1 #ifndef _LINUX_FIREWIRE_H
2 #define _LINUX_FIREWIRE_H
3
4 #include <linux/completion.h>
5 #include <linux/device.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/kernel.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/mutex.h>
11 #include <linux/spinlock.h>
12 #include <linux/sysfs.h>
13 #include <linux/timer.h>
14 #include <linux/types.h>
15 #include <linux/workqueue.h>
16
17 #include <linux/atomic.h>
18 #include <asm/byteorder.h>
19
20 #define CSR_REGISTER_BASE 0xfffff0000000ULL
21
22 /* register offsets are relative to CSR_REGISTER_BASE */
23 #define CSR_STATE_CLEAR 0x0
24 #define CSR_STATE_SET 0x4
25 #define CSR_NODE_IDS 0x8
26 #define CSR_RESET_START 0xc
27 #define CSR_SPLIT_TIMEOUT_HI 0x18
28 #define CSR_SPLIT_TIMEOUT_LO 0x1c
29 #define CSR_CYCLE_TIME 0x200
30 #define CSR_BUS_TIME 0x204
31 #define CSR_BUSY_TIMEOUT 0x210
32 #define CSR_PRIORITY_BUDGET 0x218
33 #define CSR_BUS_MANAGER_ID 0x21c
34 #define CSR_BANDWIDTH_AVAILABLE 0x220
35 #define CSR_CHANNELS_AVAILABLE 0x224
36 #define CSR_CHANNELS_AVAILABLE_HI 0x224
37 #define CSR_CHANNELS_AVAILABLE_LO 0x228
38 #define CSR_MAINT_UTILITY 0x230
39 #define CSR_BROADCAST_CHANNEL 0x234
40 #define CSR_CONFIG_ROM 0x400
41 #define CSR_CONFIG_ROM_END 0x800
42 #define CSR_OMPR 0x900
43 #define CSR_OPCR(i) (0x904 + (i) * 4)
44 #define CSR_IMPR 0x980
45 #define CSR_IPCR(i) (0x984 + (i) * 4)
46 #define CSR_FCP_COMMAND 0xB00
47 #define CSR_FCP_RESPONSE 0xD00
48 #define CSR_FCP_END 0xF00
49 #define CSR_TOPOLOGY_MAP 0x1000
50 #define CSR_TOPOLOGY_MAP_END 0x1400
51 #define CSR_SPEED_MAP 0x2000
52 #define CSR_SPEED_MAP_END 0x3000
53
54 #define CSR_OFFSET 0x40
55 #define CSR_LEAF 0x80
56 #define CSR_DIRECTORY 0xc0
57
58 #define CSR_DESCRIPTOR 0x01
59 #define CSR_VENDOR 0x03
60 #define CSR_HARDWARE_VERSION 0x04
61 #define CSR_UNIT 0x11
62 #define CSR_SPECIFIER_ID 0x12
63 #define CSR_VERSION 0x13
64 #define CSR_DEPENDENT_INFO 0x14
65 #define CSR_MODEL 0x17
66 #define CSR_DIRECTORY_ID 0x20
67
68 struct fw_csr_iterator {
69 const u32 *p;
70 const u32 *end;
71 };
72
73 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
74 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
75 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
76
77 extern struct bus_type fw_bus_type;
78
79 struct fw_card_driver;
80 struct fw_node;
81
82 struct fw_card {
83 const struct fw_card_driver *driver;
84 struct device *device;
85 struct kref kref;
86 struct completion done;
87
88 int node_id;
89 int generation;
90 int current_tlabel;
91 u64 tlabel_mask;
92 struct list_head transaction_list;
93 u64 reset_jiffies;
94
95 u32 split_timeout_hi;
96 u32 split_timeout_lo;
97 unsigned int split_timeout_cycles;
98 unsigned int split_timeout_jiffies;
99
100 unsigned long long guid;
101 unsigned max_receive;
102 int link_speed;
103 int config_rom_generation;
104
105 spinlock_t lock; /* Take this lock when handling the lists in
106 * this struct. */
107 struct fw_node *local_node;
108 struct fw_node *root_node;
109 struct fw_node *irm_node;
110 u8 color; /* must be u8 to match the definition in struct fw_node */
111 int gap_count;
112 bool beta_repeaters_present;
113
114 int index;
115 struct list_head link;
116
117 struct list_head phy_receiver_list;
118
119 struct delayed_work br_work; /* bus reset job */
120 bool br_short;
121
122 struct delayed_work bm_work; /* bus manager job */
123 int bm_retries;
124 int bm_generation;
125 int bm_node_id;
126 bool bm_abdicate;
127
128 bool priority_budget_implemented; /* controller feature */
129 bool broadcast_channel_auto_allocated; /* controller feature */
130
131 bool broadcast_channel_allocated;
132 u32 broadcast_channel;
133 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
134
135 __be32 maint_utility_register;
136 };
137
fw_card_get(struct fw_card * card)138 static inline struct fw_card *fw_card_get(struct fw_card *card)
