• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  #define VERSION "0.23"
2  /* ns83820.c by Benjamin LaHaise with contributions.
3   *
4   * Questions/comments/discussion to linux-ns83820@kvack.org.
5   *
6   * $Revision: 1.34.2.23 $
7   *
8   * Copyright 2001 Benjamin LaHaise.
9   * Copyright 2001, 2002 Red Hat.
10   *
11   * Mmmm, chocolate vanilla mocha...
12   *
13   *
14   * This program is free software; you can redistribute it and/or modify
15   * it under the terms of the GNU General Public License as published by
16   * the Free Software Foundation; either version 2 of the License, or
17   * (at your option) any later version.
18   *
19   * This program is distributed in the hope that it will be useful,
20   * but WITHOUT ANY WARRANTY; without even the implied warranty of
21   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22   * GNU General Public License for more details.
23   *
24   * You should have received a copy of the GNU General Public License
25   * along with this program; if not, write to the Free Software
26   * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27   *
28   *
29   * ChangeLog
30   * =========
31   *	20010414	0.1 - created
32   *	20010622	0.2 - basic rx and tx.
33   *	20010711	0.3 - added duplex and link state detection support.
34   *	20010713	0.4 - zero copy, no hangs.
35   *			0.5 - 64 bit dma support (davem will hate me for this)
36   *			    - disable jumbo frames to avoid tx hangs
37   *			    - work around tx deadlocks on my 1.02 card via
38   *			      fiddling with TXCFG
39   *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
40   *	20010816	0.7 - misc cleanups
41   *	20010826	0.8 - fix critical zero copy bugs
42   *			0.9 - internal experiment
43   *	20010827	0.10 - fix ia64 unaligned access.
44   *	20010906	0.11 - accept all packets with checksum errors as
45   *			       otherwise fragments get lost
46   *			     - fix >> 32 bugs
47   *			0.12 - add statistics counters
48   *			     - add allmulti/promisc support
49   *	20011009	0.13 - hotplug support, other smaller pci api cleanups
50   *	20011204	0.13a - optical transceiver support added
51   *				by Michael Clark <michael@metaparadigm.com>
52   *	20011205	0.13b - call register_netdev earlier in initialization
53   *				suppress duplicate link status messages
54   *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55   *	20011204 	0.15	get ppc (big endian) working
56   *	20011218	0.16	various cleanups
57   *	20020310	0.17	speedups
58   *	20020610	0.18 -	actually use the pci dma api for highmem
59   *			     -	remove pci latency register fiddling
60   *			0.19 -	better bist support
61   *			     -	add ihr and reset_phy parameters
62   *			     -	gmii bus probing
63   *			     -	fix missed txok introduced during performance
64   *				tuning
65   *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
66   *	20040828	0.21 -	add hardware vlan accleration
67   *				by Neil Horman <nhorman@redhat.com>
68   *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
69   *			     -	removal of dead code from Adrian Bunk
70   *			     -	fix half duplex collision behaviour
71   * Driver Overview
72   * ===============
73   *
74   * This driver was originally written for the National Semiconductor
75   * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
76   * this code will turn out to be a) clean, b) correct, and c) fast.
77   * With that in mind, I'm aiming to split the code up as much as
78   * reasonably possible.  At present there are X major sections that
79   * break down into a) packet receive, b) packet transmit, c) link
80   * management, d) initialization and configuration.  Where possible,
81   * these code paths are designed to run in parallel.
82   *
83   * This driver has been tested and found to work with the following
84   * cards (in no particular order):
85   *
86   *	Cameo		SOHO-GA2000T	SOHO-GA2500T
87   *	D-Link		DGE-500T
88   *	PureData	PDP8023Z-TG
89   *	SMC		SMC9452TX	SMC9462TX
90   *	Netgear		GA621
91   *
92   * Special thanks to SMC for providing hardware to test this driver on.
93   *
94   * Reports of success or failure would be greatly appreciated.
95   */
96  //#define dprintk		printk
97  #define dprintk(x...)		do { } while (0)
98  
99  #include <linux/module.h>
100  #include <linux/moduleparam.h>
101  #include <linux/types.h>
102  #include <linux/pci.h>
103  #include <linux/dma-mapping.h>
104  #include <linux/netdevice.h>
105  #include <linux/etherdevice.h>
106  #include <linux/delay.h>
107  #include <linux/workqueue.h>
108  #include <linux/init.h>
109  #include <linux/interrupt.h>
110  #include <linux/ip.h>	/* for iph */
111  #include <linux/in.h>	/* for IPPROTO_... */
112  #include <linux/compiler.h>
113  #include <linux/prefetch.h>
114  #include <linux/ethtool.h>
115  #include <linux/sched.h>
116  #include <linux/timer.h>
117  #include <linux/if_vlan.h>
118  #include <linux/rtnetlink.h>
119  #include <linux/jiffies.h>
120  #include <linux/slab.h>
121  
122  #include <asm/io.h>
123  #include <asm/uaccess.h>
124  
125  #define DRV_NAME "ns83820"
126  
127  /* Global parameters.  See module_param near the bottom. */
128  static int ihr = 2;
129  static int reset_phy = 0;
130  static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
131  
132  /* Dprintk is used for more interesting debug events */
133  #undef Dprintk
134  #define	Dprintk			dprintk
135  
136  /* tunables */
137  #define RX_BUF_SIZE	1500	/* 8192 */
138  #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
139  #define NS83820_VLAN_ACCEL_SUPPORT
140  #endif
141  
142  /* Must not exceed ~65000. */
143  #define NR_RX_DESC	64
144  #define NR_TX_DESC	128
145  
146  /* not tunable */
147  #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
148  
149  #define MIN_TX_DESC_FREE	8
150  
151  /* register defines */
152  #define CFGCS		0x04
153  
154  #define CR_TXE		0x00000001
155  #define CR_TXD		0x00000002
156  /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
157   * The Receive engine skips one descriptor and moves
158   * onto the next one!! */
159  #define CR_RXE		0x00000004
160  #define CR_RXD		0x00000008
161  #define CR_TXR		0x00000010
162  #define CR_RXR		0x00000020
163  #define CR_SWI		0x00000080
164  #define CR_RST		0x00000100
165  
166  #define PTSCR_EEBIST_FAIL       0x00000001
167  #define PTSCR_EEBIST_EN         0x00000002
168  #define PTSCR_EELOAD_EN         0x00000004
169  #define PTSCR_RBIST_FAIL        0x000001b8
170  #define PTSCR_RBIST_DONE        0x00000200
171  #define PTSCR_RBIST_EN          0x00000400
172  #define PTSCR_RBIST_RST         0x00002000
173  
174  #define MEAR_EEDI		0x00000001
175  #define MEAR_EEDO		0x00000002
176  #define MEAR_EECLK		0x00000004
177  #define MEAR_EESEL		0x00000008
178  #define MEAR_MDIO		0x00000010
179  #define MEAR_MDDIR		0x00000020
180  #define MEAR_MDC		0x00000040
181  
182  #define ISR_TXDESC3	0x40000000
183  #define ISR_TXDESC2	0x20000000
184  #define ISR_TXDESC1	0x10000000
185  #define ISR_TXDESC0	0x08000000
186  #define ISR_RXDESC3	0x04000000
187  #define ISR_RXDESC2	0x02000000
188  #define ISR_RXDESC1	0x01000000
189  #define ISR_RXDESC0	0x00800000
190  #define ISR_TXRCMP	0x00400000
191  #define ISR_RXRCMP	0x00200000
192  #define ISR_DPERR	0x00100000
193  #define ISR_SSERR	0x00080000
194  #define ISR_RMABT	0x00040000
195  #define ISR_RTABT	0x00020000
196  #define ISR_RXSOVR	0x00010000
197  #define ISR_HIBINT	0x00008000
198  #define ISR_PHY		0x00004000
199  #define ISR_PME		0x00002000
200  #define ISR_SWI		0x00001000
201  #define ISR_MIB		0x00000800
202  #define ISR_TXURN	0x00000400
203  #define ISR_TXIDLE	0x00000200
204  #define ISR_TXERR	0x00000100
205  #define ISR_TXDESC	0x00000080
206  #define ISR_TXOK	0x00000040
207  #define ISR_RXORN	0x00000020
208  #define ISR_RXIDLE	0x00000010
209  #define ISR_RXEARLY	0x00000008
210  #define ISR_RXERR	0x00000004
211  #define ISR_RXDESC	0x00000002
212  #define ISR_RXOK	0x00000001
213  
214  #define TXCFG_CSI	0x80000000
215  #define TXCFG_HBI	0x40000000
216  #define TXCFG_MLB	0x20000000
217  #define TXCFG_ATP	0x10000000
218  #define TXCFG_ECRETRY	0x00800000
219  #define TXCFG_BRST_DIS	0x00080000
220  #define TXCFG_MXDMA1024	0x00000000
221  #define TXCFG_MXDMA512	0x00700000
222  #define TXCFG_MXDMA256	0x00600000
223  #define TXCFG_MXDMA128	0x00500000
224  #define TXCFG_MXDMA64	0x00400000
225  #define TXCFG_MXDMA32	0x00300000
226  #define TXCFG_MXDMA16	0x00200000
227  #define TXCFG_MXDMA8	0x00100000
228  
