• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
8 	int sched_priority;
9 };
10 
11 #include <asm/param.h>	/* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29 
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43 
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/processor.h>
57 
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65 
66 /*
67  * List of flags we want to share for kernel threads,
68  * if only because they are not used by them anyway.
69  */
70 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71 
72 /*
73  * These are the constant used to fake the fixed-point load-average
74  * counting. Some notes:
75  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
76  *    a load-average precision of 10 bits integer + 11 bits fractional
77  *  - if you want to count load-averages more often, you need more
78  *    precision, or rounding will get you. With 2-second counting freq,
79  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
80  *    11 bit fractions.
81  */
82 extern unsigned long avenrun[];		/* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84 
85 #define FSHIFT		11		/* nr of bits of precision */
86 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
87 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
88 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5		2014		/* 1/exp(5sec/5min) */
90 #define EXP_15		2037		/* 1/exp(5sec/15min) */
91 
92 #define CALC_LOAD(load,exp,n) \
93 	load *= exp; \
94 	load += n*(FIXED_1-exp); \
95 	load >>= FSHIFT;
96 
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105 
106 
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109 
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 	struct task_struct *task;
113 	int from_cpu;
114 	int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117 
118 extern unsigned long get_parent_ip(unsigned long addr);
119 
120 extern void dump_cpu_task(int cpu);
121 
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131 
132 /*
133  * Task state bitmask. NOTE! These bits are also
134  * encoded in fs/proc/array.c: get_task_state().
135  *
136  * We have two separate sets of flags: task->state
137  * is about runnability, while task->exit_state are
138  * about the task exiting. Confusing, but this way
139  * modifying one set can't modify the other one by
140  * mistake.
141  */
142 #define TASK_RUNNING		0
143 #define TASK_INTERRUPTIBLE	1
144 #define TASK_UNINTERRUPTIBLE	2
145 #define __TASK_STOPPED		4
146 #define __TASK_TRACED		8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE		16
149 #define EXIT_DEAD		32
150 /* in tsk->state again */
151 #define TASK_DEAD		64
152 #define TASK_WAKEKILL		128
153 #define TASK_WAKING		256
154 #define TASK_PARKED		512
155 #define TASK_STATE_MAX		1024
156 
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158 
159 extern char ___assert_task_state[1 - 2*!!(
160 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161 
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
166 
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170 
171 /* get_task_state() */
172 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 				 __TASK_TRACED)
175 
176 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task)	((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task)	\
180 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task)	\
182 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 				 (task->flags & PF_FROZEN) == 0)
184 
185 #define __set_task_state(tsk, state_value)		\
186 	do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value)		\
188 	set_mb((tsk)->state, (state_value))
189 
190 /*
191  * set_current_state() includes a barrier so that the write of current->state
192  * is correctly serialised wrt the caller's subsequent test of whether to
193  * actually sleep:
194  *
195  *	set_current_state(TASK_UNINTERRUPTIBLE);
196  *	if (do_i_need_to_sleep())
197  *		schedule();
198  *
199  * If the caller does not need such serialisation then use __set_current_state()
200  */
201 #define __set_current_state(state_value)			\
202 	do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value)		\
204 	set_mb(current->state, (state_value))
205 
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208 
209 #include <linux/spinlock.h>
210 
211 /*
212  * This serializes "schedule()" and also protects
213  * the run-queue from deletions/modifications (but
214  * _adding_ to the beginning of the run-queue has
215  * a separate lock).
216  */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219 
220 struct task_struct;
221 
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225 
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231 
232 extern int runqueue_is_locked(int cpu);
233 
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
nohz_balance_enter_idle(int cpu)239 static inline void nohz_balance_enter_idle(int cpu) { }
set_cpu_sd_state_idle(void)240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242 
243 /*
244  * Only dump TASK_* tasks. (0 for all tasks)
245  */
246 extern void show_state_filter(unsigned long state_filter);
247 
show_state(void)248 static inline void show_state(void)
249 {
250 	show_state_filter(0);
251 }
252 
253 extern void show_regs(struct pt_regs *);
254 
255 /*
256  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257  * task), SP is the stack pointer of the first frame that should be shown in the back
258  * trace (or NULL if the entire call-chain of the task should be shown).
