1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/atomic.h>
53 #include <asm/uaccess.h>
54
55 extern struct workqueue_struct *ib_wq;
56
57 union ib_gid {
58 u8 raw[16];
59 struct {
60 __be64 subnet_prefix;
61 __be64 interface_id;
62 } global;
63 };
64
65 enum rdma_node_type {
66 /* IB values map to NodeInfo:NodeType. */
67 RDMA_NODE_IB_CA = 1,
68 RDMA_NODE_IB_SWITCH,
69 RDMA_NODE_IB_ROUTER,
70 RDMA_NODE_RNIC
71 };
72
73 enum rdma_transport_type {
74 RDMA_TRANSPORT_IB,
75 RDMA_TRANSPORT_IWARP
76 };
77
78 enum rdma_transport_type
79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
80
81 enum rdma_link_layer {
82 IB_LINK_LAYER_UNSPECIFIED,
83 IB_LINK_LAYER_INFINIBAND,
84 IB_LINK_LAYER_ETHERNET,
85 };
86
87 enum ib_device_cap_flags {
88 IB_DEVICE_RESIZE_MAX_WR = 1,
89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
91 IB_DEVICE_RAW_MULTI = (1<<3),
92 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
96 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
97 IB_DEVICE_INIT_TYPE = (1<<9),
98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
101 IB_DEVICE_SRQ_RESIZE = (1<<13),
102 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
105 IB_DEVICE_MEM_WINDOW = (1<<17),
106 /*
107 * Devices should set IB_DEVICE_UD_IP_SUM if they support
108 * insertion of UDP and TCP checksum on outgoing UD IPoIB
109 * messages and can verify the validity of checksum for
110 * incoming messages. Setting this flag implies that the
111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
112 */
113 IB_DEVICE_UD_IP_CSUM = (1<<18),
114 IB_DEVICE_UD_TSO = (1<<19),
115 IB_DEVICE_XRC = (1<<20),
116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
118 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
119 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24)
120 };
121
122 enum ib_atomic_cap {
123 IB_ATOMIC_NONE,
124 IB_ATOMIC_HCA,
125 IB_ATOMIC_GLOB
126 };
127
128 struct ib_device_attr {
129 u64 fw_ver;
130 __be64 sys_image_guid;
131 u64 max_mr_size;
132 u64 page_size_cap;
133 u32 vendor_id;
134 u32 vendor_part_id;
135 u32 hw_ver;
136 int max_qp;
137 int max_qp_wr;
138 int device_cap_flags;
139 int max_sge;
140 int max_sge_rd;
141 int max_cq;
142 int max_cqe;
143 int max_mr;
144 int max_pd;
145 int max_qp_rd_atom;
146 int max_ee_rd_atom;
147 int max_res_rd_atom;
148 int max_qp_init_rd_atom;
149 int max_ee_init_rd_atom;
150 enum ib_atomic_cap atomic_cap;
151 enum ib_atomic_cap masked_atomic_cap;
152 int max_ee;
153 int max_rdd;
154 int max_mw;
155 int max_raw_ipv6_qp;
156 int max_raw_ethy_qp;
157 int max_mcast_grp;
158 int max_mcast_qp_attach;
159 int max_total_mcast_qp_attach;
160 int max_ah;
161 int max_fmr;
162 int max_map_per_fmr;
163 int max_srq;
164 int max_srq_wr;
165 int max_srq_sge;
166 unsigned int max_fast_reg_page_list_len;
167 u16 max_pkeys;
168 u8 local_ca_ack_delay;
169 };
170
171 enum ib_mtu {
172 IB_MTU_256 = 1,
173 IB_MTU_512 = 2,
174 IB_MTU_1024 = 3,
175 IB_MTU_2048 = 4,
176 IB_MTU_4096 = 5
177 };
178
ib_mtu_enum_to_int(enum ib_mtu mtu)179 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
180 {
181 switch (mtu) {
182 case IB_MTU_256: return 256;
183 case IB_MTU_512: return 512;
184 case IB_MTU_1024: return 1024;
185 case IB_MTU_2048: return 2048;
186 case IB_MTU_4096: return 4096;
187 default: return -1;
188 }
189 }
190
191 enum ib_port_state {
192 IB_PORT_NOP = 0,
193 IB_PORT_DOWN = 1,
194 IB_PORT_INIT = 2,
195 IB_PORT_ARMED = 3,
196 IB_PORT_ACTIVE = 4,
197 IB_PORT_ACTIVE_DEFER = 5
198 };
199
200 enum ib_port_cap_flags {
201 IB_PORT_SM = 1 << 1,
202 IB_PORT_NOTICE_SUP = 1 << 2,
203 IB_PORT_TRAP_SUP = 1 << 3,
204 IB_PORT_OPT_IPD_SUP = 1 << 4,
205 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
206 IB_PORT_SL_MAP_SUP = 1 << 6,
207 IB_PORT_MKEY_NVRAM = 1 << 7,
208 IB_PORT_PKEY_NVRAM = 1 << 8,
209 IB_PORT_LED_INFO_SUP = 1 << 9,
210 IB_PORT_SM_DISABLED = 1 << 10,
211 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
212 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
213 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
214 IB_PORT_CM_SUP = 1 << 16,
215 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
216 IB_PORT_REINIT_SUP = 1 << 18,
217 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
218 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
219 IB_PORT_DR_NOTICE_SUP = 1 << 21,
220 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
221 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
222 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
223 IB_PORT_CLIENT_REG_SUP = 1 << 25
224 };
225
226 enum ib_port_width {
227 IB_WIDTH_1X = 1,
228 IB_WIDTH_4X = 2,
229 IB_WIDTH_8X = 4,
230 IB_WIDTH_12X = 8
231 };
232
ib_width_enum_to_int(enum ib_port_width width)233 static inline int ib_width_enum_to_int(enum ib_port_width width)
234 {
235 switch (width) {
236 case IB_WIDTH_1X: return 1;
237 case IB_WIDTH_4X: return 4;
238 case IB_WIDTH_8X: return 8;
239 case IB_WIDTH_12X: return 12;
240 default: return -1;
241 }
242 }
243
244 enum ib_port_speed {
245 IB_SPEED_SDR = 1,
246 IB_SPEED_DDR = 2,
247 IB_SPEED_QDR = 4,
248 IB_SPEED_FDR10 = 8,
249 IB_SPEED_FDR = 16,
250 IB_SPEED_EDR = 32
251 };
252
253 struct ib_protocol_stats {
254 /* TBD... */
255 };
256
257 struct iw_protocol_stats {
258 u64 ipInReceives;
259 u64 ipInHdrErrors;
260 u64 ipInTooBigErrors;
261 u64 ipInNoRoutes;
262 u64 ipInAddrErrors;
263 u64 ipInUnknownProtos;
264 u64 ipInTruncatedPkts;
265 u64 ipInDiscards;
266 u64 ipInDelivers;
267 u64 ipOutForwDatagrams;
268 u64 ipOutRequests;
269 u64 ipOutDiscards;
270 u64 ipOutNoRoutes;
271 u64 ipReasmTimeout;
272 u64 ipReasmReqds;
273 u64 ipReasmOKs;
274 u64 ipReasmFails;
275 u64 ipFragOKs;
276 u64 ipFragFails;
277 u64 ipFragCreates;
278 u64 ipInMcastPkts;
279 u64 ipOutMcastPkts;
280 u64 ipInBcastPkts;
281 u64 ipOutBcastPkts;
282
283 u64 tcpRtoAlgorithm;
284 u64 tcpRtoMin;
285 u64 tcpRtoMax;
286 u64 tcpMaxConn;
287 u64 tcpActiveOpens;
288 u64 tcpPassiveOpens;
289 u64 tcpAttemptFails;
290 u64 tcpEstabResets;
291 u64 tcpCurrEstab;
292 u64 tcpInSegs;
293 u64 tcpOutSegs;
294 u64 tcpRetransSegs;
295 u64 tcpInErrs;
296 u64 tcpOutRsts;
297 };
298
299 union rdma_protocol_stats {
300 struct ib_protocol_stats ib;
301 struct iw_protocol_stats iw;
302 };
303
304 struct ib_port_attr {
305 enum ib_port_state state;
306 enum ib_mtu max_mtu;
307 enum ib_mtu active_mtu;
308 int gid_tbl_len;
309 u32 port_cap_flags;
310 u32 max_msg_sz;
311 u32 bad_pkey_cntr;
