1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
44 extern const int mmap_rnd_bits_min;
45 extern const int mmap_rnd_bits_max;
46 extern int mmap_rnd_bits __read_mostly;
47 #endif
48 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
49 extern const int mmap_rnd_compat_bits_min;
50 extern const int mmap_rnd_compat_bits_max;
51 extern int mmap_rnd_compat_bits __read_mostly;
52 #endif
53
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
62
63 /* to align the pointer to the (next) page boundary */
64 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
65
66 /*
67 * Linux kernel virtual memory manager primitives.
68 * The idea being to have a "virtual" mm in the same way
69 * we have a virtual fs - giving a cleaner interface to the
70 * mm details, and allowing different kinds of memory mappings
71 * (from shared memory to executable loading to arbitrary
72 * mmap() functions).
73 */
74
75 extern struct kmem_cache *vm_area_cachep;
76
77 #ifndef CONFIG_MMU
78 extern struct rb_root nommu_region_tree;
79 extern struct rw_semaphore nommu_region_sem;
80
81 extern unsigned int kobjsize(const void *objp);
82 #endif
83
84 /*
85 * vm_flags in vm_area_struct, see mm_types.h.
86 */
87 #define VM_NONE 0x00000000
88
89 #define VM_READ 0x00000001 /* currently active flags */
90 #define VM_WRITE 0x00000002
91 #define VM_EXEC 0x00000004
92 #define VM_SHARED 0x00000008
93
94 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
95 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
96 #define VM_MAYWRITE 0x00000020
97 #define VM_MAYEXEC 0x00000040
98 #define VM_MAYSHARE 0x00000080
99
100 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
101 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
102 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
103
104 #define VM_LOCKED 0x00002000
105 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
106
107 /* Used by sys_madvise() */
108 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
109 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
110
111 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
112 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
113 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
114 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
115 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
116 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
117 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
118 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
119
120 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
121 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
122 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
123 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
124
125 #if defined(CONFIG_X86)
126 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
127 #elif defined(CONFIG_PPC)
128 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
129 #elif defined(CONFIG_PARISC)
130 # define VM_GROWSUP VM_ARCH_1
131 #elif defined(CONFIG_METAG)
132 # define VM_GROWSUP VM_ARCH_1
133 #elif defined(CONFIG_IA64)
134 # define VM_GROWSUP VM_ARCH_1
135 #elif !defined(CONFIG_MMU)
136 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
137 #endif
138
139 #ifndef VM_GROWSUP
140 # define VM_GROWSUP VM_NONE
141 #endif
142
143 /* Bits set in the VMA until the stack is in its final location */
144 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
145
146 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
147 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
148 #endif
149
150 #ifdef CONFIG_STACK_GROWSUP
151 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
152 #else
153 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
154 #endif
155
156 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
157 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
158 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
159 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
160 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
161
162 /*
163 * Special vmas that are non-mergable, non-mlock()able.
164 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
165 */
166 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
167
168 /*
169 * mapping from the currently active vm_flags protection bits (the
170 * low four bits) to a page protection mask..
171 */
172 extern pgprot_t protection_map[16];
173
174 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
175 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
176 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
177 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
178 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
179 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
180 #define FAULT_FLAG_TRIED 0x40 /* second try */
181
182 /*
183 * vm_fault is filled by the the pagefault handler and passed to the vma's
184 * ->fault function. The vma's ->fault is responsible for returning a bitmask
185 * of VM_FAULT_xxx flags that give details about how the fault was handled.
186 *
187 * pgoff should be used in favour of virtual_address, if possible. If pgoff
188 * is used, one may implement ->remap_pages to get nonlinear mapping support.
189 */
190 struct vm_fault {
191 unsigned int flags; /* FAULT_FLAG_xxx flags */
192 pgoff_t pgoff; /* Logical page offset based on vma */
193 void __user *virtual_address; /* Faulting virtual address */
194
195 struct page *page; /* ->fault handlers should return a
196 * page here, unless VM_FAULT_NOPAGE
197 * is set (which is also implied by
198 * VM_FAULT_ERROR).
199 */
200 };
201
202 /*
203 * These are the virtual MM functions - opening of an area, closing and
204 * unmapping it (needed to keep files on disk up-to-date etc), pointer
205 * to the functions called when a no-page or a wp-page exception occurs.
206 */
207 struct vm_operations_struct {
208 void (*open)(struct vm_area_struct * area);
209 void (*close)(struct vm_area_struct * area);
210 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
211
212 /* notification that a previously read-only page is about to become
213 * writable, if an error is returned it will cause a SIGBUS */
214 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
215
216 /* called by access_process_vm when get_user_pages() fails, typically
217 * for use by special VMAs that can switch between memory and hardware
218 */
219 int (*access)(struct vm_area_struct *vma, unsigned long addr,
220 void *buf, int len, int write);
221 #ifdef CONFIG_NUMA
222 /*
223 * set_policy() op must add a reference to any non-NULL @new mempolicy
224 * to hold the policy upon return. Caller should pass NULL @new to
225 * remove a policy and fall back to surrounding context--i.e. do not
226 * install a MPOL_DEFAULT policy, nor the task or system default
227 * mempolicy.
228 */
229 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
230
231 /*
232 * get_policy() op must add reference [mpol_get()] to any policy at
233 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
234 * in mm/mempolicy.c will do this automatically.
235 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
236 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
237 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
238 * must return NULL--i.e., do not "fallback" to task or system default
239 * policy.
240 */
241 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
242 unsigned long addr);
243 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
244 const nodemask_t *to, unsigned long flags);
245 #endif
246 /* called by sys_remap_file_pages() to populate non-linear mapping */
247 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
248 unsigned long size, pgoff_t pgoff);
249 };
250
251 struct mmu_gather;
252 struct inode;
253
254 #define page_private(page) ((page)->private)
255 #define set_page_private(page, v) ((page)->private = (v))
256
257 /* It's valid only if the page is free path or free_list */
set_freepage_migratetype(struct page * page,int migratetype)258 static inline void set_freepage_migratetype(struct page *page, int migratetype)
259 {
260 page->index = migratetype;
261 }
262
263 /* It's valid only if the page is free path or free_list */
get_freepage_migratetype(struct page * page)264 static inline int get_freepage_migratetype(struct page *page)
265 {
266 return page->index;
267 }
268
269 /*
270 * FIXME: take this include out, include page-flags.h in
271 * files which need it (119 of them)
272 */
273 #include <linux/page-flags.h>
274 #include <linux/huge_mm.h>
275
276 /*
277 * Methods to modify the page usage count.
278 *
279 * What counts for a page usage:
280 * - cache mapping (page->mapping)
281 * - private data (page->private)
282 * - page mapped in a task's page tables, each mapping
283 * is counted separately
284 *
285 * Also, many kernel routines increase the page count before a critical
286 * routine so they can be sure the page doesn't go away from under them.
