET_QTAIL
2416  * ARG0:	channel ID
2417  * ARG1:	tail offset
2418  * RET0:	status
2419  *
2420  * Update the tail pointer for the transmit queue associated with the LDC
2421  * endpoint defined by the given channel ID.  The tail offset specified
2422  * must be aligned on a 64 byte boundary, and calculated so as to increase
2423  * the number of pending entries on the transmit queue.  Any attempt to
2424  * decrease the number of pending transmit queue entires is considered
2425  * an invalid tail offset and will result in an EINVAL error.
2426  *
2427  * Since the tail of the transmit queue may not be moved backwards, the
2428  * transmit queue may be flushed by configuring a new transmit queue,
2429  * whereupon the hypervisor will configure the initial transmit head and
2430  * tail pointers to be equal.
2431  */
2432 #define HV_FAST_LDC_TX_SET_QTAIL	0xe3
2433 
2434 /* ldc_rx_qconf()
2435  * TRAP:	HV_FAST_TRAP
2436  * FUNCTION:	HV_FAST_LDC_RX_QCONF
2437  * ARG0:	channel ID
2438  * ARG1:	real address base of queue
2439  * ARG2:	num entries in queue
2440  * RET0:	status
2441  *
2442  * Configure receive queue for the LDC endpoint specified by the
2443  * given channel ID, to be placed at the given real address, and
2444  * be of the given num entries.  Num entries must be a power of two.
2445  * The real address base of the queue must be aligned on the queue
2446  * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2447  * queue must be aligned on a 2048 byte real address boundary.
2448  *
2449  * The endpoint's transmit queue is un-configured if num entries is zero.
2450  *
2451  * If a valid receive queue is specified for a local endpoint the LDC is
2452  * in the up state for the purpose of transmission to this endpoint.
2453  *
2454  * The maximum number of entries for each queue for a specific cpu may be
2455  * determined from the machine description.
2456  *
2457  * As receive queue configuration causes a reset of the queue's head and
2458  * tail pointers there is no way for a gues to determine how many entries
2459  * have been received between a preceding ldc_get_rx_state() API call
2460  * and the completion of the configuration operation.  It should be noted
2461  * that datagram delivery is not guaranteed via domain channels anyway,
2462  * and therefore any higher protocol should be resilient to datagram
2463  * loss if necessary.  However, to overcome this specific race potential
2464  * it is recommended, for example, that a higher level protocol be employed
2465  * to ensure either retransmission, or ensure that no datagrams are pending
2466  * on the peer endpoint's transmit queue prior to the configuration process.
2467  */
2468 #define HV_FAST_LDC_RX_QCONF		0xe4
2469 
2470 /* ldc_rx_qinfo()
2471  * TRAP:	HV_FAST_TRAP
2472  * FUNCTION:	HV_FAST_LDC_RX_QINFO
2473  * ARG0:	channel ID
2474  * RET0:	status
2475  * RET1:	real address base of queue
2476  * RET2:	num entries in queue
2477  *
2478  * Return the configuration info for the receive queue of LDC endpoint
2479  * defined by the given channel ID.  The real address is the currently
2480  * defined real address base of the defined queue, and num entries is the
2481  * size of the queue in terms of number of entries.
2482  *
2483  * If the specified channel ID is a valid endpoint number, but no receive
2484  * queue has been defined this service will return success, but with num
2485  * entries set to zero and the real address will have an undefined value.
2486  */
2487 #define HV_FAST_LDC_RX_QINFO		0xe5
2488 
2489 /* ldc_rx_get_state()
2490  * TRAP:	HV_FAST_TRAP
2491  * FUNCTION:	HV_FAST_LDC_RX_GET_STATE
2492  * ARG0:	channel ID
2493  * RET0:	status
2494  * RET1:	head offset
2495  * RET2:	tail offset
2496  * RET3:	channel state
2497  *
2498  * Return the receive state, and the head and tail queue pointers, for
2499  * the receive queue of the LDC endpoint defined by the given channel ID.
