• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *	David Mosberger-Tang <davidm@hpl.hp.com>
9  *	Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *	Fenghua Yu <fenghua.yu@intel.com>
12  *	Bibo Mao <bibo.mao@intel.com>
13  *	Chandramouli Narayanan <mouli@linux.intel.com>
14  *	Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *	Skip non-WB memory and ignore empty memory ranges.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/slab.h>
38 #include <linux/memblock.h>
39 #include <linux/spinlock.h>
40 #include <linux/uaccess.h>
41 #include <linux/time.h>
42 #include <linux/io.h>
43 #include <linux/reboot.h>
44 #include <linux/bcd.h>
45 
46 #include <asm/setup.h>
47 #include <asm/efi.h>
48 #include <asm/time.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/x86_init.h>
52 #include <asm/rtc.h>
53 
54 #define EFI_DEBUG	1
55 
56 #define EFI_MIN_RESERVE 5120
57 
58 #define EFI_DUMMY_GUID \
59 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
60 
61 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
62 
63 struct efi __read_mostly efi = {
64 	.mps        = EFI_INVALID_TABLE_ADDR,
65 	.acpi       = EFI_INVALID_TABLE_ADDR,
66 	.acpi20     = EFI_INVALID_TABLE_ADDR,
67 	.smbios     = EFI_INVALID_TABLE_ADDR,
68 	.sal_systab = EFI_INVALID_TABLE_ADDR,
69 	.boot_info  = EFI_INVALID_TABLE_ADDR,
70 	.hcdp       = EFI_INVALID_TABLE_ADDR,
71 	.uga        = EFI_INVALID_TABLE_ADDR,
72 	.uv_systab  = EFI_INVALID_TABLE_ADDR,
73 };
74 EXPORT_SYMBOL(efi);
75 
76 struct efi_memory_map memmap;
77 
78 static struct efi efi_phys __initdata;
79 static efi_system_table_t efi_systab __initdata;
80 
81 unsigned long x86_efi_facility;
82 
83 /*
84  * Returns 1 if 'facility' is enabled, 0 otherwise.
85  */
efi_enabled(int facility)86 int efi_enabled(int facility)
87 {
88 	return test_bit(facility, &x86_efi_facility) != 0;
89 }
90 EXPORT_SYMBOL(efi_enabled);
91 
92 static bool __initdata disable_runtime = false;
setup_noefi(char * arg)93 static int __init setup_noefi(char *arg)
94 {
95 	disable_runtime = true;
96 	return 0;
97 }
98 early_param("noefi", setup_noefi);
99 
100 int add_efi_memmap;
101 EXPORT_SYMBOL(add_efi_memmap);
102 
setup_add_efi_memmap(char * arg)103 static int __init setup_add_efi_memmap(char *arg)
104 {
105 	add_efi_memmap = 1;
106 	return 0;
107 }
108 early_param("add_efi_memmap", setup_add_efi_memmap);
109 
110 static bool efi_no_storage_paranoia;
111 
setup_storage_paranoia(char * arg)112 static int __init setup_storage_paranoia(char *arg)
113 {
114 	efi_no_storage_paranoia = true;
115 	return 0;
116 }
117 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
118 
119 
virt_efi_get_time(efi_time_t * tm,efi_time_cap_t * tc)120 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
121 {
122 	unsigned long flags;
123 	efi_status_t status;
124 
125 	spin_lock_irqsave(&rtc_lock, flags);
126 	status = efi_call_virt2(get_time, tm, tc);
127 	spin_unlock_irqrestore(&rtc_lock, flags);
128 	return status;
129 }
130 
virt_efi_set_time(efi_time_t * tm)131 static efi_status_t virt_efi_set_time(efi_time_t *tm)
132 {
133 	unsigned long flags;
134 	efi_status_t status;
135 
136 	spin_lock_irqsave(&rtc_lock, flags);
137 	status = efi_call_virt1(set_time, tm);
138 	spin_unlock_irqrestore(&rtc_lock, flags);
139 	return status;
140 }
141 
virt_efi_get_wakeup_time(efi_bool_t * enabled,efi_bool_t * pending,efi_time_t * tm)142 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
143 					     efi_bool_t *pending,
144 					     efi_time_t *tm)
145 {
146 	unsigned long flags;
147 	efi_status_t status;
148 
149 	spin_lock_irqsave(&rtc_lock, flags);
150 	status = efi_call_virt3(get_wakeup_time,
151 				enabled, pending, tm);
152 	spin_unlock_irqrestore(&rtc_lock, flags);
153 	return status;
154 }
155 
virt_efi_set_wakeup_time(efi_bool_t enabled,efi_time_t * tm)156 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
157 {
158 	unsigned long flags;
159 	efi_status_t status;
160 
161 	spin_lock_irqsave(&rtc_lock, flags);
162 	status = efi_call_virt2(set_wakeup_time,
163 				enabled, tm);
164 	spin_unlock_irqrestore(&rtc_lock, flags);
165 	return status;
166 }
167 
virt_efi_get_variable(efi_char16_t * name,efi_guid_t * vendor,u32 * attr,unsigned long * data_size,void * data)168 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
169 					  efi_guid_t *vendor,
