• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <linux/types.h>
29 
30 
31 /*
32  * Implementation of host controlled snapshot of the guest.
33  */
34 
35 #define VSS_OP_REGISTER 128
36 
37 enum hv_vss_op {
38 	VSS_OP_CREATE = 0,
39 	VSS_OP_DELETE,
40 	VSS_OP_HOT_BACKUP,
41 	VSS_OP_GET_DM_INFO,
42 	VSS_OP_BU_COMPLETE,
43 	/*
44 	 * Following operations are only supported with IC version >= 5.0
45 	 */
46 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
47 	VSS_OP_THAW, /* Unfreeze the file systems */
48 	VSS_OP_AUTO_RECOVER,
49 	VSS_OP_COUNT /* Number of operations, must be last */
50 };
51 
52 
53 /*
54  * Header for all VSS messages.
55  */
56 struct hv_vss_hdr {
57 	__u8 operation;
58 	__u8 reserved[7];
59 } __attribute__((packed));
60 
61 
62 /*
63  * Flag values for the hv_vss_check_feature. Linux supports only
64  * one value.
65  */
66 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
67 
68 struct hv_vss_check_feature {
69 	__u32 flags;
70 } __attribute__((packed));
71 
72 struct hv_vss_check_dm_info {
73 	__u32 flags;
74 } __attribute__((packed));
75 
76 struct hv_vss_msg {
77 	union {
78 		struct hv_vss_hdr vss_hdr;
79 		int error;
80 	};
81 	union {
82 		struct hv_vss_check_feature vss_cf;
83 		struct hv_vss_check_dm_info dm_info;
84 	};
85 } __attribute__((packed));
86 
87 /*
88  * An implementation of HyperV key value pair (KVP) functionality for Linux.
89  *
90  *
91  * Copyright (C) 2010, Novell, Inc.
92  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
93  *
94  */
95 
96 /*
97  * Maximum value size - used for both key names and value data, and includes
98  * any applicable NULL terminators.
99  *
100  * Note:  This limit is somewhat arbitrary, but falls easily within what is
101  * supported for all native guests (back to Win 2000) and what is reasonable
102  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
103  * limited to 255 character key names.
104  *
105  * MSDN recommends not storing data values larger than 2048 bytes in the
106  * registry.
107  *
108  * Note:  This value is used in defining the KVP exchange message - this value
109  * cannot be modified without affecting the message size and compatibility.
110  */
111 
112 /*
113  * bytes, including any null terminators
114  */
115 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
116 
117 
118 /*
119  * Maximum key size - the registry limit for the length of an entry name
120  * is 256 characters, including the null terminator
121  */
122 
123 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
124 
125 /*
126  * In Linux, we implement the KVP functionality in two components:
127  * 1) The kernel component which is packaged as part of the hv_utils driver
128  * is responsible for communicating with the host and responsible for
129  * implementing the host/guest protocol. 2) A user level daemon that is
130  * responsible for data gathering.
131  *
132  * Host/Guest Protocol: The host iterates over an index and expects the guest
133  * to assign a key name to the index and also return the value corresponding to
134  * the key. The host will have atmost one KVP transaction outstanding at any
135  * given point in time. The host side iteration stops when the guest returns
136  * an error. Microsoft has specified the following mapping of key names to
137  * host specified index:
138  *
139  *	Index		Key Name
140  *	0		FullyQualifiedDomainName
141  *	1		IntegrationServicesVersion
142  *	2		NetworkAddressIPv4
143  *	3		NetworkAddressIPv6
144  *	4		OSBuildNumber
145  *	5		OSName
146  *	6		OSMajorVersion
147  *	7		OSMinorVersion
148  *	8		OSVersion
149  *	9		ProcessorArchitecture
150  *
151  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
152  *
153  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
154  * data gathering functionality in a user mode daemon. The user level daemon
155  * is also responsible for binding the key name to the index as well. The
156  * kernel and user-level daemon communicate using a connector channel.
157  *
158  * The user mode component first registers with the
159  * the kernel component. Subsequently, the kernel component requests, data
160  * for the specified keys. In response to this message the user mode component
161  * fills in the value corresponding to the specified key. We overload the
162  * sequence field in the cn_msg header to define our KVP message types.
163  *
164  *
165  * The kernel component simply acts as a conduit for communication between the
166  * Windows host and the user-level daemon. The kernel component passes up the
167  * index received from the Host to the user-level daemon. If the index is
168  * valid (supported), the corresponding key as well as its
169  * value (both are strings) is returned. If the index is invalid
170  * (not supported), a NULL key string is returned.
171  */
172 
173 
174 /*
175  * Registry value types.
176  */
177 
178 #define REG_SZ 1
179 #define REG_U32 4
180 #define REG_U64 8
181 
182 /*
183  * As we look at expanding the KVP functionality to include
184  * IP injection functionality, we need to maintain binary
185  * compatibility with older daemons.
186  *
187  * The KVP opcodes are defined by the host and it was unfortunate
188  * that I chose to treat the registration operation as part of the
189  * KVP operations defined by the host.
190  * Here is the level of compatibility
191  * (between the user level daemon and the kernel KVP driver) that we
192  * will implement:
193  *
194  * An older daemon will always be supported on a newer driver.
195  * A given user level daemon will require a minimal version of the
196  * kernel driver.
197  * If we cannot handle the version differences, we will fail gracefully
198  * (this can happen when we have a user level daemon that is more
199  * advanced than the KVP driver.
200  *
201  * We will use values used in this handshake for determining if we have
202  * workable user level daemon and the kernel driver. We begin by taking the
203  * registration opcode out of the KVP opcode namespace. We will however,
204  * maintain compatibility with the existing user-level daemon code.
