• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31 
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36 
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42 
43 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
44 extern const int mmap_rnd_bits_min;
45 extern const int mmap_rnd_bits_max;
46 extern int mmap_rnd_bits __read_mostly;
47 #endif
48 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
49 extern const int mmap_rnd_compat_bits_min;
50 extern const int mmap_rnd_compat_bits_max;
51 extern int mmap_rnd_compat_bits __read_mostly;
52 #endif
53 
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60 
61 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
62 
63 /* to align the pointer to the (next) page boundary */
64 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
65 
66 /*
67  * Linux kernel virtual memory manager primitives.
68  * The idea being to have a "virtual" mm in the same way
69  * we have a virtual fs - giving a cleaner interface to the
70  * mm details, and allowing different kinds of memory mappings
71  * (from shared memory to executable loading to arbitrary
72  * mmap() functions).
73  */
74 
75 extern struct kmem_cache *vm_area_cachep;
76 
77 #ifndef CONFIG_MMU
78 extern struct rb_root nommu_region_tree;
79 extern struct rw_semaphore nommu_region_sem;
80 
81 extern unsigned int kobjsize(const void *objp);
82 #endif
83 
84 /*
85  * vm_flags in vm_area_struct, see mm_types.h.
86  */
87 #define VM_NONE		0x00000000
88 
89 #define VM_READ		0x00000001	/* currently active flags */
90 #define VM_WRITE	0x00000002
91 #define VM_EXEC		0x00000004
92 #define VM_SHARED	0x00000008
93 
94 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
95 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
96 #define VM_MAYWRITE	0x00000020
97 #define VM_MAYEXEC	0x00000040
98 #define VM_MAYSHARE	0x00000080
99 
100 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
101 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
102 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
103 
104 #define VM_LOCKED	0x00002000
105 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
106 
107 					/* Used by sys_madvise() */
108 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
109 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
110 
111 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
112 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
113 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
114 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
115 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
116 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
117 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
118 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
119 
120 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
121 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
122 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
123 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
124 
125 #if defined(CONFIG_X86)
126 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
127 #elif defined(CONFIG_PPC)
128 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
129 #elif defined(CONFIG_PARISC)
130 # define VM_GROWSUP	VM_ARCH_1
131 #elif defined(CONFIG_METAG)
132 # define VM_GROWSUP	VM_ARCH_1
133 #elif defined(CONFIG_IA64)
134 # define VM_GROWSUP	VM_ARCH_1
135 #elif !defined(CONFIG_MMU)
136 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
137 #endif
138 
139 #ifndef VM_GROWSUP
140 # define VM_GROWSUP	VM_NONE
141 #endif
142 
143 /* Bits set in the VMA until the stack is in its final location */
144 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
145 
146 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
147 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
148 #endif
149 
150 #ifdef CONFIG_STACK_GROWSUP
151 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
152 #else
153 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
154 #endif
155 
156 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
157 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
158 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
159 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
160 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
161 
162 /*
163  * Special vmas that are non-mergable, non-mlock()able.
164  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
165  */
166 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
167 
168 /*
169  * mapping from the currently active vm_flags protection bits (the
170  * low four bits) to a page protection mask..
171  */
172 extern pgprot_t protection_map[16];
173 
174 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
175 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
176 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
177 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
178 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
179 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
180 #define FAULT_FLAG_TRIED	0x40	/* second try */
181 
182 /*
183  * vm_fault is filled by the the pagefault handler and passed to the vma's
184  * ->fault function. The vma's ->fault is responsible for returning a bitmask
185  * of VM_FAULT_xxx flags that give details about how the fault was handled.
186  *
187  * pgoff should be used in favour of virtual_address, if possible. If pgoff
188  * is used, one may implement ->remap_pages to get nonlinear mapping support.
189  */
190 struct vm_fault {
191 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
192 	pgoff_t pgoff;			/* Logical page offset based on vma */
193 	void __user *virtual_address;	/* Faulting virtual address */
194 
195 	struct page *page;		/* ->fault handlers should return a
196 					 * page here, unless VM_FAULT_NOPAGE
197 					 * is set (which is also implied by
198 					 * VM_FAULT_ERROR).
199 					 */
200 };
201 
202 /*
203  * These are the virtual MM functions - opening of an area, closing and
204  * unmapping it (needed to keep files on disk up-to-date etc), pointer
205  * to the functions called when a no-page or a wp-page exception occurs.
206  */
207 struct vm_operations_struct {
208 	void (*open)(struct vm_area_struct * area);
209 	void (*close)(struct vm_area_struct * area);
210 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
211 
212 	/* notification that a previously read-only page is about to become
213 	 * writable, if an error is returned it will cause a SIGBUS */
214 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
215 
216 	/* called by access_process_vm when get_user_pages() fails, typically
217 	 * for use by special VMAs that can switch between memory and hardware
218 	 */
219 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
220 		      void *buf, int len, int write);
221 #ifdef CONFIG_NUMA
222 	/*
223 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
224 	 * to hold the policy upon return.  Caller should pass NULL @new to
225 	 * remove a policy and fall back to surrounding context--i.e. do not
226 	 * install a MPOL_DEFAULT policy, nor the task or system default
227 	 * mempolicy.
228 	 */
229 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
230 
231 	/*
232 	 * get_policy() op must add reference [mpol_get()] to any policy at
233 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
234 	 * in mm/mempolicy.c will do this automatically.
235 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
236 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
237 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
238 	 * must return NULL--i.e., do not "fallback" to task or system default
239 	 * policy.
240 	 */
241 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
242 					unsigned long addr);
243 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
244 		const nodemask_t *to, unsigned long flags);
245 #endif
246 	/* called by sys_remap_file_pages() to populate non-linear mapping */
247 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
248 			   unsigned long size, pgoff_t pgoff);
249 };
250 
251 struct mmu_gather;
252 struct inode;
253 
254 #define page_private(page)		((page)->private)
255 #define set_page_private(page, v)	((page)->private = (v))
256 
257 /* It's valid only if the page is free path or free_list */
set_freepage_migratetype(struct page * page,int migratetype)258 static inline void set_freepage_migratetype(struct page *page, int migratetype)
259 {
260 	page->index = migratetype;
261 }
262 
263 /* It's valid only if the page is free path or free_list */
get_freepage_migratetype(struct page * page)264 static inline int get_freepage_migratetype(struct page *page)
265 {
266 	return page->index;
267 }
268 
269 /*
270  * FIXME: take this include out, include page-flags.h in
271  * files which need it (119 of them)
272  */
273 #include <linux/page-flags.h>
274 #include <linux/huge_mm.h>
275 
276 /*
277  * Methods to modify the page usage count.
278  *
279  * What counts for a page usage:
280  * - cache mapping   (page->mapping)
281  * - private data    (page->private)
282  * - page mapped in a task's page tables, each mapping
283  *   is counted separately
284  *
285  * Also, many kernel routines increase the page count before a critical
286  * routine so they can be sure the page doesn't go away from under them.