170 					  u32 *attr,
171 					  unsigned long *data_size,
172 					  void *data)
173 {
174 	return efi_call_virt5(get_variable,
175 			      name, vendor, attr,
176 			      data_size, data);
177 }
178 
virt_efi_get_next_variable(unsigned long * name_size,efi_char16_t * name,efi_guid_t * vendor)179 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
180 					       efi_char16_t *name,
181 					       efi_guid_t *vendor)
182 {
183 	return efi_call_virt3(get_next_variable,
184 			      name_size, name, vendor);
185 }
186 
virt_efi_set_variable(efi_char16_t * name,efi_guid_t * vendor,u32 attr,unsigned long data_size,void * data)187 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
188 					  efi_guid_t *vendor,
189 					  u32 attr,
190 					  unsigned long data_size,
191 					  void *data)
192 {
193 	return efi_call_virt5(set_variable,
194 			      name, vendor, attr,
195 			      data_size, data);
196 }
197 
virt_efi_query_variable_info(u32 attr,u64 * storage_space,u64 * remaining_space,u64 * max_variable_size)198 static efi_status_t virt_efi_query_variable_info(u32 attr,
199 						 u64 *storage_space,
200 						 u64 *remaining_space,
201 						 u64 *max_variable_size)
202 {
203 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
204 		return EFI_UNSUPPORTED;
205 
206 	return efi_call_virt4(query_variable_info, attr, storage_space,
207 			      remaining_space, max_variable_size);
208 }
209 
virt_efi_get_next_high_mono_count(u32 * count)210 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
211 {
212 	return efi_call_virt1(get_next_high_mono_count, count);
213 }
214 
virt_efi_reset_system(int reset_type,efi_status_t status,unsigned long data_size,efi_char16_t * data)215 static void virt_efi_reset_system(int reset_type,
216 				  efi_status_t status,
217 				  unsigned long data_size,
218 				  efi_char16_t *data)
219 {
220 	efi_call_virt4(reset_system, reset_type, status,
221 		       data_size, data);
222 }
223 
virt_efi_update_capsule(efi_capsule_header_t ** capsules,unsigned long count,unsigned long sg_list)224 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
225 					    unsigned long count,
226 					    unsigned long sg_list)
227 {
228 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
229 		return EFI_UNSUPPORTED;
230 
231 	return efi_call_virt3(update_capsule, capsules, count, sg_list);
232 }
233 
virt_efi_query_capsule_caps(efi_capsule_header_t ** capsules,unsigned long count,u64 * max_size,int * reset_type)234 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
235 						unsigned long count,
236 						u64 *max_size,
237 						int *reset_type)
238 {
239 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
240 		return EFI_UNSUPPORTED;
241 
242 	return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
243 			      reset_type);
244 }
245 
phys_efi_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,u32 descriptor_version,efi_memory_desc_t * virtual_map)246 static efi_status_t __init phys_efi_set_virtual_address_map(
247 	unsigned long memory_map_size,
248 	unsigned long descriptor_size,
249 	u32 descriptor_version,
250 	efi_memory_desc_t *virtual_map)
251 {
252 	efi_status_t status;
253 
254 	efi_call_phys_prelog();
255 	status = efi_call_phys4(efi_phys.set_virtual_address_map,
256 				memory_map_size, descriptor_size,
257 				descriptor_version, virtual_map);
258 	efi_call_phys_epilog();
259 	return status;
260 }
261 
phys_efi_get_time(efi_time_t * tm,efi_time_cap_t * tc)262 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
263 					     efi_time_cap_t *tc)
264 {
265 	unsigned long flags;
266 	efi_status_t status;
267 
268 	spin_lock_irqsave(&rtc_lock, flags);
269 	efi_call_phys_prelog();
270 	status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
271 				virt_to_phys(tc));
272 	efi_call_phys_epilog();
273 	spin_unlock_irqrestore(&rtc_lock, flags);
274 	return status;
275 }
276 
efi_set_rtc_mmss(unsigned long nowtime)277 int efi_set_rtc_mmss(unsigned long nowtime)
278 {
279 	efi_status_t 	status;
280 	efi_time_t 	eft;
281 	efi_time_cap_t 	cap;
282 	struct rtc_time	tm;
283 
284 	status = efi.get_time(&eft, &cap);
285 	if (status != EFI_SUCCESS) {
286 		pr_err("Oops: efitime: can't read time!\n");
287 		return -1;
288 	}
289 
290 	rtc_time_to_tm(nowtime, &tm);