259  */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261 
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264 
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269 
270 extern void sched_show_task(struct task_struct *p);
271 
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 				  void __user *buffer,
278 				  size_t *lenp, loff_t *ppos);
279 extern unsigned int  softlockup_panic;
280 void lockup_detector_init(void);
281 #else
touch_softlockup_watchdog(void)282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
touch_softlockup_watchdog_sync(void)285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
touch_all_softlockup_watchdogs(void)288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
lockup_detector_init(void)291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295 
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched		__attribute__((__section__(".sched.text")))
298 
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301 
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304 
305 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312 
313 struct nsproxy;
314 struct user_namespace;
315 
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 		       unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 			  unsigned long len, unsigned long pgoff,
324 			  unsigned long flags);
325 extern void arch_unmap_area(struct mm_struct *, unsigned long);
326 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
327 #else
arch_pick_mmap_layout(struct mm_struct * mm)328 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
329 #endif
330 
331 
332 extern void set_dumpable(struct mm_struct *mm, int value);
333 extern int get_dumpable(struct mm_struct *mm);
334 
335 /* mm flags */
336 /* dumpable bits */
337 #define MMF_DUMPABLE      0  /* core dump is permitted */
338 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
339 
340 #define MMF_DUMPABLE_BITS 2
341 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
342 
343 /* coredump filter bits */
344 #define MMF_DUMP_ANON_PRIVATE	2
345 #define MMF_DUMP_ANON_SHARED	3
346 #define MMF_DUMP_MAPPED_PRIVATE	4
347 #define MMF_DUMP_MAPPED_SHARED	5
348 #define MMF_DUMP_ELF_HEADERS	6
349 #define MMF_DUMP_HUGETLB_PRIVATE 7
350 #define MMF_DUMP_HUGETLB_SHARED  8
351 
352 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
353 #define MMF_DUMP_FILTER_BITS	7
354 #define MMF_DUMP_FILTER_MASK \
355 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
356 #define MMF_DUMP_FILTER_DEFAULT \
357 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
358 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
359 
360 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
361 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
362 #else
363 # define MMF_DUMP_MASK_DEFAULT_ELF	0
364 #endif
365 					/* leave room for more dump flags */
366 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
367 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
368 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
369 
370 #define MMF_HAS_UPROBES		19	/* has uprobes */
371 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
372 
373 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
374 
375 struct sighand_struct {
376 	atomic_t		count;
377 	struct k_sigaction	action[_NSIG];
378 	spinlock_t		siglock;
379 	wait_queue_head_t	signalfd_wqh;
380 };
381 
382 struct pacct_struct {
383 	int			ac_flag;
384 	long			ac_exitcode;
385 	unsigned long		ac_mem;
386 	cputime_t		ac_utime, ac_stime;
387 	unsigned long		ac_minflt, ac_majflt;
388 };
389 
390 struct cpu_itimer {
391 	cputime_t expires;
392 	cputime_t incr;
393 	u32 error;
394 	u32 incr_error;
395 };
396 
397 /**
398  * struct cputime - snaphsot of system and user cputime
399  * @utime: time spent in user mode
400  * @stime: time spent in system mode
401  *
402  * Gathers a generic snapshot of user and system time.
403  */
404 struct cputime {
405 	cputime_t utime;
406 	cputime_t stime;
407 };
408 
409 /**
410  * struct task_cputime - collected CPU time counts
411  * @utime:		time spent in user mode, in &cputime_t units
412  * @stime:		time spent in kernel mode, in &cputime_t units
413  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
414  *
415  * This is an extension of struct cputime that includes the total runtime
416  * spent by the task from the scheduler point of view.