287 */
288
289 /*
290 * Drop a ref, return true if the refcount fell to zero (the page has no users)
291 */
put_page_testzero(struct page * page)292 static inline int put_page_testzero(struct page *page)
293 {
294 VM_BUG_ON(atomic_read(&page->_count) == 0);
295 return atomic_dec_and_test(&page->_count);
296 }
297
298 /*
299 * Try to grab a ref unless the page has a refcount of zero, return false if
300 * that is the case.
301 */
get_page_unless_zero(struct page * page)302 static inline int get_page_unless_zero(struct page *page)
303 {
304 return atomic_inc_not_zero(&page->_count);
305 }
306
307 extern int page_is_ram(unsigned long pfn);
308
309 /* Support for virtually mapped pages */
310 struct page *vmalloc_to_page(const void *addr);
311 unsigned long vmalloc_to_pfn(const void *addr);
312
313 /*
314 * Determine if an address is within the vmalloc range
315 *
316 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
317 * is no special casing required.
318 */
is_vmalloc_addr(const void * x)319 static inline int is_vmalloc_addr(const void *x)
320 {
321 #ifdef CONFIG_MMU
322 unsigned long addr = (unsigned long)x;
323
324 return addr >= VMALLOC_START && addr < VMALLOC_END;
325 #else
326 return 0;
327 #endif
328 }
329 #ifdef CONFIG_MMU
330 extern int is_vmalloc_or_module_addr(const void *x);
331 #else
is_vmalloc_or_module_addr(const void * x)332 static inline int is_vmalloc_or_module_addr(const void *x)
333 {
334 return 0;
335 }
336 #endif
337
338 extern void kvfree(const void *addr);
339
compound_lock(struct page * page)340 static inline void compound_lock(struct page *page)
341 {
342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 VM_BUG_ON(PageSlab(page));
344 bit_spin_lock(PG_compound_lock, &page->flags);
345 #endif
346 }
347
compound_unlock(struct page * page)348 static inline void compound_unlock(struct page *page)
349 {
350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 VM_BUG_ON(PageSlab(page));
352 bit_spin_unlock(PG_compound_lock, &page->flags);
353 #endif
354 }
355
compound_lock_irqsave(struct page * page)356 static inline unsigned long compound_lock_irqsave(struct page *page)
357 {
358 unsigned long uninitialized_var(flags);
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 local_irq_save(flags);
361 compound_lock(page);
362 #endif
363 return flags;
364 }
365
compound_unlock_irqrestore(struct page * page,unsigned long flags)366 static inline void compound_unlock_irqrestore(struct page *page,
367 unsigned long flags)
368 {
369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
370 compound_unlock(page);
371 local_irq_restore(flags);
372 #endif
373 }
374
compound_head(struct page * page)375 static inline struct page *compound_head(struct page *page)
376 {
377 if (unlikely(PageTail(page)))
378 return page->first_page;
379 return page;
380 }
381
382 /*
383 * The atomic page->_mapcount, starts from -1: so that transitions
384 * both from it and to it can be tracked, using atomic_inc_and_test
385 * and atomic_add_negative(-1).
386 */
page_mapcount_reset(struct page * page)387 static inline void page_mapcount_reset(struct page *page)
388 {
389 atomic_set(&(page)->_mapcount, -1);
390 }
391
page_mapcount(struct page * page)392 static inline int page_mapcount(struct page *page)
393 {
394 return atomic_read(&(page)->_mapcount) + 1;
395 }
396
page_count(struct page * page)397 static inline int page_count(struct page *page)
398 {
399 return atomic_read(&compound_head(page)->_count);
400 }
401
get_huge_page_tail(struct page * page)402 static inline void get_huge_page_tail(struct page *page)
403 {
404 /*
405 * __split_huge_page_refcount() cannot run
406 * from under us.
407 */
408 VM_BUG_ON(page_mapcount(page) < 0);
409 VM_BUG_ON(atomic_read(&page->_count) != 0);
410 atomic_inc(&page->_mapcount);
411 }
412
413 extern bool __get_page_tail(struct page *page);
414
get_page(struct page * page)415 static inline void get_page(struct page *page)
416 {
417 if (unlikely(PageTail(page)))
418 if (likely(__get_page_tail(page)))
419 return;
420 /*
421 * Getting a normal page or the head of a compound page
422 * requires to already have an elevated page->_count.
423 */
424 VM_BUG_ON(atomic_read(&page->_count) <= 0);
425 atomic_inc(&page->_count);
426 }
427
virt_to_head_page(const void * x)428 static inline struct page *virt_to_head_page(const void *x)
429 {
430 struct page *page = virt_to_page(x);
431 return compound_head(page);
432 }
433
434 /*
435 * Setup the page count before being freed into the page allocator for
436 * the first time (boot or memory hotplug)
437 */
init_page_count(struct page * page)438 static inline void init_page_count(struct page *page)
439 {
440 atomic_set(&page->_count, 1);
441 }
442
443 /*
444 * PageBuddy() indicate that the page is free and in the buddy system
445 * (see mm/page_alloc.c).
446 *
447 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
448 * -2 so that an underflow of the page_mapcount() won't be mistaken
449 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
450 * efficiently by most CPU architectures.
451 */
452 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
453
PageBuddy(struct page * page)454 static inline int PageBuddy(struct page *page)
455 {
456 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
457 }
458
__SetPageBuddy(struct page * page)459 static inline void __SetPageBuddy(struct page *page)
460 {
461 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
462 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
463 }
464
__ClearPageBuddy(struct page * page)465 static inline void __ClearPageBuddy(struct page *page)
466 {
467 VM_BUG_ON(!PageBuddy(page));
468 atomic_set(&page->_mapcount, -1);
469 }
470
471 void put_page(struct page *page);
472 void put_pages_list(struct list_head *pages);
473
474 void split_page(struct page *page, unsigned int order);
475 int split_free_page(struct page *page);
476
477 /*
478 * Compound pages have a destructor function. Provide a
479 * prototype for that function and accessor functions.
480 * These are _only_ valid on the head of a PG_compound page.
481 */
482 typedef void compound_page_dtor(struct page *);
483
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)484 static inline void set_compound_page_dtor(struct page *page,
485 compound_page_dtor *dtor)
486 {
487 page[1].lru.next = (void *)dtor;
488 }
489
get_compound_page_dtor(struct page * page)490 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
491 {
492 return (compound_page_dtor *)page[1].lru.next;
493 }
494
compound_order(struct page * page)495 static inline int compound_order(struct page *page)
496 {
497 if (!PageHead(page))
498 return 0;
499 return (unsigned long)page[1].lru.prev;
500 }
501
compound_trans_order(struct page * page)502 static inline int compound_trans_order(struct page *page)
503 {
504 int order;
505 unsigned long flags;
506
507 if (!PageHead(page))
508 return 0;
509
510 flags = compound_lock_irqsave(page);
511 order = compound_order(page);
512 compound_unlock_irqrestore(page, flags);
513 return order;
514 }
515
set_compound_order(struct page * page,unsigned long order)516 static inline void set_compound_order(struct page *page, unsigned long order)
517 {
518 page[1].lru.prev = (void *)order;
519 }
520
521 #ifdef CONFIG_MMU
522 /*
523 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
524 * servicing faults for write access. In the normal case, do always want
525 * pte_mkwrite. But get_user_pages can cause write faults for mappings
526 * that do not have writing enabled, when used by access_process_vm.