287  */
288 
289 /*
290  * Drop a ref, return true if the refcount fell to zero (the page has no users)
291  */
put_page_testzero(struct page * page)292 static inline int put_page_testzero(struct page *page)
293 {
294 	VM_BUG_ON(atomic_read(&page->_count) == 0);
295 	return atomic_dec_and_test(&page->_count);
296 }
297 
298 /*
299  * Try to grab a ref unless the page has a refcount of zero, return false if
300  * that is the case.
301  */
get_page_unless_zero(struct page * page)302 static inline int get_page_unless_zero(struct page *page)
303 {
304 	return atomic_inc_not_zero(&page->_count);
305 }
306 
307 extern int page_is_ram(unsigned long pfn);
308 
309 /* Support for virtually mapped pages */
310 struct page *vmalloc_to_page(const void *addr);
311 unsigned long vmalloc_to_pfn(const void *addr);
312 
313 /*
314  * Determine if an address is within the vmalloc range
315  *
316  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
317  * is no special casing required.
318  */
is_vmalloc_addr(const void * x)319 static inline int is_vmalloc_addr(const void *x)
320 {
321 #ifdef CONFIG_MMU
322 	unsigned long addr = (unsigned long)x;
323 
324 	return addr >= VMALLOC_START && addr < VMALLOC_END;
325 #else
326 	return 0;
327 #endif
328 }
329 #ifdef CONFIG_MMU
330 extern int is_vmalloc_or_module_addr(const void *x);
331 #else
is_vmalloc_or_module_addr(const void * x)332 static inline int is_vmalloc_or_module_addr(const void *x)
333 {
334 	return 0;
335 }
336 #endif
337 
338 extern void kvfree(const void *addr);
339 
compound_lock(struct page * page)340 static inline void compound_lock(struct page *page)
341 {
342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 	VM_BUG_ON(PageSlab(page));
344 	bit_spin_lock(PG_compound_lock, &page->flags);
345 #endif
346 }
347 
compound_unlock(struct page * page)348 static inline void compound_unlock(struct page *page)
349 {
350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 	VM_BUG_ON(PageSlab(page));
352 	bit_spin_unlock(PG_compound_lock, &page->flags);
353 #endif
354 }
355 
compound_lock_irqsave(struct page * page)356 static inline unsigned long compound_lock_irqsave(struct page *page)
357 {
358 	unsigned long uninitialized_var(flags);
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 	local_irq_save(flags);
361 	compound_lock(page);
362 #endif
363 	return flags;
364 }
365 
compound_unlock_irqrestore(struct page * page,unsigned long flags)366 static inline void compound_unlock_irqrestore(struct page *page,
367 					      unsigned long flags)
368 {
369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
370 	compound_unlock(page);
371 	local_irq_restore(flags);
372 #endif
373 }
374 
compound_head(struct page * page)375 static inline struct page *compound_head(struct page *page)
376 {
377 	if (unlikely(PageTail(page)))
378 		return page->first_page;
379 	return page;
380 }
381 
382 /*
383  * The atomic page->_mapcount, starts from -1: so that transitions
384  * both from it and to it can be tracked, using atomic_inc_and_test
385  * and atomic_add_negative(-1).
386  */
page_mapcount_reset(struct page * page)387 static inline void page_mapcount_reset(struct page *page)
388 {
389 	atomic_set(&(page)->_mapcount, -1);
390 }
391 
page_mapcount(struct page * page)392 static inline int page_mapcount(struct page *page)
393 {
394 	return atomic_read(&(page)->_mapcount) + 1;
395 }
396 
page_count(struct page * page)397 static inline int page_count(struct page *page)
398 {
399 	return atomic_read(&compound_head(page)->_count);
400 }
401 
get_huge_page_tail(struct page * page)402 static inline void get_huge_page_tail(struct page *page)
403 {
404 	/*
405 	 * __split_huge_page_refcount() cannot run
406 	 * from under us.
407 	 */
408 	VM_BUG_ON(page_mapcount(page) < 0);
409 	VM_BUG_ON(atomic_read(&page->_count) != 0);
410 	atomic_inc(&page->_mapcount);
411 }
412 
413 extern bool __get_page_tail(struct page *page);
414 
get_page(struct page * page)415 static inline void get_page(struct page *page)
416 {
417 	if (unlikely(PageTail(page)))
418 		if (likely(__get_page_tail(page)))
419 			return;
420 	/*
421 	 * Getting a normal page or the head of a compound page
422 	 * requires to already have an elevated page->_count.
423 	 */
424 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
425 	atomic_inc(&page->_count);
426 }
427 
virt_to_head_page(const void * x)428 static inline struct page *virt_to_head_page(const void *x)
429 {
430 	struct page *page = virt_to_page(x);
431 	return compound_head(page);
432 }
433 
434 /*
435  * Setup the page count before being freed into the page allocator for
436  * the first time (boot or memory hotplug)
437  */
init_page_count(struct page * page)438 static inline void init_page_count(struct page *page)
439 {
440 	atomic_set(&page->_count, 1);
441 }
442 
443 /*
444  * PageBuddy() indicate that the page is free and in the buddy system
445  * (see mm/page_alloc.c).
446  *
447  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
448  * -2 so that an underflow of the page_mapcount() won't be mistaken
449  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
450  * efficiently by most CPU architectures.
451  */
452 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
453 
PageBuddy(struct page * page)454 static inline int PageBuddy(struct page *page)
455 {
456 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
457 }
458 
__SetPageBuddy(struct page * page)459 static inline void __SetPageBuddy(struct page *page)
460 {
461 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
462 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
463 }
464 
__ClearPageBuddy(struct page * page)465 static inline void __ClearPageBuddy(struct page *page)
466 {
467 	VM_BUG_ON(!PageBuddy(page));
468 	atomic_set(&page->_mapcount, -1);
469 }
470 
471 void put_page(struct page *page);
472 void put_pages_list(struct list_head *pages);
473 
474 void split_page(struct page *page, unsigned int order);
475 int split_free_page(struct page *page);
476 
477 /*
478  * Compound pages have a destructor function.  Provide a
479  * prototype for that function and accessor functions.
480  * These are _only_ valid on the head of a PG_compound page.
481  */
482 typedef void compound_page_dtor(struct page *);
483 
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)484 static inline void set_compound_page_dtor(struct page *page,
485 						compound_page_dtor *dtor)
486 {
487 	page[1].lru.next = (void *)dtor;
488 }
489 
get_compound_page_dtor(struct page * page)490 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
491 {
492 	return (compound_page_dtor *)page[1].lru.next;
493 }
494 
compound_order(struct page * page)495 static inline int compound_order(struct page *page)
496 {
497 	if (!PageHead(page))
498 		return 0;
499 	return (unsigned long)page[1].lru.prev;
500 }
501 
compound_trans_order(struct page * page)502 static inline int compound_trans_order(struct page *page)
503 {
504 	int order;
505 	unsigned long flags;
506 
507 	if (!PageHead(page))
508 		return 0;
509 
510 	flags = compound_lock_irqsave(page);
511 	order = compound_order(page);
512 	compound_unlock_irqrestore(page, flags);
513 	return order;
514 }
515 
set_compound_order(struct page * page,unsigned long order)516 static inline void set_compound_order(struct page *page, unsigned long order)
517 {
518 	page[1].lru.prev = (void *)order;
519 }
520 
521 #ifdef CONFIG_MMU
522 /*
523  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
524  * servicing faults for write access.  In the normal case, do always want
525  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
526  * that do not have writing enabled, when used by access_process_vm.