229  #define CFG_LNKSTS	0x80000000
230  #define CFG_SPDSTS	0x60000000
231  #define CFG_SPDSTS1	0x40000000
232  #define CFG_SPDSTS0	0x20000000
233  #define CFG_DUPSTS	0x10000000
234  #define CFG_TBI_EN	0x01000000
235  #define CFG_MODE_1000	0x00400000
236  /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
237   * Read the Phy response and then configure the MAC accordingly */
238  #define CFG_AUTO_1000	0x00200000
239  #define CFG_PINT_CTL	0x001c0000
240  #define CFG_PINT_DUPSTS	0x00100000
241  #define CFG_PINT_LNKSTS	0x00080000
242  #define CFG_PINT_SPDSTS	0x00040000
243  #define CFG_TMRTEST	0x00020000
244  #define CFG_MRM_DIS	0x00010000
245  #define CFG_MWI_DIS	0x00008000
246  #define CFG_T64ADDR	0x00004000
247  #define CFG_PCI64_DET	0x00002000
248  #define CFG_DATA64_EN	0x00001000
249  #define CFG_M64ADDR	0x00000800
250  #define CFG_PHY_RST	0x00000400
251  #define CFG_PHY_DIS	0x00000200
252  #define CFG_EXTSTS_EN	0x00000100
253  #define CFG_REQALG	0x00000080
254  #define CFG_SB		0x00000040
255  #define CFG_POW		0x00000020
256  #define CFG_EXD		0x00000010
257  #define CFG_PESEL	0x00000008
258  #define CFG_BROM_DIS	0x00000004
259  #define CFG_EXT_125	0x00000002
260  #define CFG_BEM		0x00000001
261  
262  #define EXTSTS_UDPPKT	0x00200000
263  #define EXTSTS_TCPPKT	0x00080000
264  #define EXTSTS_IPPKT	0x00020000
265  #define EXTSTS_VPKT	0x00010000
266  #define EXTSTS_VTG_MASK	0x0000ffff
267  
268  #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
269  
270  #define MIBC_MIBS	0x00000008
271  #define MIBC_ACLR	0x00000004
272  #define MIBC_FRZ	0x00000002
273  #define MIBC_WRN	0x00000001
274  
275  #define PCR_PSEN	(1 << 31)
276  #define PCR_PS_MCAST	(1 << 30)
277  #define PCR_PS_DA	(1 << 29)
278  #define PCR_STHI_8	(3 << 23)
279  #define PCR_STLO_4	(1 << 23)
280  #define PCR_FFHI_8K	(3 << 21)
281  #define PCR_FFLO_4K	(1 << 21)
282  #define PCR_PAUSE_CNT	0xFFFE
283  
284  #define RXCFG_AEP	0x80000000
285  #define RXCFG_ARP	0x40000000
286  #define RXCFG_STRIPCRC	0x20000000
287  #define RXCFG_RX_FD	0x10000000
288  #define RXCFG_ALP	0x08000000
289  #define RXCFG_AIRL	0x04000000
290  #define RXCFG_MXDMA512	0x00700000
291  #define RXCFG_DRTH	0x0000003e
292  #define RXCFG_DRTH0	0x00000002
293  
294  #define RFCR_RFEN	0x80000000
295  #define RFCR_AAB	0x40000000
296  #define RFCR_AAM	0x20000000
297  #define RFCR_AAU	0x10000000
298  #define RFCR_APM	0x08000000
299  #define RFCR_APAT	0x07800000
300  #define RFCR_APAT3	0x04000000
301  #define RFCR_APAT2	0x02000000
302  #define RFCR_APAT1	0x01000000
303  #define RFCR_APAT0	0x00800000
304  #define RFCR_AARP	0x00400000
305  #define RFCR_MHEN	0x00200000
306  #define RFCR_UHEN	0x00100000
307  #define RFCR_ULM	0x00080000
308  
309  #define VRCR_RUDPE	0x00000080
310  #define VRCR_RTCPE	0x00000040
311  #define VRCR_RIPE	0x00000020
312  #define VRCR_IPEN	0x00000010
313  #define VRCR_DUTF	0x00000008
314  #define VRCR_DVTF	0x00000004
315  #define VRCR_VTREN	0x00000002
316  #define VRCR_VTDEN	0x00000001
317  
318  #define VTCR_PPCHK	0x00000008
319  #define VTCR_GCHK	0x00000004
320  #define VTCR_VPPTI	0x00000002
321  #define VTCR_VGTI	0x00000001
322  
323  #define CR		0x00
324  #define CFG		0x04
325  #define MEAR		0x08
326  #define PTSCR		0x0c
327  #define	ISR		0x10
328  #define	IMR		0x14
329  #define	IER		0x18
330  #define	IHR		0x1c
331  #define TXDP		0x20
332  #define TXDP_HI		0x24
333  #define TXCFG		0x28
334  #define GPIOR		0x2c
335  #define RXDP		0x30
336  #define RXDP_HI		0x34
337  #define RXCFG		0x38
338  #define PQCR		0x3c
339  #define WCSR		0x40
340  #define PCR		0x44
341  #define RFCR		0x48
342  #define RFDR		0x4c
343  
344  #define SRR		0x58
345  
346  #define VRCR		0xbc
347  #define VTCR		0xc0
348  #define VDR		0xc4
349  #define CCSR		0xcc
350  
351  #define TBICR		0xe0
352  #define TBISR		0xe4
353  #define TANAR		0xe8
354  #define TANLPAR		0xec
355  #define TANER		0xf0
356  #define TESR		0xf4
357  
358  #define TBICR_MR_AN_ENABLE	0x00001000
359  #define TBICR_MR_RESTART_AN	0x00000200
360  
361  #define TBISR_MR_LINK_STATUS	0x00000020
362  #define TBISR_MR_AN_COMPLETE	0x00000004
363  
364  #define TANAR_PS2 		0x00000100
365  #define TANAR_PS1 		0x00000080
366  #define TANAR_HALF_DUP 		0x00000040
367  #define TANAR_FULL_DUP 		0x00000020
368  
369  #define GPIOR_GP5_OE		0x00000200
370  #define GPIOR_GP4_OE		0x00000100
371  #define GPIOR_GP3_OE		0x00000080
372  #define GPIOR_GP2_OE		0x00000040
373  #define GPIOR_GP1_OE		0x00000020
374  #define GPIOR_GP3_OUT		0x00000004
375  #define GPIOR_GP1_OUT		0x00000001
376  
377  #define LINK_AUTONEGOTIATE	0x01
378  #define LINK_DOWN		0x02
379  #define LINK_UP			0x04
380  
381  #define HW_ADDR_LEN	sizeof(dma_addr_t)
382  #define desc_addr_set(desc, addr)				\
383  	do {							\
384  		((desc)[0] = cpu_to_le32(addr));		\
385  		if (HW_ADDR_LEN == 8)		 		\
386  			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
387  	} while(0)
388  #define desc_addr_get(desc)					\
389  	(le32_to_cpu((desc)[0]) | \
390  	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
391  
392  #define DESC_LINK		0
393  #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
394  #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
395  #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
396  
397  #define CMDSTS_OWN	0x80000000
398  #define CMDSTS_MORE	0x40000000
399  #define CMDSTS_INTR	0x20000000
400  #define CMDSTS_ERR	0x10000000
401  #define CMDSTS_OK	0x08000000
402  #define CMDSTS_RUNT	0x00200000
403  #define CMDSTS_LEN_MASK	0x0000ffff
404  
405  #define CMDSTS_DEST_MASK	0x01800000
406  #define CMDSTS_DEST_SELF	0x00800000
407  #define CMDSTS_DEST_MULTI	0x01000000
408  
409  #define DESC_SIZE	8		/* Should be cache line sized */
410  
411  struct rx_info {
412  	spinlock_t	lock;
413  	int		up;
414  	unsigned long	idle;
415  
416  	struct sk_buff	*skbs[NR_RX_DESC];
417  
418  	__le32		*next_rx_desc;
419  	u16		next_rx, next_empty;
420  
421  	__le32		*descs;
422  	dma_addr_t	phy_descs;
423  };
424  
425  
426  struct ns83820 {
427  	u8			__iomem *base;
428  
429  	struct pci_dev		*pci_dev;
430  	struct net_device	*ndev;
431  
432  	struct rx_info		rx_info;
433  	struct tasklet_struct	rx_tasklet;
434  
435  	unsigned		ihr;
436  	struct work_struct	tq_refill;
437  
438  	/* protects everything below.  irqsave when using. */
439  	spinlock_t		misc_lock;
440  
441  	u32			CFG_cache;
442  
443  	u32			MEAR_cache;
444  	u32			IMR_cache;
445  
446  	unsigned		linkstate;
447  
448  	spinlock_t	tx_lock;
449  
450  	u16		tx_done_idx;
451  	u16		tx_idx;
452  	volatile u16	tx_free_idx;	/* idx of free desc chain */
453  	u16		tx_intr_idx;
454  
455  	atomic_t	nr_tx_skbs;
456  	struct sk_buff	*tx_skbs[NR_TX_DESC];
457  
458  	char		pad[16] __attribute__((aligned(16)));
459  	__le32		*tx_descs;
460  	dma_addr_t	tx_phy_descs;
461  
462  	struct timer_list	tx_watchdog;
463  };
464  
PRIV(struct net_device * dev)465  static inline struct ns83820 *PRIV(struct net_device *dev)
466  {
467  	return netdev_priv(dev);
468  }
469  
470  #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
471  
kick_rx(struct net_device * ndev)472  static inline void kick_rx(struct net_device *ndev)
473  {
474  	struct ns83820 *dev = PRIV(ndev);
475  	dprintk("kick_rx: maybe kicking\n");
476  	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
477  		dprintk("actually kicking\n");
478  		writel(dev->rx_info.phy_descs +
479  			(4 * DESC_SIZE * dev->rx_info.next_rx),
480  		       dev->base + RXDP);
481  		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
482  			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
483  				ndev->name);
484  		__kick_rx(dev);
485  	}
486  }
487  
488  //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
489  #define start_tx_okay(dev)	\
490  	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
491  
492  /* Packet Receiver
493   *
494   * The hardware supports linked lists of receive descriptors for
495   * which ownership is transferred back and forth by means of an
496   * ownership bit.  While the hardware does support the use of a
497   * ring for receive descriptors, we only make use of a chain in
498   * an attempt to reduce bus traffic under heavy load scenarios.
499   * This will also make bugs a bit more obvious.  The current code
500   * only makes use of a single rx chain; I hope to implement
501   * priority based rx for version 1.0.  Goal: even under overload
502   * conditions, still route realtime traffic with as low jitter as
503   * possible.