139 {
140 kref_get(&card->kref);
141
142 return card;
143 }
144
145 void fw_card_release(struct kref *kref);
146
fw_card_put(struct fw_card * card)147 static inline void fw_card_put(struct fw_card *card)
148 {
149 kref_put(&card->kref, fw_card_release);
150 }
151
152 struct fw_attribute_group {
153 struct attribute_group *groups[2];
154 struct attribute_group group;
155 struct attribute *attrs[13];
156 };
157
158 enum fw_device_state {
159 FW_DEVICE_INITIALIZING,
160 FW_DEVICE_RUNNING,
161 FW_DEVICE_GONE,
162 FW_DEVICE_SHUTDOWN,
163 };
164
165 /*
166 * Note, fw_device.generation always has to be read before fw_device.node_id.
167 * Use SMP memory barriers to ensure this. Otherwise requests will be sent
168 * to an outdated node_id if the generation was updated in the meantime due
169 * to a bus reset.
170 *
171 * Likewise, fw-core will take care to update .node_id before .generation so
172 * that whenever fw_device.generation is current WRT the actual bus generation,
173 * fw_device.node_id is guaranteed to be current too.
174 *
175 * The same applies to fw_device.card->node_id vs. fw_device.generation.
176 *
177 * fw_device.config_rom and fw_device.config_rom_length may be accessed during
178 * the lifetime of any fw_unit belonging to the fw_device, before device_del()
179 * was called on the last fw_unit. Alternatively, they may be accessed while
180 * holding fw_device_rwsem.
181 */
182 struct fw_device {
183 atomic_t state;
184 struct fw_node *node;
185 int node_id;
186 int generation;
187 unsigned max_speed;
188 struct fw_card *card;
189 struct device device;
190
191 struct mutex client_list_mutex;
192 struct list_head client_list;
193
194 const u32 *config_rom;
195 size_t config_rom_length;
196 int config_rom_retries;
197 unsigned is_local:1;
198 unsigned max_rec:4;
199 unsigned cmc:1;
200 unsigned irmc:1;
201 unsigned bc_implemented:2;
202
203 struct delayed_work work;
204 struct fw_attribute_group attribute_group;
205 };
206
fw_device(struct device * dev)207 static inline struct fw_device *fw_device(struct device *dev)
208 {
209 return container_of(dev, struct fw_device, device);
210 }
211
fw_device_is_shutdown(struct fw_device * device)212 static inline int fw_device_is_shutdown(struct fw_device *device)
213 {
214 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
215 }
216
217 int fw_device_enable_phys_dma(struct fw_device *device);
218
219 /*
220 * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
221 */
222 struct fw_unit {
223 struct device device;
224 const u32 *directory;
225 struct fw_attribute_group attribute_group;
226 };
227
fw_unit(struct device * dev)228 static inline struct fw_unit *fw_unit(struct device *dev)
229 {
230 return container_of(dev, struct fw_unit, device);
231 }
232
fw_unit_get(struct fw_unit * unit)233 static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
234 {
235 get_device(&unit->device);
236
237 return unit;
238 }
239
fw_unit_put(struct fw_unit * unit)240 static inline void fw_unit_put(struct fw_unit *unit)
241 {
242 put_device(&unit->device);
243 }
244
fw_parent_device(struct fw_unit * unit)245 static inline struct fw_device *fw_parent_device(struct fw_unit *unit)
246 {
247 return fw_device(unit->device.parent);
248 }
249
250 struct ieee1394_device_id;
251
252 struct fw_driver {
253 struct device_driver driver;
254 /* Called when the parent device sits through a bus reset. */
255 void (*update)(struct fw_unit *unit);
256 const struct ieee1394_device_id *id_table;
257 };
258
259 struct fw_packet;
260 struct fw_request;
261
262 typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
263 struct fw_card *card, int status);
264 typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
265 void *data, size_t length,
266 void *callback_data);