417  *
418  * As a result, this structure groups together three kinds of CPU time
419  * that are tracked for threads and thread groups.  Most things considering
420  * CPU time want to group these counts together and treat all three
421  * of them in parallel.
422  */
423 struct task_cputime {
424 	cputime_t utime;
425 	cputime_t stime;
426 	unsigned long long sum_exec_runtime;
427 };
428 /* Alternate field names when used to cache expirations. */
429 #define prof_exp	stime
430 #define virt_exp	utime
431 #define sched_exp	sum_exec_runtime
432 
433 #define INIT_CPUTIME	\
434 	(struct task_cputime) {					\
435 		.utime = 0,					\
436 		.stime = 0,					\
437 		.sum_exec_runtime = 0,				\
438 	}
439 
440 /*
441  * Disable preemption until the scheduler is running.
442  * Reset by start_kernel()->sched_init()->init_idle().
443  *
444  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
445  * before the scheduler is active -- see should_resched().
446  */
447 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
448 
449 /**
450  * struct thread_group_cputimer - thread group interval timer counts
451  * @cputime:		thread group interval timers.
452  * @running:		non-zero when there are timers running and
453  * 			@cputime receives updates.
454  * @lock:		lock for fields in this struct.
455  *
456  * This structure contains the version of task_cputime, above, that is
457  * used for thread group CPU timer calculations.
458  */
459 struct thread_group_cputimer {
460 	struct task_cputime cputime;
461 	int running;
462 	raw_spinlock_t lock;
463 };
464 
465 #include <linux/rwsem.h>
466 struct autogroup;
467 
468 /*
469  * NOTE! "signal_struct" does not have its own
470  * locking, because a shared signal_struct always
471  * implies a shared sighand_struct, so locking
472  * sighand_struct is always a proper superset of
473  * the locking of signal_struct.
474  */
475 struct signal_struct {
476 	atomic_t		sigcnt;
477 	atomic_t		live;
478 	int			nr_threads;
479 	struct list_head	thread_head;
480 
481 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
482 
483 	/* current thread group signal load-balancing target: */
484 	struct task_struct	*curr_target;
485 
486 	/* shared signal handling: */
487 	struct sigpending	shared_pending;
488 
489 	/* thread group exit support */
490 	int			group_exit_code;
491 	/* overloaded:
492 	 * - notify group_exit_task when ->count is equal to notify_count
493 	 * - everyone except group_exit_task is stopped during signal delivery
494 	 *   of fatal signals, group_exit_task processes the signal.
495 	 */
496 	int			notify_count;
497 	struct task_struct	*group_exit_task;
498 
499 	/* thread group stop support, overloads group_exit_code too */
500 	int			group_stop_count;
501 	unsigned int		flags; /* see SIGNAL_* flags below */
502 
503 	/*
504 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
505 	 * manager, to re-parent orphan (double-forking) child processes
506 	 * to this process instead of 'init'. The service manager is
507 	 * able to receive SIGCHLD signals and is able to investigate
508 	 * the process until it calls wait(). All children of this
509 	 * process will inherit a flag if they should look for a
510 	 * child_subreaper process at exit.
511 	 */
512 	unsigned int		is_child_subreaper:1;
513 	unsigned int		has_child_subreaper:1;
514 
515 	/* POSIX.1b Interval Timers */
516 	int			posix_timer_id;
517 	struct list_head	posix_timers;
518 
519 	/* ITIMER_REAL timer for the process */
520 	struct hrtimer real_timer;
521 	struct pid *leader_pid;
522 	ktime_t it_real_incr;
523 
524 	/*
525 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
526 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
527 	 * values are defined to 0 and 1 respectively
528 	 */
529 	struct cpu_itimer it[2];
530 
531 	/*
532 	 * Thread group totals for process CPU timers.