504   */
build_rx_desc(struct ns83820 * dev,__le32 * desc,dma_addr_t link,dma_addr_t buf,u32 cmdsts,u32 extsts)505  static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
506  {
507  	desc_addr_set(desc + DESC_LINK, link);
508  	desc_addr_set(desc + DESC_BUFPTR, buf);
509  	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
510  	mb();
511  	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
512  }
513  
514  #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
ns83820_add_rx_skb(struct ns83820 * dev,struct sk_buff * skb)515  static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
516  {
517  	unsigned next_empty;
518  	u32 cmdsts;
519  	__le32 *sg;
520  	dma_addr_t buf;
521  
522  	next_empty = dev->rx_info.next_empty;
523  
524  	/* don't overrun last rx marker */
525  	if (unlikely(nr_rx_empty(dev) <= 2)) {
526  		kfree_skb(skb);
527  		return 1;
528  	}
529  
530  #if 0
531  	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
532  		dev->rx_info.next_empty,
533  		dev->rx_info.nr_used,
534  		dev->rx_info.next_rx
535  		);
536  #endif
537  
538  	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
539  	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
540  	dev->rx_info.skbs[next_empty] = skb;
541  
542  	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
543  	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
544  	buf = pci_map_single(dev->pci_dev, skb->data,
545  			     REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
546  	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
547  	/* update link of previous rx */
548  	if (likely(next_empty != dev->rx_info.next_rx))
549  		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
550  
551  	return 0;
552  }
553  
rx_refill(struct net_device * ndev,gfp_t gfp)554  static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
555  {
556  	struct ns83820 *dev = PRIV(ndev);
557  	unsigned i;
558  	unsigned long flags = 0;
559  
560  	if (unlikely(nr_rx_empty(dev) <= 2))
561  		return 0;
562  
563  	dprintk("rx_refill(%p)\n", ndev);
564  	if (gfp == GFP_ATOMIC)
565  		spin_lock_irqsave(&dev->rx_info.lock, flags);
566  	for (i=0; i<NR_RX_DESC; i++) {
567  		struct sk_buff *skb;
568  		long res;
569  
570  		/* extra 16 bytes for alignment */
571  		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
572  		if (unlikely(!skb))
573  			break;
574  
575  		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
576  		if (gfp != GFP_ATOMIC)
577  			spin_lock_irqsave(&dev->rx_info.lock, flags);
578  		res = ns83820_add_rx_skb(dev, skb);
579  		if (gfp != GFP_ATOMIC)
580  			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
581  		if (res) {
582  			i = 1;
583  			break;
584  		}
585  	}
586  	if (gfp == GFP_ATOMIC)
587  		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
588  
589  	return i ? 0 : -ENOMEM;
590  }
591  
rx_refill_atomic(struct net_device * ndev)592  static void rx_refill_atomic(struct net_device *ndev)
593  {
594  	rx_refill(ndev, GFP_ATOMIC);
595  }
596  
597  /* REFILL */
queue_refill(struct work_struct * work)598  static inline void queue_refill(struct work_struct *work)
599  {
600  	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
601  	struct net_device *ndev = dev->ndev;
602  
603  	rx_refill(ndev, GFP_KERNEL);
604  	if (dev->rx_info.up)
605  		kick_rx(ndev);
606  }
607  
clear_rx_desc(struct ns83820 * dev,unsigned i)608  static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
609  {
610  	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
611  }
612  
phy_intr(struct net_device * ndev)613  static void phy_intr(struct net_device *ndev)
614  {
615  	struct ns83820 *dev = PRIV(ndev);
616  	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
617  	u32 cfg, new_cfg;
618  	u32 tbisr, tanar, tanlpar;
619  	int speed, fullduplex, newlinkstate;
620  
621  	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
622  
623  	if (dev->CFG_cache & CFG_TBI_EN) {
624  		/* we have an optical transceiver */
625  		tbisr = readl(dev->base + TBISR);
626  		tanar = readl(dev->base + TANAR);
627  		tanlpar = readl(dev->base + TANLPAR);
628  		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
629  			tbisr, tanar, tanlpar);
630  
631  		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
632  		      (tanar & TANAR_FULL_DUP)) ) {
633  
634  			/* both of us are full duplex */
635  			writel(readl(dev->base + TXCFG)
636  			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
637  			       dev->base + TXCFG);
638  			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
639  			       dev->base + RXCFG);
640  			/* Light up full duplex LED */
641  			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
642  			       dev->base + GPIOR);
643  
644  		} else if (((tanlpar & TANAR_HALF_DUP) &&
645  			    (tanar & TANAR_HALF_DUP)) ||
646  			   ((tanlpar & TANAR_FULL_DUP) &&
647  			    (tanar & TANAR_HALF_DUP)) ||
648  			   ((tanlpar & TANAR_HALF_DUP) &&
649  			    (tanar & TANAR_FULL_DUP))) {
650  
651  			/* one or both of us are half duplex */
652  			writel((readl(dev->base + TXCFG)
653  				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
654  			       dev->base + TXCFG);
655  			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
656  			       dev->base + RXCFG);
657  			/* Turn off full duplex LED */
658  			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
659  			       dev->base + GPIOR);
660  		}
661  
662  		speed = 4; /* 1000F */
663  
664  	} else {
665  		/* we have a copper transceiver */
666  		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
667  
668  		if (cfg & CFG_SPDSTS1)
669  			new_cfg |= CFG_MODE_1000;
670  		else
671  			new_cfg &= ~CFG_MODE_1000;
672  
673  		speed = ((cfg / CFG_SPDSTS0) & 3);
674  		fullduplex = (cfg & CFG_DUPSTS);
675  
676  		if (fullduplex) {
677  			new_cfg |= CFG_SB;
678  			writel(readl(dev->base + TXCFG)
679  					| TXCFG_CSI | TXCFG_HBI,
680  			       dev->base + TXCFG);
681  			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
682  			       dev->base + RXCFG);
683  		} else {
684  			writel(readl(dev->base + TXCFG)
685  					& ~(TXCFG_CSI | TXCFG_HBI),
686  			       dev->base + TXCFG);
687  			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
688  			       dev->base + RXCFG);
689  		}
690  
691  		if ((cfg & CFG_LNKSTS) &&
692  		    ((new_cfg ^ dev->CFG_cache) != 0)) {
693  			writel(new_cfg, dev->base + CFG);
694  			dev->CFG_cache = new_cfg;
695  		}
696  
697  		dev->CFG_cache &= ~CFG_SPDSTS;
698  		dev->CFG_cache |= cfg & CFG_SPDSTS;
699  	}
700  
701  	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
702  
703  	if (newlinkstate & LINK_UP &&
704  	    dev->linkstate != newlinkstate) {
705  		netif_start_queue(ndev);
706  		netif_wake_queue(ndev);
707  		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
708  			ndev->name,
709  			speeds[speed],
710  			fullduplex ? "full" : "half");
711  	} else if (newlinkstate & LINK_DOWN &&
712  		   dev->linkstate != newlinkstate) {
713  		netif_stop_queue(ndev);
714  		printk(KERN_INFO "%s: link now down.\n", ndev->name);
715  	}
716  
717  	dev->linkstate = newlinkstate;
718  }
719  
ns83820_setup_rx(struct net_device * ndev)720  static int ns83820_setup_rx(struct net_device *ndev)
721  {
722  	struct ns83820 *dev = PRIV(ndev);
723  	unsigned i;
724  	int ret;
725  
726  	dprintk("ns83820_setup_rx(%p)\n", ndev);
727  
728  	dev->rx_info.idle = 1;
729  	dev->rx_info.next_rx = 0;
730  	dev->rx_info.next_rx_desc = dev->rx_info.descs;
731  	dev->rx_info.next_empty = 0;
732  
733  	for (i=0; i<NR_RX_DESC; i++)
734  		clear_rx_desc(dev, i);
735  
736  	writel(0, dev->base + RXDP_HI);
737  	writel(dev->rx_info.phy_descs, dev->base + RXDP);
738  
739  	ret = rx_refill(ndev, GFP_KERNEL);
740  	if (!ret) {
741  		dprintk("starting receiver\n");
742  		/* prevent the interrupt handler from stomping on us */
743  		spin_lock_irq(&dev->rx_info.lock);
744  
745  		writel(0x0001, dev->base + CCSR);
746  		writel(0, dev->base + RFCR);
747  		writel(0x7fc00000, dev->base + RFCR);
748  		writel(0xffc00000, dev->base + RFCR);
749  
750  		dev->rx_info.up = 1;
751  
752  		phy_intr(ndev);
753  
754  		/* Okay, let it rip */
755  		spin_lock(&dev->misc_lock);
756  		dev->IMR_cache |= ISR_PHY;
757  		dev->IMR_cache |= ISR_RXRCMP;
758  		//dev->IMR_cache |= ISR_RXERR;
759  		//dev->IMR_cache |= ISR_RXOK;
760  		dev->IMR_cache |= ISR_RXORN;
761  		dev->IMR_cache |= ISR_RXSOVR;
762  		dev->IMR_cache |= ISR_RXDESC;
763  		dev->IMR_cache |= ISR_RXIDLE;
764  		dev->IMR_cache |= ISR_TXDESC;
765  		dev->IMR_cache |= ISR_TXIDLE;
766  
767  		writel(dev->IMR_cache, dev->base + IMR);
768  		writel(1, dev->base + IER);
769  		spin_unlock(&dev->misc_lock);
770  
771  		kick_rx(ndev);
772  
773  		spin_unlock_irq(&dev->rx_info.lock);
774  	}
775  	return ret;
776  }
777  
ns83820_cleanup_rx(struct ns83820 * dev)778  static void ns83820_cleanup_rx(struct ns83820 *dev)
779  {
780  	unsigned i;