312 u32 qkey_viol_cntr;
313 u16 pkey_tbl_len;
314 u16 lid;
315 u16 sm_lid;
316 u8 lmc;
317 u8 max_vl_num;
318 u8 sm_sl;
319 u8 subnet_timeout;
320 u8 init_type_reply;
321 u8 active_width;
322 u8 active_speed;
323 u8 phys_state;
324 };
325
326 enum ib_device_modify_flags {
327 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
328 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
329 };
330
331 struct ib_device_modify {
332 u64 sys_image_guid;
333 char node_desc[64];
334 };
335
336 enum ib_port_modify_flags {
337 IB_PORT_SHUTDOWN = 1,
338 IB_PORT_INIT_TYPE = (1<<2),
339 IB_PORT_RESET_QKEY_CNTR = (1<<3)
340 };
341
342 struct ib_port_modify {
343 u32 set_port_cap_mask;
344 u32 clr_port_cap_mask;
345 u8 init_type;
346 };
347
348 enum ib_event_type {
349 IB_EVENT_CQ_ERR,
350 IB_EVENT_QP_FATAL,
351 IB_EVENT_QP_REQ_ERR,
352 IB_EVENT_QP_ACCESS_ERR,
353 IB_EVENT_COMM_EST,
354 IB_EVENT_SQ_DRAINED,
355 IB_EVENT_PATH_MIG,
356 IB_EVENT_PATH_MIG_ERR,
357 IB_EVENT_DEVICE_FATAL,
358 IB_EVENT_PORT_ACTIVE,
359 IB_EVENT_PORT_ERR,
360 IB_EVENT_LID_CHANGE,
361 IB_EVENT_PKEY_CHANGE,
362 IB_EVENT_SM_CHANGE,
363 IB_EVENT_SRQ_ERR,
364 IB_EVENT_SRQ_LIMIT_REACHED,
365 IB_EVENT_QP_LAST_WQE_REACHED,
366 IB_EVENT_CLIENT_REREGISTER,
367 IB_EVENT_GID_CHANGE,
368 };
369
370 struct ib_event {
371 struct ib_device *device;
372 union {
373 struct ib_cq *cq;
374 struct ib_qp *qp;
375 struct ib_srq *srq;
376 u8 port_num;
377 } element;
378 enum ib_event_type event;
379 };
380
381 struct ib_event_handler {
382 struct ib_device *device;
383 void (*handler)(struct ib_event_handler *, struct ib_event *);
384 struct list_head list;
385 };
386
387 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
388 do { \
389 (_ptr)->device = _device; \
390 (_ptr)->handler = _handler; \
391 INIT_LIST_HEAD(&(_ptr)->list); \
392 } while (0)
393
394 struct ib_global_route {
395 union ib_gid dgid;
396 u32 flow_label;
397 u8 sgid_index;
398 u8 hop_limit;
399 u8 traffic_class;
400 };
401
402 struct ib_grh {
403 __be32 version_tclass_flow;
404 __be16 paylen;
405 u8 next_hdr;
406 u8 hop_limit;
407 union ib_gid sgid;
408 union ib_gid dgid;
409 };
410
411 enum {
412 IB_MULTICAST_QPN = 0xffffff
413 };
414
415 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
416
417 enum ib_ah_flags {
418 IB_AH_GRH = 1
419 };
420
421 enum ib_rate {
422 IB_RATE_PORT_CURRENT = 0,
423 IB_RATE_2_5_GBPS = 2,
424 IB_RATE_5_GBPS = 5,
425 IB_RATE_10_GBPS = 3,
426 IB_RATE_20_GBPS = 6,
427 IB_RATE_30_GBPS = 4,
428 IB_RATE_40_GBPS = 7,
429 IB_RATE_60_GBPS = 8,
430 IB_RATE_80_GBPS = 9,
431 IB_RATE_120_GBPS = 10,
432 IB_RATE_14_GBPS = 11,
433 IB_RATE_56_GBPS = 12,
434 IB_RATE_112_GBPS = 13,
435 IB_RATE_168_GBPS = 14,
436 IB_RATE_25_GBPS = 15,
437 IB_RATE_100_GBPS = 16,
438 IB_RATE_200_GBPS = 17,
439 IB_RATE_300_GBPS = 18
440 };
441
442 /**
443 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
444 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
445 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
446 * @rate: rate to convert.
447 */
448 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
449
450 /**
451 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
452 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
453 * @rate: rate to convert.
454 */
455 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
456
457 /**
458 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
459 * enum.
460 * @mult: multiple to convert.
461 */
462 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
463
464 struct ib_ah_attr {
465 struct ib_global_route grh;
466 u16 dlid;
467 u8 sl;
468 u8 src_path_bits;
469 u8 static_rate;
470 u8 ah_flags;
471 u8 port_num;
472 };
473
474 enum ib_wc_status {
475 IB_WC_SUCCESS,
476 IB_WC_LOC_LEN_ERR,
477 IB_WC_LOC_QP_OP_ERR,
478 IB_WC_LOC_EEC_OP_ERR,
479 IB_WC_LOC_PROT_ERR,
480 IB_WC_WR_FLUSH_ERR,
481 IB_WC_MW_BIND_ERR,
482 IB_WC_BAD_RESP_ERR,
483 IB_WC_LOC_ACCESS_ERR,
484 IB_WC_REM_INV_REQ_ERR,
485 IB_WC_REM_ACCESS_ERR,
486 IB_WC_REM_OP_ERR,
487 IB_WC_RETRY_EXC_ERR,
488 IB_WC_RNR_RETRY_EXC_ERR,
489 IB_WC_LOC_RDD_VIOL_ERR,
490 IB_WC_REM_INV_RD_REQ_ERR,
491 IB_WC_REM_ABORT_ERR,
492 IB_WC_INV_EECN_ERR,
493 IB_WC_INV_EEC_STATE_ERR,
494 IB_WC_FATAL_ERR,
495 IB_WC_RESP_TIMEOUT_ERR,
496 IB_WC_GENERAL_ERR
497 };
498
499 enum ib_wc_opcode {
500 IB_WC_SEND,
501 IB_WC_RDMA_WRITE,
502 IB_WC_RDMA_READ,
503 IB_WC_COMP_SWAP,
504 IB_WC_FETCH_ADD,
505 IB_WC_BIND_MW,
506 IB_WC_LSO,
507 IB_WC_LOCAL_INV,
508 IB_WC_FAST_REG_MR,
509 IB_WC_MASKED_COMP_SWAP,
510 IB_WC_MASKED_FETCH_ADD,
511 /*
512 * Set value of IB_WC_RECV so consumers can test if a completion is a
513 * receive by testing (opcode & IB_WC_RECV).
514 */
515 IB_WC_RECV = 1 << 7,
516 IB_WC_RECV_RDMA_WITH_IMM
517 };
518
519 enum ib_wc_flags {
520 IB_WC_GRH = 1,
521 IB_WC_WITH_IMM = (1<<1),
522 IB_WC_WITH_INVALIDATE = (1<<2),
523 IB_WC_IP_CSUM_OK = (1<<3),
524 };
525
526 struct ib_wc {
527 u64 wr_id;
528 enum ib_wc_status status;
529 enum ib_wc_opcode opcode;
530 u32 vendor_err;
531 u32 byte_len;
532 struct ib_qp *qp;
533 union {
534 __be32 imm_data;
535 u32 invalidate_rkey;
536 } ex;
537 u32 src_qp;
538 int wc_flags;
539 u16 pkey_index;
540 u16 slid;
541 u8 sl;
542 u8 dlid_path_bits;
543 u8 port_num; /* valid only for DR SMPs on switches */
544 };
545
546 enum ib_cq_notify_flags {
547 IB_CQ_SOLICITED = 1 << 0,
548 IB_CQ_NEXT_COMP = 1 << 1,
549 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
550 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
551 };
552
553 enum ib_srq_type {
554 IB_SRQT_BASIC,
555 IB_SRQT_XRC
556 };
557
558 enum ib_srq_attr_mask {
559 IB_SRQ_MAX_WR = 1 << 0,
560 IB_SRQ_LIMIT = 1 << 1,
561 };
562
563 struct ib_srq_attr {
564 u32 max_wr;
565 u32 max_sge;
566 u32 srq_limit;
567 };
568
569 struct ib_srq_init_attr {
570 void (*event_handler)(struct ib_event *, void *);
571 void *srq_context;
572 struct ib_srq_attr attr;
573 enum ib_srq_type srq_type;
574
575 union {
576 struct {
577 struct ib_xrcd *xrcd;
578 struct ib_cq *cq;
579 } xrc;
580 } ext;
581 };
582
583 struct ib_qp_cap {
584 u32 max_send_wr;
585 u32 max_recv_wr;
586 u32 max_send_sge;
587 u32 max_recv_sge;
588 u32 max_inline_data;
589 };
590
591 enum ib_sig_type {
592 IB_SIGNAL_ALL_WR,
593 IB_SIGNAL_REQ_WR
594 };
595
596 enum ib_qp_type {
597 /*
598 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
599 * here (and in that order) since the MAD layer uses them as
600 * indices into a 2-entry table.