2500  * The head and tail values are the byte offset of the head and tail
2501  * positions of the receive queue for the specified endpoint.
2502  */
2503 #define HV_FAST_LDC_RX_GET_STATE	0xe6
2504 
2505 /* ldc_rx_set_qhead()
2506  * TRAP:	HV_FAST_TRAP
2507  * FUNCTION:	HV_FAST_LDC_RX_SET_QHEAD
2508  * ARG0:	channel ID
2509  * ARG1:	head offset
2510  * RET0:	status
2511  *
2512  * Update the head pointer for the receive queue associated with the LDC
2513  * endpoint defined by the given channel ID.  The head offset specified
2514  * must be aligned on a 64 byte boundary, and calculated so as to decrease
2515  * the number of pending entries on the receive queue.  Any attempt to
2516  * increase the number of pending receive queue entires is considered
2517  * an invalid head offset and will result in an EINVAL error.
2518  *
2519  * The receive queue may be flushed by setting the head offset equal
2520  * to the current tail offset.
2521  */
2522 #define HV_FAST_LDC_RX_SET_QHEAD	0xe7
2523 
2524 /* LDC Map Table Entry.  Each slot is defined by a translation table
2525  * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
2526  * hypervisor invalidation cookie.
2527  */
2528 #define LDC_MTE_PADDR	0x0fffffffffffe000 /* pa[55:13]          */
2529 #define LDC_MTE_COPY_W	0x0000000000000400 /* copy write access  */
2530 #define LDC_MTE_COPY_R	0x0000000000000200 /* copy read access   */
2531 #define LDC_MTE_IOMMU_W	0x0000000000000100 /* IOMMU write access */
2532 #define LDC_MTE_IOMMU_R	0x0000000000000080 /* IOMMU read access  */
2533 #define LDC_MTE_EXEC	0x0000000000000040 /* execute            */
2534 #define LDC_MTE_WRITE	0x0000000000000020 /* read               */
2535 #define LDC_MTE_READ	0x0000000000000010 /* write              */
2536 #define LDC_MTE_SZALL	0x000000000000000f /* page size bits     */
2537 #define LDC_MTE_SZ16GB	0x0000000000000007 /* 16GB page          */
2538 #define LDC_MTE_SZ2GB	0x0000000000000006 /* 2GB page           */
2539 #define LDC_MTE_SZ256MB	0x0000000000000005 /* 256MB page         */
2540 #define LDC_MTE_SZ32MB	0x0000000000000004 /* 32MB page          */
2541 #define LDC_MTE_SZ4MB	0x0000000000000003 /* 4MB page           */
2542 #define LDC_MTE_SZ512K	0x0000000000000002 /* 512K page          */
2543 #define LDC_MTE_SZ64K	0x0000000000000001 /* 64K page           */
2544 #define LDC_MTE_SZ8K	0x0000000000000000 /* 8K page            */
2545 
2546 #ifndef __ASSEMBLY__
2547 struct ldc_mtable_entry {
2548 	unsigned long	mte;
2549 	unsigned long	cookie;
2550 };
2551 #endif
2552 
2553 /* ldc_set_map_table()
2554  * TRAP:	HV_FAST_TRAP
2555  * FUNCTION:	HV_FAST_LDC_SET_MAP_TABLE
2556  * ARG0:	channel ID
2557  * ARG1:	table real address
2558  * ARG2:	num entries
2559  * RET0:	status
2560  *
2561  * Register the MTE table at the given table real address, with the
2562  * specified num entries, for the LDC indicated by the given channel
2563  * ID.