291 	if (!rtc_valid_tm(&tm)) {
292 		eft.year = tm.tm_year + 1900;
293 		eft.month = tm.tm_mon + 1;
294 		eft.day = tm.tm_mday;
295 		eft.minute = tm.tm_min;
296 		eft.second = tm.tm_sec;
297 		eft.nanosecond = 0;
298 	} else {
299 		printk(KERN_ERR
300 		       "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
301 		       __FUNCTION__, nowtime);
302 		return -1;
303 	}
304 
305 	status = efi.set_time(&eft);
306 	if (status != EFI_SUCCESS) {
307 		pr_err("Oops: efitime: can't write time!\n");
308 		return -1;
309 	}
310 	return 0;
311 }
312 
efi_get_time(void)313 unsigned long efi_get_time(void)
314 {
315 	efi_status_t status;
316 	efi_time_t eft;
317 	efi_time_cap_t cap;
318 
319 	status = efi.get_time(&eft, &cap);
320 	if (status != EFI_SUCCESS)
321 		pr_err("Oops: efitime: can't read time!\n");
322 
323 	return mktime(eft.year, eft.month, eft.day, eft.hour,
324 		      eft.minute, eft.second);
325 }
326 
327 /*
328  * Tell the kernel about the EFI memory map.  This might include
329  * more than the max 128 entries that can fit in the e820 legacy
330  * (zeropage) memory map.
331  */
332 
do_add_efi_memmap(void)333 static void __init do_add_efi_memmap(void)
334 {
335 	void *p;
336 
337 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
338 		efi_memory_desc_t *md = p;
339 		unsigned long long start = md->phys_addr;
340 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
341 		int e820_type;
342 
343 		switch (md->type) {
344 		case EFI_LOADER_CODE:
345 		case EFI_LOADER_DATA:
346 		case EFI_BOOT_SERVICES_CODE:
347 		case EFI_BOOT_SERVICES_DATA:
348 		case EFI_CONVENTIONAL_MEMORY:
349 			if (md->attribute & EFI_MEMORY_WB)
350 				e820_type = E820_RAM;
351 			else
352 				e820_type = E820_RESERVED;
353 			break;
354 		case EFI_ACPI_RECLAIM_MEMORY:
355 			e820_type = E820_ACPI;
356 			break;
357 		case EFI_ACPI_MEMORY_NVS:
358 			e820_type = E820_NVS;
359 			break;
360 		case EFI_UNUSABLE_MEMORY:
361 			e820_type = E820_UNUSABLE;
362 			break;
363 		default:
364 			/*
365 			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
366 			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
367 			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
368 			 */
369 			e820_type = E820_RESERVED;
370 			break;
371 		}
372 		e820_add_region(start, size, e820_type);
373 	}
374 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
375 }
376 
efi_memblock_x86_reserve_range(void)377 int __init efi_memblock_x86_reserve_range(void)
378 {
379 	struct efi_info *e = &boot_params.efi_info;
380 	unsigned long pmap;
381 
382 #ifdef CONFIG_X86_32
383 	/* Can't handle data above 4GB at this time */
384 	if (e->efi_memmap_hi) {
385 		pr_err("Memory map is above 4GB, disabling EFI.\n");
386 		return -EINVAL;
387 	}
388 	pmap =  e->efi_memmap;
389 #else
390 	pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32));
391 #endif
392 	memmap.phys_map		= (void *)pmap;
393 	memmap.nr_map		= e->efi_memmap_size /
394 				  e->efi_memdesc_size;
395 	memmap.desc_size	= e->efi_memdesc_size;
396 	memmap.desc_version	= e->efi_memdesc_version;
397 
398 	memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
399 
400 	return 0;
401 }
402 
403 #if EFI_DEBUG
print_efi_memmap(void)404 static void __init print_efi_memmap(void)
405 {
406 	efi_memory_desc_t *md;
407 	void *p;
408 	int i;
409 
410 	for (p = memmap.map, i = 0;
411 	     p < memmap.map_end;
412 	     p += memmap.desc_size, i++) {
413 		md = p;
414 		pr_info("mem%02u: type=%u, attr=0x%llx, "
415 			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
416 			i, md->type, md->attribute, md->phys_addr,
417 			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
418 			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
419 	}
420 }
421 #endif  /*  EFI_DEBUG  */
422 
efi_reserve_boot_services(void)423 void __init efi_reserve_boot_services(void)
424 {
425 	void *p;
426 
427 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
428 		efi_memory_desc_t *md = p;
429 		u64 start = md->phys_addr;
430 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
431 
432 		if (md->type != EFI_BOOT_SERVICES_CODE &&
433 		    md->type != EFI_BOOT_SERVICES_DATA)
434 			continue;
435 		/* Only reserve where possible:
436 		 * - Not within any already allocated areas
437 		 * - Not over any memory area (really needed, if above?)