527 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)528 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
529 {
530 if (likely(vma->vm_flags & VM_WRITE))
531 pte = pte_mkwrite(pte);
532 return pte;
533 }
534 #endif
535
536 /*
537 * Multiple processes may "see" the same page. E.g. for untouched
538 * mappings of /dev/null, all processes see the same page full of
539 * zeroes, and text pages of executables and shared libraries have
540 * only one copy in memory, at most, normally.
541 *
542 * For the non-reserved pages, page_count(page) denotes a reference count.
543 * page_count() == 0 means the page is free. page->lru is then used for
544 * freelist management in the buddy allocator.
545 * page_count() > 0 means the page has been allocated.
546 *
547 * Pages are allocated by the slab allocator in order to provide memory
548 * to kmalloc and kmem_cache_alloc. In this case, the management of the
549 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
550 * unless a particular usage is carefully commented. (the responsibility of
551 * freeing the kmalloc memory is the caller's, of course).
552 *
553 * A page may be used by anyone else who does a __get_free_page().
554 * In this case, page_count still tracks the references, and should only
555 * be used through the normal accessor functions. The top bits of page->flags
556 * and page->virtual store page management information, but all other fields
557 * are unused and could be used privately, carefully. The management of this
558 * page is the responsibility of the one who allocated it, and those who have
559 * subsequently been given references to it.
560 *
561 * The other pages (we may call them "pagecache pages") are completely
562 * managed by the Linux memory manager: I/O, buffers, swapping etc.
563 * The following discussion applies only to them.
564 *
565 * A pagecache page contains an opaque `private' member, which belongs to the
566 * page's address_space. Usually, this is the address of a circular list of
567 * the page's disk buffers. PG_private must be set to tell the VM to call
568 * into the filesystem to release these pages.
569 *
570 * A page may belong to an inode's memory mapping. In this case, page->mapping
571 * is the pointer to the inode, and page->index is the file offset of the page,
572 * in units of PAGE_CACHE_SIZE.
573 *
574 * If pagecache pages are not associated with an inode, they are said to be
575 * anonymous pages. These may become associated with the swapcache, and in that
576 * case PG_swapcache is set, and page->private is an offset into the swapcache.
577 *
578 * In either case (swapcache or inode backed), the pagecache itself holds one
579 * reference to the page. Setting PG_private should also increment the
580 * refcount. The each user mapping also has a reference to the page.
581 *
582 * The pagecache pages are stored in a per-mapping radix tree, which is
583 * rooted at mapping->page_tree, and indexed by offset.
584 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
585 * lists, we instead now tag pages as dirty/writeback in the radix tree.
586 *
587 * All pagecache pages may be subject to I/O:
588 * - inode pages may need to be read from disk,
589 * - inode pages which have been modified and are MAP_SHARED may need
590 * to be written back to the inode on disk,
591 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
592 * modified may need to be swapped out to swap space and (later) to be read
593 * back into memory.
594 */
595
596 /*
597 * The zone field is never updated after free_area_init_core()
598 * sets it, so none of the operations on it need to be atomic.
599 */
600
601 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
602 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
603 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
604 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
605 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
606
607 /*
608 * Define the bit shifts to access each section. For non-existent
609 * sections we define the shift as 0; that plus a 0 mask ensures
610 * the compiler will optimise away reference to them.
611 */
612 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
613 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
614 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
615 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
616
617 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
618 #ifdef NODE_NOT_IN_PAGE_FLAGS
619 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
620 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
621 SECTIONS_PGOFF : ZONES_PGOFF)
622 #else
623 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
624 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
625 NODES_PGOFF : ZONES_PGOFF)
626 #endif
627
628 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
629
630 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
631 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #endif
633
634 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
635 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
636 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
637 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
638 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
639
page_zonenum(const struct page * page)640 static inline enum zone_type page_zonenum(const struct page *page)
641 {
642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
643 }
644
645 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
646 #define SECTION_IN_PAGE_FLAGS
647 #endif
648
649 /*
650 * The identification function is only used by the buddy allocator for
651 * determining if two pages could be buddies. We are not really
652 * identifying a zone since we could be using a the section number
653 * id if we have not node id available in page flags.
654 * We guarantee only that it will return the same value for two
655 * combinable pages in a zone.
656 */
page_zone_id(struct page * page)657 static inline int page_zone_id(struct page *page)
658 {
659 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
660 }
661
zone_to_nid(struct zone * zone)662 static inline int zone_to_nid(struct zone *zone)
663 {
664 #ifdef CONFIG_NUMA
665 return zone->node;
666 #else
667 return 0;
668 #endif
669 }
670
671 #ifdef NODE_NOT_IN_PAGE_FLAGS
672 extern int page_to_nid(const struct page *page);
673 #else
page_to_nid(const struct page * page)674 static inline int page_to_nid(const struct page *page)
675 {
676 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
677 }
678 #endif
679
680 #ifdef CONFIG_NUMA_BALANCING
681 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
page_nid_xchg_last(struct page * page,int nid)682 static inline int page_nid_xchg_last(struct page *page, int nid)
683 {
684 return xchg(&page->_last_nid, nid);
685 }
686
page_nid_last(struct page * page)687 static inline int page_nid_last(struct page *page)
688 {
689 return page->_last_nid;
690 }
page_nid_reset_last(struct page * page)691 static inline void page_nid_reset_last(struct page *page)
692 {
693 page->_last_nid = -1;
694 }
695 #else
page_nid_last(struct page * page)696 static inline int page_nid_last(struct page *page)
697 {
698 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
699 }
700
701 extern int page_nid_xchg_last(struct page *page, int nid);
702
page_nid_reset_last(struct page * page)703 static inline void page_nid_reset_last(struct page *page)
704 {
705 int nid = (1 << LAST_NID_SHIFT) - 1;
706
707 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
708 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
709 }
710 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
711 #else
page_nid_xchg_last(struct page * page,int nid)712 static inline int page_nid_xchg_last(struct page *page, int nid)
713 {
714 return page_to_nid(page);
715 }
716
page_nid_last(struct page * page)717 static inline int page_nid_last(struct page *page)
718 {
719 return page_to_nid(page);
720 }
721
page_nid_reset_last(struct page * page)722 static inline void page_nid_reset_last(struct page *page)
723 {
724 }
725 #endif
726
page_zone(const struct page * page)727 static inline struct zone *page_zone(const struct page *page)
728 {
729 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
730 }
731