2564  */
2565 #define HV_FAST_LDC_SET_MAP_TABLE	0xea
2566 
2567 /* ldc_get_map_table()
2568  * TRAP:	HV_FAST_TRAP
2569  * FUNCTION:	HV_FAST_LDC_GET_MAP_TABLE
2570  * ARG0:	channel ID
2571  * RET0:	status
2572  * RET1:	table real address
2573  * RET2:	num entries
2574  *
2575  * Return the configuration of the current mapping table registered
2576  * for the given channel ID.
2577  */
2578 #define HV_FAST_LDC_GET_MAP_TABLE	0xeb
2579 
2580 #define LDC_COPY_IN	0
2581 #define LDC_COPY_OUT	1
2582 
2583 /* ldc_copy()
2584  * TRAP:	HV_FAST_TRAP
2585  * FUNCTION:	HV_FAST_LDC_COPY
2586  * ARG0:	channel ID
2587  * ARG1:	LDC_COPY_* direction code
2588  * ARG2:	target real address
2589  * ARG3:	local real address
2590  * ARG4:	length in bytes
2591  * RET0:	status
2592  * RET1:	actual length in bytes
2593  */
2594 #define HV_FAST_LDC_COPY		0xec
2595 
2596 #define LDC_MEM_READ	1
2597 #define LDC_MEM_WRITE	2
2598 #define LDC_MEM_EXEC	4
2599 
2600 /* ldc_mapin()
2601  * TRAP:	HV_FAST_TRAP
2602  * FUNCTION:	HV_FAST_LDC_MAPIN
2603  * ARG0:	channel ID
2604  * ARG1:	cookie
2605  * RET0:	status
2606  * RET1:	real address
2607  * RET2:	LDC_MEM_* permissions
2608  */
2609 #define HV_FAST_LDC_MAPIN		0xed
2610 
2611 /* ldc_unmap()
2612  * TRAP:	HV_FAST_TRAP
2613  * FUNCTION:	HV_FAST_LDC_UNMAP
2614  * ARG0:	real address
2615  * RET0:	status
2616  */
2617 #define HV_FAST_LDC_UNMAP		0xee
2618 
2619 /* ldc_revoke()
2620  * TRAP:	HV_FAST_TRAP
2621  * FUNCTION:	HV_FAST_LDC_REVOKE
2622  * ARG0:	channel ID
2623  * ARG1:	cookie
2624  * ARG2:	ldc_mtable_entry cookie
2625  * RET0:	status
2626  */
2627 #define HV_FAST_LDC_REVOKE		0xef
2628 
2629 #ifndef __ASSEMBLY__
2630 extern unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
2631 					unsigned long ra,
2632 					unsigned long num_entries);
2633 extern unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
2634 					unsigned long *ra,
2635 					unsigned long *num_entries);
2636 extern unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
2637 					    unsigned long *head_off,
2638 					    unsigned long *tail_off,
2639 					    unsigned long *chan_state);
2640 extern unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
2641 					    unsigned long tail_off);
2642 extern unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
2643 					unsigned long ra,
2644 					unsigned long num_entries);
2645 extern unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
2646 					unsigned long *ra,
2647 					unsigned long *num_entries);
2648 extern unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
2649 					    unsigned long *head_off,
2650 					    unsigned long *tail_off,
2651 					    unsigned long *chan_state);
2652 extern unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
2653 					    unsigned long head_off);
2654 extern unsigned long sun4v_ldc_set_map_table(unsigned long channel,
2655 					     unsigned long ra,
2656 					     unsigned long num_entries);
2657 extern unsigned long sun4v_ldc_get_map_table(unsigned long channel,
2658 					     unsigned long *ra,