601 */
602 IB_QPT_SMI,
603 IB_QPT_GSI,
604
605 IB_QPT_RC,
606 IB_QPT_UC,
607 IB_QPT_UD,
608 IB_QPT_RAW_IPV6,
609 IB_QPT_RAW_ETHERTYPE,
610 IB_QPT_RAW_PACKET = 8,
611 IB_QPT_XRC_INI = 9,
612 IB_QPT_XRC_TGT,
613 IB_QPT_MAX
614 };
615
616 enum ib_qp_create_flags {
617 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
618 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
619 /* reserve bits 26-31 for low level drivers' internal use */
620 IB_QP_CREATE_RESERVED_START = 1 << 26,
621 IB_QP_CREATE_RESERVED_END = 1 << 31,
622 };
623
624 struct ib_qp_init_attr {
625 void (*event_handler)(struct ib_event *, void *);
626 void *qp_context;
627 struct ib_cq *send_cq;
628 struct ib_cq *recv_cq;
629 struct ib_srq *srq;
630 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
631 struct ib_qp_cap cap;
632 enum ib_sig_type sq_sig_type;
633 enum ib_qp_type qp_type;
634 enum ib_qp_create_flags create_flags;
635 u8 port_num; /* special QP types only */
636 };
637
638 struct ib_qp_open_attr {
639 void (*event_handler)(struct ib_event *, void *);
640 void *qp_context;
641 u32 qp_num;
642 enum ib_qp_type qp_type;
643 };
644
645 enum ib_rnr_timeout {
646 IB_RNR_TIMER_655_36 = 0,
647 IB_RNR_TIMER_000_01 = 1,
648 IB_RNR_TIMER_000_02 = 2,
649 IB_RNR_TIMER_000_03 = 3,
650 IB_RNR_TIMER_000_04 = 4,
651 IB_RNR_TIMER_000_06 = 5,
652 IB_RNR_TIMER_000_08 = 6,
653 IB_RNR_TIMER_000_12 = 7,
654 IB_RNR_TIMER_000_16 = 8,
655 IB_RNR_TIMER_000_24 = 9,
656 IB_RNR_TIMER_000_32 = 10,
657 IB_RNR_TIMER_000_48 = 11,
658 IB_RNR_TIMER_000_64 = 12,
659 IB_RNR_TIMER_000_96 = 13,
660 IB_RNR_TIMER_001_28 = 14,
661 IB_RNR_TIMER_001_92 = 15,
662 IB_RNR_TIMER_002_56 = 16,
663 IB_RNR_TIMER_003_84 = 17,
664 IB_RNR_TIMER_005_12 = 18,
665 IB_RNR_TIMER_007_68 = 19,
666 IB_RNR_TIMER_010_24 = 20,
667 IB_RNR_TIMER_015_36 = 21,
668 IB_RNR_TIMER_020_48 = 22,
669 IB_RNR_TIMER_030_72 = 23,
670 IB_RNR_TIMER_040_96 = 24,
671 IB_RNR_TIMER_061_44 = 25,
672 IB_RNR_TIMER_081_92 = 26,
673 IB_RNR_TIMER_122_88 = 27,
674 IB_RNR_TIMER_163_84 = 28,
675 IB_RNR_TIMER_245_76 = 29,
676 IB_RNR_TIMER_327_68 = 30,
677 IB_RNR_TIMER_491_52 = 31
678 };
679
680 enum ib_qp_attr_mask {
681 IB_QP_STATE = 1,
682 IB_QP_CUR_STATE = (1<<1),
683 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
684 IB_QP_ACCESS_FLAGS = (1<<3),
685 IB_QP_PKEY_INDEX = (1<<4),
686 IB_QP_PORT = (1<<5),
687 IB_QP_QKEY = (1<<6),
688 IB_QP_AV = (1<<7),
689 IB_QP_PATH_MTU = (1<<8),
690 IB_QP_TIMEOUT = (1<<9),
691 IB_QP_RETRY_CNT = (1<<10),
692 IB_QP_RNR_RETRY = (1<<11),
693 IB_QP_RQ_PSN = (1<<12),
694 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
695 IB_QP_ALT_PATH = (1<<14),
696 IB_QP_MIN_RNR_TIMER = (1<<15),
697 IB_QP_SQ_PSN = (1<<16),
698 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
699 IB_QP_PATH_MIG_STATE = (1<<18),
700 IB_QP_CAP = (1<<19),
701 IB_QP_DEST_QPN = (1<<20)
702 };
703
704 enum ib_qp_state {
705 IB_QPS_RESET,
706 IB_QPS_INIT,
707 IB_QPS_RTR,
708 IB_QPS_RTS,
709 IB_QPS_SQD,
710 IB_QPS_SQE,
711 IB_QPS_ERR
712 };
713
714 enum ib_mig_state {
715 IB_MIG_MIGRATED,
716 IB_MIG_REARM,
717 IB_MIG_ARMED
718 };
719
720 enum ib_mw_type {
721 IB_MW_TYPE_1 = 1,
722 IB_MW_TYPE_2 = 2
723 };
724
725 struct ib_qp_attr {
726 enum ib_qp_state qp_state;
727 enum ib_qp_state cur_qp_state;
728 enum ib_mtu path_mtu;
729 enum ib_mig_state path_mig_state;
730 u32 qkey;
731 u32 rq_psn;
732 u32 sq_psn;
733 u32 dest_qp_num;
734 int qp_access_flags;
735 struct ib_qp_cap cap;
736 struct ib_ah_attr ah_attr;
737 struct ib_ah_attr alt_ah_attr;
738 u16 pkey_index;
739 u16 alt_pkey_index;
740 u8 en_sqd_async_notify;
741 u8 sq_draining;
742 u8 max_rd_atomic;
743 u8 max_dest_rd_atomic;
744 u8 min_rnr_timer;
745 u8 port_num;
746 u8 timeout;
747 u8 retry_cnt;
748 u8 rnr_retry;
749 u8 alt_port_num;
750 u8 alt_timeout;
751 };
752
753 enum ib_wr_opcode {
754 IB_WR_RDMA_WRITE,
755 IB_WR_RDMA_WRITE_WITH_IMM,
756 IB_WR_SEND,
757 IB_WR_SEND_WITH_IMM,
758 IB_WR_RDMA_READ,
759 IB_WR_ATOMIC_CMP_AND_SWP,
760 IB_WR_ATOMIC_FETCH_AND_ADD,
761 IB_WR_LSO,
762 IB_WR_SEND_WITH_INV,
763 IB_WR_RDMA_READ_WITH_INV,
764 IB_WR_LOCAL_INV,
765 IB_WR_FAST_REG_MR,
766 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
767 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
768 IB_WR_BIND_MW,
769 };
770
771 enum ib_send_flags {
772 IB_SEND_FENCE = 1,
773 IB_SEND_SIGNALED = (1<<1),
774 IB_SEND_SOLICITED = (1<<2),
775 IB_SEND_INLINE = (1<<3),
776 IB_SEND_IP_CSUM = (1<<4)
777 };
778
779 struct ib_sge {
780 u64 addr;
781 u32 length;
782 u32 lkey;
783 };
784
785 struct ib_fast_reg_page_list {
786 struct ib_device *device;
787 u64 *page_list;
788 unsigned int max_page_list_len;
789 };
790
791 /**
792 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
793 * @mr: A memory region to bind the memory window to.
794 * @addr: The address where the memory window should begin.
795 * @length: The length of the memory window, in bytes.
796 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
797 *
798 * This struct contains the shared parameters for type 1 and type 2
799 * memory window bind operations.
800 */
801 struct ib_mw_bind_info {
802 struct ib_mr *mr;
803 u64 addr;
804 u64 length;
805 int mw_access_flags;
806 };
807
808 struct ib_send_wr {
809 struct ib_send_wr *next;
810 u64 wr_id;
811 struct ib_sge *sg_list;
812 int num_sge;
813 enum ib_wr_opcode opcode;
814 int send_flags;
815 union {
816 __be32 imm_data;
817 u32 invalidate_rkey;
818 } ex;
819 union {
820 struct {
821 u64 remote_addr;
822 u32 rkey;
823 } rdma;
824 struct {
825 u64 remote_addr;
826 u64 compare_add;
827 u64 swap;
828 u64 compare_add_mask;
829 u64 swap_mask;
830 u32 rkey;
831 } atomic;
832 struct {
833 struct ib_ah *ah;
834 void *header;
835 int hlen;
836 int mss;
837 u32 remote_qpn;
838 u32 remote_qkey;
839 u16 pkey_index; /* valid for GSI only */
840 u8 port_num; /* valid for DR SMPs on switch only */
841 } ud;
842 struct {
843 u64 iova_start;
844 struct ib_fast_reg_page_list *page_list;
845 unsigned int page_shift;
846 unsigned int page_list_len;
847 u32 length;
848 int access_flags;
849 u32 rkey;
850 } fast_reg;
851 struct {
852 struct ib_mw *mw;
853 /* The new rkey for the memory window. */
854 u32 rkey;
855 struct ib_mw_bind_info bind_info;
856 } bind_mw;
857 } wr;
858 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
859 };
860
861 struct ib_recv_wr {
862 struct ib_recv_wr *next;
863 u64 wr_id;
864 struct ib_sge *sg_list;
865 int num_sge;
866 };
867
868 enum ib_access_flags {
869 IB_ACCESS_LOCAL_WRITE = 1,
870 IB_ACCESS_REMOTE_WRITE = (1<<1),
871 IB_ACCESS_REMOTE_READ = (1<<2),
872 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
873 IB_ACCESS_MW_BIND = (1<<4),
874 IB_ZERO_BASED = (1<<5)
875 };
876
877 struct ib_phys_buf {
878 u64 addr;
879 u64 size;
880 };
881
882 struct ib_mr_attr {
883 struct ib_pd *pd;
884 u64 device_virt_addr;
885 u64 size;
886 int mr_access_flags;
887 u32 lkey;
888 u32 rkey;
889 };
890
891 enum ib_mr_rereg_flags {
892 IB_MR_REREG_TRANS = 1,
893 IB_MR_REREG_PD = (1<<1),
894 IB_MR_REREG_ACCESS = (1<<2)
895 };
896
897 /**
898 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
899 * @wr_id: Work request id.