781  	unsigned long flags;
782  
783  	dprintk("ns83820_cleanup_rx(%p)\n", dev);
784  
785  	/* disable receive interrupts */
786  	spin_lock_irqsave(&dev->misc_lock, flags);
787  	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
788  	writel(dev->IMR_cache, dev->base + IMR);
789  	spin_unlock_irqrestore(&dev->misc_lock, flags);
790  
791  	/* synchronize with the interrupt handler and kill it */
792  	dev->rx_info.up = 0;
793  	synchronize_irq(dev->pci_dev->irq);
794  
795  	/* touch the pci bus... */
796  	readl(dev->base + IMR);
797  
798  	/* assumes the transmitter is already disabled and reset */
799  	writel(0, dev->base + RXDP_HI);
800  	writel(0, dev->base + RXDP);
801  
802  	for (i=0; i<NR_RX_DESC; i++) {
803  		struct sk_buff *skb = dev->rx_info.skbs[i];
804  		dev->rx_info.skbs[i] = NULL;
805  		clear_rx_desc(dev, i);
806  		kfree_skb(skb);
807  	}
808  }
809  
ns83820_rx_kick(struct net_device * ndev)810  static void ns83820_rx_kick(struct net_device *ndev)
811  {
812  	struct ns83820 *dev = PRIV(ndev);
813  	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
814  		if (dev->rx_info.up) {
815  			rx_refill_atomic(ndev);
816  			kick_rx(ndev);
817  		}
818  	}
819  
820  	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
821  		schedule_work(&dev->tq_refill);
822  	else
823  		kick_rx(ndev);
824  	if (dev->rx_info.idle)
825  		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
826  }
827  
828  /* rx_irq
829   *
830   */
rx_irq(struct net_device * ndev)831  static void rx_irq(struct net_device *ndev)
832  {
833  	struct ns83820 *dev = PRIV(ndev);
834  	struct rx_info *info = &dev->rx_info;
835  	unsigned next_rx;
836  	int rx_rc, len;
837  	u32 cmdsts;
838  	__le32 *desc;
839  	unsigned long flags;
840  	int nr = 0;
841  
842  	dprintk("rx_irq(%p)\n", ndev);
843  	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
844  		readl(dev->base + RXDP),
845  		(long)(dev->rx_info.phy_descs),
846  		(int)dev->rx_info.next_rx,
847  		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
848  		(int)dev->rx_info.next_empty,
849  		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
850  		);
851  
852  	spin_lock_irqsave(&info->lock, flags);
853  	if (!info->up)
854  		goto out;
855  
856  	dprintk("walking descs\n");
857  	next_rx = info->next_rx;
858  	desc = info->next_rx_desc;
859  	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
860  	       (cmdsts != CMDSTS_OWN)) {
861  		struct sk_buff *skb;
862  		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
863  		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
864  
865  		dprintk("cmdsts: %08x\n", cmdsts);
866  		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
867  		dprintk("extsts: %08x\n", extsts);
868  
869  		skb = info->skbs[next_rx];
870  		info->skbs[next_rx] = NULL;
871  		info->next_rx = (next_rx + 1) % NR_RX_DESC;
872  
873  		mb();
874  		clear_rx_desc(dev, next_rx);
875  
876  		pci_unmap_single(dev->pci_dev, bufptr,
877  				 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
878  		len = cmdsts & CMDSTS_LEN_MASK;
879  #ifdef NS83820_VLAN_ACCEL_SUPPORT
880  		/* NH: As was mentioned below, this chip is kinda
881  		 * brain dead about vlan tag stripping.  Frames
882  		 * that are 64 bytes with a vlan header appended
883  		 * like arp frames, or pings, are flagged as Runts
884  		 * when the tag is stripped and hardware.  This
885  		 * also means that the OK bit in the descriptor
886  		 * is cleared when the frame comes in so we have
887  		 * to do a specific length check here to make sure
888  		 * the frame would have been ok, had we not stripped
889  		 * the tag.
890  		 */
891  		if (likely((CMDSTS_OK & cmdsts) ||
892  			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
893  #else
894  		if (likely(CMDSTS_OK & cmdsts)) {
895  #endif
896  			skb_put(skb, len);
897  			if (unlikely(!skb))
898  				goto netdev_mangle_me_harder_failed;
899  			if (cmdsts & CMDSTS_DEST_MULTI)
900  				ndev->stats.multicast++;
901  			ndev->stats.rx_packets++;
902  			ndev->stats.rx_bytes += len;
903  			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
904  				skb->ip_summed = CHECKSUM_UNNECESSARY;
905  			} else {
906  				skb_checksum_none_assert(skb);
907  			}
908  			skb->protocol = eth_type_trans(skb, ndev);
909  #ifdef NS83820_VLAN_ACCEL_SUPPORT
910  			if(extsts & EXTSTS_VPKT) {
911  				unsigned short tag;
912  
913  				tag = ntohs(extsts & EXTSTS_VTG_MASK);
914  				__vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
915  			}
916  #endif
917  			rx_rc = netif_rx(skb);
918  			if (NET_RX_DROP == rx_rc) {
919  netdev_mangle_me_harder_failed:
920  				ndev->stats.rx_dropped++;
921  			}
922  		} else {
923  			kfree_skb(skb);
924  		}
925  
926  		nr++;
927  		next_rx = info->next_rx;
928  		desc = info->descs + (DESC_SIZE * next_rx);
929  	}
930  	info->next_rx = next_rx;
931  	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
932  
933  out:
934  	if (0 && !nr) {
935  		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
936  	}
937  
938  	spin_unlock_irqrestore(&info->lock, flags);
939  }
940  
941  static void rx_action(unsigned long _dev)
942  {
943  	struct net_device *ndev = (void *)_dev;
944  	struct ns83820 *dev = PRIV(ndev);
945  	rx_irq(ndev);
946  	writel(ihr, dev->base + IHR);
947  
948  	spin_lock_irq(&dev->misc_lock);
949  	dev->IMR_cache |= ISR_RXDESC;
950  	writel(dev->IMR_cache, dev->base + IMR);
951  	spin_unlock_irq(&dev->misc_lock);
952  
953  	rx_irq(ndev);
954  	ns83820_rx_kick(ndev);
955  }
956  
957  /* Packet Transmit code
958   */
959  static inline void kick_tx(struct ns83820 *dev)
960  {
961  	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
962  		dev, dev->tx_idx, dev->tx_free_idx);
963  	writel(CR_TXE, dev->base + CR);
964  }
965  
966  /* No spinlock needed on the transmit irq path as the interrupt handler is
967   * serialized.
968   */
969  static void do_tx_done(struct net_device *ndev)
970  {
971  	struct ns83820 *dev = PRIV(ndev);
972  	u32 cmdsts, tx_done_idx;
973  	__le32 *desc;
974  
975  	dprintk("do_tx_done(%p)\n", ndev);
976  	tx_done_idx = dev->tx_done_idx;
977  	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
978  
979  	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
980  		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
981  	while ((tx_done_idx != dev->tx_free_idx) &&
982  	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
983  		struct sk_buff *skb;
984  		unsigned len;
985  		dma_addr_t addr;
986  
987  		if (cmdsts & CMDSTS_ERR)
988  			ndev->stats.tx_errors++;
989  		if (cmdsts & CMDSTS_OK)
990  			ndev->stats.tx_packets++;
991  		if (cmdsts & CMDSTS_OK)
992  			ndev->stats.tx_bytes += cmdsts & 0xffff;
993  
994  		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
995  			tx_done_idx, dev->tx_free_idx, cmdsts);
996  		skb = dev->tx_skbs[tx_done_idx];
997  		dev->tx_skbs[tx_done_idx] = NULL;
998  		dprintk("done(%p)\n", skb);
999  
1000  		len = cmdsts & CMDSTS_LEN_MASK;
1001  		addr = desc_addr_get(desc + DESC_BUFPTR);
1002  		if (skb) {
1003  			pci_unmap_single(dev->pci_dev,
1004  					addr,
1005  					len,
1006  					PCI_DMA_TODEVICE);
1007  			dev_kfree_skb_irq(skb);
1008  			atomic_dec(&dev->nr_tx_skbs);
1009  		} else
1010  			pci_unmap_page(dev->pci_dev,
1011  					addr,
1012  					len,
1013  					PCI_DMA_TODEVICE);
1014  
1015  		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1016  		dev->tx_done_idx = tx_done_idx;
1017  		desc[DESC_CMDSTS] = cpu_to_le32(0);
1018  		mb();
1019  		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1020  	}
1021  
1022  	/* Allow network stack to resume queueing packets after we've
1023  	 * finished transmitting at least 1/4 of the packets in the queue.
1024  	 */
1025  	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1026  		dprintk("start_queue(%p)\n", ndev);
1027  		netif_start_queue(ndev);
1028  		netif_wake_queue(ndev);
1029  	}
1030  }
1031  
1032  static void ns83820_cleanup_tx(struct ns83820 *dev)
1033  {
1034  	unsigned i;
1035  
1036  	for (i=0; i<NR_TX_DESC; i++) {
1037  		struct sk_buff *skb = dev->tx_skbs[i];
1038  		dev->tx_skbs[i] = NULL;
1039  		if (skb) {
1040  			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1041  			pci_unmap_single(dev->pci_dev,
1042  					desc_addr_get(desc + DESC_BUFPTR),
1043  					le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1044  					PCI_DMA_TODEVICE);
1045  			dev_kfree_skb_irq(skb);
1046  			atomic_dec(&dev->nr_tx_skbs);
1047  		}
1048  	}
1049  
1050  	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1051  }
1052  
1053  /* transmit routine.  This code relies on the network layer serializing
1054   * its calls in, but will run happily in parallel with the interrupt
1055   * handler.  This code currently has provisions for fragmenting tx buffers
1056   * while trying to track down a bug in either the zero copy code or
1057   * the tx fifo (hence the MAX_FRAG_LEN).