205  */
206 
207 /*
208  * Daemon code not supporting IP injection (legacy daemon).
209  */
210 
211 #define KVP_OP_REGISTER	4
212 
213 /*
214  * Daemon code supporting IP injection.
215  * The KVP opcode field is used to communicate the
216  * registration information; so define a namespace that
217  * will be distinct from the host defined KVP opcode.
218  */
219 
220 #define KVP_OP_REGISTER1 100
221 
222 enum hv_kvp_exchg_op {
223 	KVP_OP_GET = 0,
224 	KVP_OP_SET,
225 	KVP_OP_DELETE,
226 	KVP_OP_ENUMERATE,
227 	KVP_OP_GET_IP_INFO,
228 	KVP_OP_SET_IP_INFO,
229 	KVP_OP_COUNT /* Number of operations, must be last. */
230 };
231 
232 enum hv_kvp_exchg_pool {
233 	KVP_POOL_EXTERNAL = 0,
234 	KVP_POOL_GUEST,
235 	KVP_POOL_AUTO,
236 	KVP_POOL_AUTO_EXTERNAL,
237 	KVP_POOL_AUTO_INTERNAL,
238 	KVP_POOL_COUNT /* Number of pools, must be last. */
239 };
240 
241 /*
242  * Some Hyper-V status codes.
243  */
244 
245 #define HV_S_OK				0x00000000
246 #define HV_E_FAIL			0x80004005
247 #define HV_S_CONT			0x80070103
248 #define HV_ERROR_NOT_SUPPORTED		0x80070032
249 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
250 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
251 #define HV_INVALIDARG			0x80070057
252 #define HV_GUID_NOTFOUND		0x80041002
253 
254 #define ADDR_FAMILY_NONE	0x00
255 #define ADDR_FAMILY_IPV4	0x01
256 #define ADDR_FAMILY_IPV6	0x02
257 
258 #define MAX_ADAPTER_ID_SIZE	128
259 #define MAX_IP_ADDR_SIZE	1024
260 #define MAX_GATEWAY_SIZE	512
261 
262 
263 struct hv_kvp_ipaddr_value {
264 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
265 	__u8	addr_family;
266 	__u8	dhcp_enabled;
267 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
268 	__u16	sub_net[MAX_IP_ADDR_SIZE];
269 	__u16	gate_way[MAX_GATEWAY_SIZE];
270 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
271 } __attribute__((packed));
272 
273 
274 struct hv_kvp_hdr {
275 	__u8 operation;
276 	__u8 pool;
277 	__u16 pad;
278 } __attribute__((packed));
279 
280 struct hv_kvp_exchg_msg_value {
281 	__u32 value_type;
282 	__u32 key_size;
283 	__u32 value_size;
284 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
285 	union {
286 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
287 		__u32 value_u32;
288 		__u64 value_u64;
289 	};
290 } __attribute__((packed));
291 
292 struct hv_kvp_msg_enumerate {
293 	__u32 index;
294 	struct hv_kvp_exchg_msg_value data;
295 } __attribute__((packed));
296 
297 struct hv_kvp_msg_get {
298 	struct hv_kvp_exchg_msg_value data;
299 };
300 
301 struct hv_kvp_msg_set {
302 	struct hv_kvp_exchg_msg_value data;
303 };
304 
305 struct hv_kvp_msg_delete {
306 	__u32 key_size;
307 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
308 };
309 
310 struct hv_kvp_register {
311 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
312 };
313 
314 struct hv_kvp_msg {
315 	union {
316 		struct hv_kvp_hdr	kvp_hdr;
317 		int error;
318 	};
319 	union {
320 		struct hv_kvp_msg_get		kvp_get;
321 		struct hv_kvp_msg_set		kvp_set;
322 		struct hv_kvp_msg_delete	kvp_delete;
323 		struct hv_kvp_msg_enumerate	kvp_enum_data;
324 		struct hv_kvp_ipaddr_value      kvp_ip_val;
325 		struct hv_kvp_register		kvp_register;
326 	} body;
327 } __attribute__((packed));
328 
329 struct hv_kvp_ip_msg {
330 	__u8 operation;
331 	__u8 pool;
332 	struct hv_kvp_ipaddr_value      kvp_ip_val;
333 } __attribute__((packed));
334 
335 #ifdef __KERNEL__
336 #include <linux/scatterlist.h>
337 #include <linux/list.h>
338 #include <linux/uuid.h>
339 #include <linux/timer.h>
340 #include <linux/workqueue.h>
341 #include <linux/completion.h>
342 #include <linux/device.h>
343 #include <linux/mod_devicetable.h>
344 
345 
346 #define MAX_PAGE_BUFFER_COUNT				19
347 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
348 
349 #pragma pack(push, 1)
350 
351 /* Single-page buffer */
352 struct hv_page_buffer {
353 	u32 len;
354 	u32 offset;
355 	u64 pfn;
356 };
357 
358 /* Multiple-page buffer */
359 struct hv_multipage_buffer {
360 	/* Length and Offset determines the # of pfns in the array */
361 	u32 len;
362 	u32 offset;
363 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
364 };
365 
366 /* 0x18 includes the proprietary packet header */
367 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
368 					(sizeof(struct hv_page_buffer) * \
369 					 MAX_PAGE_BUFFER_COUNT))
370 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
371 					 sizeof(struct hv_multipage_buffer))
372 
373 
374 #pragma pack(pop)
375 
376 struct hv_ring_buffer {
377 	/* Offset in bytes from the start of ring data below */
378 	u32 write_index;
379 
380 	/* Offset in bytes from the start of ring data below */
381 	u32 read_index;
382 
383 	u32 interrupt_mask;
384 
385 	/*
386 	 * Win8 uses some of the reserved bits to implement
387 	 * interrupt driven flow management. On the send side
388 	 * we can request that the receiver interrupt the sender
389 	 * when the ring transitions from being full to being able
390 	 * to handle a message of size "pending_send_sz".
