1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <linux/types.h>
29
30
31 /*
32 * Implementation of host controlled snapshot of the guest.
33 */
34
35 #define VSS_OP_REGISTER 128
36
37 enum hv_vss_op {
38 VSS_OP_CREATE = 0,
39 VSS_OP_DELETE,
40 VSS_OP_HOT_BACKUP,
41 VSS_OP_GET_DM_INFO,
42 VSS_OP_BU_COMPLETE,
43 /*
44 * Following operations are only supported with IC version >= 5.0
45 */
46 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
47 VSS_OP_THAW, /* Unfreeze the file systems */
48 VSS_OP_AUTO_RECOVER,
49 VSS_OP_COUNT /* Number of operations, must be last */
50 };
51
52
53 /*
54 * Header for all VSS messages.
55 */
56 struct hv_vss_hdr {
57 __u8 operation;
58 __u8 reserved[7];
59 } __attribute__((packed));
60
61
62 /*
63 * Flag values for the hv_vss_check_feature. Linux supports only
64 * one value.
65 */
66 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
67
68 struct hv_vss_check_feature {
69 __u32 flags;
70 } __attribute__((packed));
71
72 struct hv_vss_check_dm_info {
73 __u32 flags;
74 } __attribute__((packed));
75
76 struct hv_vss_msg {
77 union {
78 struct hv_vss_hdr vss_hdr;
79 int error;
80 };
81 union {
82 struct hv_vss_check_feature vss_cf;
83 struct hv_vss_check_dm_info dm_info;
84 };
85 } __attribute__((packed));
86
87 /*
88 * An implementation of HyperV key value pair (KVP) functionality for Linux.
89 *
90 *
91 * Copyright (C) 2010, Novell, Inc.
92 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
93 *
94 */
95
96 /*
97 * Maximum value size - used for both key names and value data, and includes
98 * any applicable NULL terminators.
99 *
100 * Note: This limit is somewhat arbitrary, but falls easily within what is
101 * supported for all native guests (back to Win 2000) and what is reasonable
102 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
103 * limited to 255 character key names.
104 *
105 * MSDN recommends not storing data values larger than 2048 bytes in the
106 * registry.
107 *
108 * Note: This value is used in defining the KVP exchange message - this value
109 * cannot be modified without affecting the message size and compatibility.
110 */
111
112 /*
113 * bytes, including any null terminators
114 */
115 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
116
117
118 /*
119 * Maximum key size - the registry limit for the length of an entry name
120 * is 256 characters, including the null terminator
121 */
122
123 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
124
125 /*
126 * In Linux, we implement the KVP functionality in two components:
127 * 1) The kernel component which is packaged as part of the hv_utils driver
128 * is responsible for communicating with the host and responsible for
129 * implementing the host/guest protocol. 2) A user level daemon that is
130 * responsible for data gathering.
131 *
132 * Host/Guest Protocol: The host iterates over an index and expects the guest
133 * to assign a key name to the index and also return the value corresponding to
134 * the key. The host will have atmost one KVP transaction outstanding at any
135 * given point in time. The host side iteration stops when the guest returns
136 * an error. Microsoft has specified the following mapping of key names to
137 * host specified index:
138 *
139 * Index Key Name
140 * 0 FullyQualifiedDomainName
141 * 1 IntegrationServicesVersion
142 * 2 NetworkAddressIPv4
143 * 3 NetworkAddressIPv6
144 * 4 OSBuildNumber
145 * 5 OSName
146 * 6 OSMajorVersion
147 * 7 OSMinorVersion
148 * 8 OSVersion
149 * 9 ProcessorArchitecture
150 *
151 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
152 *
153 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
154 * data gathering functionality in a user mode daemon. The user level daemon
155 * is also responsible for binding the key name to the index as well. The
156 * kernel and user-level daemon communicate using a connector channel.
157 *
158 * The user mode component first registers with the
159 * the kernel component. Subsequently, the kernel component requests, data
160 * for the specified keys. In response to this message the user mode component
161 * fills in the value corresponding to the specified key. We overload the
162 * sequence field in the cn_msg header to define our KVP message types.
163 *
164 *
165 * The kernel component simply acts as a conduit for communication between the
166 * Windows host and the user-level daemon. The kernel component passes up the
167 * index received from the Host to the user-level daemon. If the index is
168 * valid (supported), the corresponding key as well as its
169 * value (both are strings) is returned. If the index is invalid
170 * (not supported), a NULL key string is returned.
171 */
172
173
174 /*
175 * Registry value types.
176 */
177
178 #define REG_SZ 1
179 #define REG_U32 4
180 #define REG_U64 8
181
182 /*
183 * As we look at expanding the KVP functionality to include
184 * IP injection functionality, we need to maintain binary
185 * compatibility with older daemons.
186 *
187 * The KVP opcodes are defined by the host and it was unfortunate
188 * that I chose to treat the registration operation as part of the
189 * KVP operations defined by the host.
190 * Here is the level of compatibility
191 * (between the user level daemon and the kernel KVP driver) that we
192 * will implement:
193 *
194 * An older daemon will always be supported on a newer driver.
195 * A given user level daemon will require a minimal version of the
196 * kernel driver.
197 * If we cannot handle the version differences, we will fail gracefully
198 * (this can happen when we have a user level daemon that is more
199 * advanced than the KVP driver.