1058   */
1059  static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1060  					   struct net_device *ndev)
1061  {
1062  	struct ns83820 *dev = PRIV(ndev);
1063  	u32 free_idx, cmdsts, extsts;
1064  	int nr_free, nr_frags;
1065  	unsigned tx_done_idx, last_idx;
1066  	dma_addr_t buf;
1067  	unsigned len;
1068  	skb_frag_t *frag;
1069  	int stopped = 0;
1070  	int do_intr = 0;
1071  	volatile __le32 *first_desc;
1072  
1073  	dprintk("ns83820_hard_start_xmit\n");
1074  
1075  	nr_frags =  skb_shinfo(skb)->nr_frags;
1076  again:
1077  	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1078  		netif_stop_queue(ndev);
1079  		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1080  			return NETDEV_TX_BUSY;
1081  		netif_start_queue(ndev);
1082  	}
1083  
1084  	last_idx = free_idx = dev->tx_free_idx;
1085  	tx_done_idx = dev->tx_done_idx;
1086  	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1087  	nr_free -= 1;
1088  	if (nr_free <= nr_frags) {
1089  		dprintk("stop_queue - not enough(%p)\n", ndev);
1090  		netif_stop_queue(ndev);
1091  
1092  		/* Check again: we may have raced with a tx done irq */
1093  		if (dev->tx_done_idx != tx_done_idx) {
1094  			dprintk("restart queue(%p)\n", ndev);
1095  			netif_start_queue(ndev);
1096  			goto again;
1097  		}
1098  		return NETDEV_TX_BUSY;
1099  	}
1100  
1101  	if (free_idx == dev->tx_intr_idx) {
1102  		do_intr = 1;
1103  		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1104  	}
1105  
1106  	nr_free -= nr_frags;
1107  	if (nr_free < MIN_TX_DESC_FREE) {
1108  		dprintk("stop_queue - last entry(%p)\n", ndev);
1109  		netif_stop_queue(ndev);
1110  		stopped = 1;
1111  	}
1112  
1113  	frag = skb_shinfo(skb)->frags;
1114  	if (!nr_frags)
1115  		frag = NULL;
1116  	extsts = 0;
1117  	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1118  		extsts |= EXTSTS_IPPKT;
1119  		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1120  			extsts |= EXTSTS_TCPPKT;
1121  		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1122  			extsts |= EXTSTS_UDPPKT;
1123  	}
1124  
1125  #ifdef NS83820_VLAN_ACCEL_SUPPORT
1126  	if(vlan_tx_tag_present(skb)) {
1127  		/* fetch the vlan tag info out of the
1128  		 * ancillary data if the vlan code
1129  		 * is using hw vlan acceleration
1130  		 */
1131  		short tag = vlan_tx_tag_get(skb);
1132  		extsts |= (EXTSTS_VPKT | htons(tag));
1133  	}
1134  #endif
1135  
1136  	len = skb->len;
1137  	if (nr_frags)
1138  		len -= skb->data_len;
1139  	buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1140  
1141  	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1142  
1143  	for (;;) {
1144  		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1145  
1146  		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1147  			(unsigned long long)buf);
1148  		last_idx = free_idx;
1149  		free_idx = (free_idx + 1) % NR_TX_DESC;
1150  		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1151  		desc_addr_set(desc + DESC_BUFPTR, buf);
1152  		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1153  
1154  		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1155  		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1156  		cmdsts |= len;
1157  		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1158  
1159  		if (!nr_frags)
1160  			break;
1161  
1162  		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1163  				       skb_frag_size(frag), DMA_TO_DEVICE);
1164  		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1165  			(long long)buf, (long) page_to_pfn(frag->page),
1166  			frag->page_offset);
1167  		len = skb_frag_size(frag);
1168  		frag++;
1169  		nr_frags--;
1170  	}
1171  	dprintk("done pkt\n");
1172  
1173  	spin_lock_irq(&dev->tx_lock);
1174  	dev->tx_skbs[last_idx] = skb;
1175  	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1176  	dev->tx_free_idx = free_idx;
1177  	atomic_inc(&dev->nr_tx_skbs);
1178  	spin_unlock_irq(&dev->tx_lock);
1179  
1180  	kick_tx(dev);
1181  
1182  	/* Check again: we may have raced with a tx done irq */
1183  	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1184  		netif_start_queue(ndev);
1185  
1186  	return NETDEV_TX_OK;
1187  }
1188  
1189  static void ns83820_update_stats(struct ns83820 *dev)
1190  {
1191  	struct net_device *ndev = dev->ndev;
1192  	u8 __iomem *base = dev->base;
1193  
1194  	/* the DP83820 will freeze counters, so we need to read all of them */
1195  	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1196  	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1197  	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1198  	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1199  	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1200  	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1201  	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1202  	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1203  	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1204  	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1205  	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1206  }
1207  
1208  static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1209  {
1210  	struct ns83820 *dev = PRIV(ndev);
1211  
1212  	/* somewhat overkill */
1213  	spin_lock_irq(&dev->misc_lock);
1214  	ns83820_update_stats(dev);
1215  	spin_unlock_irq(&dev->misc_lock);
1216  
1217  	return &ndev->stats;
1218  }
1219  
1220  /* Let ethtool retrieve info */
1221  static int ns83820_get_settings(struct net_device *ndev,
1222  				struct ethtool_cmd *cmd)
1223  {
1224  	struct ns83820 *dev = PRIV(ndev);
1225  	u32 cfg, tanar, tbicr;
1226  	int fullduplex   = 0;
1227  
1228  	/*
1229  	 * Here's the list of available ethtool commands from other drivers:
1230  	 *	cmd->advertising =
1231  	 *	ethtool_cmd_speed_set(cmd, ...)
1232  	 *	cmd->duplex =
1233  	 *	cmd->port = 0;
1234  	 *	cmd->phy_address =
1235  	 *	cmd->transceiver = 0;
1236  	 *	cmd->autoneg =
1237  	 *	cmd->maxtxpkt = 0;
1238  	 *	cmd->maxrxpkt = 0;
1239  	 */
1240  
1241  	/* read current configuration */
1242  	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1243  	tanar = readl(dev->base + TANAR);
1244  	tbicr = readl(dev->base + TBICR);
1245  
1246  	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1247  
1248  	cmd->supported = SUPPORTED_Autoneg;
1249  
1250  	if (dev->CFG_cache & CFG_TBI_EN) {
1251  		/* we have optical interface */
1252  		cmd->supported |= SUPPORTED_1000baseT_Half |
1253  					SUPPORTED_1000baseT_Full |
1254  					SUPPORTED_FIBRE;
1255  		cmd->port       = PORT_FIBRE;
1256  	} else {
1257  		/* we have copper */
1258  		cmd->supported |= SUPPORTED_10baseT_Half |
1259  			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1260  			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1261  			SUPPORTED_1000baseT_Full |
1262  			SUPPORTED_MII;
1263  		cmd->port = PORT_MII;
1264  	}
1265  
1266  	cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1267  	switch (cfg / CFG_SPDSTS0 & 3) {
1268  	case 2:
1269  		ethtool_cmd_speed_set(cmd, SPEED_1000);
1270  		break;
1271  	case 1:
1272  		ethtool_cmd_speed_set(cmd, SPEED_100);
1273  		break;
1274  	default:
1275  		ethtool_cmd_speed_set(cmd, SPEED_10);
1276  		break;
1277  	}
1278  	cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1279  		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1280  	return 0;
1281  }
1282  
1283  /* Let ethool change settings*/
1284  static int ns83820_set_settings(struct net_device *ndev,
1285  				struct ethtool_cmd *cmd)
1286  {
1287  	struct ns83820 *dev = PRIV(ndev);
1288  	u32 cfg, tanar;
1289  	int have_optical = 0;
1290  	int fullduplex   = 0;
1291  
1292  	/* read current configuration */
1293  	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1294  	tanar = readl(dev->base + TANAR);
1295  
1296  	if (dev->CFG_cache & CFG_TBI_EN) {
1297  		/* we have optical */
1298  		have_optical = 1;
1299  		fullduplex   = (tanar & TANAR_FULL_DUP);
1300  
1301  	} else {
1302  		/* we have copper */
1303  		fullduplex = cfg & CFG_DUPSTS;
1304  	}
1305  
1306  	spin_lock_irq(&dev->misc_lock);
1307  	spin_lock(&dev->tx_lock);
1308  
1309  	/* Set duplex */
1310  	if (cmd->duplex != fullduplex) {
1311  		if (have_optical) {
1312  			/*set full duplex*/
1313  			if (cmd->duplex == DUPLEX_FULL) {
1314  				/* force full duplex */
1315  				writel(readl(dev->base + TXCFG)
1316  					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1317  					dev->base + TXCFG);
1318  				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1319  					dev->base + RXCFG);
1320  				/* Light up full duplex LED */
1321  				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1322  					dev->base + GPIOR);
1323  			} else {
1324  				/*TODO: set half duplex */
1325  			}
1326  
1327  		} else {
1328  			/*we have copper*/
1329  			/* TODO: Set duplex for copper cards */
1330  		}
1331  		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1332  		ndev->name);
1333  	}
1334  
1335  	/* Set autonegotiation */
1336  	if (1) {
1337  		if (cmd->autoneg == AUTONEG_ENABLE) {
1338  			/* restart auto negotiation */
1339  			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1340  				dev->base + TBICR);
1341  			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1342  				dev->linkstate = LINK_AUTONEGOTIATE;
1343  
1344  			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1345  				ndev->name);
1346  		} else {
1347  			/* disable auto negotiation */
1348  			writel(0x00000000, dev->base + TBICR);
1349  		}
1350  
1351  		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1352  				cmd->autoneg ? "ENABLED" : "DISABLED");
1353  	}
1354  
1355  	phy_intr(ndev);
1356  	spin_unlock(&dev->tx_lock);
1357  	spin_unlock_irq(&dev->misc_lock);
1358  
1359  	return 0;
1360  }