527  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)528 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
529 {
530 	if (likely(vma->vm_flags & VM_WRITE))
531 		pte = pte_mkwrite(pte);
532 	return pte;
533 }
534 #endif
535 
536 /*
537  * Multiple processes may "see" the same page. E.g. for untouched
538  * mappings of /dev/null, all processes see the same page full of
539  * zeroes, and text pages of executables and shared libraries have
540  * only one copy in memory, at most, normally.
541  *
542  * For the non-reserved pages, page_count(page) denotes a reference count.
543  *   page_count() == 0 means the page is free. page->lru is then used for
544  *   freelist management in the buddy allocator.
545  *   page_count() > 0  means the page has been allocated.
546  *
547  * Pages are allocated by the slab allocator in order to provide memory
548  * to kmalloc and kmem_cache_alloc. In this case, the management of the
549  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
550  * unless a particular usage is carefully commented. (the responsibility of
551  * freeing the kmalloc memory is the caller's, of course).
552  *
553  * A page may be used by anyone else who does a __get_free_page().
554  * In this case, page_count still tracks the references, and should only
555  * be used through the normal accessor functions. The top bits of page->flags
556  * and page->virtual store page management information, but all other fields
557  * are unused and could be used privately, carefully. The management of this
558  * page is the responsibility of the one who allocated it, and those who have
559  * subsequently been given references to it.
560  *
561  * The other pages (we may call them "pagecache pages") are completely
562  * managed by the Linux memory manager: I/O, buffers, swapping etc.
563  * The following discussion applies only to them.
564  *
565  * A pagecache page contains an opaque `private' member, which belongs to the
566  * page's address_space. Usually, this is the address of a circular list of
567  * the page's disk buffers. PG_private must be set to tell the VM to call
568  * into the filesystem to release these pages.
569  *
570  * A page may belong to an inode's memory mapping. In this case, page->mapping
571  * is the pointer to the inode, and page->index is the file offset of the page,
572  * in units of PAGE_CACHE_SIZE.
573  *
574  * If pagecache pages are not associated with an inode, they are said to be
575  * anonymous pages. These may become associated with the swapcache, and in that
576  * case PG_swapcache is set, and page->private is an offset into the swapcache.
577  *
578  * In either case (swapcache or inode backed), the pagecache itself holds one
579  * reference to the page. Setting PG_private should also increment the
580  * refcount. The each user mapping also has a reference to the page.
581  *
582  * The pagecache pages are stored in a per-mapping radix tree, which is
583  * rooted at mapping->page_tree, and indexed by offset.
584  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
585  * lists, we instead now tag pages as dirty/writeback in the radix tree.
586  *
587  * All pagecache pages may be subject to I/O:
588  * - inode pages may need to be read from disk,
589  * - inode pages which have been modified and are MAP_SHARED may need
590  *   to be written back to the inode on disk,
591  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
592  *   modified may need to be swapped out to swap space and (later) to be read
593  *   back into memory.
594  */
595 
596 /*
597  * The zone field is never updated after free_area_init_core()
598  * sets it, so none of the operations on it need to be atomic.
599  */
600 
601 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
602 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
603 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
604 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
605 #define LAST_NID_PGOFF		(ZONES_PGOFF - LAST_NID_WIDTH)
606 
607 /*
608  * Define the bit shifts to access each section.  For non-existent
609  * sections we define the shift as 0; that plus a 0 mask ensures
610  * the compiler will optimise away reference to them.
611  */
612 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
613 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
614 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
615 #define LAST_NID_PGSHIFT	(LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
616 
617 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
618 #ifdef NODE_NOT_IN_PAGE_FLAGS
619 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
620 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
621 						SECTIONS_PGOFF : ZONES_PGOFF)
622 #else
623 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
624 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
625 						NODES_PGOFF : ZONES_PGOFF)
626 #endif
627 
628 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
629 
630 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
631 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #endif
633 
634 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
635 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
636 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
637 #define LAST_NID_MASK		((1UL << LAST_NID_WIDTH) - 1)
638 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
639 
page_zonenum(const struct page * page)640 static inline enum zone_type page_zonenum(const struct page *page)
641 {
642 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
643 }
644 
645 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
646 #define SECTION_IN_PAGE_FLAGS
647 #endif
648 
649 /*
650  * The identification function is only used by the buddy allocator for
651  * determining if two pages could be buddies. We are not really
652  * identifying a zone since we could be using a the section number
653  * id if we have not node id available in page flags.
654  * We guarantee only that it will return the same value for two
655  * combinable pages in a zone.
656  */
page_zone_id(struct page * page)657 static inline int page_zone_id(struct page *page)
658 {
659 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
660 }
661 
zone_to_nid(struct zone * zone)662 static inline int zone_to_nid(struct zone *zone)
663 {
664 #ifdef CONFIG_NUMA
665 	return zone->node;
666 #else
667 	return 0;
668 #endif
669 }
670 
671 #ifdef NODE_NOT_IN_PAGE_FLAGS
672 extern int page_to_nid(const struct page *page);
673 #else
page_to_nid(const struct page * page)674 static inline int page_to_nid(const struct page *page)
675 {
676 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
677 }
678 #endif
679 
680 #ifdef CONFIG_NUMA_BALANCING
681 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
page_nid_xchg_last(struct page * page,int nid)682 static inline int page_nid_xchg_last(struct page *page, int nid)
683 {
684 	return xchg(&page->_last_nid, nid);
685 }
686 
page_nid_last(struct page * page)687 static inline int page_nid_last(struct page *page)
688 {
689 	return page->_last_nid;
690 }
page_nid_reset_last(struct page * page)691 static inline void page_nid_reset_last(struct page *page)
692 {
693 	page->_last_nid = -1;
694 }
695 #else
page_nid_last(struct page * page)696 static inline int page_nid_last(struct page *page)
697 {
698 	return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
699 }
700 
701 extern int page_nid_xchg_last(struct page *page, int nid);
702 
page_nid_reset_last(struct page * page)703 static inline void page_nid_reset_last(struct page *page)
704 {
705 	int nid = (1 << LAST_NID_SHIFT) - 1;
706 
707 	page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
708 	page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
709 }
710 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
711 #else
page_nid_xchg_last(struct page * page,int nid)712 static inline int page_nid_xchg_last(struct page *page, int nid)
713 {
714 	return page_to_nid(page);
715 }
716 
page_nid_last(struct page * page)717 static inline int page_nid_last(struct page *page)
718 {
719 	return page_to_nid(page);
720 }
721 
page_nid_reset_last(struct page * page)722 static inline void page_nid_reset_last(struct page *page)
723 {
724 }
725 #endif
726 
page_zone(const struct page * page)727 static inline struct zone *page_zone(const struct page *page)
728 {
729 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
730 }
731 