200 *
201 * We will use values used in this handshake for determining if we have
202 * workable user level daemon and the kernel driver. We begin by taking the
203 * registration opcode out of the KVP opcode namespace. We will however,
204 * maintain compatibility with the existing user-level daemon code.
205 */
206
207 /*
208 * Daemon code not supporting IP injection (legacy daemon).
209 */
210
211 #define KVP_OP_REGISTER 4
212
213 /*
214 * Daemon code supporting IP injection.
215 * The KVP opcode field is used to communicate the
216 * registration information; so define a namespace that
217 * will be distinct from the host defined KVP opcode.
218 */
219
220 #define KVP_OP_REGISTER1 100
221
222 enum hv_kvp_exchg_op {
223 KVP_OP_GET = 0,
224 KVP_OP_SET,
225 KVP_OP_DELETE,
226 KVP_OP_ENUMERATE,
227 KVP_OP_GET_IP_INFO,
228 KVP_OP_SET_IP_INFO,
229 KVP_OP_COUNT /* Number of operations, must be last. */
230 };
231
232 enum hv_kvp_exchg_pool {
233 KVP_POOL_EXTERNAL = 0,
234 KVP_POOL_GUEST,
235 KVP_POOL_AUTO,
236 KVP_POOL_AUTO_EXTERNAL,
237 KVP_POOL_AUTO_INTERNAL,
238 KVP_POOL_COUNT /* Number of pools, must be last. */
239 };
240
241 /*
242 * Some Hyper-V status codes.
243 */
244
245 #define HV_S_OK 0x00000000
246 #define HV_E_FAIL 0x80004005
247 #define HV_S_CONT 0x80070103
248 #define HV_ERROR_NOT_SUPPORTED 0x80070032
249 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
250 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
251 #define HV_INVALIDARG 0x80070057
252 #define HV_GUID_NOTFOUND 0x80041002
253
254 #define ADDR_FAMILY_NONE 0x00
255 #define ADDR_FAMILY_IPV4 0x01
256 #define ADDR_FAMILY_IPV6 0x02
257
258 #define MAX_ADAPTER_ID_SIZE 128
259 #define MAX_IP_ADDR_SIZE 1024
260 #define MAX_GATEWAY_SIZE 512
261
262
263 struct hv_kvp_ipaddr_value {
264 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
265 __u8 addr_family;
266 __u8 dhcp_enabled;
267 __u16 ip_addr[MAX_IP_ADDR_SIZE];
268 __u16 sub_net[MAX_IP_ADDR_SIZE];
269 __u16 gate_way[MAX_GATEWAY_SIZE];
270 __u16 dns_addr[MAX_IP_ADDR_SIZE];
271 } __attribute__((packed));
272
273
274 struct hv_kvp_hdr {
275 __u8 operation;
276 __u8 pool;
277 __u16 pad;
278 } __attribute__((packed));
279
280 struct hv_kvp_exchg_msg_value {
281 __u32 value_type;
282 __u32 key_size;
283 __u32 value_size;
284 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
285 union {
286 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
287 __u32 value_u32;
288 __u64 value_u64;
289 };
290 } __attribute__((packed));
291
292 struct hv_kvp_msg_enumerate {
293 __u32 index;
294 struct hv_kvp_exchg_msg_value data;
295 } __attribute__((packed));
296
297 struct hv_kvp_msg_get {
298 struct hv_kvp_exchg_msg_value data;
299 };
300
301 struct hv_kvp_msg_set {
302 struct hv_kvp_exchg_msg_value data;
303 };
304
305 struct hv_kvp_msg_delete {
306 __u32 key_size;
307 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
308 };
309
310 struct hv_kvp_register {
311 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
312 };
313
314 struct hv_kvp_msg {
315 union {
316 struct hv_kvp_hdr kvp_hdr;
317 int error;
318 };
319 union {
320 struct hv_kvp_msg_get kvp_get;
321 struct hv_kvp_msg_set kvp_set;
322 struct hv_kvp_msg_delete kvp_delete;
323 struct hv_kvp_msg_enumerate kvp_enum_data;
324 struct hv_kvp_ipaddr_value kvp_ip_val;
325 struct hv_kvp_register kvp_register;
326 } body;
327 } __attribute__((packed));
328
329 struct hv_kvp_ip_msg {
330 __u8 operation;
331 __u8 pool;
332 struct hv_kvp_ipaddr_value kvp_ip_val;
333 } __attribute__((packed));
334
335 #ifdef __KERNEL__
336 #include <linux/scatterlist.h>
337 #include <linux/list.h>
338 #include <linux/uuid.h>
339 #include <linux/timer.h>
340 #include <linux/workqueue.h>
341 #include <linux/completion.h>
342 #include <linux/device.h>
343 #include <linux/mod_devicetable.h>
344
345
346 #define MAX_PAGE_BUFFER_COUNT 19
347 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
348
349 #pragma pack(push, 1)
350
351 /* Single-page buffer */
352 struct hv_page_buffer {
353 u32 len;
354 u32 offset;
355 u64 pfn;
356 };
357
358 /* Multiple-page buffer */
359 struct hv_multipage_buffer {
360 /* Length and Offset determines the # of pfns in the array */
361 u32 len;
362 u32 offset;
363 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
364 };
365
366 /* 0x18 includes the proprietary packet header */
367 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
368 (sizeof(struct hv_page_buffer) * \
369 MAX_PAGE_BUFFER_COUNT))
370 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
371 sizeof(struct hv_multipage_buffer))
372
373
374 #pragma pack(pop)
375
376 struct hv_ring_buffer {
377 /* Offset in bytes from the start of ring data below */
378 u32 write_index;
379
380 /* Offset in bytes from the start of ring data below */
381 u32 read_index;
382
383 u32 interrupt_mask;
384
385 /*
386 * Win8 uses some of the reserved bits to implement
387 * interrupt driven flow management. On the send side
388 * we can request that the receiver interrupt the sender
389 * when the ring transitions from being full to being able
390 * to handle a message of size "pending_send_sz".