533 	 * See thread_group_cputimer(), et al, for details.
534 	 */
535 	struct thread_group_cputimer cputimer;
536 
537 	/* Earliest-expiration cache. */
538 	struct task_cputime cputime_expires;
539 
540 	struct list_head cpu_timers[3];
541 
542 	struct pid *tty_old_pgrp;
543 
544 	/* boolean value for session group leader */
545 	int leader;
546 
547 	struct tty_struct *tty; /* NULL if no tty */
548 
549 #ifdef CONFIG_SCHED_AUTOGROUP
550 	struct autogroup *autogroup;
551 #endif
552 	/*
553 	 * Cumulative resource counters for dead threads in the group,
554 	 * and for reaped dead child processes forked by this group.
555 	 * Live threads maintain their own counters and add to these
556 	 * in __exit_signal, except for the group leader.
557 	 */
558 	cputime_t utime, stime, cutime, cstime;
559 	cputime_t gtime;
560 	cputime_t cgtime;
561 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
562 	struct cputime prev_cputime;
563 #endif
564 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
565 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
566 	unsigned long inblock, oublock, cinblock, coublock;
567 	unsigned long maxrss, cmaxrss;
568 	struct task_io_accounting ioac;
569 
570 	/*
571 	 * Cumulative ns of schedule CPU time fo dead threads in the
572 	 * group, not including a zombie group leader, (This only differs
573 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
574 	 * other than jiffies.)
575 	 */
576 	unsigned long long sum_sched_runtime;
577 
578 	/*
579 	 * We don't bother to synchronize most readers of this at all,
580 	 * because there is no reader checking a limit that actually needs
581 	 * to get both rlim_cur and rlim_max atomically, and either one
582 	 * alone is a single word that can safely be read normally.
583 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
584 	 * protect this instead of the siglock, because they really
585 	 * have no need to disable irqs.
586 	 */
587 	struct rlimit rlim[RLIM_NLIMITS];
588 
589 #ifdef CONFIG_BSD_PROCESS_ACCT
590 	struct pacct_struct pacct;	/* per-process accounting information */
591 #endif
592 #ifdef CONFIG_TASKSTATS
593 	struct taskstats *stats;
594 #endif
595 #ifdef CONFIG_AUDIT
596 	unsigned audit_tty;
597 	unsigned audit_tty_log_passwd;
598 	struct tty_audit_buf *tty_audit_buf;
599 #endif
600 #ifdef CONFIG_CGROUPS
601 	/*
602 	 * group_rwsem prevents new tasks from entering the threadgroup and
603 	 * member tasks from exiting,a more specifically, setting of
604 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
605 	 * using threadgroup_change_begin/end().  Users which require
606 	 * threadgroup to remain stable should use threadgroup_[un]lock()
607 	 * which also takes care of exec path.  Currently, cgroup is the
608 	 * only user.
609 	 */
610 	struct rw_semaphore group_rwsem;
611 #endif
612 
613 	oom_flags_t oom_flags;
614 	short oom_score_adj;		/* OOM kill score adjustment */
615 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
616 					 * Only settable by CAP_SYS_RESOURCE. */
617 
618 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
619 					 * credential calculations
620 					 * (notably. ptrace) */
621 };
622 
623 /*
624  * Bits in flags field of signal_struct.
625  */
626 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
627 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
628 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
629 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
630 /*
631  * Pending notifications to parent.
632  */
633 #define SIGNAL_CLD_STOPPED	0x00000010
634 #define SIGNAL_CLD_CONTINUED	0x00000020
635 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
636 
637 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
638 
639 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)640 static inline int signal_group_exit(const struct signal_struct *sig)
641 {
642 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
643 		(sig->group_exit_task != NULL);
644 }
645 
646 /*
647  * Some day this will be a full-fledged user tracking system..