2659 					     unsigned long *num_entries);
2660 extern unsigned long sun4v_ldc_copy(unsigned long channel,
2661 				    unsigned long dir_code,
2662 				    unsigned long tgt_raddr,
2663 				    unsigned long lcl_raddr,
2664 				    unsigned long len,
2665 				    unsigned long *actual_len);
2666 extern unsigned long sun4v_ldc_mapin(unsigned long channel,
2667 				     unsigned long cookie,
2668 				     unsigned long *ra,
2669 				     unsigned long *perm);
2670 extern unsigned long sun4v_ldc_unmap(unsigned long ra);
2671 extern unsigned long sun4v_ldc_revoke(unsigned long channel,
2672 				      unsigned long cookie,
2673 				      unsigned long mte_cookie);
2674 #endif
2675 
2676 /* Performance counter services.  */
2677 
2678 #define HV_PERF_JBUS_PERF_CTRL_REG	0x00
2679 #define HV_PERF_JBUS_PERF_CNT_REG	0x01
2680 #define HV_PERF_DRAM_PERF_CTRL_REG_0	0x02
2681 #define HV_PERF_DRAM_PERF_CNT_REG_0	0x03
2682 #define HV_PERF_DRAM_PERF_CTRL_REG_1	0x04
2683 #define HV_PERF_DRAM_PERF_CNT_REG_1	0x05
2684 #define HV_PERF_DRAM_PERF_CTRL_REG_2	0x06
2685 #define HV_PERF_DRAM_PERF_CNT_REG_2	0x07
2686 #define HV_PERF_DRAM_PERF_CTRL_REG_3	0x08
2687 #define HV_PERF_DRAM_PERF_CNT_REG_3	0x09
2688 
2689 /* get_perfreg()
2690  * TRAP:	HV_FAST_TRAP
2691  * FUNCTION:	HV_FAST_GET_PERFREG
2692  * ARG0:	performance reg number
2693  * RET0:	status
2694  * RET1:	performance reg value
2695  * ERRORS:	EINVAL		Invalid performance register number
2696  *		ENOACCESS	No access allowed to performance counters
2697  *
2698  * Read the value of the given DRAM/JBUS performance counter/control register.
2699  */
2700 #define HV_FAST_GET_PERFREG		0x100
2701 
2702 /* set_perfreg()
2703  * TRAP:	HV_FAST_TRAP
2704  * FUNCTION:	HV_FAST_SET_PERFREG
2705  * ARG0:	performance reg number
2706  * ARG1:	performance reg value
2707  * RET0:	status
2708  * ERRORS:	EINVAL		Invalid performance register number
2709  *		ENOACCESS	No access allowed to performance counters
2710  *
2711  * Write the given performance reg value to the given DRAM/JBUS
2712  * performance counter/control register.
2713  */
2714 #define HV_FAST_SET_PERFREG		0x101
2715 
2716 #define HV_N2_PERF_SPARC_CTL		0x0
2717 #define HV_N2_PERF_DRAM_CTL0		0x1
2718 #define HV_N2_PERF_DRAM_CNT0		0x2
2719 #define HV_N2_PERF_DRAM_CTL1		0x3
2720 #define HV_N2_PERF_DRAM_CNT1		0x4
2721 #define HV_N2_PERF_DRAM_CTL2		0x5
2722 #define HV_N2_PERF_DRAM_CNT2		0x6
2723 #define HV_N2_PERF_DRAM_CTL3		0x7
2724 #define HV_N2_PERF_DRAM_CNT3		0x8
2725 
2726 #define HV_FAST_N2_GET_PERFREG		0x104
2727 #define HV_FAST_N2_SET_PERFREG		0x105
2728 
2729 #ifndef __ASSEMBLY__
2730 extern unsigned long sun4v_niagara_getperf(unsigned long reg,
2731 					   unsigned long *val);
2732 extern unsigned long sun4v_niagara_setperf(unsigned long reg,
2733 					   unsigned long val);
2734 extern unsigned long sun4v_niagara2_getperf(unsigned long reg,
2735 					    unsigned long *val);
2736 extern unsigned long sun4v_niagara2_setperf(unsigned long reg,
2737 					    unsigned long val);
2738 #endif
2739 
2740 /* MMU statistics services.