391 *
392 * Add necessary state for this enhancement.
393 */
394 u32 pending_send_sz;
395
396 u32 reserved1[12];
397
398 union {
399 struct {
400 u32 feat_pending_send_sz:1;
401 };
402 u32 value;
403 } feature_bits;
404
405 /* Pad it to PAGE_SIZE so that data starts on page boundary */
406 u8 reserved2[4028];
407
408 /*
409 * Ring data starts here + RingDataStartOffset
410 * !!! DO NOT place any fields below this !!!
411 */
412 u8 buffer[0];
413 } __packed;
414
415 struct hv_ring_buffer_info {
416 struct hv_ring_buffer *ring_buffer;
417 u32 ring_size; /* Include the shared header */
418 spinlock_t ring_lock;
419
420 u32 ring_datasize; /* < ring_size */
421 u32 ring_data_startoffset;
422 };
423
424 struct hv_ring_buffer_debug_info {
425 u32 current_interrupt_mask;
426 u32 current_read_index;
427 u32 current_write_index;
428 u32 bytes_avail_toread;
429 u32 bytes_avail_towrite;
430 };
431
432
433 /*
434 *
435 * hv_get_ringbuffer_availbytes()
436 *
437 * Get number of bytes available to read and to write to
438 * for the specified ring buffer
439 */
440 static inline void
hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info * rbi,u32 * read,u32 * write)441 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
442 u32 *read, u32 *write)
443 {
444 u32 read_loc, write_loc, dsize;
445
446 smp_read_barrier_depends();
447
448 /* Capture the read/write indices before they changed */
449 read_loc = rbi->ring_buffer->read_index;
450 write_loc = rbi->ring_buffer->write_index;
451 dsize = rbi->ring_datasize;
452
453 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
454 read_loc - write_loc;
455 *read = dsize - *write;
456 }
457
458
459 /*
460 * We use the same version numbering for all Hyper-V modules.
461 *
462 * Definition of versioning is as follows;
463 *
464 * Major Number Changes for these scenarios;
465 * 1. When a new version of Windows Hyper-V
466 * is released.
467 * 2. A Major change has occurred in the
468 * Linux IC's.
469 * (For example the merge for the first time
470 * into the kernel) Every time the Major Number
471 * changes, the Revision number is reset to 0.
472 * Minor Number Changes when new functionality is added
473 * to the Linux IC's that is not a bug fix.
474 *
475 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
476 */
477 #define HV_DRV_VERSION "3.1"
478
479 /*
480 * VMBUS version is 32 bit entity broken up into
481 * two 16 bit quantities: major_number. minor_number.
482 *
483 * 0 . 13 (Windows Server 2008)
484 * 1 . 1 (Windows 7)
485 * 2 . 4 (Windows 8)
486 */
487
488 #define VERSION_WS2008 ((0 << 16) | (13))
489 #define VERSION_WIN7 ((1 << 16) | (1))
490 #define VERSION_WIN8 ((2 << 16) | (4))
491
492 #define VERSION_INVAL -1
493
494 #define VERSION_CURRENT VERSION_WIN8
495
496 /* Make maximum size of pipe payload of 16K */
497 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
498
499 /* Define PipeMode values. */
500 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
501 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
502
503 /* The size of the user defined data buffer for non-pipe offers. */
504 #define MAX_USER_DEFINED_BYTES 120
505
506 /* The size of the user defined data buffer for pipe offers. */
507 #define MAX_PIPE_USER_DEFINED_BYTES 116
508
509 /*
510 * At the center of the Channel Management library is the Channel Offer. This
511 * struct contains the fundamental information about an offer.
512 */
513 struct vmbus_channel_offer {
514 uuid_le if_type;
515 uuid_le if_instance;
516
517 /*
518 * These two fields are not currently used.
519 */
520 u64 reserved1;
521 u64 reserved2;
522
523 u16 chn_flags;
524 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
525
526 union {
527 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
528 struct {
529 unsigned char user_def[MAX_USER_DEFINED_BYTES];
530 } std;
531
532 /*
533 * Pipes:
534 * The following sructure is an integrated pipe protocol, which
535 * is implemented on top of standard user-defined data. Pipe
536 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
537 * use.
538 */
539 struct {
540 u32 pipe_mode;
541 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
542 } pipe;
543 } u;
544 /*
545 * The sub_channel_index is defined in win8.