900 * @send_flags: Flags from ib_send_flags enum.
901 * @bind_info: More parameters of the bind operation.
902 */
903 struct ib_mw_bind {
904 u64 wr_id;
905 int send_flags;
906 struct ib_mw_bind_info bind_info;
907 };
908
909 struct ib_fmr_attr {
910 int max_pages;
911 int max_maps;
912 u8 page_shift;
913 };
914
915 struct ib_ucontext {
916 struct ib_device *device;
917 struct list_head pd_list;
918 struct list_head mr_list;
919 struct list_head mw_list;
920 struct list_head cq_list;
921 struct list_head qp_list;
922 struct list_head srq_list;
923 struct list_head ah_list;
924 struct list_head xrcd_list;
925 int closing;
926 };
927
928 struct ib_uobject {
929 u64 user_handle; /* handle given to us by userspace */
930 struct ib_ucontext *context; /* associated user context */
931 void *object; /* containing object */
932 struct list_head list; /* link to context's list */
933 int id; /* index into kernel idr */
934 struct kref ref;
935 struct rw_semaphore mutex; /* protects .live */
936 int live;
937 };
938
939 struct ib_udata {
940 void __user *inbuf;
941 void __user *outbuf;
942 size_t inlen;
943 size_t outlen;
944 };
945
946 struct ib_pd {
947 struct ib_device *device;
948 struct ib_uobject *uobject;
949 atomic_t usecnt; /* count all resources */
950 };
951
952 struct ib_xrcd {
953 struct ib_device *device;
954 atomic_t usecnt; /* count all exposed resources */
955 struct inode *inode;
956
957 struct mutex tgt_qp_mutex;
958 struct list_head tgt_qp_list;
959 };
960
961 struct ib_ah {
962 struct ib_device *device;
963 struct ib_pd *pd;
964 struct ib_uobject *uobject;
965 };
966
967 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
968
969 struct ib_cq {
970 struct ib_device *device;
971 struct ib_uobject *uobject;
972 ib_comp_handler comp_handler;
973 void (*event_handler)(struct ib_event *, void *);
974 void *cq_context;
975 int cqe;
976 atomic_t usecnt; /* count number of work queues */
977 };
978
979 struct ib_srq {
980 struct ib_device *device;
981 struct ib_pd *pd;
982 struct ib_uobject *uobject;
983 void (*event_handler)(struct ib_event *, void *);
984 void *srq_context;
985 enum ib_srq_type srq_type;
986 atomic_t usecnt;
987
988 union {
989 struct {
990 struct ib_xrcd *xrcd;
991 struct ib_cq *cq;
992 u32 srq_num;
993 } xrc;
994 } ext;
995 };
996
997 struct ib_qp {
998 struct ib_device *device;
999 struct ib_pd *pd;
1000 struct ib_cq *send_cq;
1001 struct ib_cq *recv_cq;
1002 struct ib_srq *srq;
1003 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1004 struct list_head xrcd_list;
1005 atomic_t usecnt; /* count times opened, mcast attaches */
1006 struct list_head open_list;
1007 struct ib_qp *real_qp;
1008 struct ib_uobject *uobject;
1009 void (*event_handler)(struct ib_event *, void *);
1010 void *qp_context;
1011 u32 qp_num;
1012 enum ib_qp_type qp_type;
1013 };
1014
1015 struct ib_mr {
1016 struct ib_device *device;
1017 struct ib_pd *pd;
1018 struct ib_uobject *uobject;
1019 u32 lkey;
1020 u32 rkey;
1021 atomic_t usecnt; /* count number of MWs */
1022 };
1023
1024 struct ib_mw {
1025 struct ib_device *device;
1026 struct ib_pd *pd;
1027 struct ib_uobject *uobject;
1028 u32 rkey;
1029 enum ib_mw_type type;
1030 };
1031
1032 struct ib_fmr {
1033 struct ib_device *device;
1034 struct ib_pd *pd;
1035 struct list_head list;
1036 u32 lkey;
1037 u32 rkey;
1038 };
1039
1040 struct ib_mad;
1041 struct ib_grh;
1042
1043 enum ib_process_mad_flags {
1044 IB_MAD_IGNORE_MKEY = 1,
1045 IB_MAD_IGNORE_BKEY = 2,
1046 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1047 };
1048
1049 enum ib_mad_result {
1050 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1051 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1052 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1053 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1054 };
1055
1056 #define IB_DEVICE_NAME_MAX 64
1057
1058 struct ib_cache {
1059 rwlock_t lock;
1060 struct ib_event_handler event_handler;
1061 struct ib_pkey_cache **pkey_cache;
1062 struct ib_gid_cache **gid_cache;
1063 u8 *lmc_cache;
1064 };
1065
1066 struct ib_dma_mapping_ops {
1067 int (*mapping_error)(struct ib_device *dev,
1068 u64 dma_addr);
1069 u64 (*map_single)(struct ib_device *dev,
1070 void *ptr, size_t size,
1071 enum dma_data_direction direction);
1072 void (*unmap_single)(struct ib_device *dev,
1073 u64 addr, size_t size,
1074 enum dma_data_direction direction);
1075 u64 (*map_page)(struct ib_device *dev,
1076 struct page *page, unsigned long offset,
1077 size_t size,
1078 enum dma_data_direction direction);
1079 void (*unmap_page)(struct ib_device *dev,
1080 u64 addr, size_t size,
1081 enum dma_data_direction direction);
1082 int (*map_sg)(struct ib_device *dev,
1083 struct scatterlist *sg, int nents,
1084 enum dma_data_direction direction);
1085 void (*unmap_sg)(struct ib_device *dev,
1086 struct scatterlist *sg, int nents,
1087 enum dma_data_direction direction);
1088 u64 (*dma_address)(struct ib_device *dev,
1089 struct scatterlist *sg);
1090 unsigned int (*dma_len)(struct ib_device *dev,
1091 struct scatterlist *sg);
1092 void (*sync_single_for_cpu)(struct ib_device *dev,
1093 u64 dma_handle,
1094 size_t size,
1095 enum dma_data_direction dir);
1096 void (*sync_single_for_device)(struct ib_device *dev,
1097 u64 dma_handle,
1098 size_t size,
1099 enum dma_data_direction dir);
1100 void *(*alloc_coherent)(struct ib_device *dev,
1101 size_t size,
1102 u64 *dma_handle,
1103 gfp_t flag);
1104 void (*free_coherent)(struct ib_device *dev,
1105 size_t size, void *cpu_addr,
1106 u64 dma_handle);
1107 };
1108
1109 struct iw_cm_verbs;
1110
1111 struct ib_device {
1112 struct device *dma_device;
1113
1114 char name[IB_DEVICE_NAME_MAX];
1115
1116 struct list_head event_handler_list;
1117 spinlock_t event_handler_lock;
1118
1119 spinlock_t client_data_lock;
1120 struct list_head core_list;
1121 struct list_head client_data_list;
1122
1123 struct ib_cache cache;
1124 int *pkey_tbl_len;
1125 int *gid_tbl_len;
1126
1127 int num_comp_vectors;
1128
1129 struct iw_cm_verbs *iwcm;
1130
1131 int (*get_protocol_stats)(struct ib_device *device,
1132 union rdma_protocol_stats *stats);
1133 int (*query_device)(struct ib_device *device,
1134 struct ib_device_attr *device_attr);
1135 int (*query_port)(struct ib_device *device,
1136 u8 port_num,
1137 struct ib_port_attr *port_attr);
1138 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1139 u8 port_num);
1140 int (*query_gid)(struct ib_device *device,
1141 u8 port_num, int index,
1142 union ib_gid *gid);
1143 int (*query_pkey)(struct ib_device *device,
1144 u8 port_num, u16 index, u16 *pkey);
1145 int (*modify_device)(struct ib_device *device,
1146 int device_modify_mask,
1147 struct ib_device_modify *device_modify);
1148 int (*modify_port)(struct ib_device *device,
1149 u8 port_num, int port_modify_mask,
1150 struct ib_port_modify *port_modify);
1151 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1152 struct ib_udata *udata);
1153 int (*dealloc_ucontext)(struct ib_ucontext *context);
1154 int (*mmap)(struct ib_ucontext *context,
1155 struct vm_area_struct *vma);
1156 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1157 struct ib_ucontext *context,
1158 struct ib_udata *udata);
1159 int (*dealloc_pd)(struct ib_pd *pd);
1160 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1161 struct ib_ah_attr *ah_attr);
1162 int (*modify_ah)(struct ib_ah *ah,
1163 struct ib_ah_attr *ah_attr);
1164 int (*query_ah)(struct ib_ah *ah,
1165 struct ib_ah_attr *ah_attr);
1166 int (*destroy_ah)(struct ib_ah *ah);
1167 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1168 struct ib_srq_init_attr *srq_init_attr,
1169 struct ib_udata *udata);
1170 int (*modify_srq)(struct ib_srq *srq,
1171 struct ib_srq_attr *srq_attr,
1172 enum ib_srq_attr_mask srq_attr_mask,
1173 struct ib_udata *udata);
1174 int (*query_srq)(struct ib_srq *srq,
1175 struct ib_srq_attr *srq_attr);
1176 int (*destroy_srq)(struct ib_srq *srq);
1177 int (*post_srq_recv)(struct ib_srq *srq,
1178 struct ib_recv_wr *recv_wr,
1179 struct ib_recv_wr **bad_recv_wr);
1180 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1181 struct ib_qp_init_attr *qp_init_attr,
1182 struct ib_udata *udata);
1183 int (*modify_qp)(struct ib_qp *qp,
1184 struct ib_qp_attr *qp_attr,
1185 int qp_attr_mask,
1186 struct ib_udata *udata);
1187 int (*query_qp)(struct ib_qp *qp,
1188 struct ib_qp_attr *qp_attr,
1189 int qp_attr_mask,