438 		 * - Not within any part of the kernel
439 		 * - Not the bios reserved area
440 		*/
441 		if ((start+size >= __pa_symbol(_text)
442 				&& start <= __pa_symbol(_end)) ||
443 			!e820_all_mapped(start, start+size, E820_RAM) ||
444 			memblock_is_region_reserved(start, size)) {
445 			/* Could not reserve, skip it */
446 			md->num_pages = 0;
447 			memblock_dbg("Could not reserve boot range "
448 					"[0x%010llx-0x%010llx]\n",
449 						start, start+size-1);
450 		} else
451 			memblock_reserve(start, size);
452 	}
453 }
454 
efi_unmap_memmap(void)455 void __init efi_unmap_memmap(void)
456 {
457 	clear_bit(EFI_MEMMAP, &x86_efi_facility);
458 	if (memmap.map) {
459 		early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
460 		memmap.map = NULL;
461 	}
462 }
463 
efi_free_boot_services(void)464 void __init efi_free_boot_services(void)
465 {
466 	void *p;
467 
468 	if (!efi_is_native())
469 		return;
470 
471 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
472 		efi_memory_desc_t *md = p;
473 		unsigned long long start = md->phys_addr;
474 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
475 
476 		if (md->type != EFI_BOOT_SERVICES_CODE &&
477 		    md->type != EFI_BOOT_SERVICES_DATA)
478 			continue;
479 
480 		/* Could not reserve boot area */
481 		if (!size)
482 			continue;
483 
484 		free_bootmem_late(start, size);
485 	}
486 
487 	efi_unmap_memmap();
488 }
489 
efi_systab_init(void * phys)490 static int __init efi_systab_init(void *phys)
491 {
492 	if (efi_enabled(EFI_64BIT)) {
493 		efi_system_table_64_t *systab64;
494 		u64 tmp = 0;
495 
496 		systab64 = early_ioremap((unsigned long)phys,
497 					 sizeof(*systab64));
498 		if (systab64 == NULL) {
499 			pr_err("Couldn't map the system table!\n");
500 			return -ENOMEM;
501 		}
502 
503 		efi_systab.hdr = systab64->hdr;
504 		efi_systab.fw_vendor = systab64->fw_vendor;
505 		tmp |= systab64->fw_vendor;
506 		efi_systab.fw_revision = systab64->fw_revision;
507 		efi_systab.con_in_handle = systab64->con_in_handle;
508 		tmp |= systab64->con_in_handle;
509 		efi_systab.con_in = systab64->con_in;
510 		tmp |= systab64->con_in;
511 		efi_systab.con_out_handle = systab64->con_out_handle;
512 		tmp |= systab64->con_out_handle;
513 		efi_systab.con_out = systab64->con_out;
514 		tmp |= systab64->con_out;
515 		efi_systab.stderr_handle = systab64->stderr_handle;
516 		tmp |= systab64->stderr_handle;
517 		efi_systab.stderr = systab64->stderr;
518 		tmp |= systab64->stderr;
519 		efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
520 		tmp |= systab64->runtime;
521 		efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
522 		tmp |= systab64->boottime;
523 		efi_systab.nr_tables = systab64->nr_tables;
524 		efi_systab.tables = systab64->tables;
525 		tmp |= systab64->tables;
526 
527 		early_iounmap(systab64, sizeof(*systab64));
528 #ifdef CONFIG_X86_32
529 		if (tmp >> 32) {
530 			pr_err("EFI data located above 4GB, disabling EFI.\n");
531 			return -EINVAL;
532 		}
533 #endif
534 	} else {
535 		efi_system_table_32_t *systab32;
536 
537 		systab32 = early_ioremap((unsigned long)phys,
538 					 sizeof(*systab32));
539 		if (systab32 == NULL) {
540 			pr_err("Couldn't map the system table!\n");
541 			return -ENOMEM;
542 		}
543 
544 		efi_systab.hdr = systab32->hdr;
545 		efi_systab.fw_vendor = systab32->fw_vendor;
546 		efi_systab.fw_revision = systab32->fw_revision;
547 		efi_systab.con_in_handle = systab32->con_in_handle;
548 		efi_systab.con_in = systab32->con_in;
549 		efi_systab.con_out_handle = systab32->con_out_handle;
550 		efi_systab.con_out = systab32->con_out;
551 		efi_systab.stderr_handle = systab32->stderr_handle;
552 		efi_systab.stderr = systab32->stderr;
553 		efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
554 		efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
555 		efi_systab.nr_tables = systab32->nr_tables;
556 		efi_systab.tables = systab32->tables;
557 
558 		early_iounmap(systab32, sizeof(*systab32));
559 	}
560 
561 	efi.systab = &efi_systab;
562 
563 	/*
564 	 * Verify the EFI Table
565 	 */
566 	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
567 		pr_err("System table signature incorrect!\n");
568 		return -EINVAL;
569 	}
570 	if ((efi.systab->hdr.revision >> 16) == 0)
571 		pr_err("Warning: System table version "
572 		       "%d.%02d, expected 1.00 or greater!\n",
573 		       efi.systab->hdr.revision >> 16,
574 		       efi.systab->hdr.revision & 0xffff);
575 
576 	return 0;
577 }
578 
efi_config_init(u64 tables,int nr_tables)579 static int __init efi_config_init(u64 tables, int nr_tables)
580 {
581 	void *config_tables, *tablep;
582 	int i, sz;
583 
584 	if (efi_enabled(EFI_64BIT))
585 		sz = sizeof(efi_config_table_64_t);
586 	else
587 		sz = sizeof(efi_config_table_32_t);
588 
589 	/*
590 	 * Let's see what config tables the firmware passed to us.