1361  /* end ethtool get/set support -df */
1362  
1363  static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1364  {
1365  	struct ns83820 *dev = PRIV(ndev);
1366  	strlcpy(info->driver, "ns83820", sizeof(info->driver));
1367  	strlcpy(info->version, VERSION, sizeof(info->version));
1368  	strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1369  }
1370  
1371  static u32 ns83820_get_link(struct net_device *ndev)
1372  {
1373  	struct ns83820 *dev = PRIV(ndev);
1374  	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1375  	return cfg & CFG_LNKSTS ? 1 : 0;
1376  }
1377  
1378  static const struct ethtool_ops ops = {
1379  	.get_settings    = ns83820_get_settings,
1380  	.set_settings    = ns83820_set_settings,
1381  	.get_drvinfo     = ns83820_get_drvinfo,
1382  	.get_link        = ns83820_get_link
1383  };
1384  
1385  static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1386  {
1387  	writel(0, dev->base + IMR);
1388  	writel(0, dev->base + IER);
1389  	readl(dev->base + IER);
1390  }
1391  
1392  /* this function is called in irq context from the ISR */
1393  static void ns83820_mib_isr(struct ns83820 *dev)
1394  {
1395  	unsigned long flags;
1396  	spin_lock_irqsave(&dev->misc_lock, flags);
1397  	ns83820_update_stats(dev);
1398  	spin_unlock_irqrestore(&dev->misc_lock, flags);
1399  }
1400  
1401  static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1402  static irqreturn_t ns83820_irq(int foo, void *data)
1403  {
1404  	struct net_device *ndev = data;
1405  	struct ns83820 *dev = PRIV(ndev);
1406  	u32 isr;
1407  	dprintk("ns83820_irq(%p)\n", ndev);
1408  
1409  	dev->ihr = 0;
1410  
1411  	isr = readl(dev->base + ISR);
1412  	dprintk("irq: %08x\n", isr);
1413  	ns83820_do_isr(ndev, isr);
1414  	return IRQ_HANDLED;
1415  }
1416  
1417  static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1418  {
1419  	struct ns83820 *dev = PRIV(ndev);
1420  	unsigned long flags;
1421  
1422  #ifdef DEBUG
1423  	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1424  		Dprintk("odd isr? 0x%08x\n", isr);
1425  #endif
1426  
1427  	if (ISR_RXIDLE & isr) {
1428  		dev->rx_info.idle = 1;
1429  		Dprintk("oh dear, we are idle\n");
1430  		ns83820_rx_kick(ndev);
1431  	}
1432  
1433  	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1434  		prefetch(dev->rx_info.next_rx_desc);
1435  
1436  		spin_lock_irqsave(&dev->misc_lock, flags);
1437  		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1438  		writel(dev->IMR_cache, dev->base + IMR);
1439  		spin_unlock_irqrestore(&dev->misc_lock, flags);
1440  
1441  		tasklet_schedule(&dev->rx_tasklet);
1442  		//rx_irq(ndev);
1443  		//writel(4, dev->base + IHR);
1444  	}
1445  
1446  	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1447  		ns83820_rx_kick(ndev);
1448  
1449  	if (unlikely(ISR_RXSOVR & isr)) {
1450  		//printk("overrun: rxsovr\n");
1451  		ndev->stats.rx_fifo_errors++;
1452  	}
1453  
1454  	if (unlikely(ISR_RXORN & isr)) {
1455  		//printk("overrun: rxorn\n");
1456  		ndev->stats.rx_fifo_errors++;
1457  	}
1458  
1459  	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1460  		writel(CR_RXE, dev->base + CR);
1461  
1462  	if (ISR_TXIDLE & isr) {
1463  		u32 txdp;
1464  		txdp = readl(dev->base + TXDP);
1465  		dprintk("txdp: %08x\n", txdp);
1466  		txdp -= dev->tx_phy_descs;
1467  		dev->tx_idx = txdp / (DESC_SIZE * 4);
1468  		if (dev->tx_idx >= NR_TX_DESC) {
1469  			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1470  			dev->tx_idx = 0;
1471  		}
1472  		/* The may have been a race between a pci originated read
1473  		 * and the descriptor update from the cpu.  Just in case,
1474  		 * kick the transmitter if the hardware thinks it is on a
1475  		 * different descriptor than we are.
1476  		 */
1477  		if (dev->tx_idx != dev->tx_free_idx)
1478  			kick_tx(dev);
1479  	}
1480  
1481  	/* Defer tx ring processing until more than a minimum amount of
1482  	 * work has accumulated
1483  	 */
1484  	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1485  		spin_lock_irqsave(&dev->tx_lock, flags);
1486  		do_tx_done(ndev);
1487  		spin_unlock_irqrestore(&dev->tx_lock, flags);
1488  
1489  		/* Disable TxOk if there are no outstanding tx packets.
1490  		 */
1491  		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1492  		    (dev->IMR_cache & ISR_TXOK)) {
1493  			spin_lock_irqsave(&dev->misc_lock, flags);
1494  			dev->IMR_cache &= ~ISR_TXOK;
1495  			writel(dev->IMR_cache, dev->base + IMR);
1496  			spin_unlock_irqrestore(&dev->misc_lock, flags);
1497  		}
1498  	}
1499  
1500  	/* The TxIdle interrupt can come in before the transmit has
1501  	 * completed.  Normally we reap packets off of the combination
1502  	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1503  	 * occurs on every packet), but when no further irqs of this
1504  	 * nature are expected, we must enable TxOk.
1505  	 */
1506  	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1507  		spin_lock_irqsave(&dev->misc_lock, flags);
1508  		dev->IMR_cache |= ISR_TXOK;
1509  		writel(dev->IMR_cache, dev->base + IMR);
1510  		spin_unlock_irqrestore(&dev->misc_lock, flags);
1511  	}
1512  
1513  	/* MIB interrupt: one of the statistics counters is about to overflow */
1514  	if (unlikely(ISR_MIB & isr))
1515  		ns83820_mib_isr(dev);
1516  
1517  	/* PHY: Link up/down/negotiation state change */
1518  	if (unlikely(ISR_PHY & isr))
1519  		phy_intr(ndev);
1520  
1521  #if 0	/* Still working on the interrupt mitigation strategy */
1522  	if (dev->ihr)
1523  		writel(dev->ihr, dev->base + IHR);
1524  #endif
1525  }
1526  
1527  static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1528  {
1529  	Dprintk("resetting chip...\n");
1530  	writel(which, dev->base + CR);
1531  	do {
1532  		schedule();
1533  	} while (readl(dev->base + CR) & which);
1534  	Dprintk("okay!\n");
1535  }
1536  
1537  static int ns83820_stop(struct net_device *ndev)
1538  {
1539  	struct ns83820 *dev = PRIV(ndev);
1540  
1541  	/* FIXME: protect against interrupt handler? */
1542  	del_timer_sync(&dev->tx_watchdog);
1543  
1544  	ns83820_disable_interrupts(dev);
1545  
1546  	dev->rx_info.up = 0;
1547  	synchronize_irq(dev->pci_dev->irq);
1548  
1549  	ns83820_do_reset(dev, CR_RST);
1550  
1551  	synchronize_irq(dev->pci_dev->irq);
1552  
1553  	spin_lock_irq(&dev->misc_lock);
1554  	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1555  	spin_unlock_irq(&dev->misc_lock);
1556  
1557  	ns83820_cleanup_rx(dev);
1558  	ns83820_cleanup_tx(dev);
1559  
1560  	return 0;
1561  }
1562  
1563  static void ns83820_tx_timeout(struct net_device *ndev)
1564  {
1565  	struct ns83820 *dev = PRIV(ndev);
1566          u32 tx_done_idx;
1567  	__le32 *desc;
1568  	unsigned long flags;
1569  
1570  	spin_lock_irqsave(&dev->tx_lock, flags);
1571  
1572  	tx_done_idx = dev->tx_done_idx;
1573  	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1574  
1575  	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1576  		ndev->name,
1577  		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1578  
1579  #if defined(DEBUG)
1580  	{
1581  		u32 isr;
1582  		isr = readl(dev->base + ISR);
1583  		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1584  		ns83820_do_isr(ndev, isr);
1585  	}
1586  #endif
1587  
1588  	do_tx_done(ndev);
1589  
1590  	tx_done_idx = dev->tx_done_idx;
1591  	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1592  
1593  	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1594  		ndev->name,
1595  		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1596  
1597  	spin_unlock_irqrestore(&dev->tx_lock, flags);
1598  }
1599  
1600  static void ns83820_tx_watch(unsigned long data)
1601  {
1602  	struct net_device *ndev = (void *)data;
1603  	struct ns83820 *dev = PRIV(ndev);
1604  
1605  #if defined(DEBUG)
1606  	printk("ns83820_tx_watch: %u %u %d\n",
1607  		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1608  		);
1609  #endif
1610  
1611  	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1612  	    dev->tx_done_idx != dev->tx_free_idx) {
1613  		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1614  			ndev->name,
1615  			dev->tx_done_idx, dev->tx_free_idx,
1616  			atomic_read(&dev->nr_tx_skbs));
1617  		ns83820_tx_timeout(ndev);
1618  	}
1619  
1620  	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1621  }
1622  
1623  static int ns83820_open(struct net_device *ndev)
1624  {
1625  	struct ns83820 *dev = PRIV(ndev);
1626  	unsigned i;
1627  	u32 desc;
1628  	int ret;
1629  
1630  	dprintk("ns83820_open\n");
1631  
1632  	writel(0, dev->base + PQCR);
1633  
1634  	ret = ns83820_setup_rx(ndev);
1635  	if (ret)
1636  		goto failed;
1637  
1638  	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1639  	for (i=0; i<NR_TX_DESC; i++) {
1640  		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1641  				= cpu_to_le32(
1642  				  dev->tx_phy_descs
1643  				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1644  	}
1645  
1646  	dev->tx_idx = 0;
1647  	dev->tx_done_idx = 0;
1648  	desc = dev->tx_phy_descs;
1649  	writel(0, dev->base + TXDP_HI);
1650  	writel(desc, dev->base + TXDP);
1651  
1652  	init_timer(&dev->tx_watchdog);
1653  	dev->tx_watchdog.data = (unsigned long)ndev;
1654  	dev->tx_watchdog.function = ns83820_tx_watch;
1655  	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1656  
1657  	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1658  
1659  	return 0;
1660  
1661  failed:
1662  	ns83820_stop(ndev);
1663  	return ret;
1664  }
1665  
1666  static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1667  {
1668  	unsigned i;
1669  	for (i=0; i<3; i++) {
1670  		u32 data;
1671  
1672  		/* Read from the perfect match memory: this is loaded by
1673  		 * the chip from the EEPROM via the EELOAD self test.