1190 struct ib_qp_init_attr *qp_init_attr);
1191 int (*destroy_qp)(struct ib_qp *qp);
1192 int (*post_send)(struct ib_qp *qp,
1193 struct ib_send_wr *send_wr,
1194 struct ib_send_wr **bad_send_wr);
1195 int (*post_recv)(struct ib_qp *qp,
1196 struct ib_recv_wr *recv_wr,
1197 struct ib_recv_wr **bad_recv_wr);
1198 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1199 int comp_vector,
1200 struct ib_ucontext *context,
1201 struct ib_udata *udata);
1202 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1203 u16 cq_period);
1204 int (*destroy_cq)(struct ib_cq *cq);
1205 int (*resize_cq)(struct ib_cq *cq, int cqe,
1206 struct ib_udata *udata);
1207 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1208 struct ib_wc *wc);
1209 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1210 int (*req_notify_cq)(struct ib_cq *cq,
1211 enum ib_cq_notify_flags flags);
1212 int (*req_ncomp_notif)(struct ib_cq *cq,
1213 int wc_cnt);
1214 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1215 int mr_access_flags);
1216 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1217 struct ib_phys_buf *phys_buf_array,
1218 int num_phys_buf,
1219 int mr_access_flags,
1220 u64 *iova_start);
1221 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1222 u64 start, u64 length,
1223 u64 virt_addr,
1224 int mr_access_flags,
1225 struct ib_udata *udata);
1226 int (*query_mr)(struct ib_mr *mr,
1227 struct ib_mr_attr *mr_attr);
1228 int (*dereg_mr)(struct ib_mr *mr);
1229 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1230 int max_page_list_len);
1231 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1232 int page_list_len);
1233 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1234 int (*rereg_phys_mr)(struct ib_mr *mr,
1235 int mr_rereg_mask,
1236 struct ib_pd *pd,
1237 struct ib_phys_buf *phys_buf_array,
1238 int num_phys_buf,
1239 int mr_access_flags,
1240 u64 *iova_start);
1241 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1242 enum ib_mw_type type);
1243 int (*bind_mw)(struct ib_qp *qp,
1244 struct ib_mw *mw,
1245 struct ib_mw_bind *mw_bind);
1246 int (*dealloc_mw)(struct ib_mw *mw);
1247 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1248 int mr_access_flags,
1249 struct ib_fmr_attr *fmr_attr);
1250 int (*map_phys_fmr)(struct ib_fmr *fmr,
1251 u64 *page_list, int list_len,
1252 u64 iova);
1253 int (*unmap_fmr)(struct list_head *fmr_list);
1254 int (*dealloc_fmr)(struct ib_fmr *fmr);
1255 int (*attach_mcast)(struct ib_qp *qp,
1256 union ib_gid *gid,
1257 u16 lid);
1258 int (*detach_mcast)(struct ib_qp *qp,
1259 union ib_gid *gid,
1260 u16 lid);
1261 int (*process_mad)(struct ib_device *device,
1262 int process_mad_flags,
1263 u8 port_num,
1264 struct ib_wc *in_wc,
1265 struct ib_grh *in_grh,
1266 struct ib_mad *in_mad,
1267 struct ib_mad *out_mad);
1268 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1269 struct ib_ucontext *ucontext,
1270 struct ib_udata *udata);
1271 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1272
1273 struct ib_dma_mapping_ops *dma_ops;
1274
1275 struct module *owner;
1276 struct device dev;
1277 struct kobject *ports_parent;
1278 struct list_head port_list;
1279
1280 enum {
1281 IB_DEV_UNINITIALIZED,
1282 IB_DEV_REGISTERED,
1283 IB_DEV_UNREGISTERED
1284 } reg_state;
1285
1286 int uverbs_abi_ver;
1287 u64 uverbs_cmd_mask;
1288
1289 char node_desc[64];
1290 __be64 node_guid;
1291 u32 local_dma_lkey;
1292 u8 node_type;
1293 u8 phys_port_cnt;
1294 };
1295
1296 struct ib_client {
1297 char *name;
1298 void (*add) (struct ib_device *);
1299 void (*remove)(struct ib_device *);
1300
1301 struct list_head list;
1302 };
1303
1304 struct ib_device *ib_alloc_device(size_t size);
1305 void ib_dealloc_device(struct ib_device *device);
1306
1307 int ib_register_device(struct ib_device *device,
1308 int (*port_callback)(struct ib_device *,
1309 u8, struct kobject *));
1310 void ib_unregister_device(struct ib_device *device);
1311
1312 int ib_register_client (struct ib_client *client);
1313 void ib_unregister_client(struct ib_client *client);
1314
1315 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1316 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1317 void *data);
1318
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)1319 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1320 {
1321 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1322 }
1323
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)1324 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1325 {
1326 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1327 }
1328
1329 /**
1330 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1331 * contains all required attributes and no attributes not allowed for
1332 * the given QP state transition.
1333 * @cur_state: Current QP state
1334 * @next_state: Next QP state
1335 * @type: QP type
1336 * @mask: Mask of supplied QP attributes
1337 *
1338 * This function is a helper function that a low-level driver's
1339 * modify_qp method can use to validate the consumer's input. It
1340 * checks that cur_state and next_state are valid QP states, that a
1341 * transition from cur_state to next_state is allowed by the IB spec,
1342 * and that the attribute mask supplied is allowed for the transition.
1343 */
1344 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1345 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1346
1347 int ib_register_event_handler (struct ib_event_handler *event_handler);
1348 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1349 void ib_dispatch_event(struct ib_event *event);
1350
1351 int ib_query_device(struct ib_device *device,
1352 struct ib_device_attr *device_attr);
1353
1354 int ib_query_port(struct ib_device *device,
1355 u8 port_num, struct ib_port_attr *port_attr);
1356
1357 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1358 u8 port_num);
1359
1360 int ib_query_gid(struct ib_device *device,
1361 u8 port_num, int index, union ib_gid *gid);
1362
1363 int ib_query_pkey(struct ib_device *device,
1364 u8 port_num, u16 index, u16 *pkey);
1365
1366 int ib_modify_device(struct ib_device *device,
1367 int device_modify_mask,
1368 struct ib_device_modify *device_modify);
1369
1370 int ib_modify_port(struct ib_device *device,
1371 u8 port_num, int port_modify_mask,
1372 struct ib_port_modify *port_modify);
1373
1374 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1375 u8 *port_num, u16 *index);
1376
1377 int ib_find_pkey(struct ib_device *device,
1378 u8 port_num, u16 pkey, u16 *index);
1379
1380 /**
1381 * ib_alloc_pd - Allocates an unused protection domain.
1382 * @device: The device on which to allocate the protection domain.
1383 *
1384 * A protection domain object provides an association between QPs, shared
1385 * receive queues, address handles, memory regions, and memory windows.
1386 */
1387 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1388
1389 /**
1390 * ib_dealloc_pd - Deallocates a protection domain.
1391 * @pd: The protection domain to deallocate.
1392 */
1393 int ib_dealloc_pd(struct ib_pd *pd);
1394
1395 /**
1396 * ib_create_ah - Creates an address handle for the given address vector.
1397 * @pd: The protection domain associated with the address handle.
1398 * @ah_attr: The attributes of the address vector.
1399 *
1400 * The address handle is used to reference a local or global destination
1401 * in all UD QP post sends.
1402 */
1403 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1404
1405 /**
1406 * ib_init_ah_from_wc - Initializes address handle attributes from a
1407 * work completion.
1408 * @device: Device on which the received message arrived.
1409 * @port_num: Port on which the received message arrived.
1410 * @wc: Work completion associated with the received message.
1411 * @grh: References the received global route header. This parameter is
1412 * ignored unless the work completion indicates that the GRH is valid.
1413 * @ah_attr: Returned attributes that can be used when creating an address
1414 * handle for replying to the message.
1415 */
1416 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1417 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1418
1419 /**
1420 * ib_create_ah_from_wc - Creates an address handle associated with the
1421 * sender of the specified work completion.
1422 * @pd: The protection domain associated with the address handle.
1423 * @wc: Work completion information associated with a received message.