732 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)733 static inline void set_page_section(struct page *page, unsigned long section)
734 {
735 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
736 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
737 }
738
page_to_section(const struct page * page)739 static inline unsigned long page_to_section(const struct page *page)
740 {
741 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
742 }
743 #endif
744
set_page_zone(struct page * page,enum zone_type zone)745 static inline void set_page_zone(struct page *page, enum zone_type zone)
746 {
747 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
748 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
749 }
750
set_page_node(struct page * page,unsigned long node)751 static inline void set_page_node(struct page *page, unsigned long node)
752 {
753 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
754 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
755 }
756
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)757 static inline void set_page_links(struct page *page, enum zone_type zone,
758 unsigned long node, unsigned long pfn)
759 {
760 set_page_zone(page, zone);
761 set_page_node(page, node);
762 #ifdef SECTION_IN_PAGE_FLAGS
763 set_page_section(page, pfn_to_section_nr(pfn));
764 #endif
765 }
766
767 /*
768 * Some inline functions in vmstat.h depend on page_zone()
769 */
770 #include <linux/vmstat.h>
771
lowmem_page_address(const struct page * page)772 static __always_inline void *lowmem_page_address(const struct page *page)
773 {
774 return __va(PFN_PHYS(page_to_pfn(page)));
775 }
776
777 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
778 #define HASHED_PAGE_VIRTUAL
779 #endif
780
781 #if defined(WANT_PAGE_VIRTUAL)
782 #define page_address(page) ((page)->virtual)
783 #define set_page_address(page, address) \
784 do { \
785 (page)->virtual = (address); \
786 } while(0)
787 #define page_address_init() do { } while(0)
788 #endif
789
790 #if defined(HASHED_PAGE_VIRTUAL)
791 void *page_address(const struct page *page);
792 void set_page_address(struct page *page, void *virtual);
793 void page_address_init(void);
794 #endif
795
796 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
797 #define page_address(page) lowmem_page_address(page)
798 #define set_page_address(page, address) do { } while(0)
799 #define page_address_init() do { } while(0)
800 #endif
801
802 /*
803 * On an anonymous page mapped into a user virtual memory area,
804 * page->mapping points to its anon_vma, not to a struct address_space;
805 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
806 *
807 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
808 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
809 * and then page->mapping points, not to an anon_vma, but to a private
810 * structure which KSM associates with that merged page. See ksm.h.
811 *
812 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
813 *
814 * Please note that, confusingly, "page_mapping" refers to the inode
815 * address_space which maps the page from disk; whereas "page_mapped"
816 * refers to user virtual address space into which the page is mapped.
817 */
818 #define PAGE_MAPPING_ANON 1
819 #define PAGE_MAPPING_KSM 2
820 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
821
822 extern struct address_space *page_mapping(struct page *page);
823
824 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)825 static inline void *page_rmapping(struct page *page)
826 {
827 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
828 }
829
830 extern struct address_space *__page_file_mapping(struct page *);
831
832 static inline
page_file_mapping(struct page * page)833 struct address_space *page_file_mapping(struct page *page)
834 {
835 if (unlikely(PageSwapCache(page)))
836 return __page_file_mapping(page);
837
838 return page->mapping;
839 }
840
PageAnon(struct page * page)841 static inline int PageAnon(struct page *page)
842 {
843 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
844 }
845
846 /*
847 * Return the pagecache index of the passed page. Regular pagecache pages
848 * use ->index whereas swapcache pages use ->private
849 */
page_index(struct page * page)850 static inline pgoff_t page_index(struct page *page)
851 {
852 if (unlikely(PageSwapCache(page)))
853 return page_private(page);
854 return page->index;
855 }
856
857 extern pgoff_t __page_file_index(struct page *page);
858
859 /*
860 * Return the file index of the page. Regular pagecache pages use ->index
861 * whereas swapcache pages use swp_offset(->private)
862 */
page_file_index(struct page * page)863 static inline pgoff_t page_file_index(struct page *page)
864 {
865 if (unlikely(PageSwapCache(page)))
866 return __page_file_index(page);
867
868 return page->index;
869 }
870
871 /*
872 * Return true if this page is mapped into pagetables.
873 */
page_mapped(struct page * page)874 static inline int page_mapped(struct page *page)
875 {
876 return atomic_read(&(page)->_mapcount) >= 0;
877 }
878
879 /*
880 * Different kinds of faults, as returned by handle_mm_fault().
881 * Used to decide whether a process gets delivered SIGBUS or
882 * just gets major/minor fault counters bumped up.
883 */
884
885 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
886
887 #define VM_FAULT_OOM 0x0001
888 #define VM_FAULT_SIGBUS 0x0002
889 #define VM_FAULT_MAJOR 0x0004
890 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
891 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
892 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
893
894 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
895 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
896 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
897
898 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
899
900 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
901 VM_FAULT_HWPOISON_LARGE)
902
903 /* Encode hstate index for a hwpoisoned large page */
904 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
905 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
906
907 /*
908 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
909 */
910 extern void pagefault_out_of_memory(void);
911
912 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
913
914 /*
915 * Flags passed to show_mem() and show_free_areas() to suppress output in
916 * various contexts.
917 */
918 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
919 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
920
921 extern void show_free_areas(unsigned int flags);
922 extern bool skip_free_areas_node(unsigned int flags, int nid);
923
924 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
925 int shmem_zero_setup(struct vm_area_struct *);
926
927 extern int can_do_mlock(void);
928 extern int user_shm_lock(size_t, struct user_struct *);
929 extern void user_shm_unlock(size_t, struct user_struct *);
930
931 /*
932 * Parameter block passed down to zap_pte_range in exceptional cases.
933 */
934 struct zap_details {
935 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
936 struct address_space *check_mapping; /* Check page->mapping if set */
937 pgoff_t first_index; /* Lowest page->index to unmap */
938 pgoff_t last_index; /* Highest page->index to unmap */
939 };
940
941 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
942 pte_t pte);
943
944 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
945 unsigned long size);
946 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
947 unsigned long size, struct zap_details *);
948 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
949 unsigned long start, unsigned long end);
950
951 /**
952 * mm_walk - callbacks for walk_page_range
953 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
954 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
955 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
956 * this handler is required to be able to handle
957 * pmd_trans_huge() pmds. They may simply choose to
958 * split_huge_page() instead of handling it explicitly.
959 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
960 * @pte_hole: if set, called for each hole at all levels
961 * @hugetlb_entry: if set, called for each hugetlb entry
962 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
963 * is used.