546 */
547 u16 sub_channel_index;
548 u16 reserved3;
549 } __packed;
550
551 /* Server Flags */
552 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
553 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
554 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
555 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
556 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
557 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
558 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
559
560 struct vmpacket_descriptor {
561 u16 type;
562 u16 offset8;
563 u16 len8;
564 u16 flags;
565 u64 trans_id;
566 } __packed;
567
568 struct vmpacket_header {
569 u32 prev_pkt_start_offset;
570 struct vmpacket_descriptor descriptor;
571 } __packed;
572
573 struct vmtransfer_page_range {
574 u32 byte_count;
575 u32 byte_offset;
576 } __packed;
577
578 struct vmtransfer_page_packet_header {
579 struct vmpacket_descriptor d;
580 u16 xfer_pageset_id;
581 u8 sender_owns_set;
582 u8 reserved;
583 u32 range_cnt;
584 struct vmtransfer_page_range ranges[1];
585 } __packed;
586
587 struct vmgpadl_packet_header {
588 struct vmpacket_descriptor d;
589 u32 gpadl;
590 u32 reserved;
591 } __packed;
592
593 struct vmadd_remove_transfer_page_set {
594 struct vmpacket_descriptor d;
595 u32 gpadl;
596 u16 xfer_pageset_id;
597 u16 reserved;
598 } __packed;
599
600 /*
601 * This structure defines a range in guest physical space that can be made to
602 * look virtually contiguous.
603 */
604 struct gpa_range {
605 u32 byte_count;
606 u32 byte_offset;
607 u64 pfn_array[0];
608 };
609
610 /*
611 * This is the format for an Establish Gpadl packet, which contains a handle by
612 * which this GPADL will be known and a set of GPA ranges associated with it.
613 * This can be converted to a MDL by the guest OS. If there are multiple GPA
614 * ranges, then the resulting MDL will be "chained," representing multiple VA
615 * ranges.
616 */
617 struct vmestablish_gpadl {
618 struct vmpacket_descriptor d;
619 u32 gpadl;
620 u32 range_cnt;
621 struct gpa_range range[1];
622 } __packed;
623
624 /*
625 * This is the format for a Teardown Gpadl packet, which indicates that the
626 * GPADL handle in the Establish Gpadl packet will never be referenced again.
627 */
628 struct vmteardown_gpadl {
629 struct vmpacket_descriptor d;
630 u32 gpadl;
631 u32 reserved; /* for alignment to a 8-byte boundary */
632 } __packed;
633
634 /*
635 * This is the format for a GPA-Direct packet, which contains a set of GPA
636 * ranges, in addition to commands and/or data.
637 */
638 struct vmdata_gpa_direct {
639 struct vmpacket_descriptor d;
640 u32 reserved;
641 u32 range_cnt;
642 struct gpa_range range[1];
643 } __packed;
644
645 /* This is the format for a Additional Data Packet. */
646 struct vmadditional_data {
647 struct vmpacket_descriptor d;
648 u64 total_bytes;
649 u32 offset;
650 u32 byte_cnt;
651 unsigned char data[1];
652 } __packed;
653
654 union vmpacket_largest_possible_header {
655 struct vmpacket_descriptor simple_hdr;
656 struct vmtransfer_page_packet_header xfer_page_hdr;
657 struct vmgpadl_packet_header gpadl_hdr;
658 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
659 struct vmestablish_gpadl establish_gpadl_hdr;
660 struct vmteardown_gpadl teardown_gpadl_hdr;
661 struct vmdata_gpa_direct data_gpa_direct_hdr;
662 };
663
664 #define VMPACKET_DATA_START_ADDRESS(__packet) \
665 (void *)(((unsigned char *)__packet) + \
666 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
667
668 #define VMPACKET_DATA_LENGTH(__packet) \
669 ((((struct vmpacket_descriptor)__packet)->len8 - \
670 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
671
672 #define VMPACKET_TRANSFER_MODE(__packet) \
673 (((struct IMPACT)__packet)->type)
674
675 enum vmbus_packet_type {
676 VM_PKT_INVALID = 0x0,
677 VM_PKT_SYNCH = 0x1,
678 VM_PKT_ADD_XFER_PAGESET = 0x2,
679 VM_PKT_RM_XFER_PAGESET = 0x3,
680 VM_PKT_ESTABLISH_GPADL = 0x4,
681 VM_PKT_TEARDOWN_GPADL = 0x5,
682 VM_PKT_DATA_INBAND = 0x6,
683 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
684 VM_PKT_DATA_USING_GPADL = 0x8,
685 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
686 VM_PKT_CANCEL_REQUEST = 0xa,
687 VM_PKT_COMP = 0xb,
688 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
689 VM_PKT_ADDITIONAL_DATA = 0xd
690 };
691
692 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
693
694
695 /* Version 1 messages */
696 enum vmbus_channel_message_type {
697 CHANNELMSG_INVALID = 0,
698 CHANNELMSG_OFFERCHANNEL = 1,
699 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
700 CHANNELMSG_REQUESTOFFERS = 3,
701 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
702 CHANNELMSG_OPENCHANNEL = 5,
703 CHANNELMSG_OPENCHANNEL_RESULT = 6,
704 CHANNELMSG_CLOSECHANNEL = 7,
705 CHANNELMSG_GPADL_HEADER = 8,
706 CHANNELMSG_GPADL_BODY = 9,
707 CHANNELMSG_GPADL_CREATED = 10,
708 CHANNELMSG_GPADL_TEARDOWN = 11,
709 CHANNELMSG_GPADL_TORNDOWN = 12,
710 CHANNELMSG_RELID_RELEASED = 13,
711 CHANNELMSG_INITIATE_CONTACT = 14,
712 CHANNELMSG_VERSION_RESPONSE = 15,
713 CHANNELMSG_UNLOAD = 16,
714 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
715 CHANNELMSG_VIEWRANGE_ADD = 17,
716 CHANNELMSG_VIEWRANGE_REMOVE = 18,
717 #endif
718 CHANNELMSG_COUNT
719 };
720
721 struct vmbus_channel_message_header {
722 enum vmbus_channel_message_type msgtype;
723 u32 padding;
724 } __packed;
725
726 /* Query VMBus Version parameters */
727 struct vmbus_channel_query_vmbus_version {
728 struct vmbus_channel_message_header header;
729 u32 version;
730 } __packed;
731
732 /* VMBus Version Supported parameters */
733 struct vmbus_channel_version_supported {
734 struct vmbus_channel_message_header header;
735 u8 version_supported;
736 } __packed;
737
738 /* Offer Channel parameters */
739 struct vmbus_channel_offer_channel {
740 struct vmbus_channel_message_header header;
741 struct vmbus_channel_offer offer;
742 u32 child_relid;
743 u8 monitorid;
744 /*
745 * win7 and beyond splits this field into a bit field.