648  */
649 struct user_struct {
650 	atomic_t __count;	/* reference count */
651 	atomic_t processes;	/* How many processes does this user have? */
652 	atomic_t files;		/* How many open files does this user have? */
653 	atomic_t sigpending;	/* How many pending signals does this user have? */
654 #ifdef CONFIG_INOTIFY_USER
655 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
656 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
657 #endif
658 #ifdef CONFIG_FANOTIFY
659 	atomic_t fanotify_listeners;
660 #endif
661 #ifdef CONFIG_EPOLL
662 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
663 #endif
664 #ifdef CONFIG_POSIX_MQUEUE
665 	/* protected by mq_lock	*/
666 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
667 #endif
668 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
669 
670 #ifdef CONFIG_KEYS
671 	struct key *uid_keyring;	/* UID specific keyring */
672 	struct key *session_keyring;	/* UID's default session keyring */
673 #endif
674 
675 	/* Hash table maintenance information */
676 	struct hlist_node uidhash_node;
677 	kuid_t uid;
678 
679 #ifdef CONFIG_PERF_EVENTS
680 	atomic_long_t locked_vm;
681 #endif
682 };
683 
684 extern int uids_sysfs_init(void);
685 
686 extern struct user_struct *find_user(kuid_t);
687 
688 extern struct user_struct root_user;
689 #define INIT_USER (&root_user)
690 
691 
692 struct backing_dev_info;
693 struct reclaim_state;
694 
695 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
696 struct sched_info {
697 	/* cumulative counters */
698 	unsigned long pcount;	      /* # of times run on this cpu */
699 	unsigned long long run_delay; /* time spent waiting on a runqueue */
700 
701 	/* timestamps */
702 	unsigned long long last_arrival,/* when we last ran on a cpu */
703 			   last_queued;	/* when we were last queued to run */
704 };
705 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
706 
707 #ifdef CONFIG_TASK_DELAY_ACCT
708 struct task_delay_info {
709 	spinlock_t	lock;
710 	unsigned int	flags;	/* Private per-task flags */
711 
712 	/* For each stat XXX, add following, aligned appropriately
713 	 *
714 	 * struct timespec XXX_start, XXX_end;
715 	 * u64 XXX_delay;
716 	 * u32 XXX_count;
717 	 *
718 	 * Atomicity of updates to XXX_delay, XXX_count protected by
719 	 * single lock above (split into XXX_lock if contention is an issue).
720 	 */
721 
722 	/*
723 	 * XXX_count is incremented on every XXX operation, the delay
724 	 * associated with the operation is added to XXX_delay.
725 	 * XXX_delay contains the accumulated delay time in nanoseconds.
726 	 */
727 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
728 	u64 blkio_delay;	/* wait for sync block io completion */
729 	u64 swapin_delay;	/* wait for swapin block io completion */
730 	u32 blkio_count;	/* total count of the number of sync block */
731 				/* io operations performed */
732 	u32 swapin_count;	/* total count of the number of swapin block */
733 				/* io operations performed */
734 
735 	struct timespec freepages_start, freepages_end;
736 	u64 freepages_delay;	/* wait for memory reclaim */
737 	u32 freepages_count;	/* total count of memory reclaim */
738 };
739 #endif	/* CONFIG_TASK_DELAY_ACCT */
740 
sched_info_on(void)741 static inline int sched_info_on(void)
742 {
743 #ifdef CONFIG_SCHEDSTATS
744 	return 1;
745 #elif defined(CONFIG_TASK_DELAY_ACCT)
746 	extern int delayacct_on;
747 	return delayacct_on;
748 #else
749 	return 0;
750 #endif
751 }
752 
753 enum cpu_idle_type {
754 	CPU_IDLE,
755 	CPU_NOT_IDLE,
756 	CPU_NEWLY_IDLE,
757 	CPU_MAX_IDLE_TYPES
758 };
759 
760 /*
761  * Increase resolution of cpu_power calculations
762  */
763 #define SCHED_POWER_SHIFT	10
764 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
765 
766 /*
767  * sched-domains (multiprocessor balancing) declarations:
768  */
769 #ifdef CONFIG_SMP
770 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
771 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
772 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
773 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
774 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
775 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
776 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
777 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
778 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
779 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
780 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
781 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
782 
783 extern int __weak arch_sd_sibiling_asym_packing(void);
784 