964 *
965 * (see walk_page_range for more details)
966 */
967 struct mm_walk {
968 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
969 unsigned long next, struct mm_walk *walk);
970 int (*pud_entry)(pud_t *pud, unsigned long addr,
971 unsigned long next, struct mm_walk *walk);
972 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
973 unsigned long next, struct mm_walk *walk);
974 int (*pte_entry)(pte_t *pte, unsigned long addr,
975 unsigned long next, struct mm_walk *walk);
976 int (*pte_hole)(unsigned long addr, unsigned long next,
977 struct mm_walk *walk);
978 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
979 unsigned long addr, unsigned long next,
980 struct mm_walk *walk);
981 struct mm_struct *mm;
982 void *private;
983 };
984
985 int walk_page_range(unsigned long addr, unsigned long end,
986 struct mm_walk *walk);
987 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
988 unsigned long end, unsigned long floor, unsigned long ceiling);
989 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
990 struct vm_area_struct *vma);
991 void unmap_mapping_range(struct address_space *mapping,
992 loff_t const holebegin, loff_t const holelen, int even_cows);
993 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
994 unsigned long *pfn);
995 int follow_phys(struct vm_area_struct *vma, unsigned long address,
996 unsigned int flags, unsigned long *prot, resource_size_t *phys);
997 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
998 void *buf, int len, int write);
999
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1000 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1001 loff_t const holebegin, loff_t const holelen)
1002 {
1003 unmap_mapping_range(mapping, holebegin, holelen, 0);
1004 }
1005
1006 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1007 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1008 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1009 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1010 int truncate_inode_page(struct address_space *mapping, struct page *page);
1011 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1012 int invalidate_inode_page(struct page *page);
1013
1014 #ifdef CONFIG_MMU
1015 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1016 unsigned long address, unsigned int flags);
1017 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long address, unsigned int fault_flags);
1019 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)1020 static inline int handle_mm_fault(struct mm_struct *mm,
1021 struct vm_area_struct *vma, unsigned long address,
1022 unsigned int flags)
1023 {
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return VM_FAULT_SIGBUS;
1027 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1028 static inline int fixup_user_fault(struct task_struct *tsk,
1029 struct mm_struct *mm, unsigned long address,
1030 unsigned int fault_flags)
1031 {
1032 /* should never happen if there's no MMU */
1033 BUG();
1034 return -EFAULT;
1035 }
1036 #endif
1037
1038 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1039 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1040 void *buf, int len, int write);
1041
1042 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1043 unsigned long start, unsigned long nr_pages,
1044 unsigned int foll_flags, struct page **pages,
1045 struct vm_area_struct **vmas, int *nonblocking);
1046 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1047 unsigned long start, unsigned long nr_pages,
1048 int write, int force, struct page **pages,
1049 struct vm_area_struct **vmas);
1050 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1051 struct page **pages);
1052 struct kvec;
1053 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1054 struct page **pages);
1055 int get_kernel_page(unsigned long start, int write, struct page **pages);
1056 struct page *get_dump_page(unsigned long addr);
1057
1058 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1059 extern void do_invalidatepage(struct page *page, unsigned int offset,
1060 unsigned int length);
1061
1062 int __set_page_dirty_nobuffers(struct page *page);
1063 int __set_page_dirty_no_writeback(struct page *page);
1064 int redirty_page_for_writepage(struct writeback_control *wbc,
1065 struct page *page);
1066 void account_page_dirtied(struct page *page, struct address_space *mapping);
1067 void account_page_writeback(struct page *page);
1068 int set_page_dirty(struct page *page);
1069 int set_page_dirty_lock(struct page *page);
1070 int clear_page_dirty_for_io(struct page *page);
1071
1072 extern pid_t
1073 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1074
1075 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1076 unsigned long old_addr, struct vm_area_struct *new_vma,
1077 unsigned long new_addr, unsigned long len,
1078 bool need_rmap_locks);
1079 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1080 unsigned long end, pgprot_t newprot,
1081 int dirty_accountable, int prot_numa);
1082 extern int mprotect_fixup(struct vm_area_struct *vma,
1083 struct vm_area_struct **pprev, unsigned long start,
1084 unsigned long end, unsigned long newflags);
1085
1086 /*
1087 * doesn't attempt to fault and will return short.
1088 */
1089 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1090 struct page **pages);
1091 /*
1092 * per-process(per-mm_struct) statistics.
1093 */
get_mm_counter(struct mm_struct * mm,int member)1094 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1095 {
1096 long val = atomic_long_read(&mm->rss_stat.count[member]);
1097
1098 #ifdef SPLIT_RSS_COUNTING
1099 /*
1100 * counter is updated in asynchronous manner and may go to minus.
1101 * But it's never be expected number for users.
1102 */
1103 if (val < 0)
1104 val = 0;
1105 #endif
1106 return (unsigned long)val;
1107 }
1108
add_mm_counter(struct mm_struct * mm,int member,long value)1109 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1110 {
1111 atomic_long_add(value, &mm->rss_stat.count[member]);
1112 }
1113
inc_mm_counter(struct mm_struct * mm,int member)1114 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1115 {
1116 atomic_long_inc(&mm->rss_stat.count[member]);
1117 }
1118
dec_mm_counter(struct mm_struct * mm,int member)1119 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1120 {
1121 atomic_long_dec(&mm->rss_stat.count[member]);
1122 }
1123
get_mm_rss(struct mm_struct * mm)1124 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1125 {
1126 return get_mm_counter(mm, MM_FILEPAGES) +
1127 get_mm_counter(mm, MM_ANONPAGES);
1128 }
1129
get_mm_hiwater_rss(struct mm_struct * mm)1130 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1131 {
1132 return max(mm->hiwater_rss, get_mm_rss(mm));
1133 }
1134
get_mm_hiwater_vm(struct mm_struct * mm)1135 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1136 {
1137 return max(mm->hiwater_vm, mm->total_vm);
1138 }
1139
update_hiwater_rss(struct mm_struct * mm)1140 static inline void update_hiwater_rss(struct mm_struct *mm)
1141 {
1142 unsigned long _rss = get_mm_rss(mm);
1143
1144 if ((mm)->hiwater_rss < _rss)
1145 (mm)->hiwater_rss = _rss;
1146 }
1147
update_hiwater_vm(struct mm_struct * mm)1148 static inline void update_hiwater_vm(struct mm_struct *mm)
1149 {
1150 if (mm->hiwater_vm < mm->total_vm)
1151 mm->hiwater_vm = mm->total_vm;
1152 }
1153
reset_mm_hiwater_rss(struct mm_struct * mm)1154 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1155 {
1156 mm->hiwater_rss = get_mm_rss(mm);
1157 }
1158
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1159 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1160 struct mm_struct *mm)
1161 {
1162 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1163
1164 if (*maxrss < hiwater_rss)
1165 *maxrss = hiwater_rss;
1166 }
1167
1168 #if defined(SPLIT_RSS_COUNTING)
1169 void sync_mm_rss(struct mm_struct *mm);
1170 #else
sync_mm_rss(struct mm_struct * mm)1171 static inline void sync_mm_rss(struct mm_struct *mm)
1172 {
1173 }
1174 #endif
1175
1176 int vma_wants_writenotify(struct vm_area_struct *vma);
1177
1178 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1179 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1180 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1181 spinlock_t **ptl)
1182 {
1183 pte_t *ptep;
1184 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1185 return ptep;
1186 }
1187
1188 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1189 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1190 unsigned long address)
1191 {
1192 return 0;
1193 }
1194 #else
1195 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1196 #endif
1197
1198 #ifdef __PAGETABLE_PMD_FOLDED
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1199 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1200 unsigned long address)
1201 {
1202 return 0;
1203 }
1204 #else
1205 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1206 #endif
1207
1208 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1209 pmd_t *pmd, unsigned long address);
1210 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1211
1212 /*
1213 * The following ifdef needed to get the 4level-fixup.h header to work.