391 	 *
392 	 * Add necessary state for this enhancement.
393 	 */
394 	u32 pending_send_sz;
395 
396 	u32 reserved1[12];
397 
398 	union {
399 		struct {
400 			u32 feat_pending_send_sz:1;
401 		};
402 		u32 value;
403 	} feature_bits;
404 
405 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
406 	u8	reserved2[4028];
407 
408 	/*
409 	 * Ring data starts here + RingDataStartOffset
410 	 * !!! DO NOT place any fields below this !!!
411 	 */
412 	u8 buffer[0];
413 } __packed;
414 
415 struct hv_ring_buffer_info {
416 	struct hv_ring_buffer *ring_buffer;
417 	u32 ring_size;			/* Include the shared header */
418 	spinlock_t ring_lock;
419 
420 	u32 ring_datasize;		/* < ring_size */
421 	u32 ring_data_startoffset;
422 };
423 
424 struct hv_ring_buffer_debug_info {
425 	u32 current_interrupt_mask;
426 	u32 current_read_index;
427 	u32 current_write_index;
428 	u32 bytes_avail_toread;
429 	u32 bytes_avail_towrite;
430 };
431 
432 
433 /*
434  *
435  * hv_get_ringbuffer_availbytes()
436  *
437  * Get number of bytes available to read and to write to
438  * for the specified ring buffer
439  */
440 static inline void
hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info * rbi,u32 * read,u32 * write)441 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
442 			  u32 *read, u32 *write)
443 {
444 	u32 read_loc, write_loc, dsize;
445 
446 	smp_read_barrier_depends();
447 
448 	/* Capture the read/write indices before they changed */
449 	read_loc = rbi->ring_buffer->read_index;
450 	write_loc = rbi->ring_buffer->write_index;
451 	dsize = rbi->ring_datasize;
452 
453 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
454 		read_loc - write_loc;
455 	*read = dsize - *write;
456 }
457 
458 
459 /*
460  * We use the same version numbering for all Hyper-V modules.
461  *
462  * Definition of versioning is as follows;
463  *
464  *	Major Number	Changes for these scenarios;
465  *			1.	When a new version of Windows Hyper-V
466  *				is released.
467  *			2.	A Major change has occurred in the
468  *				Linux IC's.
469  *			(For example the merge for the first time
470  *			into the kernel) Every time the Major Number
471  *			changes, the Revision number is reset to 0.
472  *	Minor Number	Changes when new functionality is added
473  *			to the Linux IC's that is not a bug fix.
474  *
475  * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
476  */
477 #define HV_DRV_VERSION           "3.1"
478 
479 /*
480  * VMBUS version is 32 bit entity broken up into
481  * two 16 bit quantities: major_number. minor_number.
482  *
483  * 0 . 13 (Windows Server 2008)
484  * 1 . 1  (Windows 7)
485  * 2 . 4  (Windows 8)
486  */
487 
488 #define VERSION_WS2008  ((0 << 16) | (13))
489 #define VERSION_WIN7    ((1 << 16) | (1))
490 #define VERSION_WIN8    ((2 << 16) | (4))
491 
492 #define VERSION_INVAL -1
493 
494 #define VERSION_CURRENT VERSION_WIN8
495 
496 /* Make maximum size of pipe payload of 16K */
497 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
498 
499 /* Define PipeMode values. */
500 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
501 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
502 
503 /* The size of the user defined data buffer for non-pipe offers. */
504 #define MAX_USER_DEFINED_BYTES		120
505 
506 /* The size of the user defined data buffer for pipe offers. */
507 #define MAX_PIPE_USER_DEFINED_BYTES	116
508 
509 /*
510  * At the center of the Channel Management library is the Channel Offer. This
511  * struct contains the fundamental information about an offer.
512  */
513 struct vmbus_channel_offer {
514 	uuid_le if_type;
515 	uuid_le if_instance;
516 
517 	/*
518 	 * These two fields are not currently used.
519 	 */
520 	u64 reserved1;
521 	u64 reserved2;
522 
523 	u16 chn_flags;
524 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
525 
526 	union {
527 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
528 		struct {
529 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
530 		} std;
531 
532 		/*
533 		 * Pipes:
534 		 * The following sructure is an integrated pipe protocol, which
535 		 * is implemented on top of standard user-defined data. Pipe
536 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
537 		 * use.
538 		 */
539 		struct {
540 			u32  pipe_mode;
541 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
542 		} pipe;
543 	} u;
544 	/*
545 	 * The sub_channel_index is defined in win8.