732 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)733 static inline void set_page_section(struct page *page, unsigned long section)
734 {
735 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
736 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
737 }
738 
page_to_section(const struct page * page)739 static inline unsigned long page_to_section(const struct page *page)
740 {
741 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
742 }
743 #endif
744 
set_page_zone(struct page * page,enum zone_type zone)745 static inline void set_page_zone(struct page *page, enum zone_type zone)
746 {
747 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
748 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
749 }
750 
set_page_node(struct page * page,unsigned long node)751 static inline void set_page_node(struct page *page, unsigned long node)
752 {
753 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
754 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
755 }
756 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)757 static inline void set_page_links(struct page *page, enum zone_type zone,
758 	unsigned long node, unsigned long pfn)
759 {
760 	set_page_zone(page, zone);
761 	set_page_node(page, node);
762 #ifdef SECTION_IN_PAGE_FLAGS
763 	set_page_section(page, pfn_to_section_nr(pfn));
764 #endif
765 }
766 
767 /*
768  * Some inline functions in vmstat.h depend on page_zone()
769  */
770 #include <linux/vmstat.h>
771 
lowmem_page_address(const struct page * page)772 static __always_inline void *lowmem_page_address(const struct page *page)
773 {
774 	return __va(PFN_PHYS(page_to_pfn(page)));
775 }
776 
777 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
778 #define HASHED_PAGE_VIRTUAL
779 #endif
780 
781 #if defined(WANT_PAGE_VIRTUAL)
782 #define page_address(page) ((page)->virtual)
783 #define set_page_address(page, address)			\
784 	do {						\
785 		(page)->virtual = (address);		\
786 	} while(0)
787 #define page_address_init()  do { } while(0)
788 #endif
789 
790 #if defined(HASHED_PAGE_VIRTUAL)
791 void *page_address(const struct page *page);
792 void set_page_address(struct page *page, void *virtual);
793 void page_address_init(void);
794 #endif
795 
796 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
797 #define page_address(page) lowmem_page_address(page)
798 #define set_page_address(page, address)  do { } while(0)
799 #define page_address_init()  do { } while(0)
800 #endif
801 
802 /*
803  * On an anonymous page mapped into a user virtual memory area,
804  * page->mapping points to its anon_vma, not to a struct address_space;
805  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
806  *
807  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
808  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
809  * and then page->mapping points, not to an anon_vma, but to a private
810  * structure which KSM associates with that merged page.  See ksm.h.
811  *
812  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
813  *
814  * Please note that, confusingly, "page_mapping" refers to the inode
815  * address_space which maps the page from disk; whereas "page_mapped"
816  * refers to user virtual address space into which the page is mapped.
817  */
818 #define PAGE_MAPPING_ANON	1
819 #define PAGE_MAPPING_KSM	2
820 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
821 
822 extern struct address_space *page_mapping(struct page *page);
823 
824 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)825 static inline void *page_rmapping(struct page *page)
826 {
827 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
828 }
829 
830 extern struct address_space *__page_file_mapping(struct page *);
831 
832 static inline
page_file_mapping(struct page * page)833 struct address_space *page_file_mapping(struct page *page)
834 {
835 	if (unlikely(PageSwapCache(page)))
836 		return __page_file_mapping(page);
837 
838 	return page->mapping;
839 }
840 
PageAnon(struct page * page)841 static inline int PageAnon(struct page *page)
842 {
843 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
844 }
845 
846 /*
847  * Return the pagecache index of the passed page.  Regular pagecache pages
848  * use ->index whereas swapcache pages use ->private
849  */
page_index(struct page * page)850 static inline pgoff_t page_index(struct page *page)
851 {
852 	if (unlikely(PageSwapCache(page)))
853 		return page_private(page);
854 	return page->index;
855 }
856 
857 extern pgoff_t __page_file_index(struct page *page);
858 
859 /*
860  * Return the file index of the page. Regular pagecache pages use ->index
861  * whereas swapcache pages use swp_offset(->private)
862  */
page_file_index(struct page * page)863 static inline pgoff_t page_file_index(struct page *page)
864 {
865 	if (unlikely(PageSwapCache(page)))
866 		return __page_file_index(page);
867 
868 	return page->index;
869 }
870 
871 /*
872  * Return true if this page is mapped into pagetables.
873  */
page_mapped(struct page * page)874 static inline int page_mapped(struct page *page)
875 {
876 	return atomic_read(&(page)->_mapcount) >= 0;
877 }
878 
879 /*
880  * Different kinds of faults, as returned by handle_mm_fault().
881  * Used to decide whether a process gets delivered SIGBUS or
882  * just gets major/minor fault counters bumped up.
883  */
884 
885 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
886 
887 #define VM_FAULT_OOM	0x0001
888 #define VM_FAULT_SIGBUS	0x0002
889 #define VM_FAULT_MAJOR	0x0004
890 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
891 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
892 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
893 
894 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
895 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
896 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
897 
898 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
899 
900 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
901 			 VM_FAULT_HWPOISON_LARGE)
902 
903 /* Encode hstate index for a hwpoisoned large page */
904 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
905 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
906 
907 /*
908  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
909  */
910 extern void pagefault_out_of_memory(void);
911 
912 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
913 
914 /*
915  * Flags passed to show_mem() and show_free_areas() to suppress output in
916  * various contexts.
917  */
918 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
919 #define SHOW_MEM_FILTER_PAGE_COUNT	(0x0002u)	/* page type count */
920 
921 extern void show_free_areas(unsigned int flags);
922 extern bool skip_free_areas_node(unsigned int flags, int nid);
923 
924 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
925 int shmem_zero_setup(struct vm_area_struct *);
926 
927 extern int can_do_mlock(void);
928 extern int user_shm_lock(size_t, struct user_struct *);
929 extern void user_shm_unlock(size_t, struct user_struct *);
930 
931 /*
932  * Parameter block passed down to zap_pte_range in exceptional cases.
933  */
934 struct zap_details {
935 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
936 	struct address_space *check_mapping;	/* Check page->mapping if set */
937 	pgoff_t	first_index;			/* Lowest page->index to unmap */
938 	pgoff_t last_index;			/* Highest page->index to unmap */
939 };
940 
941 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
942 		pte_t pte);
943 
944 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
945 		unsigned long size);
946 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
947 		unsigned long size, struct zap_details *);
948 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
949 		unsigned long start, unsigned long end);
950 
951 /**
952  * mm_walk - callbacks for walk_page_range
953  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
954  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
955  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
956  *	       this handler is required to be able to handle
957  *	       pmd_trans_huge() pmds.  They may simply choose to
958  *	       split_huge_page() instead of handling it explicitly.
959  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
960  * @pte_hole: if set, called for each hole at all levels
961  * @hugetlb_entry: if set, called for each hugetlb entry
962  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
963  * 			      is used.