746 */
747 u8 monitor_allocated:1;
748 u8 reserved:7;
749 /*
750 * These are new fields added in win7 and later.
751 * Do not access these fields without checking the
752 * negotiated protocol.
753 *
754 * If "is_dedicated_interrupt" is set, we must not set the
755 * associated bit in the channel bitmap while sending the
756 * interrupt to the host.
757 *
758 * connection_id is to be used in signaling the host.
759 */
760 u16 is_dedicated_interrupt:1;
761 u16 reserved1:15;
762 u32 connection_id;
763 } __packed;
764
765 /* Rescind Offer parameters */
766 struct vmbus_channel_rescind_offer {
767 struct vmbus_channel_message_header header;
768 u32 child_relid;
769 } __packed;
770
771 /*
772 * Request Offer -- no parameters, SynIC message contains the partition ID
773 * Set Snoop -- no parameters, SynIC message contains the partition ID
774 * Clear Snoop -- no parameters, SynIC message contains the partition ID
775 * All Offers Delivered -- no parameters, SynIC message contains the partition
776 * ID
777 * Flush Client -- no parameters, SynIC message contains the partition ID
778 */
779
780 /* Open Channel parameters */
781 struct vmbus_channel_open_channel {
782 struct vmbus_channel_message_header header;
783
784 /* Identifies the specific VMBus channel that is being opened. */
785 u32 child_relid;
786
787 /* ID making a particular open request at a channel offer unique. */
788 u32 openid;
789
790 /* GPADL for the channel's ring buffer. */
791 u32 ringbuffer_gpadlhandle;
792
793 /*
794 * Starting with win8, this field will be used to specify
795 * the target virtual processor on which to deliver the interrupt for
796 * the host to guest communication.
797 * Prior to win8, incoming channel interrupts would only
798 * be delivered on cpu 0. Setting this value to 0 would
799 * preserve the earlier behavior.
800 */
801 u32 target_vp;
802
803 /*
804 * The upstream ring buffer begins at offset zero in the memory
805 * described by RingBufferGpadlHandle. The downstream ring buffer
806 * follows it at this offset (in pages).
807 */
808 u32 downstream_ringbuffer_pageoffset;
809
810 /* User-specific data to be passed along to the server endpoint. */
811 unsigned char userdata[MAX_USER_DEFINED_BYTES];
812 } __packed;
813
814 /* Open Channel Result parameters */
815 struct vmbus_channel_open_result {
816 struct vmbus_channel_message_header header;
817 u32 child_relid;
818 u32 openid;
819 u32 status;
820 } __packed;
821
822 /* Close channel parameters; */
823 struct vmbus_channel_close_channel {
824 struct vmbus_channel_message_header header;
825 u32 child_relid;
826 } __packed;
827
828 /* Channel Message GPADL */
829 #define GPADL_TYPE_RING_BUFFER 1
830 #define GPADL_TYPE_SERVER_SAVE_AREA 2
831 #define GPADL_TYPE_TRANSACTION 8
832
833 /*
834 * The number of PFNs in a GPADL message is defined by the number of
835 * pages that would be spanned by ByteCount and ByteOffset. If the
836 * implied number of PFNs won't fit in this packet, there will be a
837 * follow-up packet that contains more.