546 	 */
547 	u16 sub_channel_index;
548 	u16 reserved3;
549 } __packed;
550 
551 /* Server Flags */
552 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
553 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
554 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
555 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
556 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
557 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
558 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
559 
560 struct vmpacket_descriptor {
561 	u16 type;
562 	u16 offset8;
563 	u16 len8;
564 	u16 flags;
565 	u64 trans_id;
566 } __packed;
567 
568 struct vmpacket_header {
569 	u32 prev_pkt_start_offset;
570 	struct vmpacket_descriptor descriptor;
571 } __packed;
572 
573 struct vmtransfer_page_range {
574 	u32 byte_count;
575 	u32 byte_offset;
576 } __packed;
577 
578 struct vmtransfer_page_packet_header {
579 	struct vmpacket_descriptor d;
580 	u16 xfer_pageset_id;
581 	u8  sender_owns_set;
582 	u8 reserved;
583 	u32 range_cnt;
584 	struct vmtransfer_page_range ranges[1];
585 } __packed;
586 
587 struct vmgpadl_packet_header {
588 	struct vmpacket_descriptor d;
589 	u32 gpadl;
590 	u32 reserved;
591 } __packed;
592 
593 struct vmadd_remove_transfer_page_set {
594 	struct vmpacket_descriptor d;
595 	u32 gpadl;
596 	u16 xfer_pageset_id;
597 	u16 reserved;
598 } __packed;
599 
600 /*
601  * This structure defines a range in guest physical space that can be made to
602  * look virtually contiguous.
603  */
604 struct gpa_range {
605 	u32 byte_count;
606 	u32 byte_offset;
607 	u64 pfn_array[0];
608 };
609 
610 /*
611  * This is the format for an Establish Gpadl packet, which contains a handle by
612  * which this GPADL will be known and a set of GPA ranges associated with it.
613  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
614  * ranges, then the resulting MDL will be "chained," representing multiple VA
615  * ranges.
616  */
617 struct vmestablish_gpadl {
618 	struct vmpacket_descriptor d;
619 	u32 gpadl;
620 	u32 range_cnt;
621 	struct gpa_range range[1];
622 } __packed;
623 
624 /*
625  * This is the format for a Teardown Gpadl packet, which indicates that the
626  * GPADL handle in the Establish Gpadl packet will never be referenced again.
627  */
628 struct vmteardown_gpadl {
629 	struct vmpacket_descriptor d;
630 	u32 gpadl;
631 	u32 reserved;	/* for alignment to a 8-byte boundary */
632 } __packed;
633 
634 /*
635  * This is the format for a GPA-Direct packet, which contains a set of GPA
636  * ranges, in addition to commands and/or data.
637  */
638 struct vmdata_gpa_direct {
639 	struct vmpacket_descriptor d;
640 	u32 reserved;
641 	u32 range_cnt;
642 	struct gpa_range range[1];
643 } __packed;
644 
645 /* This is the format for a Additional Data Packet. */
646 struct vmadditional_data {
647 	struct vmpacket_descriptor d;
648 	u64 total_bytes;
649 	u32 offset;
650 	u32 byte_cnt;
651 	unsigned char data[1];
652 } __packed;
653 
654 union vmpacket_largest_possible_header {
655 	struct vmpacket_descriptor simple_hdr;
656 	struct vmtransfer_page_packet_header xfer_page_hdr;
657 	struct vmgpadl_packet_header gpadl_hdr;
658 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
659 	struct vmestablish_gpadl establish_gpadl_hdr;
660 	struct vmteardown_gpadl teardown_gpadl_hdr;
661 	struct vmdata_gpa_direct data_gpa_direct_hdr;
662 };
663 
664 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
665 	(void *)(((unsigned char *)__packet) +	\
666 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
667 
668 #define VMPACKET_DATA_LENGTH(__packet)		\
669 	((((struct vmpacket_descriptor)__packet)->len8 -	\
670 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
671 
672 #define VMPACKET_TRANSFER_MODE(__packet)	\
673 	(((struct IMPACT)__packet)->type)
674 
675 enum vmbus_packet_type {
676 	VM_PKT_INVALID				= 0x0,
677 	VM_PKT_SYNCH				= 0x1,
678 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
679 	VM_PKT_RM_XFER_PAGESET			= 0x3,
680 	VM_PKT_ESTABLISH_GPADL			= 0x4,
681 	VM_PKT_TEARDOWN_GPADL			= 0x5,
682 	VM_PKT_DATA_INBAND			= 0x6,
683 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
684 	VM_PKT_DATA_USING_GPADL			= 0x8,
685 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
686 	VM_PKT_CANCEL_REQUEST			= 0xa,
687 	VM_PKT_COMP				= 0xb,
688 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
689 	VM_PKT_ADDITIONAL_DATA			= 0xd
690 };
691 
692 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
693 
694 
695 /* Version 1 messages */
696 enum vmbus_channel_message_type {
697 	CHANNELMSG_INVALID			=  0,
698 	CHANNELMSG_OFFERCHANNEL		=  1,
699 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
700 	CHANNELMSG_REQUESTOFFERS		=  3,
701 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
702 	CHANNELMSG_OPENCHANNEL		=  5,
703 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
704 	CHANNELMSG_CLOSECHANNEL		=  7,
705 	CHANNELMSG_GPADL_HEADER		=  8,
706 	CHANNELMSG_GPADL_BODY			=  9,
707 	CHANNELMSG_GPADL_CREATED		= 10,
708 	CHANNELMSG_GPADL_TEARDOWN		= 11,
709 	CHANNELMSG_GPADL_TORNDOWN		= 12,
710 	CHANNELMSG_RELID_RELEASED		= 13,
711 	CHANNELMSG_INITIATE_CONTACT		= 14,
712 	CHANNELMSG_VERSION_RESPONSE		= 15,
713 	CHANNELMSG_UNLOAD			= 16,
714 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
715 	CHANNELMSG_VIEWRANGE_ADD		= 17,
716 	CHANNELMSG_VIEWRANGE_REMOVE		= 18,
717 #endif
718 	CHANNELMSG_COUNT
719 };
720 
721 struct vmbus_channel_message_header {
722 	enum vmbus_channel_message_type msgtype;
723 	u32 padding;
724 } __packed;
725 
726 /* Query VMBus Version parameters */
727 struct vmbus_channel_query_vmbus_version {
728 	struct vmbus_channel_message_header header;
729 	u32 version;
730 } __packed;
731 
732 /* VMBus Version Supported parameters */
733 struct vmbus_channel_version_supported {
734 	struct vmbus_channel_message_header header;
735 	u8 version_supported;
736 } __packed;
737 
738 /* Offer Channel parameters */
739 struct vmbus_channel_offer_channel {
740 	struct vmbus_channel_message_header header;
741 	struct vmbus_channel_offer offer;
742 	u32 child_relid;
743 	u8 monitorid;
744 	/*
745 	 * win7 and beyond splits this field into a bit field.