267 /*
268 * This callback handles an inbound request subaction. It is called in
269 * RCU read-side context, therefore must not sleep.
270 *
271 * The callback should not initiate outbound request subactions directly.
272 * Otherwise there is a danger of recursion of inbound and outbound
273 * transactions from and to the local node.
274 *
275 * The callback is responsible that either fw_send_response() or kfree()
276 * is called on the @request, except for FCP registers for which the core
277 * takes care of that.
278 */
279 typedef void (*fw_address_callback_t)(struct fw_card *card,
280 struct fw_request *request,
281 int tcode, int destination, int source,
282 int generation,
283 unsigned long long offset,
284 void *data, size_t length,
285 void *callback_data);
286
287 struct fw_packet {
288 int speed;
289 int generation;
290 u32 header[4];
291 size_t header_length;
292 void *payload;
293 size_t payload_length;
294 dma_addr_t payload_bus;
295 bool payload_mapped;
296 u32 timestamp;
297
298 /*
299 * This callback is called when the packet transmission has completed.
300 * For successful transmission, the status code is the ack received
301 * from the destination. Otherwise it is one of the juju-specific
302 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
303 * The callback can be called from tasklet context and thus
304 * must never block.
305 */
306 fw_packet_callback_t callback;
307 int ack;
308 struct list_head link;
309 void *driver_data;
310 };
311
312 struct fw_transaction {
313 int node_id; /* The generation is implied; it is always the current. */
314 int tlabel;
315 struct list_head link;
316 struct fw_card *card;
317 bool is_split_transaction;
318 struct timer_list split_timeout_timer;
319
320 struct fw_packet packet;
321
322 /*
323 * The data passed to the callback is valid only during the
324 * callback.
325 */
326 fw_transaction_callback_t callback;
327 void *callback_data;
328 };
329
330 struct fw_address_handler {
331 u64 offset;
332 u64 length;
333 fw_address_callback_t address_callback;
334 void *callback_data;
335 struct list_head link;
336 };
337
338 struct fw_address_region {
339 u64 start;
340 u64 end;
341 };
342
343 extern const struct fw_address_region fw_high_memory_region;
344
345 int fw_core_add_address_handler(struct fw_address_handler *handler,
346 const struct fw_address_region *region);
347 void fw_core_remove_address_handler(struct fw_address_handler *handler);
348 void fw_send_response(struct fw_card *card,
349 struct fw_request *request, int rcode);
350 int fw_get_request_speed(struct fw_request *request);
351 void fw_send_request(struct fw_card *card, struct fw_transaction *t,
352 int tcode, int destination_id, int generation, int speed,
353 unsigned long long offset, void *payload, size_t length,
354 fw_transaction_callback_t callback, void *callback_data);
355 int fw_cancel_transaction(struct fw_card *card,
356 struct fw_transaction *transaction);
357 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
358 int generation, int speed, unsigned long long offset,
359 void *payload, size_t length);
360 const char *fw_rcode_string(int rcode);
361
fw_stream_packet_destination_id(int tag,int channel,int sy)362 static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
363 {
364 return tag << 14 | channel << 8 | sy;
365 }
366
367 struct fw_descriptor {
368 struct list_head link;
369 size_t length;
370 u32 immediate;
371 u32 key;
372 const u32 *data;
373 };
374
375 int fw_core_add_descriptor(struct fw_descriptor *desc);
376 void fw_core_remove_descriptor(struct fw_descriptor *desc);
377
378 /*
379 * The iso packet format allows for an immediate header/payload part
380 * stored in 'header' immediately after the packet info plus an
381 * indirect payload part that is pointer to by the 'payload' field.