964  *
965  * (see walk_page_range for more details)
966  */
967 struct mm_walk {
968 	int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
969 			 unsigned long next, struct mm_walk *walk);
970 	int (*pud_entry)(pud_t *pud, unsigned long addr,
971 	                 unsigned long next, struct mm_walk *walk);
972 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
973 			 unsigned long next, struct mm_walk *walk);
974 	int (*pte_entry)(pte_t *pte, unsigned long addr,
975 			 unsigned long next, struct mm_walk *walk);
976 	int (*pte_hole)(unsigned long addr, unsigned long next,
977 			struct mm_walk *walk);
978 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
979 			     unsigned long addr, unsigned long next,
980 			     struct mm_walk *walk);
981 	struct mm_struct *mm;
982 	void *private;
983 };
984 
985 int walk_page_range(unsigned long addr, unsigned long end,
986 		struct mm_walk *walk);
987 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
988 		unsigned long end, unsigned long floor, unsigned long ceiling);
989 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
990 			struct vm_area_struct *vma);
991 void unmap_mapping_range(struct address_space *mapping,
992 		loff_t const holebegin, loff_t const holelen, int even_cows);
993 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
994 	unsigned long *pfn);
995 int follow_phys(struct vm_area_struct *vma, unsigned long address,
996 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
997 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
998 			void *buf, int len, int write);
999 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1000 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1001 		loff_t const holebegin, loff_t const holelen)
1002 {
1003 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1004 }
1005 
1006 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1007 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1008 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1009 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1010 int truncate_inode_page(struct address_space *mapping, struct page *page);
1011 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1012 int invalidate_inode_page(struct page *page);
1013 
1014 #ifdef CONFIG_MMU
1015 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1016 			unsigned long address, unsigned int flags);
1017 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1018 			    unsigned long address, unsigned int fault_flags);
1019 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)1020 static inline int handle_mm_fault(struct mm_struct *mm,
1021 			struct vm_area_struct *vma, unsigned long address,
1022 			unsigned int flags)
1023 {
1024 	/* should never happen if there's no MMU */
1025 	BUG();
1026 	return VM_FAULT_SIGBUS;
1027 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1028 static inline int fixup_user_fault(struct task_struct *tsk,
1029 		struct mm_struct *mm, unsigned long address,
1030 		unsigned int fault_flags)
1031 {
1032 	/* should never happen if there's no MMU */
1033 	BUG();
1034 	return -EFAULT;
1035 }
1036 #endif
1037 
1038 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1039 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1040 		void *buf, int len, int write);
1041 
1042 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1043 		      unsigned long start, unsigned long nr_pages,
1044 		      unsigned int foll_flags, struct page **pages,
1045 		      struct vm_area_struct **vmas, int *nonblocking);
1046 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1047 		    unsigned long start, unsigned long nr_pages,
1048 		    int write, int force, struct page **pages,
1049 		    struct vm_area_struct **vmas);
1050 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1051 			struct page **pages);
1052 struct kvec;
1053 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1054 			struct page **pages);
1055 int get_kernel_page(unsigned long start, int write, struct page **pages);
1056 struct page *get_dump_page(unsigned long addr);
1057 
1058 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1059 extern void do_invalidatepage(struct page *page, unsigned int offset,
1060 			      unsigned int length);
1061 
1062 int __set_page_dirty_nobuffers(struct page *page);
1063 int __set_page_dirty_no_writeback(struct page *page);
1064 int redirty_page_for_writepage(struct writeback_control *wbc,
1065 				struct page *page);
1066 void account_page_dirtied(struct page *page, struct address_space *mapping);
1067 void account_page_writeback(struct page *page);
1068 int set_page_dirty(struct page *page);
1069 int set_page_dirty_lock(struct page *page);
1070 int clear_page_dirty_for_io(struct page *page);
1071 
1072 extern pid_t
1073 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1074 
1075 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1076 		unsigned long old_addr, struct vm_area_struct *new_vma,
1077 		unsigned long new_addr, unsigned long len,
1078 		bool need_rmap_locks);
1079 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1080 			      unsigned long end, pgprot_t newprot,
1081 			      int dirty_accountable, int prot_numa);
1082 extern int mprotect_fixup(struct vm_area_struct *vma,
1083 			  struct vm_area_struct **pprev, unsigned long start,
1084 			  unsigned long end, unsigned long newflags);
1085 
1086 /*
1087  * doesn't attempt to fault and will return short.
1088  */
1089 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1090 			  struct page **pages);
1091 /*
1092  * per-process(per-mm_struct) statistics.
1093  */
get_mm_counter(struct mm_struct * mm,int member)1094 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1095 {
1096 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1097 
1098 #ifdef SPLIT_RSS_COUNTING
1099 	/*
1100 	 * counter is updated in asynchronous manner and may go to minus.
1101 	 * But it's never be expected number for users.
1102 	 */
1103 	if (val < 0)
1104 		val = 0;
1105 #endif
1106 	return (unsigned long)val;
1107 }
1108 
add_mm_counter(struct mm_struct * mm,int member,long value)1109 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1110 {
1111 	atomic_long_add(value, &mm->rss_stat.count[member]);
1112 }
1113 
inc_mm_counter(struct mm_struct * mm,int member)1114 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1115 {
1116 	atomic_long_inc(&mm->rss_stat.count[member]);
1117 }
1118 
dec_mm_counter(struct mm_struct * mm,int member)1119 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1120 {
1121 	atomic_long_dec(&mm->rss_stat.count[member]);
1122 }
1123 
get_mm_rss(struct mm_struct * mm)1124 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1125 {
1126 	return get_mm_counter(mm, MM_FILEPAGES) +
1127 		get_mm_counter(mm, MM_ANONPAGES);
1128 }
1129 
get_mm_hiwater_rss(struct mm_struct * mm)1130 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1131 {
1132 	return max(mm->hiwater_rss, get_mm_rss(mm));
1133 }
1134 
get_mm_hiwater_vm(struct mm_struct * mm)1135 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1136 {
1137 	return max(mm->hiwater_vm, mm->total_vm);
1138 }
1139 
update_hiwater_rss(struct mm_struct * mm)1140 static inline void update_hiwater_rss(struct mm_struct *mm)
1141 {
1142 	unsigned long _rss = get_mm_rss(mm);
1143 
1144 	if ((mm)->hiwater_rss < _rss)
1145 		(mm)->hiwater_rss = _rss;
1146 }
1147 
update_hiwater_vm(struct mm_struct * mm)1148 static inline void update_hiwater_vm(struct mm_struct *mm)
1149 {
1150 	if (mm->hiwater_vm < mm->total_vm)
1151 		mm->hiwater_vm = mm->total_vm;
1152 }
1153 
reset_mm_hiwater_rss(struct mm_struct * mm)1154 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1155 {
1156 	mm->hiwater_rss = get_mm_rss(mm);
1157 }
1158 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1159 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1160 					 struct mm_struct *mm)
1161 {
1162 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1163 
1164 	if (*maxrss < hiwater_rss)
1165 		*maxrss = hiwater_rss;
1166 }
1167 
1168 #if defined(SPLIT_RSS_COUNTING)
1169 void sync_mm_rss(struct mm_struct *mm);
1170 #else
sync_mm_rss(struct mm_struct * mm)1171 static inline void sync_mm_rss(struct mm_struct *mm)
1172 {
1173 }
1174 #endif
1175 
1176 int vma_wants_writenotify(struct vm_area_struct *vma);
1177 
1178 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1179 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1180 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1181 				    spinlock_t **ptl)
1182 {
1183 	pte_t *ptep;
1184 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1185 	return ptep;
1186 }
1187 
1188 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1189 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1190 						unsigned long address)
1191 {
1192 	return 0;
1193 }
1194 #else
1195 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1196 #endif
1197 
1198 #ifdef __PAGETABLE_PMD_FOLDED
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1199 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1200 						unsigned long address)
1201 {
1202 	return 0;
1203 }
1204 #else
1205 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1206 #endif
1207 
1208 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1209 		pmd_t *pmd, unsigned long address);
1210 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1211 
1212 /*
1213  * The following ifdef needed to get the 4level-fixup.h header to work.