785 struct sched_domain_attr {
786 	int relax_domain_level;
787 };
788 
789 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
790 	.relax_domain_level = -1,			\
791 }
792 
793 extern int sched_domain_level_max;
794 
795 struct sched_group;
796 
797 struct sched_domain {
798 	/* These fields must be setup */
799 	struct sched_domain *parent;	/* top domain must be null terminated */
800 	struct sched_domain *child;	/* bottom domain must be null terminated */
801 	struct sched_group *groups;	/* the balancing groups of the domain */
802 	unsigned long min_interval;	/* Minimum balance interval ms */
803 	unsigned long max_interval;	/* Maximum balance interval ms */
804 	unsigned int busy_factor;	/* less balancing by factor if busy */
805 	unsigned int imbalance_pct;	/* No balance until over watermark */
806 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
807 	unsigned int busy_idx;
808 	unsigned int idle_idx;
809 	unsigned int newidle_idx;
810 	unsigned int wake_idx;
811 	unsigned int forkexec_idx;
812 	unsigned int smt_gain;
813 
814 	int nohz_idle;			/* NOHZ IDLE status */
815 	int flags;			/* See SD_* */
816 	int level;
817 
818 	/* Runtime fields. */
819 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
820 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
821 	unsigned int nr_balance_failed; /* initialise to 0 */
822 
823 	u64 last_update;
824 
825 #ifdef CONFIG_SCHEDSTATS
826 	/* load_balance() stats */
827 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
828 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
829 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
830 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
831 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
832 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
833 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
834 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
835 
836 	/* Active load balancing */
837 	unsigned int alb_count;
838 	unsigned int alb_failed;
839 	unsigned int alb_pushed;
840 
841 	/* SD_BALANCE_EXEC stats */
842 	unsigned int sbe_count;
843 	unsigned int sbe_balanced;
844 	unsigned int sbe_pushed;
845 
846 	/* SD_BALANCE_FORK stats */
847 	unsigned int sbf_count;
848 	unsigned int sbf_balanced;
849 	unsigned int sbf_pushed;
850 
851 	/* try_to_wake_up() stats */
852 	unsigned int ttwu_wake_remote;
853 	unsigned int ttwu_move_affine;
854 	unsigned int ttwu_move_balance;
855 #endif
856 #ifdef CONFIG_SCHED_DEBUG
857 	char *name;
858 #endif
859 	union {
860 		void *private;		/* used during construction */
861 		struct rcu_head rcu;	/* used during destruction */
862 	};
863 
864 	unsigned int span_weight;
865 	/*
866 	 * Span of all CPUs in this domain.
867 	 *
868 	 * NOTE: this field is variable length. (Allocated dynamically
869 	 * by attaching extra space to the end of the structure,
870 	 * depending on how many CPUs the kernel has booted up with)
871 	 */
872 	unsigned long span[0];
873 };
874 
sched_domain_span(struct sched_domain * sd)875 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
876 {
877 	return to_cpumask(sd->span);
878 }
879 
880 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
881 				    struct sched_domain_attr *dattr_new);
882 
883 /* Allocate an array of sched domains, for partition_sched_domains(). */
884 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
885 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
886 
887 bool cpus_share_cache(int this_cpu, int that_cpu);
888 
889 #else /* CONFIG_SMP */
890 
891 struct sched_domain_attr;
892 
893 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)894 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
895 			struct sched_domain_attr *dattr_new)
896 {
897 }
898 
cpus_share_cache(int this_cpu,int that_cpu)899 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
900 {
901 	return true;
902 }
903 
904 #endif	/* !CONFIG_SMP */
905 
906 
907 struct io_context;			/* See blkdev.h */
908 
909 
910 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
911 extern void prefetch_stack(struct task_struct *t);
912 #else
prefetch_stack(struct task_struct * t)913 static inline void prefetch_stack(struct task_struct *t) { }
914 #endif
915 
916 struct audit_context;		/* See audit.c */
917 struct mempolicy;
918 struct pipe_inode_info;
919 struct uts_namespace;
920 
921 struct load_weight {
922 	unsigned long weight, inv_weight;
923 };
924 
925 struct sched_avg {
926 	/*
927 	 * These sums represent an infinite geometric series and so are bound
928 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for for all
929 	 * choices of y < 1-2^(-32)*1024.