591 	 */
592 	config_tables = early_ioremap(tables, nr_tables * sz);
593 	if (config_tables == NULL) {
594 		pr_err("Could not map Configuration table!\n");
595 		return -ENOMEM;
596 	}
597 
598 	tablep = config_tables;
599 	pr_info("");
600 	for (i = 0; i < efi.systab->nr_tables; i++) {
601 		efi_guid_t guid;
602 		unsigned long table;
603 
604 		if (efi_enabled(EFI_64BIT)) {
605 			u64 table64;
606 			guid = ((efi_config_table_64_t *)tablep)->guid;
607 			table64 = ((efi_config_table_64_t *)tablep)->table;
608 			table = table64;
609 #ifdef CONFIG_X86_32
610 			if (table64 >> 32) {
611 				pr_cont("\n");
612 				pr_err("Table located above 4GB, disabling EFI.\n");
613 				early_iounmap(config_tables,
614 					      efi.systab->nr_tables * sz);
615 				return -EINVAL;
616 			}
617 #endif
618 		} else {
619 			guid = ((efi_config_table_32_t *)tablep)->guid;
620 			table = ((efi_config_table_32_t *)tablep)->table;
621 		}
622 		if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
623 			efi.mps = table;
624 			pr_cont(" MPS=0x%lx ", table);
625 		} else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
626 			efi.acpi20 = table;
627 			pr_cont(" ACPI 2.0=0x%lx ", table);
628 		} else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
629 			efi.acpi = table;
630 			pr_cont(" ACPI=0x%lx ", table);
631 		} else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
632 			efi.smbios = table;
633 			pr_cont(" SMBIOS=0x%lx ", table);
634 #ifdef CONFIG_X86_UV
635 		} else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
636 			efi.uv_systab = table;
637 			pr_cont(" UVsystab=0x%lx ", table);
638 #endif
639 		} else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
640 			efi.hcdp = table;
641 			pr_cont(" HCDP=0x%lx ", table);
642 		} else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
643 			efi.uga = table;
644 			pr_cont(" UGA=0x%lx ", table);
645 		}
646 		tablep += sz;
647 	}
648 	pr_cont("\n");
649 	early_iounmap(config_tables, efi.systab->nr_tables * sz);
650 	return 0;
651 }
652 
efi_runtime_init(void)653 static int __init efi_runtime_init(void)
654 {
655 	efi_runtime_services_t *runtime;
656 
657 	/*
658 	 * Check out the runtime services table. We need to map
659 	 * the runtime services table so that we can grab the physical
660 	 * address of several of the EFI runtime functions, needed to
661 	 * set the firmware into virtual mode.
662 	 */
663 	runtime = early_ioremap((unsigned long)efi.systab->runtime,
664 				sizeof(efi_runtime_services_t));
665 	if (!runtime) {
666 		pr_err("Could not map the runtime service table!\n");
667 		return -ENOMEM;
668 	}
669 	/*
670 	 * We will only need *early* access to the following
671 	 * two EFI runtime services before set_virtual_address_map
672 	 * is invoked.
673 	 */
674 	efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
675 	efi_phys.set_virtual_address_map =
676 		(efi_set_virtual_address_map_t *)
677 		runtime->set_virtual_address_map;
678 	/*
679 	 * Make efi_get_time can be called before entering
680 	 * virtual mode.