1214  * Remove it when 4level-fixup.h has been removed.
1215  */
1216 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1217 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1218 {
1219 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1220 		NULL: pud_offset(pgd, address);
1221 }
1222 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1223 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1224 {
1225 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1226 		NULL: pmd_offset(pud, address);
1227 }
1228 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1229 
1230 #if USE_SPLIT_PTLOCKS
1231 /*
1232  * We tuck a spinlock to guard each pagetable page into its struct page,
1233  * at page->private, with BUILD_BUG_ON to make sure that this will not
1234  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1235  * When freeing, reset page->mapping so free_pages_check won't complain.
1236  */
1237 #define __pte_lockptr(page)	&((page)->ptl)
1238 #define pte_lock_init(_page)	do {					\
1239 	spin_lock_init(__pte_lockptr(_page));				\
1240 } while (0)
1241 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1242 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1243 #else	/* !USE_SPLIT_PTLOCKS */
1244 /*
1245  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1246  */
1247 #define pte_lock_init(page)	do {} while (0)
1248 #define pte_lock_deinit(page)	do {} while (0)
1249 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1250 #endif /* USE_SPLIT_PTLOCKS */
1251 
pgtable_page_ctor(struct page * page)1252 static inline void pgtable_page_ctor(struct page *page)
1253 {
1254 	pte_lock_init(page);
1255 	inc_zone_page_state(page, NR_PAGETABLE);
1256 }
1257 
pgtable_page_dtor(struct page * page)1258 static inline void pgtable_page_dtor(struct page *page)
1259 {
1260 	pte_lock_deinit(page);
1261 	dec_zone_page_state(page, NR_PAGETABLE);
1262 }
1263 
1264 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1265 ({							\
1266 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1267 	pte_t *__pte = pte_offset_map(pmd, address);	\
1268 	*(ptlp) = __ptl;				\
1269 	spin_lock(__ptl);				\
1270 	__pte;						\
1271 })
1272 
1273 #define pte_unmap_unlock(pte, ptl)	do {		\
1274 	spin_unlock(ptl);				\
1275 	pte_unmap(pte);					\
1276 } while (0)
1277 
1278 #define pte_alloc_map(mm, vma, pmd, address)				\
1279 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1280 							pmd, address))?	\
1281 	 NULL: pte_offset_map(pmd, address))
1282 
1283 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1284 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1285 							pmd, address))?	\
1286 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1287 
1288 #define pte_alloc_kernel(pmd, address)			\
1289 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1290 		NULL: pte_offset_kernel(pmd, address))
1291 
1292 extern void free_area_init(unsigned long * zones_size);
1293 extern void free_area_init_node(int nid, unsigned long * zones_size,
1294 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1295 extern void free_initmem(void);
1296 
1297 /*
1298  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1299  * into the buddy system. The freed pages will be poisoned with pattern
1300  * "poison" if it's non-zero.
1301  * Return pages freed into the buddy system.
1302  */
1303 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1304 					int poison, char *s);
1305 #ifdef	CONFIG_HIGHMEM
1306 /*
1307  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1308  * and totalram_pages.
1309  */
1310 extern void free_highmem_page(struct page *page);
1311 #endif
1312 
adjust_managed_page_count(struct page * page,long count)1313 static inline void adjust_managed_page_count(struct page *page, long count)
1314 {
1315 	totalram_pages += count;
1316 }
1317 
1318 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)1319 static inline void __free_reserved_page(struct page *page)
1320 {
1321 	ClearPageReserved(page);
1322 	init_page_count(page);
1323 	__free_page(page);
1324 }
1325 
free_reserved_page(struct page * page)1326 static inline void free_reserved_page(struct page *page)
1327 {
1328 	__free_reserved_page(page);
1329 	adjust_managed_page_count(page, 1);
1330 }
1331 
mark_page_reserved(struct page * page)1332 static inline void mark_page_reserved(struct page *page)
1333 {
1334 	SetPageReserved(page);
1335 	adjust_managed_page_count(page, -1);
1336 }
1337 
1338 /*
1339  * Default method to free all the __init memory into the buddy system.
1340  * The freed pages will be poisoned with pattern "poison" if it is
1341  * non-zero. Return pages freed into the buddy system.
1342  */
free_initmem_default(int poison)1343 static inline unsigned long free_initmem_default(int poison)
1344 {
1345 	extern char __init_begin[], __init_end[];
1346 
1347 	return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1348 				  ((unsigned long)&__init_end) & PAGE_MASK,
1349 				  poison, "unused kernel");
1350 }
1351 
1352 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1353 /*
1354  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1355  * zones, allocate the backing mem_map and account for memory holes in a more
1356  * architecture independent manner. This is a substitute for creating the
1357  * zone_sizes[] and zholes_size[] arrays and passing them to
1358  * free_area_init_node()
1359  *
1360  * An architecture is expected to register range of page frames backed by
1361  * physical memory with memblock_add[_node]() before calling
1362  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1363  * usage, an architecture is expected to do something like
1364  *
1365  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1366  * 							 max_highmem_pfn};
1367  * for_each_valid_physical_page_range()
1368  * 	memblock_add_node(base, size, nid)
1369  * free_area_init_nodes(max_zone_pfns);
1370  *
1371  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1372  * registered physical page range.  Similarly
1373  * sparse_memory_present_with_active_regions() calls memory_present() for
1374  * each range when SPARSEMEM is enabled.