1214 * Remove it when 4level-fixup.h has been removed.
1215 */
1216 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1217 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1218 {
1219 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1220 NULL: pud_offset(pgd, address);
1221 }
1222
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1223 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1224 {
1225 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1226 NULL: pmd_offset(pud, address);
1227 }
1228 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1229
1230 #if USE_SPLIT_PTLOCKS
1231 /*
1232 * We tuck a spinlock to guard each pagetable page into its struct page,
1233 * at page->private, with BUILD_BUG_ON to make sure that this will not
1234 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1235 * When freeing, reset page->mapping so free_pages_check won't complain.
1236 */
1237 #define __pte_lockptr(page) &((page)->ptl)
1238 #define pte_lock_init(_page) do { \
1239 spin_lock_init(__pte_lockptr(_page)); \
1240 } while (0)
1241 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1242 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1243 #else /* !USE_SPLIT_PTLOCKS */
1244 /*
1245 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1246 */
1247 #define pte_lock_init(page) do {} while (0)
1248 #define pte_lock_deinit(page) do {} while (0)
1249 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1250 #endif /* USE_SPLIT_PTLOCKS */
1251
pgtable_page_ctor(struct page * page)1252 static inline void pgtable_page_ctor(struct page *page)
1253 {
1254 pte_lock_init(page);
1255 inc_zone_page_state(page, NR_PAGETABLE);
1256 }
1257
pgtable_page_dtor(struct page * page)1258 static inline void pgtable_page_dtor(struct page *page)
1259 {
1260 pte_lock_deinit(page);
1261 dec_zone_page_state(page, NR_PAGETABLE);
1262 }
1263
1264 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1265 ({ \
1266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1267 pte_t *__pte = pte_offset_map(pmd, address); \
1268 *(ptlp) = __ptl; \
1269 spin_lock(__ptl); \
1270 __pte; \
1271 })
1272
1273 #define pte_unmap_unlock(pte, ptl) do { \
1274 spin_unlock(ptl); \
1275 pte_unmap(pte); \
1276 } while (0)
1277
1278 #define pte_alloc_map(mm, vma, pmd, address) \
1279 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1280 pmd, address))? \
1281 NULL: pte_offset_map(pmd, address))
1282
1283 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1285 pmd, address))? \
1286 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1287
1288 #define pte_alloc_kernel(pmd, address) \
1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1290 NULL: pte_offset_kernel(pmd, address))
1291
1292 extern void free_area_init(unsigned long * zones_size);
1293 extern void free_area_init_node(int nid, unsigned long * zones_size,
1294 unsigned long zone_start_pfn, unsigned long *zholes_size);
1295 extern void free_initmem(void);
1296
1297 /*
1298 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1299 * into the buddy system. The freed pages will be poisoned with pattern
1300 * "poison" if it's non-zero.
1301 * Return pages freed into the buddy system.
1302 */
1303 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1304 int poison, char *s);
1305 #ifdef CONFIG_HIGHMEM
1306 /*
1307 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1308 * and totalram_pages.
1309 */
1310 extern void free_highmem_page(struct page *page);
1311 #endif
1312
adjust_managed_page_count(struct page * page,long count)1313 static inline void adjust_managed_page_count(struct page *page, long count)
1314 {
1315 totalram_pages += count;
1316 }
1317
1318 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)1319 static inline void __free_reserved_page(struct page *page)
1320 {
1321 ClearPageReserved(page);
1322 init_page_count(page);
1323 __free_page(page);
1324 }
1325
free_reserved_page(struct page * page)1326 static inline void free_reserved_page(struct page *page)
1327 {
1328 __free_reserved_page(page);
1329 adjust_managed_page_count(page, 1);
1330 }
1331
mark_page_reserved(struct page * page)1332 static inline void mark_page_reserved(struct page *page)
1333 {
1334 SetPageReserved(page);
1335 adjust_managed_page_count(page, -1);
1336 }
1337
1338 /*
1339 * Default method to free all the __init memory into the buddy system.
1340 * The freed pages will be poisoned with pattern "poison" if it is
1341 * non-zero. Return pages freed into the buddy system.
1342 */
free_initmem_default(int poison)1343 static inline unsigned long free_initmem_default(int poison)
1344 {
1345 extern char __init_begin[], __init_end[];
1346
1347 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1348 ((unsigned long)&__init_end) & PAGE_MASK,
1349 poison, "unused kernel");
1350 }
1351
1352 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1353 /*
1354 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1355 * zones, allocate the backing mem_map and account for memory holes in a more
1356 * architecture independent manner. This is a substitute for creating the
1357 * zone_sizes[] and zholes_size[] arrays and passing them to
1358 * free_area_init_node()
1359 *
1360 * An architecture is expected to register range of page frames backed by
1361 * physical memory with memblock_add[_node]() before calling
1362 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1363 * usage, an architecture is expected to do something like
1364 *
1365 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1366 * max_highmem_pfn};
1367 * for_each_valid_physical_page_range()
1368 * memblock_add_node(base, size, nid)
1369 * free_area_init_nodes(max_zone_pfns);
1370 *
1371 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1372 * registered physical page range. Similarly
1373 * sparse_memory_present_with_active_regions() calls memory_present() for
1374 * each range when SPARSEMEM is enabled.