1674  		 */
1675  		writel(i*2, dev->base + RFCR);
1676  		data = readl(dev->base + RFDR);
1677  
1678  		*mac++ = data;
1679  		*mac++ = data >> 8;
1680  	}
1681  }
1682  
1683  static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1684  {
1685  	if (new_mtu > RX_BUF_SIZE)
1686  		return -EINVAL;
1687  	ndev->mtu = new_mtu;
1688  	return 0;
1689  }
1690  
1691  static void ns83820_set_multicast(struct net_device *ndev)
1692  {
1693  	struct ns83820 *dev = PRIV(ndev);
1694  	u8 __iomem *rfcr = dev->base + RFCR;
1695  	u32 and_mask = 0xffffffff;
1696  	u32 or_mask = 0;
1697  	u32 val;
1698  
1699  	if (ndev->flags & IFF_PROMISC)
1700  		or_mask |= RFCR_AAU | RFCR_AAM;
1701  	else
1702  		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1703  
1704  	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1705  		or_mask |= RFCR_AAM;
1706  	else
1707  		and_mask &= ~RFCR_AAM;
1708  
1709  	spin_lock_irq(&dev->misc_lock);
1710  	val = (readl(rfcr) & and_mask) | or_mask;
1711  	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1712  	writel(val & ~RFCR_RFEN, rfcr);
1713  	writel(val, rfcr);
1714  	spin_unlock_irq(&dev->misc_lock);
1715  }
1716  
1717  static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1718  {
1719  	struct ns83820 *dev = PRIV(ndev);
1720  	int timed_out = 0;
1721  	unsigned long start;
1722  	u32 status;
1723  	int loops = 0;
1724  
1725  	dprintk("%s: start %s\n", ndev->name, name);
1726  
1727  	start = jiffies;
1728  
1729  	writel(enable, dev->base + PTSCR);
1730  	for (;;) {
1731  		loops++;
1732  		status = readl(dev->base + PTSCR);
1733  		if (!(status & enable))
1734  			break;
1735  		if (status & done)
1736  			break;
1737  		if (status & fail)
1738  			break;
1739  		if (time_after_eq(jiffies, start + HZ)) {
1740  			timed_out = 1;
1741  			break;
1742  		}
1743  		schedule_timeout_uninterruptible(1);
1744  	}
1745  
1746  	if (status & fail)
1747  		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1748  			ndev->name, name, status, fail);
1749  	else if (timed_out)
1750  		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1751  			ndev->name, name, status);
1752  
1753  	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1754  }
1755  
1756  #ifdef PHY_CODE_IS_FINISHED
1757  static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1758  {
1759  	/* drive MDC low */
1760  	dev->MEAR_cache &= ~MEAR_MDC;
1761  	writel(dev->MEAR_cache, dev->base + MEAR);
1762  	readl(dev->base + MEAR);
1763  
1764  	/* enable output, set bit */
1765  	dev->MEAR_cache |= MEAR_MDDIR;
1766  	if (bit)
1767  		dev->MEAR_cache |= MEAR_MDIO;
1768  	else
1769  		dev->MEAR_cache &= ~MEAR_MDIO;
1770  
1771  	/* set the output bit */
1772  	writel(dev->MEAR_cache, dev->base + MEAR);
1773  	readl(dev->base + MEAR);
1774  
1775  	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1776  	udelay(1);
1777  
1778  	/* drive MDC high causing the data bit to be latched */
1779  	dev->MEAR_cache |= MEAR_MDC;
1780  	writel(dev->MEAR_cache, dev->base + MEAR);
1781  	readl(dev->base + MEAR);
1782  
1783  	/* Wait again... */
1784  	udelay(1);
1785  }
1786  
1787  static int ns83820_mii_read_bit(struct ns83820 *dev)
1788  {
1789  	int bit;
1790  
1791  	/* drive MDC low, disable output */
1792  	dev->MEAR_cache &= ~MEAR_MDC;
1793  	dev->MEAR_cache &= ~MEAR_MDDIR;
1794  	writel(dev->MEAR_cache, dev->base + MEAR);
1795  	readl(dev->base + MEAR);
1796  
1797  	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1798  	udelay(1);
1799  
1800  	/* drive MDC high causing the data bit to be latched */
1801  	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1802  	dev->MEAR_cache |= MEAR_MDC;
1803  	writel(dev->MEAR_cache, dev->base + MEAR);
1804  
1805  	/* Wait again... */
1806  	udelay(1);
1807  
1808  	return bit;
1809  }
1810  
1811  static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1812  {
1813  	unsigned data = 0;
1814  	int i;
1815  
1816  	/* read some garbage so that we eventually sync up */
1817  	for (i=0; i<64; i++)
1818  		ns83820_mii_read_bit(dev);
1819  
1820  	ns83820_mii_write_bit(dev, 0);	/* start */
1821  	ns83820_mii_write_bit(dev, 1);
1822  	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1823  	ns83820_mii_write_bit(dev, 0);
1824  
1825  	/* write out the phy address: 5 bits, msb first */
1826  	for (i=0; i<5; i++)
1827  		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1828  
1829  	/* write out the register address, 5 bits, msb first */
1830  	for (i=0; i<5; i++)
1831  		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1832  
1833  	ns83820_mii_read_bit(dev);	/* turn around cycles */
1834  	ns83820_mii_read_bit(dev);
1835  
1836  	/* read in the register data, 16 bits msb first */
1837  	for (i=0; i<16; i++) {
1838  		data <<= 1;
1839  		data |= ns83820_mii_read_bit(dev);
1840  	}
1841  
1842  	return data;
1843  }
1844  
1845  static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1846  {
1847  	int i;
1848  
1849  	/* read some garbage so that we eventually sync up */
1850  	for (i=0; i<64; i++)
1851  		ns83820_mii_read_bit(dev);
1852  
1853  	ns83820_mii_write_bit(dev, 0);	/* start */
1854  	ns83820_mii_write_bit(dev, 1);
1855  	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1856  	ns83820_mii_write_bit(dev, 1);
1857  
1858  	/* write out the phy address: 5 bits, msb first */
1859  	for (i=0; i<5; i++)
1860  		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1861  
1862  	/* write out the register address, 5 bits, msb first */
1863  	for (i=0; i<5; i++)
1864  		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1865  
1866  	ns83820_mii_read_bit(dev);	/* turn around cycles */
1867  	ns83820_mii_read_bit(dev);
1868  
1869  	/* read in the register data, 16 bits msb first */
1870  	for (i=0; i<16; i++)
1871  		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1872  
1873  	return data;
1874  }
1875  
1876  static void ns83820_probe_phy(struct net_device *ndev)
1877  {
1878  	struct ns83820 *dev = PRIV(ndev);
1879  	static int first;
1880  	int i;
1881  #define MII_PHYIDR1	0x02
1882  #define MII_PHYIDR2	0x03
1883  
1884  #if 0
1885  	if (!first) {
1886  		unsigned tmp;
1887  		ns83820_mii_read_reg(dev, 1, 0x09);
1888  		ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1889  
1890  		tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1891  		ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1892  		udelay(1300);
1893  		ns83820_mii_read_reg(dev, 1, 0x09);
1894  	}
1895  #endif
1896  	first = 1;
1897  
1898  	for (i=1; i<2; i++) {
1899  		int j;
1900  		unsigned a, b;
1901  		a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1902  		b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1903  
1904  		//printk("%s: phy %d: 0x%04x 0x%04x\n",
1905  		//	ndev->name, i, a, b);
1906  
1907  		for (j=0; j<0x16; j+=4) {
1908  			dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1909  				ndev->name, j,
1910  				ns83820_mii_read_reg(dev, i, 0 + j),
1911  				ns83820_mii_read_reg(dev, i, 1 + j),
1912  				ns83820_mii_read_reg(dev, i, 2 + j),
1913  				ns83820_mii_read_reg(dev, i, 3 + j)
1914  				);
1915  		}
1916  	}
1917  	{
1918  		unsigned a, b;
1919  		/* read firmware version: memory addr is 0x8402 and 0x8403 */
1920  		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1921  		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1922  		a = ns83820_mii_read_reg(dev, 1, 0x1d);
1923  
1924  		ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1925  		ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1926  		b = ns83820_mii_read_reg(dev, 1, 0x1d);
1927  		dprintk("version: 0x%04x 0x%04x\n", a, b);
1928  	}
1929  }
1930  #endif
1931  
1932  static const struct net_device_ops netdev_ops = {
1933  	.ndo_open		= ns83820_open,
1934  	.ndo_stop		= ns83820_stop,
1935  	.ndo_start_xmit		= ns83820_hard_start_xmit,
1936  	.ndo_get_stats		= ns83820_get_stats,
1937  	.ndo_change_mtu		= ns83820_change_mtu,
1938  	.ndo_set_rx_mode	= ns83820_set_multicast,
1939  	.ndo_validate_addr	= eth_validate_addr,
1940  	.ndo_set_mac_address	= eth_mac_addr,
1941  	.ndo_tx_timeout		= ns83820_tx_timeout,
1942  };
1943  
1944  static int ns83820_init_one(struct pci_dev *pci_dev,
1945  			    const struct pci_device_id *id)
1946  {
1947  	struct net_device *ndev;
1948  	struct ns83820 *dev;
1949  	long addr;
1950  	int err;
1951  	int using_dac = 0;
1952  
1953  	/* See if we can set the dma mask early on; failure is fatal. */
1954  	if (sizeof(dma_addr_t) == 8 &&
1955  		!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1956  		using_dac = 1;
1957  	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1958  		using_dac = 0;
1959  	} else {
1960  		dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1961  		return -ENODEV;
1962  	}
1963  
1964  	ndev = alloc_etherdev(sizeof(struct ns83820));
1965  	err = -ENOMEM;
1966  	if (!ndev)
1967  		goto out;
1968  
1969  	dev = PRIV(ndev);
1970  	dev->ndev = ndev;
1971  
1972  	spin_lock_init(&dev->rx_info.lock);
1973  	spin_lock_init(&dev->tx_lock);
1974  	spin_lock_init(&dev->misc_lock);
1975  	dev->pci_dev = pci_dev;
1976  
1977  	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1978  
1979  	INIT_WORK(&dev->tq_refill, queue_refill);
1980  	tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1981  
1982  	err = pci_enable_device(pci_dev);
1983  	if (err) {
1984  		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1985  		goto out_free;
1986  	}
1987  
1988  	pci_set_master(pci_dev);
1989  	addr = pci_resource_start(pci_dev, 1);
1990  	dev->base = ioremap_nocache(addr, PAGE_SIZE);
1991  	dev->tx_descs = pci_alloc_consistent(pci_dev,
1992  			4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1993  	dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1994  			4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1995  	err = -ENOMEM;
1996  	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1997  		goto out_disable;
1998  
1999  	dprintk("%p: %08lx  %p: %08lx\n",
2000  		dev->tx_descs, (long)dev->tx_phy_descs,
2001  		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2002  
2003  	ns83820_disable_interrupts(dev);
2004  
2005  	dev->IMR_cache = 0;
2006  
2007  	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2008  			  DRV_NAME, ndev);
2009  	if (err) {
2010  		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2011  			pci_dev->irq, err);
2012  		goto out_disable;
2013  	}
2014  
2015  	/*
2016  	 * FIXME: we are holding rtnl_lock() over obscenely long area only
2017  	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
2018  	 * we should be using driver-specific names for all that stuff.