681 	 */
682 	efi.get_time = phys_efi_get_time;
683 	early_iounmap(runtime, sizeof(efi_runtime_services_t));
684 
685 	return 0;
686 }
687 
efi_memmap_init(void)688 static int __init efi_memmap_init(void)
689 {
690 	/* Map the EFI memory map */
691 	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
692 				   memmap.nr_map * memmap.desc_size);
693 	if (memmap.map == NULL) {
694 		pr_err("Could not map the memory map!\n");
695 		return -ENOMEM;
696 	}
697 	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
698 
699 	if (add_efi_memmap)
700 		do_add_efi_memmap();
701 
702 	return 0;
703 }
704 
efi_init(void)705 void __init efi_init(void)
706 {
707 	efi_char16_t *c16;
708 	char vendor[100] = "unknown";
709 	int i = 0;
710 	void *tmp;
711 
712 #ifdef CONFIG_X86_32
713 	if (boot_params.efi_info.efi_systab_hi ||
714 	    boot_params.efi_info.efi_memmap_hi) {
715 		pr_info("Table located above 4GB, disabling EFI.\n");
716 		return;
717 	}
718 	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
719 #else
720 	efi_phys.systab = (efi_system_table_t *)
721 			  (boot_params.efi_info.efi_systab |
722 			  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
723 #endif
724 
725 	if (efi_systab_init(efi_phys.systab))
726 		return;
727 
728 	set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
729 
730 	/*
731 	 * Show what we know for posterity
732 	 */
733 	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
734 	if (c16) {
735 		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
736 			vendor[i] = *c16++;
737 		vendor[i] = '\0';
738 	} else
739 		pr_err("Could not map the firmware vendor!\n");
740 	early_iounmap(tmp, 2);
741 
742 	pr_info("EFI v%u.%.02u by %s\n",
743 		efi.systab->hdr.revision >> 16,
744 		efi.systab->hdr.revision & 0xffff, vendor);
745 
746 	if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
747 		return;
748 
749 	set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
750 
751 	/*
752 	 * Note: We currently don't support runtime services on an EFI
753 	 * that doesn't match the kernel 32/64-bit mode.
754 	 */
755 
756 	if (!efi_is_native())
757 		pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
758 	else {
759 		if (disable_runtime || efi_runtime_init())
760 			return;
761 		set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
762 	}
763 
764 	if (efi_memmap_init())
765 		return;
766 
767 	set_bit(EFI_MEMMAP, &x86_efi_facility);
768 
769 #ifdef CONFIG_X86_32
770 	if (efi_is_native()) {
771 		x86_platform.get_wallclock = efi_get_time;
772 		x86_platform.set_wallclock = efi_set_rtc_mmss;
773 	}
774 #endif
775 
776 #if EFI_DEBUG
777 	print_efi_memmap();
778 #endif
779 }
780 
efi_late_init(void)781 void __init efi_late_init(void)
782 {
783 	efi_bgrt_init();
784 }
785 
efi_set_executable(efi_memory_desc_t * md,bool executable)786 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
787 {
788 	u64 addr, npages;
789 
790 	addr = md->virt_addr;
791 	npages = md->num_pages;
792 
793 	memrange_efi_to_native(&addr, &npages);
794 
795 	if (executable)
796 		set_memory_x(addr, npages);
797 	else
798 		set_memory_nx(addr, npages);
799 }
800 
runtime_code_page_mkexec(void)801 static void __init runtime_code_page_mkexec(void)
802 {
803 	efi_memory_desc_t *md;
804 	void *p;
805 
806 	/* Make EFI runtime service code area executable */
807 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
808 		md = p;
809 
810 		if (md->type != EFI_RUNTIME_SERVICES_CODE)
811 			continue;
812 
813 		efi_set_executable(md, true);
814 	}
815 }
816 
817 /*
818  * We can't ioremap data in EFI boot services RAM, because we've already mapped
819  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
820  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
821  */
efi_lookup_mapped_addr(u64 phys_addr)822 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
823 {
824 	void *p;
825 	if (WARN_ON(!memmap.map))
826 		return NULL;
827 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
828 		efi_memory_desc_t *md = p;
829 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
830 		u64 end = md->phys_addr + size;
831 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
832 		    md->type != EFI_BOOT_SERVICES_CODE &&
833 		    md->type != EFI_BOOT_SERVICES_DATA)
834 			continue;
835 		if (!md->virt_addr)
836 			continue;
837 		if (phys_addr >= md->phys_addr && phys_addr < end) {
838 			phys_addr += md->virt_addr - md->phys_addr;
839 			return (__force void __iomem *)(unsigned long)phys_addr;
840 		}
841 	}
842 	return NULL;
843 }
844 
efi_memory_uc(u64 addr,unsigned long size)845 void efi_memory_uc(u64 addr, unsigned long size)
846 {
847 	unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
848 	u64 npages;
849 
850 	npages = round_up(size, page_shift) / page_shift;
851 	memrange_efi_to_native(&addr, &npages);
852 	set_memory_uc(addr, npages);
853 }
854 
855 /*
856  * This function will switch the EFI runtime services to virtual mode.