2741  *
2742  * The hypervisor maintains MMU statistics and privileged code provides
2743  * a buffer where these statistics can be collected.  It is continually
2744  * updated once configured.  The layout is as follows:
2745  */
2746 #ifndef __ASSEMBLY__
2747 struct hv_mmu_statistics {
2748 	unsigned long immu_tsb_hits_ctx0_8k_tte;
2749 	unsigned long immu_tsb_ticks_ctx0_8k_tte;
2750 	unsigned long immu_tsb_hits_ctx0_64k_tte;
2751 	unsigned long immu_tsb_ticks_ctx0_64k_tte;
2752 	unsigned long __reserved1[2];
2753 	unsigned long immu_tsb_hits_ctx0_4mb_tte;
2754 	unsigned long immu_tsb_ticks_ctx0_4mb_tte;
2755 	unsigned long __reserved2[2];
2756 	unsigned long immu_tsb_hits_ctx0_256mb_tte;
2757 	unsigned long immu_tsb_ticks_ctx0_256mb_tte;
2758 	unsigned long __reserved3[4];
2759 	unsigned long immu_tsb_hits_ctxnon0_8k_tte;
2760 	unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
2761 	unsigned long immu_tsb_hits_ctxnon0_64k_tte;
2762 	unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
2763 	unsigned long __reserved4[2];
2764 	unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
2765 	unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
2766 	unsigned long __reserved5[2];
2767 	unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
2768 	unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
2769 	unsigned long __reserved6[4];
2770 	unsigned long dmmu_tsb_hits_ctx0_8k_tte;
2771 	unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
2772 	unsigned long dmmu_tsb_hits_ctx0_64k_tte;
2773 	unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
2774 	unsigned long __reserved7[2];
2775 	unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
2776 	unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
2777 	unsigned long __reserved8[2];
2778 	unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
2779 	unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
2780 	unsigned long __reserved9[4];
2781 	unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
2782 	unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
2783 	unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
2784 	unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
2785 	unsigned long __reserved10[2];
2786 	unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
2787 	unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
2788 	unsigned long __reserved11[2];
2789 	unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
2790 	unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
2791 	unsigned long __reserved12[4];
2792 };
2793 #endif
2794 
2795 /* mmustat_conf()
2796  * TRAP:	HV_FAST_TRAP
2797  * FUNCTION:	HV_FAST_MMUSTAT_CONF
2798  * ARG0:	real address
2799  * RET0:	status
2800  * RET1:	real address
2801  * ERRORS:	ENORADDR	Invalid real address
2802  *		EBADALIGN	Real address not aligned on 64-byte boundary
2803  *		EBADTRAP	API not supported on this processor
2804  *
2805  * Enable MMU statistic gathering using the buffer at the given real
2806  * address on the current virtual CPU.  The new buffer real address
2807  * is given in ARG1, and the previously specified buffer real address
2808  * is returned in RET1, or is returned as zero for the first invocation.
2809  *
2810  * If the passed in real address argument is zero, this will disable
2811  * MMU statistic collection on the current virtual CPU.  If an error is
2812  * returned then no statistics are collected.
2813  *
2814  * The buffer contents should be initialized to all zeros before being
2815  * given to the hypervisor or else the statistics will be meaningless.
2816  */
2817 #define HV_FAST_MMUSTAT_CONF		0x102
2818 
2819 /* mmustat_info()
2820  * TRAP:	HV_FAST_TRAP
2821  * FUNCTION:	HV_FAST_MMUSTAT_INFO
2822  * RET0:	status
2823  * RET1:	real address
2824  * ERRORS:	EBADTRAP	API not supported on this processor
2825  *
2826  * Return the current state and real address of the currently configured
2827  * MMU statistics buffer on the current virtual CPU.