1375 *
1376 * See mm/page_alloc.c for more information on each function exposed by
1377 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1378 */
1379 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1380 unsigned long node_map_pfn_alignment(void);
1381 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1382 unsigned long end_pfn);
1383 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1384 unsigned long end_pfn);
1385 extern void get_pfn_range_for_nid(unsigned int nid,
1386 unsigned long *start_pfn, unsigned long *end_pfn);
1387 extern unsigned long find_min_pfn_with_active_regions(void);
1388 extern void free_bootmem_with_active_regions(int nid,
1389 unsigned long max_low_pfn);
1390 extern void sparse_memory_present_with_active_regions(int nid);
1391
1392 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1393
1394 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1395 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1396 static inline int __early_pfn_to_nid(unsigned long pfn)
1397 {
1398 return 0;
1399 }
1400 #else
1401 /* please see mm/page_alloc.c */
1402 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1403 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1404 /* there is a per-arch backend function. */
1405 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1406 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1407 #endif
1408
1409 extern void set_dma_reserve(unsigned long new_dma_reserve);
1410 extern void memmap_init_zone(unsigned long, int, unsigned long,
1411 unsigned long, enum memmap_context);
1412 extern void setup_per_zone_wmarks(void);
1413 extern int __meminit init_per_zone_wmark_min(void);
1414 extern void mem_init(void);
1415 extern void __init mmap_init(void);
1416 extern void show_mem(unsigned int flags);
1417 extern void si_meminfo(struct sysinfo * val);
1418 extern void si_meminfo_node(struct sysinfo *val, int nid);
1419
1420 extern __printf(3, 4)
1421 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1422
1423 extern void setup_per_cpu_pageset(void);
1424
1425 extern void zone_pcp_update(struct zone *zone);
1426 extern void zone_pcp_reset(struct zone *zone);
1427
1428 /* page_alloc.c */
1429 extern int min_free_kbytes;
1430
1431 /* nommu.c */
1432 extern atomic_long_t mmap_pages_allocated;
1433 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1434
1435 /* interval_tree.c */
1436 void vma_interval_tree_insert(struct vm_area_struct *node,
1437 struct rb_root *root);
1438 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1439 struct vm_area_struct *prev,
1440 struct rb_root *root);
1441 void vma_interval_tree_remove(struct vm_area_struct *node,
1442 struct rb_root *root);
1443 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1444 unsigned long start, unsigned long last);
1445 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1446 unsigned long start, unsigned long last);
1447
1448 #define vma_interval_tree_foreach(vma, root, start, last) \
1449 for (vma = vma_interval_tree_iter_first(root, start, last); \
1450 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1451
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)1452 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1453 struct list_head *list)
1454 {
1455 list_add_tail(&vma->shared.nonlinear, list);
1456 }
1457
1458 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1459 struct rb_root *root);
1460 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1461 struct rb_root *root);
1462 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1463 struct rb_root *root, unsigned long start, unsigned long last);
1464 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1465 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1466 #ifdef CONFIG_DEBUG_VM_RB
1467 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1468 #endif
1469
1470 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1471 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1472 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1473
1474 /* mmap.c */
1475 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1476 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1477 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1478 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1479 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1480 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1481 struct mempolicy *, const char __user *);
1482 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1483 extern int split_vma(struct mm_struct *,
1484 struct vm_area_struct *, unsigned long addr, int new_below);
1485 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1486 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1487 struct rb_node **, struct rb_node *);
1488 extern void unlink_file_vma(struct vm_area_struct *);
1489 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1490 unsigned long addr, unsigned long len, pgoff_t pgoff,
1491 bool *need_rmap_locks);
1492 extern void exit_mmap(struct mm_struct *);
1493
1494 extern int mm_take_all_locks(struct mm_struct *mm);
1495 extern void mm_drop_all_locks(struct mm_struct *mm);
1496
1497 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1498 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1499
1500 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1501 extern int install_special_mapping(struct mm_struct *mm,
1502 unsigned long addr, unsigned long len,
1503 unsigned long flags, struct page **pages);
1504
1505 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1506
1507 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1508 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1509 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1510 unsigned long len, unsigned long prot, unsigned long flags,
1511 unsigned long pgoff, unsigned long *populate);
1512 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1513
1514 #ifdef CONFIG_MMU
1515 extern int __mm_populate(unsigned long addr, unsigned long len,
1516 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)1517 static inline void mm_populate(unsigned long addr, unsigned long len)
1518 {
1519 /* Ignore errors */
1520 (void) __mm_populate(addr, len, 1);
1521 }
1522 #else
mm_populate(unsigned long addr,unsigned long len)1523 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1524 #endif
1525
1526 /* These take the mm semaphore themselves */
1527 extern unsigned long vm_brk(unsigned long, unsigned long);
1528 extern int vm_munmap(unsigned long, size_t);
1529 extern unsigned long vm_mmap(struct file *, unsigned long,
1530 unsigned long, unsigned long,
1531 unsigned long, unsigned long);
1532
1533 struct vm_unmapped_area_info {
1534 #define VM_UNMAPPED_AREA_TOPDOWN 1
1535 unsigned long flags;
1536 unsigned long length;
1537 unsigned long low_limit;
1538 unsigned long high_limit;
1539 unsigned long align_mask;
1540 unsigned long align_offset;
1541 };
1542
1543 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1544 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1545
1546 /*
1547 * Search for an unmapped address range.
1548 *
1549 * We are looking for a range that:
1550 * - does not intersect with any VMA;
1551 * - is contained within the [low_limit, high_limit) interval;
1552 * - is at least the desired size.
1553 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1554 */
1555 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)1556 vm_unmapped_area(struct vm_unmapped_area_info *info)
1557 {
1558 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1559 return unmapped_area(info);
1560 else
1561 return unmapped_area_topdown(info);
1562 }
1563
1564 /* truncate.c */
1565 extern void truncate_inode_pages(struct address_space *, loff_t);
1566 extern void truncate_inode_pages_range(struct address_space *,
1567 loff_t lstart, loff_t lend);
1568
1569 /* generic vm_area_ops exported for stackable file systems */
1570 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1571 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1572
1573 /* mm/page-writeback.c */
1574 int write_one_page(struct page *page, int wait);
1575 void task_dirty_inc(struct task_struct *tsk);
1576
1577 /* readahead.c */
1578 #define VM_MAX_READAHEAD 128 /* kbytes */
1579 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1580
1581 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1582 pgoff_t offset, unsigned long nr_to_read);
1583
1584 void page_cache_sync_readahead(struct address_space *mapping,
1585 struct file_ra_state *ra,
1586 struct file *filp,
1587 pgoff_t offset,
1588 unsigned long size);
1589
1590 void page_cache_async_readahead(struct address_space *mapping,
1591 struct file_ra_state *ra,
1592 struct file *filp,
1593 struct page *pg,
1594 pgoff_t offset,
1595 unsigned long size);
1596
1597 unsigned long max_sane_readahead(unsigned long nr);
1598 unsigned long ra_submit(struct file_ra_state *ra,
1599 struct address_space *mapping,
1600 struct file *filp);
1601
1602 extern unsigned long stack_guard_gap;
1603 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1604 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1605