746 	 */
747 	u8 monitor_allocated:1;
748 	u8 reserved:7;
749 	/*
750 	 * These are new fields added in win7 and later.
751 	 * Do not access these fields without checking the
752 	 * negotiated protocol.
753 	 *
754 	 * If "is_dedicated_interrupt" is set, we must not set the
755 	 * associated bit in the channel bitmap while sending the
756 	 * interrupt to the host.
757 	 *
758 	 * connection_id is to be used in signaling the host.
759 	 */
760 	u16 is_dedicated_interrupt:1;
761 	u16 reserved1:15;
762 	u32 connection_id;
763 } __packed;
764 
765 /* Rescind Offer parameters */
766 struct vmbus_channel_rescind_offer {
767 	struct vmbus_channel_message_header header;
768 	u32 child_relid;
769 } __packed;
770 
771 /*
772  * Request Offer -- no parameters, SynIC message contains the partition ID
773  * Set Snoop -- no parameters, SynIC message contains the partition ID
774  * Clear Snoop -- no parameters, SynIC message contains the partition ID
775  * All Offers Delivered -- no parameters, SynIC message contains the partition
776  *		           ID
777  * Flush Client -- no parameters, SynIC message contains the partition ID
778  */
779 
780 /* Open Channel parameters */
781 struct vmbus_channel_open_channel {
782 	struct vmbus_channel_message_header header;
783 
784 	/* Identifies the specific VMBus channel that is being opened. */
785 	u32 child_relid;
786 
787 	/* ID making a particular open request at a channel offer unique. */
788 	u32 openid;
789 
790 	/* GPADL for the channel's ring buffer. */
791 	u32 ringbuffer_gpadlhandle;
792 
793 	/*
794 	 * Starting with win8, this field will be used to specify
795 	 * the target virtual processor on which to deliver the interrupt for
796 	 * the host to guest communication.
797 	 * Prior to win8, incoming channel interrupts would only
798 	 * be delivered on cpu 0. Setting this value to 0 would
799 	 * preserve the earlier behavior.
800 	 */
801 	u32 target_vp;
802 
803 	/*
804 	* The upstream ring buffer begins at offset zero in the memory
805 	* described by RingBufferGpadlHandle. The downstream ring buffer
806 	* follows it at this offset (in pages).
807 	*/
808 	u32 downstream_ringbuffer_pageoffset;
809 
810 	/* User-specific data to be passed along to the server endpoint. */
811 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
812 } __packed;
813 
814 /* Open Channel Result parameters */
815 struct vmbus_channel_open_result {
816 	struct vmbus_channel_message_header header;
817 	u32 child_relid;
818 	u32 openid;
819 	u32 status;
820 } __packed;
821 
822 /* Close channel parameters; */
823 struct vmbus_channel_close_channel {
824 	struct vmbus_channel_message_header header;
825 	u32 child_relid;
826 } __packed;
827 
828 /* Channel Message GPADL */
829 #define GPADL_TYPE_RING_BUFFER		1
830 #define GPADL_TYPE_SERVER_SAVE_AREA	2
831 #define GPADL_TYPE_TRANSACTION		8
832 
833 /*
834  * The number of PFNs in a GPADL message is defined by the number of
835  * pages that would be spanned by ByteCount and ByteOffset.  If the
836  * implied number of PFNs won't fit in this packet, there will be a
837  * follow-up packet that contains more.