2828  */
2829 #define HV_FAST_MMUSTAT_INFO		0x103
2830 
2831 #ifndef __ASSEMBLY__
2832 extern unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
2833 extern unsigned long sun4v_mmustat_info(unsigned long *ra);
2834 #endif
2835 
2836 /* NCS crypto services  */
2837 
2838 /* ncs_request() sub-function numbers */
2839 #define HV_NCS_QCONF			0x01
2840 #define HV_NCS_QTAIL_UPDATE		0x02
2841 
2842 #ifndef __ASSEMBLY__
2843 struct hv_ncs_queue_entry {
2844 	/* MAU Control Register */
2845 	unsigned long	mau_control;
2846 #define MAU_CONTROL_INV_PARITY	0x0000000000002000
2847 #define MAU_CONTROL_STRAND	0x0000000000001800
2848 #define MAU_CONTROL_BUSY	0x0000000000000400
2849 #define MAU_CONTROL_INT		0x0000000000000200
2850 #define MAU_CONTROL_OP		0x00000000000001c0
2851 #define MAU_CONTROL_OP_SHIFT	6
2852 #define MAU_OP_LOAD_MA_MEMORY	0x0
2853 #define MAU_OP_STORE_MA_MEMORY	0x1
2854 #define MAU_OP_MODULAR_MULT	0x2
2855 #define MAU_OP_MODULAR_REDUCE	0x3
2856 #define MAU_OP_MODULAR_EXP_LOOP	0x4
2857 #define MAU_CONTROL_LEN		0x000000000000003f
2858 #define MAU_CONTROL_LEN_SHIFT	0
2859 
2860 	/* Real address of bytes to load or store bytes
2861 	 * into/out-of the MAU.
2862 	 */
2863 	unsigned long	mau_mpa;
2864 
2865 	/* Modular Arithmetic MA Offset Register.  */
2866 	unsigned long	mau_ma;
2867 
2868 	/* Modular Arithmetic N Prime Register.  */
2869 	unsigned long	mau_np;
2870 };
2871 
2872 struct hv_ncs_qconf_arg {
2873 	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2874 	unsigned long	base;     /* Real address base of queue */
2875 	unsigned long	end;	  /* Real address end of queue */
2876 	unsigned long	num_ents; /* Number of entries in queue */
2877 };
2878 
2879 struct hv_ncs_qtail_update_arg {
2880 	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2881 	unsigned long	tail;     /* New tail index to use */
2882 	unsigned long	syncflag; /* only SYNCFLAG_SYNC is implemented */
2883 #define HV_NCS_SYNCFLAG_SYNC	0x00
2884 #define HV_NCS_SYNCFLAG_ASYNC	0x01
2885 };
2886 #endif
2887 
2888 /* ncs_request()
2889  * TRAP:	HV_FAST_TRAP
2890  * FUNCTION:	HV_FAST_NCS_REQUEST
2891  * ARG0:	NCS sub-function
2892  * ARG1:	sub-function argument real address
2893  * ARG2:	size in bytes of sub-function argument
2894  * RET0:	status
2895  *
2896  * The MAU chip of the Niagara processor is not directly accessible
2897  * to privileged code, instead it is programmed indirectly via this
2898  * hypervisor API.
2899  *
2900  * The interfaces defines a queue of MAU operations to perform.
2901  * Privileged code registers a queue with the hypervisor by invoking
2902  * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
2903  * base, end, and number of entries of the queue.  Each queue entry
2904  * contains a MAU register struct block.
2905  *
2906  * The privileged code then proceeds to add entries to the queue and
2907  * then invoke the HV_NCS_QTAIL_UPDATE sub-function.  Since only
2908  * synchronous operations are supported by the current hypervisor,
2909  * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
2910  * completion and return HV_EOK, or return an error code.
2911  *
2912  * The real address of the sub-function argument must be aligned on at
2913  * least an 8-byte boundary.
2914  *
2915  * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
2916  * offset, into the queue and must be less than or equal the 'num_ents'
2917  * argument given in the HV_NCS_QCONF call.