1375  *
1376  * See mm/page_alloc.c for more information on each function exposed by
1377  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1378  */
1379 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1380 unsigned long node_map_pfn_alignment(void);
1381 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1382 						unsigned long end_pfn);
1383 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1384 						unsigned long end_pfn);
1385 extern void get_pfn_range_for_nid(unsigned int nid,
1386 			unsigned long *start_pfn, unsigned long *end_pfn);
1387 extern unsigned long find_min_pfn_with_active_regions(void);
1388 extern void free_bootmem_with_active_regions(int nid,
1389 						unsigned long max_low_pfn);
1390 extern void sparse_memory_present_with_active_regions(int nid);
1391 
1392 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1393 
1394 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1395     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1396 static inline int __early_pfn_to_nid(unsigned long pfn)
1397 {
1398 	return 0;
1399 }
1400 #else
1401 /* please see mm/page_alloc.c */
1402 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1403 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1404 /* there is a per-arch backend function. */
1405 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1406 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1407 #endif
1408 
1409 extern void set_dma_reserve(unsigned long new_dma_reserve);
1410 extern void memmap_init_zone(unsigned long, int, unsigned long,
1411 				unsigned long, enum memmap_context);
1412 extern void setup_per_zone_wmarks(void);
1413 extern int __meminit init_per_zone_wmark_min(void);
1414 extern void mem_init(void);
1415 extern void __init mmap_init(void);
1416 extern void show_mem(unsigned int flags);
1417 extern void si_meminfo(struct sysinfo * val);
1418 extern void si_meminfo_node(struct sysinfo *val, int nid);
1419 
1420 extern __printf(3, 4)
1421 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1422 
1423 extern void setup_per_cpu_pageset(void);
1424 
1425 extern void zone_pcp_update(struct zone *zone);
1426 extern void zone_pcp_reset(struct zone *zone);
1427 
1428 /* page_alloc.c */
1429 extern int min_free_kbytes;
1430 
1431 /* nommu.c */
1432 extern atomic_long_t mmap_pages_allocated;
1433 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1434 
1435 /* interval_tree.c */
1436 void vma_interval_tree_insert(struct vm_area_struct *node,
1437 			      struct rb_root *root);
1438 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1439 				    struct vm_area_struct *prev,
1440 				    struct rb_root *root);
1441 void vma_interval_tree_remove(struct vm_area_struct *node,
1442 			      struct rb_root *root);
1443 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1444 				unsigned long start, unsigned long last);
1445 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1446 				unsigned long start, unsigned long last);
1447 
1448 #define vma_interval_tree_foreach(vma, root, start, last)		\
1449 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1450 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1451 
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)1452 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1453 					struct list_head *list)
1454 {
1455 	list_add_tail(&vma->shared.nonlinear, list);
1456 }
1457 
1458 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1459 				   struct rb_root *root);
1460 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1461 				   struct rb_root *root);
1462 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1463 	struct rb_root *root, unsigned long start, unsigned long last);
1464 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1465 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1466 #ifdef CONFIG_DEBUG_VM_RB
1467 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1468 #endif
1469 
1470 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1471 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1472 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1473 
1474 /* mmap.c */
1475 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1476 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1477 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1478 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1479 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1480 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1481 	struct mempolicy *, const char __user *);
1482 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1483 extern int split_vma(struct mm_struct *,
1484 	struct vm_area_struct *, unsigned long addr, int new_below);
1485 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1486 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1487 	struct rb_node **, struct rb_node *);
1488 extern void unlink_file_vma(struct vm_area_struct *);
1489 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1490 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1491 	bool *need_rmap_locks);
1492 extern void exit_mmap(struct mm_struct *);
1493 
1494 extern int mm_take_all_locks(struct mm_struct *mm);
1495 extern void mm_drop_all_locks(struct mm_struct *mm);
1496 
1497 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1498 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1499 
1500 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1501 extern int install_special_mapping(struct mm_struct *mm,
1502 				   unsigned long addr, unsigned long len,
1503 				   unsigned long flags, struct page **pages);
1504 
1505 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1506 
1507 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1508 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1509 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1510 	unsigned long len, unsigned long prot, unsigned long flags,
1511 	unsigned long pgoff, unsigned long *populate);
1512 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1513 
1514 #ifdef CONFIG_MMU
1515 extern int __mm_populate(unsigned long addr, unsigned long len,
1516 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)1517 static inline void mm_populate(unsigned long addr, unsigned long len)
1518 {
1519 	/* Ignore errors */
1520 	(void) __mm_populate(addr, len, 1);
1521 }
1522 #else
mm_populate(unsigned long addr,unsigned long len)1523 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1524 #endif
1525 
1526 /* These take the mm semaphore themselves */
1527 extern unsigned long vm_brk(unsigned long, unsigned long);
1528 extern int vm_munmap(unsigned long, size_t);
1529 extern unsigned long vm_mmap(struct file *, unsigned long,
1530         unsigned long, unsigned long,
1531         unsigned long, unsigned long);
1532 
1533 struct vm_unmapped_area_info {
1534 #define VM_UNMAPPED_AREA_TOPDOWN 1
1535 	unsigned long flags;
1536 	unsigned long length;
1537 	unsigned long low_limit;
1538 	unsigned long high_limit;
1539 	unsigned long align_mask;
1540 	unsigned long align_offset;
1541 };
1542 
1543 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1544 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1545 
1546 /*
1547  * Search for an unmapped address range.
1548  *
1549  * We are looking for a range that:
1550  * - does not intersect with any VMA;
1551  * - is contained within the [low_limit, high_limit) interval;
1552  * - is at least the desired size.
1553  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1554  */
1555 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)1556 vm_unmapped_area(struct vm_unmapped_area_info *info)
1557 {
1558 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1559 		return unmapped_area(info);
1560 	else
1561 		return unmapped_area_topdown(info);
1562 }
1563 
1564 /* truncate.c */
1565 extern void truncate_inode_pages(struct address_space *, loff_t);
1566 extern void truncate_inode_pages_range(struct address_space *,
1567 				       loff_t lstart, loff_t lend);
1568 
1569 /* generic vm_area_ops exported for stackable file systems */
1570 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1571 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1572 
1573 /* mm/page-writeback.c */
1574 int write_one_page(struct page *page, int wait);
1575 void task_dirty_inc(struct task_struct *tsk);
1576 
1577 /* readahead.c */
1578 #define VM_MAX_READAHEAD	128	/* kbytes */
1579 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1580 
1581 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1582 			pgoff_t offset, unsigned long nr_to_read);
1583 
1584 void page_cache_sync_readahead(struct address_space *mapping,
1585 			       struct file_ra_state *ra,
1586 			       struct file *filp,
1587 			       pgoff_t offset,
1588 			       unsigned long size);
1589 
1590 void page_cache_async_readahead(struct address_space *mapping,
1591 				struct file_ra_state *ra,
1592 				struct file *filp,
1593 				struct page *pg,
1594 				pgoff_t offset,
1595 				unsigned long size);
1596 
1597 unsigned long max_sane_readahead(unsigned long nr);
1598 unsigned long ra_submit(struct file_ra_state *ra,
1599 			struct address_space *mapping,
1600 			struct file *filp);
1601 
1602 extern unsigned long stack_guard_gap;
1603 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1604 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1605 