838 */
839 struct vmbus_channel_gpadl_header {
840 struct vmbus_channel_message_header header;
841 u32 child_relid;
842 u32 gpadl;
843 u16 range_buflen;
844 u16 rangecount;
845 struct gpa_range range[0];
846 } __packed;
847
848 /* This is the followup packet that contains more PFNs. */
849 struct vmbus_channel_gpadl_body {
850 struct vmbus_channel_message_header header;
851 u32 msgnumber;
852 u32 gpadl;
853 u64 pfn[0];
854 } __packed;
855
856 struct vmbus_channel_gpadl_created {
857 struct vmbus_channel_message_header header;
858 u32 child_relid;
859 u32 gpadl;
860 u32 creation_status;
861 } __packed;
862
863 struct vmbus_channel_gpadl_teardown {
864 struct vmbus_channel_message_header header;
865 u32 child_relid;
866 u32 gpadl;
867 } __packed;
868
869 struct vmbus_channel_gpadl_torndown {
870 struct vmbus_channel_message_header header;
871 u32 gpadl;
872 } __packed;
873
874 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
875 struct vmbus_channel_view_range_add {
876 struct vmbus_channel_message_header header;
877 PHYSICAL_ADDRESS viewrange_base;
878 u64 viewrange_length;
879 u32 child_relid;
880 } __packed;
881
882 struct vmbus_channel_view_range_remove {
883 struct vmbus_channel_message_header header;
884 PHYSICAL_ADDRESS viewrange_base;
885 u32 child_relid;
886 } __packed;
887 #endif
888
889 struct vmbus_channel_relid_released {
890 struct vmbus_channel_message_header header;
891 u32 child_relid;
892 } __packed;
893
894 struct vmbus_channel_initiate_contact {
895 struct vmbus_channel_message_header header;
896 u32 vmbus_version_requested;
897 u32 padding2;
898 u64 interrupt_page;
899 u64 monitor_page1;
900 u64 monitor_page2;
901 } __packed;
902
903 struct vmbus_channel_version_response {
904 struct vmbus_channel_message_header header;
905 u8 version_supported;
906 } __packed;
907
908 enum vmbus_channel_state {
909 CHANNEL_OFFER_STATE,
910 CHANNEL_OPENING_STATE,
911 CHANNEL_OPEN_STATE,
912 };
913
914 struct vmbus_channel_debug_info {
915 u32 relid;
916 enum vmbus_channel_state state;
917 uuid_le interfacetype;
918 uuid_le interface_instance;
919 u32 monitorid;
920 u32 servermonitor_pending;
921 u32 servermonitor_latency;
922 u32 servermonitor_connectionid;
923 u32 clientmonitor_pending;
924 u32 clientmonitor_latency;
925 u32 clientmonitor_connectionid;
926
927 struct hv_ring_buffer_debug_info inbound;
928 struct hv_ring_buffer_debug_info outbound;
929 };
930
931 /*
932 * Represents each channel msg on the vmbus connection This is a
933 * variable-size data structure depending on the msg type itself
934 */
935 struct vmbus_channel_msginfo {
936 /* Bookkeeping stuff */
937 struct list_head msglistentry;
938
939 /* So far, this is only used to handle gpadl body message */
940 struct list_head submsglist;
941
942 /* Synchronize the request/response if needed */
943 struct completion waitevent;
944 union {
945 struct vmbus_channel_version_supported version_supported;
946 struct vmbus_channel_open_result open_result;
947 struct vmbus_channel_gpadl_torndown gpadl_torndown;
948 struct vmbus_channel_gpadl_created gpadl_created;
949 struct vmbus_channel_version_response version_response;
950 } response;
951
952 u32 msgsize;
953 /*
954 * The channel message that goes out on the "wire".
955 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
956 */
957 unsigned char msg[0];
958 };
959
960 struct vmbus_close_msg {
961 struct vmbus_channel_msginfo info;
962 struct vmbus_channel_close_channel msg;
963 };
964
965 /* Define connection identifier type. */
966 union hv_connection_id {
967 u32 asu32;
968 struct {
969 u32 id:24;
970 u32 reserved:8;
971 } u;
972 };
973
974 /* Definition of the hv_signal_event hypercall input structure. */
975 struct hv_input_signal_event {
976 union hv_connection_id connectionid;
977 u16 flag_number;
978 u16 rsvdz;
979 };
980
981 struct hv_input_signal_event_buffer {
982 u64 align8;
983 struct hv_input_signal_event event;
984 };
985
986 struct vmbus_channel {
987 struct list_head listentry;
988
989 struct hv_device *device_obj;
990
991 struct work_struct work;
992
993 enum vmbus_channel_state state;
994
995 struct vmbus_channel_offer_channel offermsg;
996 /*
997 * These are based on the OfferMsg.MonitorId.
998 * Save it here for easy access.
999 */
1000 u8 monitor_grp;
1001 u8 monitor_bit;
1002
1003 u32 ringbuffer_gpadlhandle;
1004
1005 /* Allocated memory for ring buffer */
1006 void *ringbuffer_pages;
1007 u32 ringbuffer_pagecount;
1008 struct hv_ring_buffer_info outbound; /* send to parent */
1009 struct hv_ring_buffer_info inbound; /* receive from parent */
1010 spinlock_t inbound_lock;
1011 struct workqueue_struct *controlwq;
1012
1013 struct vmbus_close_msg close_msg;
1014
1015 /* Channel callback are invoked in this workqueue context */
1016 /* HANDLE dataWorkQueue; */
1017
1018 void (*onchannel_callback)(void *context);
1019 void *channel_callback_context;
1020
1021 /*
1022 * A channel can be marked for efficient (batched)
1023 * reading:
1024 * If batched_reading is set to "true", we read until the
1025 * channel is empty and hold off interrupts from the host
1026 * during the entire read process.
1027 * If batched_reading is set to "false", the client is not
1028 * going to perform batched reading.
1029 *
1030 * By default we will enable batched reading; specific
1031 * drivers that don't want this behavior can turn it off.
1032 */
1033
1034 bool batched_reading;
1035
1036 bool is_dedicated_interrupt;
1037 struct hv_input_signal_event_buffer sig_buf;
1038 struct hv_input_signal_event *sig_event;
1039
1040 /*
1041 * Starting with win8, this field will be used to specify
1042 * the target virtual processor on which to deliver the interrupt for
1043 * the host to guest communication.
1044 * Prior to win8, incoming channel interrupts would only
1045 * be delivered on cpu 0. Setting this value to 0 would
1046 * preserve the earlier behavior.