2019  	 * For now that will do, but we really need to come back and kill
2020  	 * most of the dev_alloc_name() users later.
2021  	 */
2022  	rtnl_lock();
2023  	err = dev_alloc_name(ndev, ndev->name);
2024  	if (err < 0) {
2025  		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2026  		goto out_free_irq;
2027  	}
2028  
2029  	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2030  		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2031  		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2032  
2033  	ndev->netdev_ops = &netdev_ops;
2034  	SET_ETHTOOL_OPS(ndev, &ops);
2035  	ndev->watchdog_timeo = 5 * HZ;
2036  	pci_set_drvdata(pci_dev, ndev);
2037  
2038  	ns83820_do_reset(dev, CR_RST);
2039  
2040  	/* Must reset the ram bist before running it */
2041  	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2042  	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2043  			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2044  	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2045  			 PTSCR_EEBIST_FAIL);
2046  	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2047  
2048  	/* I love config registers */
2049  	dev->CFG_cache = readl(dev->base + CFG);
2050  
2051  	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2052  		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2053  			ndev->name);
2054  		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2055  		if (!(dev->CFG_cache & CFG_DATA64_EN))
2056  			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2057  				ndev->name);
2058  	} else
2059  		dev->CFG_cache &= ~(CFG_DATA64_EN);
2060  
2061  	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2062  			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2063  			   CFG_M64ADDR);
2064  	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2065  			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2066  	dev->CFG_cache |= CFG_REQALG;
2067  	dev->CFG_cache |= CFG_POW;
2068  	dev->CFG_cache |= CFG_TMRTEST;
2069  
2070  	/* When compiled with 64 bit addressing, we must always enable
2071  	 * the 64 bit descriptor format.
2072  	 */
2073  	if (sizeof(dma_addr_t) == 8)
2074  		dev->CFG_cache |= CFG_M64ADDR;
2075  	if (using_dac)
2076  		dev->CFG_cache |= CFG_T64ADDR;
2077  
2078  	/* Big endian mode does not seem to do what the docs suggest */
2079  	dev->CFG_cache &= ~CFG_BEM;
2080  
2081  	/* setup optical transceiver if we have one */
2082  	if (dev->CFG_cache & CFG_TBI_EN) {
2083  		printk(KERN_INFO "%s: enabling optical transceiver\n",
2084  			ndev->name);
2085  		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2086  
2087  		/* setup auto negotiation feature advertisement */
2088  		writel(readl(dev->base + TANAR)
2089  		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2090  		       dev->base + TANAR);
2091  
2092  		/* start auto negotiation */
2093  		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2094  		       dev->base + TBICR);
2095  		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2096  		dev->linkstate = LINK_AUTONEGOTIATE;
2097  
2098  		dev->CFG_cache |= CFG_MODE_1000;
2099  	}
2100  
2101  	writel(dev->CFG_cache, dev->base + CFG);
2102  	dprintk("CFG: %08x\n", dev->CFG_cache);
2103  
2104  	if (reset_phy) {
2105  		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2106  		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2107  		msleep(10);
2108  		writel(dev->CFG_cache, dev->base + CFG);
2109  	}
2110  
2111  #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2112  	 * the PCI layer.  FIXME.
2113  	 */
2114  	if (readl(dev->base + SRR))
2115  		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2116  #endif
2117  
2118  	/* Note!  The DMA burst size interacts with packet
2119  	 * transmission, such that the largest packet that
2120  	 * can be transmitted is 8192 - FLTH - burst size.
2121  	 * If only the transmit fifo was larger...
2122  	 */
2123  	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2124  	 * some DELL and COMPAQ SMP systems */
2125  	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2126  		| ((1600 / 32) * 0x100),
2127  		dev->base + TXCFG);
2128  
2129  	/* Flush the interrupt holdoff timer */
2130  	writel(0x000, dev->base + IHR);
2131  	writel(0x100, dev->base + IHR);
2132  	writel(0x000, dev->base + IHR);
2133  
2134  	/* Set Rx to full duplex, don't accept runt, errored, long or length
2135  	 * range errored packets.  Use 512 byte DMA.
2136  	 */
2137  	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2138  	 * some DELL and COMPAQ SMP systems
2139  	 * Turn on ALP, only we are accpeting Jumbo Packets */
2140  	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2141  		| RXCFG_STRIPCRC
2142  		//| RXCFG_ALP
2143  		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2144  
2145  	/* Disable priority queueing */
2146  	writel(0, dev->base + PQCR);
2147  
2148  	/* Enable IP checksum validation and detetion of VLAN headers.
2149  	 * Note: do not set the reject options as at least the 0x102
2150  	 * revision of the chip does not properly accept IP fragments
2151  	 * at least for UDP.
2152  	 */
2153  	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2154  	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2155  	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2156  	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2157  	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2158  	 * it discrards it!.  These guys......
2159  	 * also turn on tag stripping if hardware acceleration is enabled
2160  	 */
2161  #ifdef NS83820_VLAN_ACCEL_SUPPORT
2162  #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2163  #else
2164  #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2165  #endif
2166  	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2167  
2168  	/* Enable per-packet TCP/UDP/IP checksumming
2169  	 * and per packet vlan tag insertion if
2170  	 * vlan hardware acceleration is enabled
2171  	 */
2172  #ifdef NS83820_VLAN_ACCEL_SUPPORT
2173  #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2174  #else
2175  #define VTCR_INIT_VALUE VTCR_PPCHK
2176  #endif
2177  	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2178  
2179  	/* Ramit : Enable async and sync pause frames */
2180  	/* writel(0, dev->base + PCR); */
2181  	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2182  		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2183  		dev->base + PCR);
2184  
2185  	/* Disable Wake On Lan */
2186  	writel(0, dev->base + WCSR);
2187  
2188  	ns83820_getmac(dev, ndev->dev_addr);
2189  
2190  	/* Yes, we support dumb IP checksum on transmit */
2191  	ndev->features |= NETIF_F_SG;
2192  	ndev->features |= NETIF_F_IP_CSUM;
2193  
2194  #ifdef NS83820_VLAN_ACCEL_SUPPORT
2195  	/* We also support hardware vlan acceleration */
2196  	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2197  #endif
2198  
2199  	if (using_dac) {
2200  		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2201  			ndev->name);
2202  		ndev->features |= NETIF_F_HIGHDMA;
2203  	}
2204  
2205  	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2206  		ndev->name,
2207  		(unsigned)readl(dev->base + SRR) >> 8,
2208  		(unsigned)readl(dev->base + SRR) & 0xff,
2209  		ndev->dev_addr, addr, pci_dev->irq,
2210  		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2211  		);
2212  
2213  #ifdef PHY_CODE_IS_FINISHED
2214  	ns83820_probe_phy(ndev);
2215  #endif
2216  
2217  	err = register_netdevice(ndev);
2218  	if (err) {
2219  		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2220  		goto out_cleanup;
2221  	}
2222  	rtnl_unlock();
2223  
2224  	return 0;
2225  
2226  out_cleanup:
2227  	ns83820_disable_interrupts(dev); /* paranoia */
2228  out_free_irq:
2229  	rtnl_unlock();
2230  	free_irq(pci_dev->irq, ndev);
2231  out_disable:
2232  	if (dev->base)
2233  		iounmap(dev->base);
2234  	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2235  	pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2236  	pci_disable_device(pci_dev);
2237  out_free:
2238  	free_netdev(ndev);
2239  	pci_set_drvdata(pci_dev, NULL);
2240  out:
2241  	return err;
2242  }
2243  
2244  static void ns83820_remove_one(struct pci_dev *pci_dev)
2245  {
2246  	struct net_device *ndev = pci_get_drvdata(pci_dev);
2247  	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2248  
2249  	if (!ndev)			/* paranoia */
2250  		return;
2251  
2252  	ns83820_disable_interrupts(dev); /* paranoia */
2253  
2254  	unregister_netdev(ndev);
2255  	free_irq(dev->pci_dev->irq, ndev);
2256  	iounmap(dev->base);
2257  	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2258  			dev->tx_descs, dev->tx_phy_descs);
2259  	pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2260  			dev->rx_info.descs, dev->rx_info.phy_descs);
2261  	pci_disable_device(dev->pci_dev);
2262  	free_netdev(ndev);
2263  	pci_set_drvdata(pci_dev, NULL);
2264  }
2265  
2266  static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2267  	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2268  	{ 0, },
2269  };
2270  
2271  static struct pci_driver driver = {
2272  	.name		= "ns83820",
2273  	.id_table	= ns83820_pci_tbl,
2274  	.probe		= ns83820_init_one,
2275  	.remove		= ns83820_remove_one,
2276  #if 0	/* FIXME: implement */
2277  	.suspend	= ,
2278  	.resume		= ,
2279  #endif
2280  };
2281  
2282  
2283  static int __init ns83820_init(void)
2284  {
2285  	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2286  	return pci_register_driver(&driver);
2287  }
2288  
2289  static void __exit ns83820_exit(void)
2290  {
2291  	pci_unregister_driver(&driver);
2292  }
2293  
2294  MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2295  MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2296  MODULE_LICENSE("GPL");
2297  
2298  MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2299  
2300  module_param(lnksts, int, 0);
2301  MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2302  
2303  module_param(ihr, int, 0);
2304  MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2305  
2306  module_param(reset_phy, int, 0);
2307  MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2308  
2309  module_init(ns83820_init);
2310  module_exit(ns83820_exit);
2311