1606 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1607 extern int expand_downwards(struct vm_area_struct *vma,
1608 		unsigned long address);
1609 #if VM_GROWSUP
1610 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1611 #else
1612   #define expand_upwards(vma, address) (0)
1613 #endif
1614 
1615 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1616 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1617 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1618 					     struct vm_area_struct **pprev);
1619 
1620 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1621    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1622 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1623 {
1624 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1625 
1626 	if (vma && end_addr <= vma->vm_start)
1627 		vma = NULL;
1628 	return vma;
1629 }
1630 
vm_start_gap(struct vm_area_struct * vma)1631 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1632 {
1633 	unsigned long vm_start = vma->vm_start;
1634 
1635 	if (vma->vm_flags & VM_GROWSDOWN) {
1636 		vm_start -= stack_guard_gap;
1637 		if (vm_start > vma->vm_start)
1638 			vm_start = 0;
1639 	}
1640 	return vm_start;
1641 }
1642 
vm_end_gap(struct vm_area_struct * vma)1643 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1644 {
1645 	unsigned long vm_end = vma->vm_end;
1646 
1647 	if (vma->vm_flags & VM_GROWSUP) {
1648 		vm_end += stack_guard_gap;
1649 		if (vm_end < vma->vm_end)
1650 			vm_end = -PAGE_SIZE;
1651 	}
1652 	return vm_end;
1653 }
1654 
vma_pages(struct vm_area_struct * vma)1655 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1656 {
1657 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1658 }
1659 
1660 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)1661 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1662 				unsigned long vm_start, unsigned long vm_end)
1663 {
1664 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1665 
1666 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1667 		vma = NULL;
1668 
1669 	return vma;
1670 }
1671 
1672 #ifdef CONFIG_MMU
1673 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1674 #else
vm_get_page_prot(unsigned long vm_flags)1675 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1676 {
1677 	return __pgprot(0);
1678 }
1679 #endif
1680 
1681 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1682 unsigned long change_prot_numa(struct vm_area_struct *vma,
1683 			unsigned long start, unsigned long end);
1684 #endif
1685 
1686 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1687 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1688 			unsigned long pfn, unsigned long size, pgprot_t);
1689 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1690 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1691 			unsigned long pfn);
1692 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1693 			unsigned long pfn);
1694 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1695 
1696 
1697 struct page *follow_page_mask(struct vm_area_struct *vma,
1698 			      unsigned long address, unsigned int foll_flags,
1699 			      unsigned int *page_mask);
1700 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1701 static inline struct page *follow_page(struct vm_area_struct *vma,
1702 		unsigned long address, unsigned int foll_flags)
1703 {
1704 	unsigned int unused_page_mask;
1705 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1706 }
1707 
1708 #define FOLL_WRITE	0x01	/* check pte is writable */
1709 #define FOLL_TOUCH	0x02	/* mark page accessed */
1710 #define FOLL_GET	0x04	/* do get_page on page */
1711 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1712 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1713 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1714 				 * and return without waiting upon it */
1715 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1716 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1717 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1718 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
1719 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
1720 
1721 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1722 			void *data);
1723 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1724 			       unsigned long size, pte_fn_t fn, void *data);
1725 
1726 #ifdef CONFIG_PROC_FS
1727 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1728 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1729 static inline void vm_stat_account(struct mm_struct *mm,
1730 			unsigned long flags, struct file *file, long pages)
1731 {
1732 	mm->total_vm += pages;
1733 }
1734 #endif /* CONFIG_PROC_FS */
1735 
1736 #ifdef CONFIG_DEBUG_PAGEALLOC
1737 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1738 #ifdef CONFIG_HIBERNATION
1739 extern bool kernel_page_present(struct page *page);
1740 #endif /* CONFIG_HIBERNATION */
1741 #else
1742 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)1743 kernel_map_pages(struct page *page, int numpages, int enable) {}
1744 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)1745 static inline bool kernel_page_present(struct page *page) { return true; }
1746 #endif /* CONFIG_HIBERNATION */
1747 #endif
1748 
1749 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1750 #ifdef	__HAVE_ARCH_GATE_AREA
1751 int in_gate_area_no_mm(unsigned long addr);
1752 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1753 #else
1754 int in_gate_area_no_mm(unsigned long addr);
1755 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1756 #endif	/* __HAVE_ARCH_GATE_AREA */
1757 
1758 #ifdef CONFIG_SYSCTL
1759 extern int sysctl_drop_caches;
1760 int drop_caches_sysctl_handler(struct ctl_table *, int,
1761 					void __user *, size_t *, loff_t *);
1762 #endif
1763 
1764 unsigned long shrink_slab(struct shrink_control *shrink,
1765 			  unsigned long nr_pages_scanned,
1766 			  unsigned long lru_pages);
1767 
1768 #ifndef CONFIG_MMU
1769 #define randomize_va_space 0
1770 #else
1771 extern int randomize_va_space;
1772 #endif
1773 
1774 const char * arch_vma_name(struct vm_area_struct *vma);
1775 void print_vma_addr(char *prefix, unsigned long rip);
1776 
1777 void sparse_mem_maps_populate_node(struct page **map_map,
1778 				   unsigned long pnum_begin,
1779 				   unsigned long pnum_end,
1780 				   unsigned long map_count,
1781 				   int nodeid);
1782 
1783 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1784 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1785 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1786 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1787 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1788 void *vmemmap_alloc_block(unsigned long size, int node);
1789 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1790 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1791 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1792 			       int node);
1793 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1794 void vmemmap_populate_print_last(void);
1795 #ifdef CONFIG_MEMORY_HOTPLUG
1796 void vmemmap_free(unsigned long start, unsigned long end);
1797 #endif
1798 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1799 				  unsigned long size);
1800 
1801 enum mf_flags {
1802 	MF_COUNT_INCREASED = 1 << 0,
1803 	MF_ACTION_REQUIRED = 1 << 1,
1804 	MF_MUST_KILL = 1 << 2,
1805 };
1806 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1807 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1808 extern int unpoison_memory(unsigned long pfn);
1809 extern int sysctl_memory_failure_early_kill;
1810 extern int sysctl_memory_failure_recovery;
1811 extern void shake_page(struct page *p, int access);
1812 extern atomic_long_t num_poisoned_pages;
1813 extern int soft_offline_page(struct page *page, int flags);
1814 
1815 extern void dump_page(struct page *page);
1816 
1817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1818 extern void clear_huge_page(struct page *page,
1819 			    unsigned long addr,
1820 			    unsigned int pages_per_huge_page);
1821 extern void copy_user_huge_page(struct page *dst, struct page *src,
1822 				unsigned long addr, struct vm_area_struct *vma,
1823 				unsigned int pages_per_huge_page);
1824 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1825 
1826 #ifdef CONFIG_DEBUG_PAGEALLOC
1827 extern unsigned int _debug_guardpage_minorder;
1828 
debug_guardpage_minorder(void)1829 static inline unsigned int debug_guardpage_minorder(void)
1830 {
1831 	return _debug_guardpage_minorder;
1832 }
1833 
page_is_guard(struct page * page)1834 static inline bool page_is_guard(struct page *page)
1835 {
1836 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1837 }
1838 #else
debug_guardpage_minorder(void)1839 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
page_is_guard(struct page * page)1840 static inline bool page_is_guard(struct page *page) { return false; }
1841 #endif /* CONFIG_DEBUG_PAGEALLOC */
1842 
1843 /* 3.18 backport */
truncate_inode_pages_final(struct address_space * mapping)1844 static inline void truncate_inode_pages_final(struct address_space *mapping)
1845 {
1846 	truncate_inode_pages(mapping, 0);
1847 }
1848 
1849 #if MAX_NUMNODES > 1
1850 void __init setup_nr_node_ids(void);
1851 #else
setup_nr_node_ids(void)1852 static inline void setup_nr_node_ids(void) {}
1853 #endif
1854 
1855 #endif /* __KERNEL__ */
1856 #endif /* _LINUX_MM_H */
1857