838  */
839 struct vmbus_channel_gpadl_header {
840 	struct vmbus_channel_message_header header;
841 	u32 child_relid;
842 	u32 gpadl;
843 	u16 range_buflen;
844 	u16 rangecount;
845 	struct gpa_range range[0];
846 } __packed;
847 
848 /* This is the followup packet that contains more PFNs. */
849 struct vmbus_channel_gpadl_body {
850 	struct vmbus_channel_message_header header;
851 	u32 msgnumber;
852 	u32 gpadl;
853 	u64 pfn[0];
854 } __packed;
855 
856 struct vmbus_channel_gpadl_created {
857 	struct vmbus_channel_message_header header;
858 	u32 child_relid;
859 	u32 gpadl;
860 	u32 creation_status;
861 } __packed;
862 
863 struct vmbus_channel_gpadl_teardown {
864 	struct vmbus_channel_message_header header;
865 	u32 child_relid;
866 	u32 gpadl;
867 } __packed;
868 
869 struct vmbus_channel_gpadl_torndown {
870 	struct vmbus_channel_message_header header;
871 	u32 gpadl;
872 } __packed;
873 
874 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
875 struct vmbus_channel_view_range_add {
876 	struct vmbus_channel_message_header header;
877 	PHYSICAL_ADDRESS viewrange_base;
878 	u64 viewrange_length;
879 	u32 child_relid;
880 } __packed;
881 
882 struct vmbus_channel_view_range_remove {
883 	struct vmbus_channel_message_header header;
884 	PHYSICAL_ADDRESS viewrange_base;
885 	u32 child_relid;
886 } __packed;
887 #endif
888 
889 struct vmbus_channel_relid_released {
890 	struct vmbus_channel_message_header header;
891 	u32 child_relid;
892 } __packed;
893 
894 struct vmbus_channel_initiate_contact {
895 	struct vmbus_channel_message_header header;
896 	u32 vmbus_version_requested;
897 	u32 padding2;
898 	u64 interrupt_page;
899 	u64 monitor_page1;
900 	u64 monitor_page2;
901 } __packed;
902 
903 struct vmbus_channel_version_response {
904 	struct vmbus_channel_message_header header;
905 	u8 version_supported;
906 } __packed;
907 
908 enum vmbus_channel_state {
909 	CHANNEL_OFFER_STATE,
910 	CHANNEL_OPENING_STATE,
911 	CHANNEL_OPEN_STATE,
912 };
913 
914 struct vmbus_channel_debug_info {
915 	u32 relid;
916 	enum vmbus_channel_state state;
917 	uuid_le interfacetype;
918 	uuid_le interface_instance;
919 	u32 monitorid;
920 	u32 servermonitor_pending;
921 	u32 servermonitor_latency;
922 	u32 servermonitor_connectionid;
923 	u32 clientmonitor_pending;
924 	u32 clientmonitor_latency;
925 	u32 clientmonitor_connectionid;
926 
927 	struct hv_ring_buffer_debug_info inbound;
928 	struct hv_ring_buffer_debug_info outbound;
929 };
930 
931 /*
932  * Represents each channel msg on the vmbus connection This is a
933  * variable-size data structure depending on the msg type itself
934  */
935 struct vmbus_channel_msginfo {
936 	/* Bookkeeping stuff */
937 	struct list_head msglistentry;
938 
939 	/* So far, this is only used to handle gpadl body message */
940 	struct list_head submsglist;
941 
942 	/* Synchronize the request/response if needed */
943 	struct completion  waitevent;
944 	union {
945 		struct vmbus_channel_version_supported version_supported;
946 		struct vmbus_channel_open_result open_result;
947 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
948 		struct vmbus_channel_gpadl_created gpadl_created;
949 		struct vmbus_channel_version_response version_response;
950 	} response;
951 
952 	u32 msgsize;
953 	/*
954 	 * The channel message that goes out on the "wire".
955 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
956 	 */
957 	unsigned char msg[0];
958 };
959 
960 struct vmbus_close_msg {
961 	struct vmbus_channel_msginfo info;
962 	struct vmbus_channel_close_channel msg;
963 };
964 
965 /* Define connection identifier type. */
966 union hv_connection_id {
967 	u32 asu32;
968 	struct {
969 		u32 id:24;
970 		u32 reserved:8;
971 	} u;
972 };
973 
974 /* Definition of the hv_signal_event hypercall input structure. */
975 struct hv_input_signal_event {
976 	union hv_connection_id connectionid;
977 	u16 flag_number;
978 	u16 rsvdz;
979 };
980 
981 struct hv_input_signal_event_buffer {
982 	u64 align8;
983 	struct hv_input_signal_event event;
984 };
985 
986 struct vmbus_channel {
987 	struct list_head listentry;
988 
989 	struct hv_device *device_obj;
990 
991 	struct work_struct work;
992 
993 	enum vmbus_channel_state state;
994 
995 	struct vmbus_channel_offer_channel offermsg;
996 	/*
997 	 * These are based on the OfferMsg.MonitorId.
998 	 * Save it here for easy access.
999 	 */
1000 	u8 monitor_grp;
1001 	u8 monitor_bit;
1002 
1003 	u32 ringbuffer_gpadlhandle;
1004 
1005 	/* Allocated memory for ring buffer */
1006 	void *ringbuffer_pages;
1007 	u32 ringbuffer_pagecount;
1008 	struct hv_ring_buffer_info outbound;	/* send to parent */
1009 	struct hv_ring_buffer_info inbound;	/* receive from parent */
1010 	spinlock_t inbound_lock;
1011 	struct workqueue_struct *controlwq;
1012 
1013 	struct vmbus_close_msg close_msg;
1014 
1015 	/* Channel callback are invoked in this workqueue context */
1016 	/* HANDLE dataWorkQueue; */
1017 
1018 	void (*onchannel_callback)(void *context);
1019 	void *channel_callback_context;
1020 
1021 	/*
1022 	 * A channel can be marked for efficient (batched)
1023 	 * reading:
1024 	 * If batched_reading is set to "true", we read until the
1025 	 * channel is empty and hold off interrupts from the host
1026 	 * during the entire read process.
1027 	 * If batched_reading is set to "false", the client is not
1028 	 * going to perform batched reading.
1029 	 *
1030 	 * By default we will enable batched reading; specific
1031 	 * drivers that don't want this behavior can turn it off.
1032 	 */
1033 
1034 	bool batched_reading;
1035 
1036 	bool is_dedicated_interrupt;
1037 	struct hv_input_signal_event_buffer sig_buf;
1038 	struct hv_input_signal_event *sig_event;
1039 
1040 	/*
1041 	 * Starting with win8, this field will be used to specify
1042 	 * the target virtual processor on which to deliver the interrupt for
1043 	 * the host to guest communication.
1044 	 * Prior to win8, incoming channel interrupts would only
1045 	 * be delivered on cpu 0. Setting this value to 0 would
1046 	 * preserve the earlier behavior.