2918  */
2919 #define HV_FAST_NCS_REQUEST		0x110
2920 
2921 #ifndef __ASSEMBLY__
2922 extern unsigned long sun4v_ncs_request(unsigned long request,
2923 				       unsigned long arg_ra,
2924 				       unsigned long arg_size);
2925 #endif
2926 
2927 #define HV_FAST_FIRE_GET_PERFREG	0x120
2928 #define HV_FAST_FIRE_SET_PERFREG	0x121
2929 
2930 #define HV_FAST_REBOOT_DATA_SET		0x172
2931 
2932 #ifndef __ASSEMBLY__
2933 extern unsigned long sun4v_reboot_data_set(unsigned long ra,
2934 					   unsigned long len);
2935 #endif
2936 
2937 #define HV_FAST_VT_GET_PERFREG		0x184
2938 #define HV_FAST_VT_SET_PERFREG		0x185
2939 
2940 #ifndef __ASSEMBLY__
2941 extern unsigned long sun4v_vt_get_perfreg(unsigned long reg_num,
2942 					  unsigned long *reg_val);
2943 extern unsigned long sun4v_vt_set_perfreg(unsigned long reg_num,
2944 					  unsigned long reg_val);
2945 #endif
2946 
2947 /* Function numbers for HV_CORE_TRAP.  */
2948 #define HV_CORE_SET_VER			0x00
2949 #define HV_CORE_PUTCHAR			0x01
2950 #define HV_CORE_EXIT			0x02
2951 #define HV_CORE_GET_VER			0x03
2952 
2953 /* Hypervisor API groups for use with HV_CORE_SET_VER and
2954  * HV_CORE_GET_VER.
2955  */
2956 #define HV_GRP_SUN4V			0x0000
2957 #define HV_GRP_CORE			0x0001
2958 #define HV_GRP_INTR			0x0002
2959 #define HV_GRP_SOFT_STATE		0x0003
2960 #define HV_GRP_TM			0x0080
2961 #define HV_GRP_PCI			0x0100
2962 #define HV_GRP_LDOM			0x0101
2963 #define HV_GRP_SVC_CHAN			0x0102
2964 #define HV_GRP_NCS			0x0103
2965 #define HV_GRP_RNG			0x0104
2966 #define HV_GRP_PBOOT			0x0105
2967 #define HV_GRP_TPM			0x0107
2968 #define HV_GRP_SDIO			0x0108
2969 #define HV_GRP_SDIO_ERR			0x0109
2970 #define HV_GRP_REBOOT_DATA		0x0110
2971 #define HV_GRP_NIAG_PERF		0x0200
2972 #define HV_GRP_FIRE_PERF		0x0201
2973 #define HV_GRP_N2_CPU			0x0202
2974 #define HV_GRP_NIU			0x0204
2975 #define HV_GRP_VF_CPU			0x0205
2976 #define HV_GRP_KT_CPU			0x0209
2977 #define HV_GRP_VT_CPU			0x020c
2978 #define HV_GRP_DIAG			0x0300
2979 
2980 #ifndef __ASSEMBLY__
2981 extern unsigned long sun4v_get_version(unsigned long group,
2982 				       unsigned long *major,
2983 				       unsigned long *minor);
2984 extern unsigned long sun4v_set_version(unsigned long group,
2985 				       unsigned long major,
2986 				       unsigned long minor,
2987 				       unsigned long *actual_minor);
2988 
2989 extern int sun4v_hvapi_register(unsigned long group, unsigned long major,
2990 				unsigned long *minor);
2991 extern void sun4v_hvapi_unregister(unsigned long group);
2992 extern int sun4v_hvapi_get(unsigned long group,
2993 			   unsigned long *major,
2994 			   unsigned long *minor);
2995 extern void sun4v_hvapi_init(void);
2996 #endif
2997 
2998 #endif /* !(_SPARC64_HYPERVISOR_H) */
2999