1606 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1607 extern int expand_downwards(struct vm_area_struct *vma,
1608 unsigned long address);
1609 #if VM_GROWSUP
1610 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1611 #else
1612 #define expand_upwards(vma, address) (0)
1613 #endif
1614
1615 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1616 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1617 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1618 struct vm_area_struct **pprev);
1619
1620 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1621 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1622 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1623 {
1624 struct vm_area_struct * vma = find_vma(mm,start_addr);
1625
1626 if (vma && end_addr <= vma->vm_start)
1627 vma = NULL;
1628 return vma;
1629 }
1630
vm_start_gap(struct vm_area_struct * vma)1631 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1632 {
1633 unsigned long vm_start = vma->vm_start;
1634
1635 if (vma->vm_flags & VM_GROWSDOWN) {
1636 vm_start -= stack_guard_gap;
1637 if (vm_start > vma->vm_start)
1638 vm_start = 0;
1639 }
1640 return vm_start;
1641 }
1642
vm_end_gap(struct vm_area_struct * vma)1643 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1644 {
1645 unsigned long vm_end = vma->vm_end;
1646
1647 if (vma->vm_flags & VM_GROWSUP) {
1648 vm_end += stack_guard_gap;
1649 if (vm_end < vma->vm_end)
1650 vm_end = -PAGE_SIZE;
1651 }
1652 return vm_end;
1653 }
1654
vma_pages(struct vm_area_struct * vma)1655 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1656 {
1657 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1658 }
1659
1660 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)1661 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1662 unsigned long vm_start, unsigned long vm_end)
1663 {
1664 struct vm_area_struct *vma = find_vma(mm, vm_start);
1665
1666 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1667 vma = NULL;
1668
1669 return vma;
1670 }
1671
1672 #ifdef CONFIG_MMU
1673 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1674 #else
vm_get_page_prot(unsigned long vm_flags)1675 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1676 {
1677 return __pgprot(0);
1678 }
1679 #endif
1680
1681 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1682 unsigned long change_prot_numa(struct vm_area_struct *vma,
1683 unsigned long start, unsigned long end);
1684 #endif
1685
1686 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1687 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1688 unsigned long pfn, unsigned long size, pgprot_t);
1689 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1690 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1691 unsigned long pfn);
1692 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1693 unsigned long pfn);
1694 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1695
1696
1697 struct page *follow_page_mask(struct vm_area_struct *vma,
1698 unsigned long address, unsigned int foll_flags,
1699 unsigned int *page_mask);
1700
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1701 static inline struct page *follow_page(struct vm_area_struct *vma,
1702 unsigned long address, unsigned int foll_flags)
1703 {
1704 unsigned int unused_page_mask;
1705 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1706 }
1707
1708 #define FOLL_WRITE 0x01 /* check pte is writable */
1709 #define FOLL_TOUCH 0x02 /* mark page accessed */
1710 #define FOLL_GET 0x04 /* do get_page on page */
1711 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1712 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1713 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1714 * and return without waiting upon it */
1715 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1716 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1717 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1718 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1719 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1720
1721 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1722 void *data);
1723 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1724 unsigned long size, pte_fn_t fn, void *data);
1725
1726 #ifdef CONFIG_PROC_FS
1727 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1728 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1729 static inline void vm_stat_account(struct mm_struct *mm,
1730 unsigned long flags, struct file *file, long pages)
1731 {
1732 mm->total_vm += pages;
1733 }
1734 #endif /* CONFIG_PROC_FS */
1735
1736 #ifdef CONFIG_DEBUG_PAGEALLOC
1737 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1738 #ifdef CONFIG_HIBERNATION
1739 extern bool kernel_page_present(struct page *page);
1740 #endif /* CONFIG_HIBERNATION */
1741 #else
1742 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)1743 kernel_map_pages(struct page *page, int numpages, int enable) {}
1744 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)1745 static inline bool kernel_page_present(struct page *page) { return true; }
1746 #endif /* CONFIG_HIBERNATION */
1747 #endif
1748
1749 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1750 #ifdef __HAVE_ARCH_GATE_AREA
1751 int in_gate_area_no_mm(unsigned long addr);
1752 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1753 #else
1754 int in_gate_area_no_mm(unsigned long addr);
1755 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1756 #endif /* __HAVE_ARCH_GATE_AREA */
1757
1758 #ifdef CONFIG_SYSCTL
1759 extern int sysctl_drop_caches;
1760 int drop_caches_sysctl_handler(struct ctl_table *, int,
1761 void __user *, size_t *, loff_t *);
1762 #endif
1763
1764 unsigned long shrink_slab(struct shrink_control *shrink,
1765 unsigned long nr_pages_scanned,
1766 unsigned long lru_pages);
1767
1768 #ifndef CONFIG_MMU
1769 #define randomize_va_space 0
1770 #else
1771 extern int randomize_va_space;
1772 #endif
1773
1774 const char * arch_vma_name(struct vm_area_struct *vma);
1775 void print_vma_addr(char *prefix, unsigned long rip);
1776
1777 void sparse_mem_maps_populate_node(struct page **map_map,
1778 unsigned long pnum_begin,
1779 unsigned long pnum_end,
1780 unsigned long map_count,
1781 int nodeid);
1782
1783 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1784 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1785 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1786 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1787 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1788 void *vmemmap_alloc_block(unsigned long size, int node);
1789 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1790 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1791 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1792 int node);
1793 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1794 void vmemmap_populate_print_last(void);
1795 #ifdef CONFIG_MEMORY_HOTPLUG
1796 void vmemmap_free(unsigned long start, unsigned long end);
1797 #endif
1798 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1799 unsigned long size);
1800
1801 enum mf_flags {
1802 MF_COUNT_INCREASED = 1 << 0,
1803 MF_ACTION_REQUIRED = 1 << 1,
1804 MF_MUST_KILL = 1 << 2,
1805 };
1806 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1807 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1808 extern int unpoison_memory(unsigned long pfn);
1809 extern int sysctl_memory_failure_early_kill;
1810 extern int sysctl_memory_failure_recovery;
1811 extern void shake_page(struct page *p, int access);
1812 extern atomic_long_t num_poisoned_pages;
1813 extern int soft_offline_page(struct page *page, int flags);
1814
1815 extern void dump_page(struct page *page);
1816
1817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1818 extern void clear_huge_page(struct page *page,
1819 unsigned long addr,
1820 unsigned int pages_per_huge_page);
1821 extern void copy_user_huge_page(struct page *dst, struct page *src,
1822 unsigned long addr, struct vm_area_struct *vma,
1823 unsigned int pages_per_huge_page);
1824 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1825
1826 #ifdef CONFIG_DEBUG_PAGEALLOC
1827 extern unsigned int _debug_guardpage_minorder;
1828
debug_guardpage_minorder(void)1829 static inline unsigned int debug_guardpage_minorder(void)
1830 {
1831 return _debug_guardpage_minorder;
1832 }
1833
page_is_guard(struct page * page)1834 static inline bool page_is_guard(struct page *page)
1835 {
1836 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1837 }
1838 #else
debug_guardpage_minorder(void)1839 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
page_is_guard(struct page * page)1840 static inline bool page_is_guard(struct page *page) { return false; }
1841 #endif /* CONFIG_DEBUG_PAGEALLOC */
1842
1843 /* 3.18 backport */
truncate_inode_pages_final(struct address_space * mapping)1844 static inline void truncate_inode_pages_final(struct address_space *mapping)
1845 {
1846 truncate_inode_pages(mapping, 0);
1847 }
1848
1849 #if MAX_NUMNODES > 1
1850 void __init setup_nr_node_ids(void);
1851 #else
setup_nr_node_ids(void)1852 static inline void setup_nr_node_ids(void) {}
1853 #endif
1854
1855 #endif /* __KERNEL__ */
1856 #endif /* _LINUX_MM_H */
1857