1047 	 */
1048 	u32 target_vp;
1049 };
1050 
set_channel_read_state(struct vmbus_channel * c,bool state)1051 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1052 {
1053 	c->batched_reading = state;
1054 }
1055 
1056 void vmbus_onmessage(void *context);
1057 
1058 int vmbus_request_offers(void);
1059 
1060 /* The format must be the same as struct vmdata_gpa_direct */
1061 struct vmbus_channel_packet_page_buffer {
1062 	u16 type;
1063 	u16 dataoffset8;
1064 	u16 length8;
1065 	u16 flags;
1066 	u64 transactionid;
1067 	u32 reserved;
1068 	u32 rangecount;
1069 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1070 } __packed;
1071 
1072 /* The format must be the same as struct vmdata_gpa_direct */
1073 struct vmbus_channel_packet_multipage_buffer {
1074 	u16 type;
1075 	u16 dataoffset8;
1076 	u16 length8;
1077 	u16 flags;
1078 	u64 transactionid;
1079 	u32 reserved;
1080 	u32 rangecount;		/* Always 1 in this case */
1081 	struct hv_multipage_buffer range;
1082 } __packed;
1083 
1084 
1085 extern int vmbus_open(struct vmbus_channel *channel,
1086 			    u32 send_ringbuffersize,
1087 			    u32 recv_ringbuffersize,
1088 			    void *userdata,
1089 			    u32 userdatalen,
1090 			    void(*onchannel_callback)(void *context),
1091 			    void *context);
1092 
1093 extern void vmbus_close(struct vmbus_channel *channel);
1094 
1095 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1096 				  const void *buffer,
1097 				  u32 bufferLen,
1098 				  u64 requestid,
1099 				  enum vmbus_packet_type type,
1100 				  u32 flags);
1101 
1102 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1103 					    struct hv_page_buffer pagebuffers[],
1104 					    u32 pagecount,
1105 					    void *buffer,
1106 					    u32 bufferlen,
1107 					    u64 requestid);
1108 
1109 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1110 					struct hv_multipage_buffer *mpb,
1111 					void *buffer,
1112 					u32 bufferlen,
1113 					u64 requestid);
1114 
1115 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1116 				      void *kbuffer,
1117 				      u32 size,
1118 				      u32 *gpadl_handle);
1119 
1120 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1121 				     u32 gpadl_handle);
1122 
1123 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1124 				  void *buffer,
1125 				  u32 bufferlen,
1126 				  u32 *buffer_actual_len,
1127 				  u64 *requestid);
1128 
1129 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1130 				     void *buffer,
1131 				     u32 bufferlen,
1132 				     u32 *buffer_actual_len,
1133 				     u64 *requestid);
1134 
1135 
1136 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1137 				     struct vmbus_channel_debug_info *debug);
1138 
1139 extern void vmbus_ontimer(unsigned long data);
1140 
1141 struct hv_dev_port_info {
1142 	u32 int_mask;
1143 	u32 read_idx;
1144 	u32 write_idx;
1145 	u32 bytes_avail_toread;
1146 	u32 bytes_avail_towrite;
1147 };
1148 
1149 /* Base driver object */
1150 struct hv_driver {
1151 	const char *name;
1152 
1153 	/* the device type supported by this driver */
1154 	uuid_le dev_type;
1155 	const struct hv_vmbus_device_id *id_table;
1156 
1157 	struct device_driver driver;
1158 
1159 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1160 	int (*remove)(struct hv_device *);
1161 	void (*shutdown)(struct hv_device *);
1162 
1163 };
1164 
1165 /* Base device object */
1166 struct hv_device {
1167 	/* the device type id of this device */
1168 	uuid_le dev_type;
1169 
1170 	/* the device instance id of this device */
1171 	uuid_le dev_instance;
1172 
1173 	struct device device;
1174 
1175 	struct vmbus_channel *channel;
1176 };
1177 
1178 
device_to_hv_device(struct device * d)1179 static inline struct hv_device *device_to_hv_device(struct device *d)
1180 {
1181 	return container_of(d, struct hv_device, device);
1182 }
1183 
drv_to_hv_drv(struct device_driver * d)1184 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1185 {
1186 	return container_of(d, struct hv_driver, driver);
1187 }
1188 
hv_set_drvdata(struct hv_device * dev,void * data)1189 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1190 {
1191 	dev_set_drvdata(&dev->device, data);
1192 }
1193 
hv_get_drvdata(struct hv_device * dev)1194 static inline void *hv_get_drvdata(struct hv_device *dev)
1195 {
1196 	return dev_get_drvdata(&dev->device);
1197 }
1198 
1199 /* Vmbus interface */
1200 #define vmbus_driver_register(driver)	\
1201 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1202 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1203 					 struct module *owner,
1204 					 const char *mod_name);
1205 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1206 
1207 /**
1208  * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1209  *
1210  * This macro is used to create a struct hv_vmbus_device_id that matches a
1211  * specific device.
1212  */
1213 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7,	\
1214 		     g8, g9, ga, gb, gc, gd, ge, gf)	\
1215 	.guid = { g0, g1, g2, g3, g4, g5, g6, g7,	\
1216 		  g8, g9, ga, gb, gc, gd, ge, gf },
1217 
1218 /*
1219  * GUID definitions of various offer types - services offered to the guest.