1424 * @grh: References the received global route header. This parameter is
1425 * ignored unless the work completion indicates that the GRH is valid.
1426 * @port_num: The outbound port number to associate with the address.
1427 *
1428 * The address handle is used to reference a local or global destination
1429 * in all UD QP post sends.
1430 */
1431 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1432 struct ib_grh *grh, u8 port_num);
1433
1434 /**
1435 * ib_modify_ah - Modifies the address vector associated with an address
1436 * handle.
1437 * @ah: The address handle to modify.
1438 * @ah_attr: The new address vector attributes to associate with the
1439 * address handle.
1440 */
1441 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1442
1443 /**
1444 * ib_query_ah - Queries the address vector associated with an address
1445 * handle.
1446 * @ah: The address handle to query.
1447 * @ah_attr: The address vector attributes associated with the address
1448 * handle.
1449 */
1450 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1451
1452 /**
1453 * ib_destroy_ah - Destroys an address handle.
1454 * @ah: The address handle to destroy.
1455 */
1456 int ib_destroy_ah(struct ib_ah *ah);
1457
1458 /**
1459 * ib_create_srq - Creates a SRQ associated with the specified protection
1460 * domain.
1461 * @pd: The protection domain associated with the SRQ.
1462 * @srq_init_attr: A list of initial attributes required to create the
1463 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1464 * the actual capabilities of the created SRQ.
1465 *
1466 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1467 * requested size of the SRQ, and set to the actual values allocated
1468 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1469 * will always be at least as large as the requested values.
1470 */
1471 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1472 struct ib_srq_init_attr *srq_init_attr);
1473
1474 /**
1475 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1476 * @srq: The SRQ to modify.
1477 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1478 * the current values of selected SRQ attributes are returned.
1479 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1480 * are being modified.
1481 *
1482 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1483 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1484 * the number of receives queued drops below the limit.
1485 */
1486 int ib_modify_srq(struct ib_srq *srq,
1487 struct ib_srq_attr *srq_attr,
1488 enum ib_srq_attr_mask srq_attr_mask);
1489
1490 /**
1491 * ib_query_srq - Returns the attribute list and current values for the
1492 * specified SRQ.
1493 * @srq: The SRQ to query.
1494 * @srq_attr: The attributes of the specified SRQ.
1495 */
1496 int ib_query_srq(struct ib_srq *srq,
1497 struct ib_srq_attr *srq_attr);
1498
1499 /**
1500 * ib_destroy_srq - Destroys the specified SRQ.
1501 * @srq: The SRQ to destroy.
1502 */
1503 int ib_destroy_srq(struct ib_srq *srq);
1504
1505 /**
1506 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1507 * @srq: The SRQ to post the work request on.
1508 * @recv_wr: A list of work requests to post on the receive queue.
1509 * @bad_recv_wr: On an immediate failure, this parameter will reference
1510 * the work request that failed to be posted on the QP.
1511 */
ib_post_srq_recv(struct ib_srq * srq,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)1512 static inline int ib_post_srq_recv(struct ib_srq *srq,
1513 struct ib_recv_wr *recv_wr,
1514 struct ib_recv_wr **bad_recv_wr)
1515 {
1516 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1517 }
1518
1519 /**
1520 * ib_create_qp - Creates a QP associated with the specified protection
1521 * domain.
1522 * @pd: The protection domain associated with the QP.
1523 * @qp_init_attr: A list of initial attributes required to create the
1524 * QP. If QP creation succeeds, then the attributes are updated to
1525 * the actual capabilities of the created QP.
1526 */
1527 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1528 struct ib_qp_init_attr *qp_init_attr);
1529
1530 /**
1531 * ib_modify_qp - Modifies the attributes for the specified QP and then
1532 * transitions the QP to the given state.
1533 * @qp: The QP to modify.
1534 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1535 * the current values of selected QP attributes are returned.
1536 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1537 * are being modified.
1538 */
1539 int ib_modify_qp(struct ib_qp *qp,
1540 struct ib_qp_attr *qp_attr,
1541 int qp_attr_mask);
1542
1543 /**
1544 * ib_query_qp - Returns the attribute list and current values for the
1545 * specified QP.
1546 * @qp: The QP to query.
1547 * @qp_attr: The attributes of the specified QP.
1548 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1549 * @qp_init_attr: Additional attributes of the selected QP.
1550 *
1551 * The qp_attr_mask may be used to limit the query to gathering only the
1552 * selected attributes.
1553 */
1554 int ib_query_qp(struct ib_qp *qp,
1555 struct ib_qp_attr *qp_attr,
1556 int qp_attr_mask,
1557 struct ib_qp_init_attr *qp_init_attr);
1558
1559 /**
1560 * ib_destroy_qp - Destroys the specified QP.
1561 * @qp: The QP to destroy.
1562 */
1563 int ib_destroy_qp(struct ib_qp *qp);
1564
1565 /**
1566 * ib_open_qp - Obtain a reference to an existing sharable QP.
1567 * @xrcd - XRC domain
1568 * @qp_open_attr: Attributes identifying the QP to open.
1569 *
1570 * Returns a reference to a sharable QP.
1571 */
1572 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1573 struct ib_qp_open_attr *qp_open_attr);
1574
1575 /**
1576 * ib_close_qp - Release an external reference to a QP.
1577 * @qp: The QP handle to release
1578 *
1579 * The opened QP handle is released by the caller. The underlying
1580 * shared QP is not destroyed until all internal references are released.
1581 */
1582 int ib_close_qp(struct ib_qp *qp);
1583
1584 /**
1585 * ib_post_send - Posts a list of work requests to the send queue of
1586 * the specified QP.
1587 * @qp: The QP to post the work request on.
1588 * @send_wr: A list of work requests to post on the send queue.
1589 * @bad_send_wr: On an immediate failure, this parameter will reference
1590 * the work request that failed to be posted on the QP.
1591 *
1592 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1593 * error is returned, the QP state shall not be affected,
1594 * ib_post_send() will return an immediate error after queueing any
1595 * earlier work requests in the list.
1596 */
ib_post_send(struct ib_qp * qp,struct ib_send_wr * send_wr,struct ib_send_wr ** bad_send_wr)1597 static inline int ib_post_send(struct ib_qp *qp,
1598 struct ib_send_wr *send_wr,
1599 struct ib_send_wr **bad_send_wr)
1600 {
1601 return qp->device->post_send(qp, send_wr, bad_send_wr);
1602 }
1603
1604 /**
1605 * ib_post_recv - Posts a list of work requests to the receive queue of
1606 * the specified QP.
1607 * @qp: The QP to post the work request on.
1608 * @recv_wr: A list of work requests to post on the receive queue.
1609 * @bad_recv_wr: On an immediate failure, this parameter will reference
1610 * the work request that failed to be posted on the QP.
1611 */
ib_post_recv(struct ib_qp * qp,struct ib_recv_wr * recv_wr,struct ib_recv_wr ** bad_recv_wr)1612 static inline int ib_post_recv(struct ib_qp *qp,
1613 struct ib_recv_wr *recv_wr,
1614 struct ib_recv_wr **bad_recv_wr)
1615 {
1616 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1617 }
1618
1619 /**
1620 * ib_create_cq - Creates a CQ on the specified device.
1621 * @device: The device on which to create the CQ.
1622 * @comp_handler: A user-specified callback that is invoked when a
1623 * completion event occurs on the CQ.
1624 * @event_handler: A user-specified callback that is invoked when an
1625 * asynchronous event not associated with a completion occurs on the CQ.
1626 * @cq_context: Context associated with the CQ returned to the user via
1627 * the associated completion and event handlers.
1628 * @cqe: The minimum size of the CQ.
1629 * @comp_vector - Completion vector used to signal completion events.
1630 * Must be >= 0 and < context->num_comp_vectors.
1631 *
1632 * Users can examine the cq structure to determine the actual CQ size.
1633 */
1634 struct ib_cq *ib_create_cq(struct ib_device *device,
1635 ib_comp_handler comp_handler,
1636 void (*event_handler)(struct ib_event *, void *),
1637 void *cq_context, int cqe, int comp_vector);
1638
1639 /**
1640 * ib_resize_cq - Modifies the capacity of the CQ.
1641 * @cq: The CQ to resize.
1642 * @cqe: The minimum size of the CQ.
1643 *
1644 * Users can examine the cq structure to determine the actual CQ size.
1645 */
1646 int ib_resize_cq(struct ib_cq *cq, int cqe);
1647
1648 /**
1649 * ib_modify_cq - Modifies moderation params of the CQ
1650 * @cq: The CQ to modify.
1651 * @cq_count: number of CQEs that will trigger an event
1652 * @cq_period: max period of time in usec before triggering an event
1653 *
1654 */
1655 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1656
1657 /**
1658 * ib_destroy_cq - Destroys the specified CQ.
1659 * @cq: The CQ to destroy.