1047 */
1048 u32 target_vp;
1049 };
1050
set_channel_read_state(struct vmbus_channel * c,bool state)1051 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1052 {
1053 c->batched_reading = state;
1054 }
1055
1056 void vmbus_onmessage(void *context);
1057
1058 int vmbus_request_offers(void);
1059
1060 /* The format must be the same as struct vmdata_gpa_direct */
1061 struct vmbus_channel_packet_page_buffer {
1062 u16 type;
1063 u16 dataoffset8;
1064 u16 length8;
1065 u16 flags;
1066 u64 transactionid;
1067 u32 reserved;
1068 u32 rangecount;
1069 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1070 } __packed;
1071
1072 /* The format must be the same as struct vmdata_gpa_direct */
1073 struct vmbus_channel_packet_multipage_buffer {
1074 u16 type;
1075 u16 dataoffset8;
1076 u16 length8;
1077 u16 flags;
1078 u64 transactionid;
1079 u32 reserved;
1080 u32 rangecount; /* Always 1 in this case */
1081 struct hv_multipage_buffer range;
1082 } __packed;
1083
1084
1085 extern int vmbus_open(struct vmbus_channel *channel,
1086 u32 send_ringbuffersize,
1087 u32 recv_ringbuffersize,
1088 void *userdata,
1089 u32 userdatalen,
1090 void(*onchannel_callback)(void *context),
1091 void *context);
1092
1093 extern void vmbus_close(struct vmbus_channel *channel);
1094
1095 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1096 const void *buffer,
1097 u32 bufferLen,
1098 u64 requestid,
1099 enum vmbus_packet_type type,
1100 u32 flags);
1101
1102 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1103 struct hv_page_buffer pagebuffers[],
1104 u32 pagecount,
1105 void *buffer,
1106 u32 bufferlen,
1107 u64 requestid);
1108
1109 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1110 struct hv_multipage_buffer *mpb,
1111 void *buffer,
1112 u32 bufferlen,
1113 u64 requestid);
1114
1115 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1116 void *kbuffer,
1117 u32 size,
1118 u32 *gpadl_handle);
1119
1120 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1121 u32 gpadl_handle);
1122
1123 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1124 void *buffer,
1125 u32 bufferlen,
1126 u32 *buffer_actual_len,
1127 u64 *requestid);
1128
1129 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1130 void *buffer,
1131 u32 bufferlen,
1132 u32 *buffer_actual_len,
1133 u64 *requestid);
1134
1135
1136 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1137 struct vmbus_channel_debug_info *debug);
1138
1139 extern void vmbus_ontimer(unsigned long data);
1140
1141 struct hv_dev_port_info {
1142 u32 int_mask;
1143 u32 read_idx;
1144 u32 write_idx;
1145 u32 bytes_avail_toread;
1146 u32 bytes_avail_towrite;
1147 };
1148
1149 /* Base driver object */
1150 struct hv_driver {
1151 const char *name;
1152
1153 /* the device type supported by this driver */
1154 uuid_le dev_type;
1155 const struct hv_vmbus_device_id *id_table;
1156
1157 struct device_driver driver;
1158
1159 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1160 int (*remove)(struct hv_device *);
1161 void (*shutdown)(struct hv_device *);
1162
1163 };
1164
1165 /* Base device object */
1166 struct hv_device {
1167 /* the device type id of this device */
1168 uuid_le dev_type;
1169
1170 /* the device instance id of this device */
1171 uuid_le dev_instance;
1172
1173 struct device device;
1174
1175 struct vmbus_channel *channel;
1176 };
1177
1178
device_to_hv_device(struct device * d)1179 static inline struct hv_device *device_to_hv_device(struct device *d)
1180 {
1181 return container_of(d, struct hv_device, device);
1182 }
1183
drv_to_hv_drv(struct device_driver * d)1184 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1185 {
1186 return container_of(d, struct hv_driver, driver);
1187 }
1188
hv_set_drvdata(struct hv_device * dev,void * data)1189 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1190 {
1191 dev_set_drvdata(&dev->device, data);
1192 }
1193
hv_get_drvdata(struct hv_device * dev)1194 static inline void *hv_get_drvdata(struct hv_device *dev)
1195 {
1196 return dev_get_drvdata(&dev->device);
1197 }
1198
1199 /* Vmbus interface */
1200 #define vmbus_driver_register(driver) \
1201 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1202 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1203 struct module *owner,
1204 const char *mod_name);
1205 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1206
1207 /**
1208 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1209 *
1210 * This macro is used to create a struct hv_vmbus_device_id that matches a
1211 * specific device.
1212 */
1213 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1214 g8, g9, ga, gb, gc, gd, ge, gf) \
1215 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1216 g8, g9, ga, gb, gc, gd, ge, gf },
1217
1218 /*
1219 * GUID definitions of various offer types - services offered to the guest.