382 * Applications can use one or the other or both to implement simple
383 * low-bandwidth streaming (e.g. audio) or more advanced
384 * scatter-gather streaming (e.g. assembling video frame automatically).
385 */
386 struct fw_iso_packet {
387 u16 payload_length; /* Length of indirect payload */
388 u32 interrupt:1; /* Generate interrupt on this packet */
389 u32 skip:1; /* tx: Set to not send packet at all */
390 /* rx: Sync bit, wait for matching sy */
391 u32 tag:2; /* tx: Tag in packet header */
392 u32 sy:4; /* tx: Sy in packet header */
393 u32 header_length:8; /* Length of immediate header */
394 u32 header[0]; /* tx: Top of 1394 isoch. data_block */
395 };
396
397 #define FW_ISO_CONTEXT_TRANSMIT 0
398 #define FW_ISO_CONTEXT_RECEIVE 1
399 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2
400
401 #define FW_ISO_CONTEXT_MATCH_TAG0 1
402 #define FW_ISO_CONTEXT_MATCH_TAG1 2
403 #define FW_ISO_CONTEXT_MATCH_TAG2 4
404 #define FW_ISO_CONTEXT_MATCH_TAG3 8
405 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15
406
407 /*
408 * An iso buffer is just a set of pages mapped for DMA in the
409 * specified direction. Since the pages are to be used for DMA, they
410 * are not mapped into the kernel virtual address space. We store the
411 * DMA address in the page private. The helper function
412 * fw_iso_buffer_map() will map the pages into a given vma.
413 */
414 struct fw_iso_buffer {
415 enum dma_data_direction direction;
416 struct page **pages;
417 int page_count;
418 int page_count_mapped;
419 };
420
421 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
422 int page_count, enum dma_data_direction direction);
423 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
424 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
425
426 struct fw_iso_context;
427 typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
428 u32 cycle, size_t header_length,
429 void *header, void *data);
430 typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
431 dma_addr_t completed, void *data);
432 struct fw_iso_context {
433 struct fw_card *card;
434 int type;
435 int channel;
436 int speed;
437 size_t header_size;
438 union {
439 fw_iso_callback_t sc;
440 fw_iso_mc_callback_t mc;
441 } callback;
442 void *callback_data;
443 };
444
445 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
446 int type, int channel, int speed, size_t header_size,
447 fw_iso_callback_t callback, void *callback_data);
448 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
449 int fw_iso_context_queue(struct fw_iso_context *ctx,
450 struct fw_iso_packet *packet,
451 struct fw_iso_buffer *buffer,
452 unsigned long payload);
453 void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
454 int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
455 int fw_iso_context_start(struct fw_iso_context *ctx,
456 int cycle, int sync, int tags);
457 int fw_iso_context_stop(struct fw_iso_context *ctx);
458 void fw_iso_context_destroy(struct fw_iso_context *ctx);
459 void fw_iso_resource_manage(struct fw_card *card, int generation,
460 u64 channels_mask, int *channel, int *bandwidth,
461 bool allocate);
462
463 extern struct workqueue_struct *fw_workqueue;
464
465 #endif /* _LINUX_FIREWIRE_H */
466