1660 */
1661 int ib_destroy_cq(struct ib_cq *cq);
1662
1663 /**
1664 * ib_poll_cq - poll a CQ for completion(s)
1665 * @cq:the CQ being polled
1666 * @num_entries:maximum number of completions to return
1667 * @wc:array of at least @num_entries &struct ib_wc where completions
1668 * will be returned
1669 *
1670 * Poll a CQ for (possibly multiple) completions. If the return value
1671 * is < 0, an error occurred. If the return value is >= 0, it is the
1672 * number of completions returned. If the return value is
1673 * non-negative and < num_entries, then the CQ was emptied.
1674 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)1675 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1676 struct ib_wc *wc)
1677 {
1678 return cq->device->poll_cq(cq, num_entries, wc);
1679 }
1680
1681 /**
1682 * ib_peek_cq - Returns the number of unreaped completions currently
1683 * on the specified CQ.
1684 * @cq: The CQ to peek.
1685 * @wc_cnt: A minimum number of unreaped completions to check for.
1686 *
1687 * If the number of unreaped completions is greater than or equal to wc_cnt,
1688 * this function returns wc_cnt, otherwise, it returns the actual number of
1689 * unreaped completions.
1690 */
1691 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1692
1693 /**
1694 * ib_req_notify_cq - Request completion notification on a CQ.
1695 * @cq: The CQ to generate an event for.
1696 * @flags:
1697 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1698 * to request an event on the next solicited event or next work
1699 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1700 * may also be |ed in to request a hint about missed events, as
1701 * described below.
1702 *
1703 * Return Value:
1704 * < 0 means an error occurred while requesting notification
1705 * == 0 means notification was requested successfully, and if
1706 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1707 * were missed and it is safe to wait for another event. In
1708 * this case is it guaranteed that any work completions added
1709 * to the CQ since the last CQ poll will trigger a completion
1710 * notification event.
1711 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1712 * in. It means that the consumer must poll the CQ again to
1713 * make sure it is empty to avoid missing an event because of a
1714 * race between requesting notification and an entry being
1715 * added to the CQ. This return value means it is possible
1716 * (but not guaranteed) that a work completion has been added
1717 * to the CQ since the last poll without triggering a
1718 * completion notification event.
1719 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)1720 static inline int ib_req_notify_cq(struct ib_cq *cq,
1721 enum ib_cq_notify_flags flags)
1722 {
1723 return cq->device->req_notify_cq(cq, flags);
1724 }
1725
1726 /**
1727 * ib_req_ncomp_notif - Request completion notification when there are
1728 * at least the specified number of unreaped completions on the CQ.
1729 * @cq: The CQ to generate an event for.
1730 * @wc_cnt: The number of unreaped completions that should be on the
1731 * CQ before an event is generated.
1732 */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)1733 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1734 {
1735 return cq->device->req_ncomp_notif ?
1736 cq->device->req_ncomp_notif(cq, wc_cnt) :
1737 -ENOSYS;
1738 }
1739
1740 /**
1741 * ib_get_dma_mr - Returns a memory region for system memory that is
1742 * usable for DMA.
1743 * @pd: The protection domain associated with the memory region.
1744 * @mr_access_flags: Specifies the memory access rights.
1745 *
1746 * Note that the ib_dma_*() functions defined below must be used
1747 * to create/destroy addresses used with the Lkey or Rkey returned
1748 * by ib_get_dma_mr().
1749 */
1750 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1751
1752 /**
1753 * ib_dma_mapping_error - check a DMA addr for error
1754 * @dev: The device for which the dma_addr was created
1755 * @dma_addr: The DMA address to check
1756 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)1757 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1758 {
1759 if (dev->dma_ops)
1760 return dev->dma_ops->mapping_error(dev, dma_addr);
1761 return dma_mapping_error(dev->dma_device, dma_addr);
1762 }
1763
1764 /**
1765 * ib_dma_map_single - Map a kernel virtual address to DMA address
1766 * @dev: The device for which the dma_addr is to be created
1767 * @cpu_addr: The kernel virtual address
1768 * @size: The size of the region in bytes
1769 * @direction: The direction of the DMA
1770 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)1771 static inline u64 ib_dma_map_single(struct ib_device *dev,
1772 void *cpu_addr, size_t size,
1773 enum dma_data_direction direction)
1774 {
1775 if (dev->dma_ops)
1776 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1777 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1778 }
1779
1780 /**
1781 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1782 * @dev: The device for which the DMA address was created
1783 * @addr: The DMA address
1784 * @size: The size of the region in bytes
1785 * @direction: The direction of the DMA
1786 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)1787 static inline void ib_dma_unmap_single(struct ib_device *dev,
1788 u64 addr, size_t size,
1789 enum dma_data_direction direction)
1790 {
1791 if (dev->dma_ops)
1792 dev->dma_ops->unmap_single(dev, addr, size, direction);
1793 else
1794 dma_unmap_single(dev->dma_device, addr, size, direction);
1795 }
1796
ib_dma_map_single_attrs(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)1797 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1798 void *cpu_addr, size_t size,
1799 enum dma_data_direction direction,
1800 struct dma_attrs *attrs)
1801 {
1802 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1803 direction, attrs);
1804 }
1805
ib_dma_unmap_single_attrs(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)1806 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1807 u64 addr, size_t size,
1808 enum dma_data_direction direction,
1809 struct dma_attrs *attrs)
1810 {
1811 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1812 direction, attrs);
1813 }
1814
1815 /**
1816 * ib_dma_map_page - Map a physical page to DMA address
1817 * @dev: The device for which the dma_addr is to be created
1818 * @page: The page to be mapped
1819 * @offset: The offset within the page
1820 * @size: The size of the region in bytes
1821 * @direction: The direction of the DMA
1822 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)1823 static inline u64 ib_dma_map_page(struct ib_device *dev,
1824 struct page *page,
1825 unsigned long offset,
1826 size_t size,
1827 enum dma_data_direction direction)
1828 {
1829 if (dev->dma_ops)
1830 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1831 return dma_map_page(dev->dma_device, page, offset, size, direction);
1832 }
1833
1834 /**
1835 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1836 * @dev: The device for which the DMA address was created
1837 * @addr: The DMA address
1838 * @size: The size of the region in bytes
1839 * @direction: The direction of the DMA
1840 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)1841 static inline void ib_dma_unmap_page(struct ib_device *dev,
1842 u64 addr, size_t size,
1843 enum dma_data_direction direction)
1844 {
1845 if (dev->dma_ops)
1846 dev->dma_ops->unmap_page(dev, addr, size, direction);
1847 else
1848 dma_unmap_page(dev->dma_device, addr, size, direction);
1849 }
1850
1851 /**
1852 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1853 * @dev: The device for which the DMA addresses are to be created
1854 * @sg: The array of scatter/gather entries
1855 * @nents: The number of scatter/gather entries
1856 * @direction: The direction of the DMA
1857 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)1858 static inline int ib_dma_map_sg(struct ib_device *dev,
1859 struct scatterlist *sg, int nents,
1860 enum dma_data_direction direction)
1861 {
1862 if (dev->dma_ops)
1863 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1864 return dma_map_sg(dev->dma_device, sg, nents, direction);
1865 }
1866
1867 /**
1868 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1869 * @dev: The device for which the DMA addresses were created
1870 * @sg: The array of scatter/gather entries
1871 * @nents: The number of scatter/gather entries
1872 * @direction: The direction of the DMA
1873 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)1874 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1875 struct scatterlist *sg, int nents,
1876 enum dma_data_direction direction)
1877 {
1878 if (dev->dma_ops)
1879 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1880 else
1881 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1882 }
1883
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)1884 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1885 struct scatterlist *sg, int nents,
1886 enum dma_data_direction direction,
1887 struct dma_attrs *attrs)
1888 {
1889 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1890 }
1891
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)1892 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1893 struct scatterlist *sg, int nents,
1894 enum dma_data_direction direction,
1895 struct dma_attrs *attrs)
1896 {
1897 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1898 }
1899 /**
1900 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1901 * @dev: The device for which the DMA addresses were created
1902 * @sg: The scatter/gather entry
1903 */
ib_sg_dma_address(struct ib_device * dev,struct scatterlist * sg)1904 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1905 struct scatterlist *sg)
1906 {
1907 if (dev->dma_ops)
1908 return dev->dma_ops->dma_address(dev, sg);
1909 return sg_dma_address(sg);
1910 }
1911
1912 /**
1913 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1914 * @dev: The device for which the DMA addresses were created
1915 * @sg: The scatter/gather entry
1916 */
ib_sg_dma_len(struct ib_device * dev,struct scatterlist * sg)1917 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1918 struct scatterlist *sg)
1919 {
1920 if (dev->dma_ops)
1921 return dev->dma_ops->dma_len(dev, sg);
1922 return sg_dma_len(sg);
1923 }
1924
1925 /**
1926 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1927 * @dev: The device for which the DMA address was created
1928 * @addr: The DMA address
1929 * @size: The size of the region in bytes
1930 * @dir: The direction of the DMA
1931 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)1932 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1933 u64 addr,
1934 size_t size,
1935 enum dma_data_direction dir)
1936 {
1937 if (dev->dma_ops)
1938 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1939 else
1940 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1941 }
1942
1943 /**
1944 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1945 * @dev: The device for which the DMA address was created
1946 * @addr: The DMA address
1947 * @size: The size of the region in bytes
1948 * @dir: The direction of the DMA
1949 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)1950 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1951 u64 addr,
1952 size_t size,
1953 enum dma_data_direction dir)
1954 {
1955 if (dev->dma_ops)
1956 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1957 else
1958 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1959 }
1960
1961 /**
1962 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1963 * @dev: The device for which the DMA address is requested
1964 * @size: The size of the region to allocate in bytes
1965 * @dma_handle: A pointer for returning the DMA address of the region
1966 * @flag: memory allocator flags
1967 */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,u64 * dma_handle,gfp_t flag)1968 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1969 size_t size,
1970 u64 *dma_handle,
1971 gfp_t flag)
1972 {
1973 if (dev->dma_ops)
1974 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1975 else {
1976 dma_addr_t handle;
1977 void *ret;
1978
1979 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1980 *dma_handle = handle;
1981 return ret;
1982 }
1983 }
1984
1985 /**
1986 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1987 * @dev: The device for which the DMA addresses were allocated
1988 * @size: The size of the region
1989 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1990 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1991 */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,u64 dma_handle)1992 static inline void ib_dma_free_coherent(struct ib_device *dev,
1993 size_t size, void *cpu_addr,
1994 u64 dma_handle)
1995 {
1996 if (dev->dma_ops)
1997 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1998 else
1999 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2000 }
2001
2002 /**
2003 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2004 * by an HCA.