1220 */
1221
1222 /*
1223 * Network GUID
1224 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1225 */
1226 #define HV_NIC_GUID \
1227 .guid = { \
1228 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1229 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1230 }
1231
1232 /*
1233 * IDE GUID
1234 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1235 */
1236 #define HV_IDE_GUID \
1237 .guid = { \
1238 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1239 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1240 }
1241
1242 /*
1243 * SCSI GUID
1244 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1245 */
1246 #define HV_SCSI_GUID \
1247 .guid = { \
1248 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1249 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1250 }
1251
1252 /*
1253 * Shutdown GUID
1254 * {0e0b6031-5213-4934-818b-38d90ced39db}
1255 */
1256 #define HV_SHUTDOWN_GUID \
1257 .guid = { \
1258 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1259 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1260 }
1261
1262 /*
1263 * Time Synch GUID
1264 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1265 */
1266 #define HV_TS_GUID \
1267 .guid = { \
1268 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1269 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1270 }
1271
1272 /*
1273 * Heartbeat GUID
1274 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1275 */
1276 #define HV_HEART_BEAT_GUID \
1277 .guid = { \
1278 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1279 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1280 }
1281
1282 /*
1283 * KVP GUID
1284 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1285 */
1286 #define HV_KVP_GUID \
1287 .guid = { \
1288 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1289 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \
1290 }
1291
1292 /*
1293 * Dynamic memory GUID
1294 * {525074dc-8985-46e2-8057-a307dc18a502}
1295 */
1296 #define HV_DM_GUID \
1297 .guid = { \
1298 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1299 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1300 }
1301
1302 /*
1303 * Mouse GUID
1304 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1305 */
1306 #define HV_MOUSE_GUID \
1307 .guid = { \
1308 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1309 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1310 }
1311
1312 /*
1313 * VSS (Backup/Restore) GUID
1314 */
1315 #define HV_VSS_GUID \
1316 .guid = { \
1317 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1318 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \
1319 }
1320 /*
1321 * Synthetic Video GUID
1322 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1323 */
1324 #define HV_SYNTHVID_GUID \
1325 .guid = { \
1326 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1327 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1328 }
1329
1330
1331 /*
1332 * Common header for Hyper-V ICs
1333 */
1334
1335 #define ICMSGTYPE_NEGOTIATE 0
1336 #define ICMSGTYPE_HEARTBEAT 1
1337 #define ICMSGTYPE_KVPEXCHANGE 2
1338 #define ICMSGTYPE_SHUTDOWN 3
1339 #define ICMSGTYPE_TIMESYNC 4
1340 #define ICMSGTYPE_VSS 5
1341
1342 #define ICMSGHDRFLAG_TRANSACTION 1
1343 #define ICMSGHDRFLAG_REQUEST 2
1344 #define ICMSGHDRFLAG_RESPONSE 4
1345
1346
1347 /*
1348 * While we want to handle util services as regular devices,
1349 * there is only one instance of each of these services; so
1350 * we statically allocate the service specific state.
1351 */
1352
1353 struct hv_util_service {
1354 u8 *recv_buffer;
1355 void (*util_cb)(void *);
1356 int (*util_init)(struct hv_util_service *);
1357 void (*util_deinit)(void);
1358 };
1359
1360 struct vmbuspipe_hdr {
1361 u32 flags;
1362 u32 msgsize;
1363 } __packed;
1364
1365 struct ic_version {
1366 u16 major;
1367 u16 minor;
1368 } __packed;
1369
1370 struct icmsg_hdr {
1371 struct ic_version icverframe;
1372 u16 icmsgtype;
1373 struct ic_version icvermsg;
1374 u16 icmsgsize;
1375 u32 status;
1376 u8 ictransaction_id;
1377 u8 icflags;
1378 u8 reserved[2];
1379 } __packed;
1380
1381 struct icmsg_negotiate {
1382 u16 icframe_vercnt;
1383 u16 icmsg_vercnt;
1384 u32 reserved;
1385 struct ic_version icversion_data[1]; /* any size array */
1386 } __packed;
1387
1388 struct shutdown_msg_data {
1389 u32 reason_code;
1390 u32 timeout_seconds;
1391 u32 flags;
1392 u8 display_message[2048];
1393 } __packed;
1394
1395 struct heartbeat_msg_data {
1396 u64 seq_num;
1397 u32 reserved[8];
1398 } __packed;
1399
1400 /* Time Sync IC defs */
1401 #define ICTIMESYNCFLAG_PROBE 0
1402 #define ICTIMESYNCFLAG_SYNC 1
1403 #define ICTIMESYNCFLAG_SAMPLE 2
1404
1405 #ifdef __x86_64__
1406 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1407 #else
1408 #define WLTIMEDELTA 116444736000000000LL
1409 #endif
1410
1411 struct ictimesync_data {
1412 u64 parenttime;
1413 u64 childtime;
1414 u64 roundtriptime;
1415 u8 flags;
1416 } __packed;
1417
1418 struct hyperv_service_callback {
1419 u8 msg_type;
1420 char *log_msg;
1421 uuid_le data;
1422 struct vmbus_channel *channel;
1423 void (*callback) (void *context);
1424 };
1425
1426 #define MAX_SRV_VER 0x7ffffff
1427 extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1428 struct icmsg_negotiate *, u8 *, int,
1429 int);
1430
1431 int hv_kvp_init(struct hv_util_service *);
1432 void hv_kvp_deinit(void);
1433 void hv_kvp_onchannelcallback(void *);
1434
1435 int hv_vss_init(struct hv_util_service *);
1436 void hv_vss_deinit(void);
1437 void hv_vss_onchannelcallback(void *);
1438
1439 /*
1440 * Negotiated version with the Host.
1441 */
1442
1443 extern __u32 vmbus_proto_version;
1444
1445 #endif /* __KERNEL__ */
1446 #endif /* _HYPERV_H */
1447