857  * Essentially, look through the EFI memmap and map every region that
858  * has the runtime attribute bit set in its memory descriptor and update
859  * that memory descriptor with the virtual address obtained from ioremap().
860  * This enables the runtime services to be called without having to
861  * thunk back into physical mode for every invocation.
862  */
efi_enter_virtual_mode(void)863 void __init efi_enter_virtual_mode(void)
864 {
865 	efi_memory_desc_t *md, *prev_md = NULL;
866 	efi_status_t status;
867 	unsigned long size;
868 	u64 end, systab, start_pfn, end_pfn;
869 	void *p, *va, *new_memmap = NULL;
870 	int count = 0;
871 
872 	efi.systab = NULL;
873 
874 	/*
875 	 * We don't do virtual mode, since we don't do runtime services, on
876 	 * non-native EFI
877 	 */
878 
879 	if (!efi_is_native()) {
880 		efi_unmap_memmap();
881 		return;
882 	}
883 
884 	/* Merge contiguous regions of the same type and attribute */
885 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
886 		u64 prev_size;
887 		md = p;
888 
889 		if (!prev_md) {
890 			prev_md = md;
891 			continue;
892 		}
893 
894 		if (prev_md->type != md->type ||
895 		    prev_md->attribute != md->attribute) {
896 			prev_md = md;
897 			continue;
898 		}
899 
900 		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
901 
902 		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
903 			prev_md->num_pages += md->num_pages;
904 			md->type = EFI_RESERVED_TYPE;
905 			md->attribute = 0;
906 			continue;
907 		}
908 		prev_md = md;
909 	}
910 
911 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
912 		md = p;
913 		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
914 		    md->type != EFI_BOOT_SERVICES_CODE &&
915 		    md->type != EFI_BOOT_SERVICES_DATA)
916 			continue;
917 
918 		size = md->num_pages << EFI_PAGE_SHIFT;
919 		end = md->phys_addr + size;
920 
921 		start_pfn = PFN_DOWN(md->phys_addr);
922 		end_pfn = PFN_UP(end);
923 		if (pfn_range_is_mapped(start_pfn, end_pfn)) {
924 			va = __va(md->phys_addr);
925 
926 			if (!(md->attribute & EFI_MEMORY_WB))
927 				efi_memory_uc((u64)(unsigned long)va, size);
928 		} else
929 			va = efi_ioremap(md->phys_addr, size,
930 					 md->type, md->attribute);
931 
932 		md->virt_addr = (u64) (unsigned long) va;
933 
934 		if (!va) {
935 			pr_err("ioremap of 0x%llX failed!\n",
936 			       (unsigned long long)md->phys_addr);
937 			continue;
938 		}
939 
940 		systab = (u64) (unsigned long) efi_phys.systab;
941 		if (md->phys_addr <= systab && systab < end) {
942 			systab += md->virt_addr - md->phys_addr;
943 			efi.systab = (efi_system_table_t *) (unsigned long) systab;
944 		}
945 		new_memmap = krealloc(new_memmap,
946 				      (count + 1) * memmap.desc_size,
947 				      GFP_KERNEL);
948 		memcpy(new_memmap + (count * memmap.desc_size), md,
949 		       memmap.desc_size);
950 		count++;
951 	}
952 
953 	BUG_ON(!efi.systab);
954 
955 	status = phys_efi_set_virtual_address_map(
956 		memmap.desc_size * count,
957 		memmap.desc_size,
958 		memmap.desc_version,
959 		(efi_memory_desc_t *)__pa(new_memmap));
960 
961 	if (status != EFI_SUCCESS) {
962 		pr_alert("Unable to switch EFI into virtual mode "
963 			 "(status=%lx)!\n", status);
964 		panic("EFI call to SetVirtualAddressMap() failed!");
965 	}
966 
967 	/*
968 	 * Now that EFI is in virtual mode, update the function
969 	 * pointers in the runtime service table to the new virtual addresses.
970 	 *
971 	 * Call EFI services through wrapper functions.