2005 * @pd: The protection domain associated assigned to the registered region.
2006 * @phys_buf_array: Specifies a list of physical buffers to use in the
2007 * memory region.
2008 * @num_phys_buf: Specifies the size of the phys_buf_array.
2009 * @mr_access_flags: Specifies the memory access rights.
2010 * @iova_start: The offset of the region's starting I/O virtual address.
2011 */
2012 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2013 struct ib_phys_buf *phys_buf_array,
2014 int num_phys_buf,
2015 int mr_access_flags,
2016 u64 *iova_start);
2017
2018 /**
2019 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2020 * Conceptually, this call performs the functions deregister memory region
2021 * followed by register physical memory region. Where possible,
2022 * resources are reused instead of deallocated and reallocated.
2023 * @mr: The memory region to modify.
2024 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2025 * properties of the memory region are being modified.
2026 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2027 * the new protection domain to associated with the memory region,
2028 * otherwise, this parameter is ignored.
2029 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2030 * field specifies a list of physical buffers to use in the new
2031 * translation, otherwise, this parameter is ignored.
2032 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2033 * field specifies the size of the phys_buf_array, otherwise, this
2034 * parameter is ignored.
2035 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2036 * field specifies the new memory access rights, otherwise, this
2037 * parameter is ignored.
2038 * @iova_start: The offset of the region's starting I/O virtual address.
2039 */
2040 int ib_rereg_phys_mr(struct ib_mr *mr,
2041 int mr_rereg_mask,
2042 struct ib_pd *pd,
2043 struct ib_phys_buf *phys_buf_array,
2044 int num_phys_buf,
2045 int mr_access_flags,
2046 u64 *iova_start);
2047
2048 /**
2049 * ib_query_mr - Retrieves information about a specific memory region.
2050 * @mr: The memory region to retrieve information about.
2051 * @mr_attr: The attributes of the specified memory region.
2052 */
2053 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2054
2055 /**
2056 * ib_dereg_mr - Deregisters a memory region and removes it from the
2057 * HCA translation table.
2058 * @mr: The memory region to deregister.
2059 *
2060 * This function can fail, if the memory region has memory windows bound to it.
2061 */
2062 int ib_dereg_mr(struct ib_mr *mr);
2063
2064 /**
2065 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2066 * IB_WR_FAST_REG_MR send work request.
2067 * @pd: The protection domain associated with the region.
2068 * @max_page_list_len: requested max physical buffer list length to be
2069 * used with fast register work requests for this MR.
2070 */
2071 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2072
2073 /**
2074 * ib_alloc_fast_reg_page_list - Allocates a page list array
2075 * @device - ib device pointer.
2076 * @page_list_len - size of the page list array to be allocated.
2077 *
2078 * This allocates and returns a struct ib_fast_reg_page_list * and a
2079 * page_list array that is at least page_list_len in size. The actual
2080 * size is returned in max_page_list_len. The caller is responsible
2081 * for initializing the contents of the page_list array before posting
2082 * a send work request with the IB_WC_FAST_REG_MR opcode.
2083 *
2084 * The page_list array entries must be translated using one of the
2085 * ib_dma_*() functions just like the addresses passed to
2086 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2087 * ib_fast_reg_page_list must not be modified by the caller until the
2088 * IB_WC_FAST_REG_MR work request completes.
2089 */
2090 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2091 struct ib_device *device, int page_list_len);
2092
2093 /**
2094 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2095 * page list array.
2096 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2097 */
2098 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2099
2100 /**
2101 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2102 * R_Key and L_Key.
2103 * @mr - struct ib_mr pointer to be updated.
2104 * @newkey - new key to be used.
2105 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)2106 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2107 {
2108 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2109 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2110 }
2111
2112 /**
2113 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2114 * for calculating a new rkey for type 2 memory windows.
2115 * @rkey - the rkey to increment.
2116 */
ib_inc_rkey(u32 rkey)2117 static inline u32 ib_inc_rkey(u32 rkey)
2118 {
2119 const u32 mask = 0x000000ff;
2120 return ((rkey + 1) & mask) | (rkey & ~mask);
2121 }
2122
2123 /**
2124 * ib_alloc_mw - Allocates a memory window.
2125 * @pd: The protection domain associated with the memory window.
2126 * @type: The type of the memory window (1 or 2).
2127 */
2128 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2129
2130 /**
2131 * ib_bind_mw - Posts a work request to the send queue of the specified
2132 * QP, which binds the memory window to the given address range and
2133 * remote access attributes.
2134 * @qp: QP to post the bind work request on.
2135 * @mw: The memory window to bind.
2136 * @mw_bind: Specifies information about the memory window, including
2137 * its address range, remote access rights, and associated memory region.
2138 *
2139 * If there is no immediate error, the function will update the rkey member
2140 * of the mw parameter to its new value. The bind operation can still fail
2141 * asynchronously.
2142 */
ib_bind_mw(struct ib_qp * qp,struct ib_mw * mw,struct ib_mw_bind * mw_bind)2143 static inline int ib_bind_mw(struct ib_qp *qp,
2144 struct ib_mw *mw,
2145 struct ib_mw_bind *mw_bind)
2146 {
2147 /* XXX reference counting in corresponding MR? */
2148 return mw->device->bind_mw ?
2149 mw->device->bind_mw(qp, mw, mw_bind) :
2150 -ENOSYS;
2151 }
2152
2153 /**
2154 * ib_dealloc_mw - Deallocates a memory window.
2155 * @mw: The memory window to deallocate.
2156 */
2157 int ib_dealloc_mw(struct ib_mw *mw);
2158
2159 /**
2160 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2161 * @pd: The protection domain associated with the unmapped region.
2162 * @mr_access_flags: Specifies the memory access rights.
2163 * @fmr_attr: Attributes of the unmapped region.
2164 *
2165 * A fast memory region must be mapped before it can be used as part of
2166 * a work request.
2167 */
2168 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2169 int mr_access_flags,
2170 struct ib_fmr_attr *fmr_attr);
2171
2172 /**
2173 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2174 * @fmr: The fast memory region to associate with the pages.
2175 * @page_list: An array of physical pages to map to the fast memory region.
2176 * @list_len: The number of pages in page_list.
2177 * @iova: The I/O virtual address to use with the mapped region.
2178 */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)2179 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2180 u64 *page_list, int list_len,
2181 u64 iova)
2182 {
2183 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2184 }
2185
2186 /**
2187 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2188 * @fmr_list: A linked list of fast memory regions to unmap.
2189 */
2190 int ib_unmap_fmr(struct list_head *fmr_list);
2191
2192 /**
2193 * ib_dealloc_fmr - Deallocates a fast memory region.
2194 * @fmr: The fast memory region to deallocate.
2195 */
2196 int ib_dealloc_fmr(struct ib_fmr *fmr);
2197
2198 /**
2199 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2200 * @qp: QP to attach to the multicast group. The QP must be type
2201 * IB_QPT_UD.
2202 * @gid: Multicast group GID.
2203 * @lid: Multicast group LID in host byte order.
2204 *
2205 * In order to send and receive multicast packets, subnet
2206 * administration must have created the multicast group and configured
2207 * the fabric appropriately. The port associated with the specified
2208 * QP must also be a member of the multicast group.
2209 */
2210 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2211
2212 /**
2213 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2214 * @qp: QP to detach from the multicast group.
2215 * @gid: Multicast group GID.
2216 * @lid: Multicast group LID in host byte order.
2217 */
2218 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2219
2220 /**
2221 * ib_alloc_xrcd - Allocates an XRC domain.
2222 * @device: The device on which to allocate the XRC domain.
2223 */
2224 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2225
2226 /**
2227 * ib_dealloc_xrcd - Deallocates an XRC domain.
2228 * @xrcd: The XRC domain to deallocate.
2229 */
2230 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2231
2232 #endif /* IB_VERBS_H */
2233