1220  */
1221 
1222 /*
1223  * Network GUID
1224  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1225  */
1226 #define HV_NIC_GUID \
1227 	.guid = { \
1228 			0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1229 			0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1230 		}
1231 
1232 /*
1233  * IDE GUID
1234  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1235  */
1236 #define HV_IDE_GUID \
1237 	.guid = { \
1238 			0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1239 			0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1240 		}
1241 
1242 /*
1243  * SCSI GUID
1244  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1245  */
1246 #define HV_SCSI_GUID \
1247 	.guid = { \
1248 			0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1249 			0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1250 		}
1251 
1252 /*
1253  * Shutdown GUID
1254  * {0e0b6031-5213-4934-818b-38d90ced39db}
1255  */
1256 #define HV_SHUTDOWN_GUID \
1257 	.guid = { \
1258 			0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1259 			0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1260 		}
1261 
1262 /*
1263  * Time Synch GUID
1264  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1265  */
1266 #define HV_TS_GUID \
1267 	.guid = { \
1268 			0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1269 			0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1270 		}
1271 
1272 /*
1273  * Heartbeat GUID
1274  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1275  */
1276 #define HV_HEART_BEAT_GUID \
1277 	.guid = { \
1278 			0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1279 			0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1280 		}
1281 
1282 /*
1283  * KVP GUID
1284  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1285  */
1286 #define HV_KVP_GUID \
1287 	.guid = { \
1288 			0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1289 			0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3,  0xe6 \
1290 		}
1291 
1292 /*
1293  * Dynamic memory GUID
1294  * {525074dc-8985-46e2-8057-a307dc18a502}
1295  */
1296 #define HV_DM_GUID \
1297 	.guid = { \
1298 			0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1299 			0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1300 		}
1301 
1302 /*
1303  * Mouse GUID
1304  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1305  */
1306 #define HV_MOUSE_GUID \
1307 	.guid = { \
1308 			0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1309 			0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1310 		}
1311 
1312 /*
1313  * VSS (Backup/Restore) GUID
1314  */
1315 #define HV_VSS_GUID \
1316 	.guid = { \
1317 			0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1318 			0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4,  0x40 \
1319 		}
1320 /*
1321  * Synthetic Video GUID
1322  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1323  */
1324 #define HV_SYNTHVID_GUID \
1325 	.guid = { \
1326 			0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1327 			0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1328 		}
1329 
1330 
1331 /*
1332  * Common header for Hyper-V ICs
1333  */
1334 
1335 #define ICMSGTYPE_NEGOTIATE		0
1336 #define ICMSGTYPE_HEARTBEAT		1
1337 #define ICMSGTYPE_KVPEXCHANGE		2
1338 #define ICMSGTYPE_SHUTDOWN		3
1339 #define ICMSGTYPE_TIMESYNC		4
1340 #define ICMSGTYPE_VSS			5
1341 
1342 #define ICMSGHDRFLAG_TRANSACTION	1
1343 #define ICMSGHDRFLAG_REQUEST		2
1344 #define ICMSGHDRFLAG_RESPONSE		4
1345 
1346 
1347 /*
1348  * While we want to handle util services as regular devices,
1349  * there is only one instance of each of these services; so
1350  * we statically allocate the service specific state.
1351  */
1352 
1353 struct hv_util_service {
1354 	u8 *recv_buffer;
1355 	void (*util_cb)(void *);
1356 	int (*util_init)(struct hv_util_service *);
1357 	void (*util_deinit)(void);
1358 };
1359 
1360 struct vmbuspipe_hdr {
1361 	u32 flags;
1362 	u32 msgsize;
1363 } __packed;
1364 
1365 struct ic_version {
1366 	u16 major;
1367 	u16 minor;
1368 } __packed;
1369 
1370 struct icmsg_hdr {
1371 	struct ic_version icverframe;
1372 	u16 icmsgtype;
1373 	struct ic_version icvermsg;
1374 	u16 icmsgsize;
1375 	u32 status;
1376 	u8 ictransaction_id;
1377 	u8 icflags;
1378 	u8 reserved[2];
1379 } __packed;
1380 
1381 struct icmsg_negotiate {
1382 	u16 icframe_vercnt;
1383 	u16 icmsg_vercnt;
1384 	u32 reserved;
1385 	struct ic_version icversion_data[1]; /* any size array */
1386 } __packed;
1387 
1388 struct shutdown_msg_data {
1389 	u32 reason_code;
1390 	u32 timeout_seconds;
1391 	u32 flags;
1392 	u8  display_message[2048];
1393 } __packed;
1394 
1395 struct heartbeat_msg_data {
1396 	u64 seq_num;
1397 	u32 reserved[8];
1398 } __packed;
1399 
1400 /* Time Sync IC defs */
1401 #define ICTIMESYNCFLAG_PROBE	0
1402 #define ICTIMESYNCFLAG_SYNC	1
1403 #define ICTIMESYNCFLAG_SAMPLE	2
1404 
1405 #ifdef __x86_64__
1406 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1407 #else
1408 #define WLTIMEDELTA	116444736000000000LL
1409 #endif
1410 
1411 struct ictimesync_data {
1412 	u64 parenttime;
1413 	u64 childtime;
1414 	u64 roundtriptime;
1415 	u8 flags;
1416 } __packed;
1417 
1418 struct hyperv_service_callback {
1419 	u8 msg_type;
1420 	char *log_msg;
1421 	uuid_le data;
1422 	struct vmbus_channel *channel;
1423 	void (*callback) (void *context);
1424 };
1425 
1426 #define MAX_SRV_VER	0x7ffffff
1427 extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1428 					struct icmsg_negotiate *, u8 *, int,
1429 					int);
1430 
1431 int hv_kvp_init(struct hv_util_service *);
1432 void hv_kvp_deinit(void);
1433 void hv_kvp_onchannelcallback(void *);
1434 
1435 int hv_vss_init(struct hv_util_service *);
1436 void hv_vss_deinit(void);
1437 void hv_vss_onchannelcallback(void *);
1438 
1439 /*
1440  * Negotiated version with the Host.
1441  */
1442 
1443 extern __u32 vmbus_proto_version;
1444 
1445 #endif /* __KERNEL__ */
1446 #endif /* _HYPERV_H */
1447