972 	 */
973 	efi.runtime_version = efi_systab.hdr.revision;
974 	efi.get_time = virt_efi_get_time;
975 	efi.set_time = virt_efi_set_time;
976 	efi.get_wakeup_time = virt_efi_get_wakeup_time;
977 	efi.set_wakeup_time = virt_efi_set_wakeup_time;
978 	efi.get_variable = virt_efi_get_variable;
979 	efi.get_next_variable = virt_efi_get_next_variable;
980 	efi.set_variable = virt_efi_set_variable;
981 	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
982 	efi.reset_system = virt_efi_reset_system;
983 	efi.set_virtual_address_map = NULL;
984 	efi.query_variable_info = virt_efi_query_variable_info;
985 	efi.update_capsule = virt_efi_update_capsule;
986 	efi.query_capsule_caps = virt_efi_query_capsule_caps;
987 	if (__supported_pte_mask & _PAGE_NX)
988 		runtime_code_page_mkexec();
989 
990 	kfree(new_memmap);
991 
992 	/* clean DUMMY object */
993 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
994 			 EFI_VARIABLE_NON_VOLATILE |
995 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
996 			 EFI_VARIABLE_RUNTIME_ACCESS,
997 			 0, NULL);
998 }
999 
1000 /*
1001  * Convenience functions to obtain memory types and attributes
1002  */
efi_mem_type(unsigned long phys_addr)1003 u32 efi_mem_type(unsigned long phys_addr)
1004 {
1005 	efi_memory_desc_t *md;
1006 	void *p;
1007 
1008 	if (!efi_enabled(EFI_MEMMAP))
1009 		return 0;
1010 
1011 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1012 		md = p;
1013 		if ((md->phys_addr <= phys_addr) &&
1014 		    (phys_addr < (md->phys_addr +
1015 				  (md->num_pages << EFI_PAGE_SHIFT))))
1016 			return md->type;
1017 	}
1018 	return 0;
1019 }
1020 
efi_mem_attributes(unsigned long phys_addr)1021 u64 efi_mem_attributes(unsigned long phys_addr)
1022 {
1023 	efi_memory_desc_t *md;
1024 	void *p;
1025 
1026 	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1027 		md = p;
1028 		if ((md->phys_addr <= phys_addr) &&
1029 		    (phys_addr < (md->phys_addr +
1030 				  (md->num_pages << EFI_PAGE_SHIFT))))
1031 			return md->attribute;
1032 	}
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Some firmware has serious problems when using more than 50% of the EFI
1038  * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1039  * we never use more than this safe limit.
1040  *
1041  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1042  * store.
1043  */
efi_query_variable_store(u32 attributes,unsigned long size)1044 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
1045 {
1046 	efi_status_t status;
1047 	u64 storage_size, remaining_size, max_size;
1048 
1049 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
1050 		return 0;
1051 
1052 	status = efi.query_variable_info(attributes, &storage_size,
1053 					 &remaining_size, &max_size);
1054 	if (status != EFI_SUCCESS)
1055 		return status;
1056 
1057 	/*
1058 	 * Some firmware implementations refuse to boot if there's insufficient
1059 	 * space in the variable store. We account for that by refusing the
1060 	 * write if permitting it would reduce the available space to under
1061 	 * 5KB. This figure was provided by Samsung, so should be safe.
1062 	 */
1063 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
1064 		!efi_no_storage_paranoia) {
1065 
1066 		/*
1067 		 * Triggering garbage collection may require that the firmware
1068 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
1069 		 * that by attempting to use more space than is available.
1070 		 */
1071 		unsigned long dummy_size = remaining_size + 1024;
1072 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
1073 
1074 		if (!dummy)
1075 			return EFI_OUT_OF_RESOURCES;
1076 
1077 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1078 					  EFI_VARIABLE_NON_VOLATILE |
1079 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
1080 					  EFI_VARIABLE_RUNTIME_ACCESS,
1081 					  dummy_size, dummy);
1082 
1083 		if (status == EFI_SUCCESS) {
1084 			/*
1085 			 * This should have failed, so if it didn't make sure
1086 			 * that we delete it...
1087 			 */
1088 			efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
1089 					 EFI_VARIABLE_NON_VOLATILE |
1090 					 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1091 					 EFI_VARIABLE_RUNTIME_ACCESS,
1092 					 0, dummy);
1093 		}
1094 
1095 		kfree(dummy);
1096 
1097 		/*
1098 		 * The runtime code may now have triggered a garbage collection
1099 		 * run, so check the variable info again
1100 		 */
1101 		status = efi.query_variable_info(attributes, &storage_size,
1102 						 &remaining_size, &max_size);
1103 
1104 		if (status != EFI_SUCCESS)
1105 			return status;
1106 
1107 		/*
1108 		 * There still isn't enough room, so return an error
1109 		 */
1110 		if (remaining_size - size < EFI_MIN_RESERVE)
1111 			return EFI_OUT_OF_RESOURCES;
1112 	}
1113 
1114 	return EFI_SUCCESS;
1115 }
1116 EXPORT_SYMBOL_GPL(efi_query_variable_store);
1117