930 	 */
931 	u32 runnable_avg_sum, runnable_avg_period;
932 	u64 last_runnable_update;
933 	s64 decay_count;
934 	unsigned long load_avg_contrib;
935 };
936 
937 #ifdef CONFIG_SCHEDSTATS
938 struct sched_statistics {
939 	u64			wait_start;
940 	u64			wait_max;
941 	u64			wait_count;
942 	u64			wait_sum;
943 	u64			iowait_count;
944 	u64			iowait_sum;
945 
946 	u64			sleep_start;
947 	u64			sleep_max;
948 	s64			sum_sleep_runtime;
949 
950 	u64			block_start;
951 	u64			block_max;
952 	u64			exec_max;
953 	u64			slice_max;
954 
955 	u64			nr_migrations_cold;
956 	u64			nr_failed_migrations_affine;
957 	u64			nr_failed_migrations_running;
958 	u64			nr_failed_migrations_hot;
959 	u64			nr_forced_migrations;
960 
961 	u64			nr_wakeups;
962 	u64			nr_wakeups_sync;
963 	u64			nr_wakeups_migrate;
964 	u64			nr_wakeups_local;
965 	u64			nr_wakeups_remote;
966 	u64			nr_wakeups_affine;
967 	u64			nr_wakeups_affine_attempts;
968 	u64			nr_wakeups_passive;
969 	u64			nr_wakeups_idle;
970 };
971 #endif
972 
973 struct sched_entity {
974 	struct load_weight	load;		/* for load-balancing */
975 	struct rb_node		run_node;
976 	struct list_head	group_node;
977 	unsigned int		on_rq;
978 
979 	u64			exec_start;
980 	u64			sum_exec_runtime;
981 	u64			vruntime;
982 	u64			prev_sum_exec_runtime;
983 
984 	u64			nr_migrations;
985 
986 #ifdef CONFIG_SCHEDSTATS
987 	struct sched_statistics statistics;
988 #endif
989 
990 #ifdef CONFIG_FAIR_GROUP_SCHED
991 	struct sched_entity	*parent;
992 	/* rq on which this entity is (to be) queued: */
993 	struct cfs_rq		*cfs_rq;
994 	/* rq "owned" by this entity/group: */
995 	struct cfs_rq		*my_q;
996 #endif
997 
998 /*
999  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1000  * removed when useful for applications beyond shares distribution (e.g.
1001  * load-balance).
1002  */
1003 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1004 	/* Per-entity load-tracking */
1005 	struct sched_avg	avg;
1006 #endif
1007 };
1008 
1009 struct sched_rt_entity {
1010 	struct list_head run_list;
1011 	unsigned long timeout;
1012 	unsigned long watchdog_stamp;
1013 	unsigned int time_slice;
1014 
1015 	struct sched_rt_entity *back;
1016 #ifdef CONFIG_RT_GROUP_SCHED
1017 	struct sched_rt_entity	*parent;
1018 	/* rq on which this entity is (to be) queued: */
1019 	struct rt_rq		*rt_rq;
1020 	/* rq "owned" by this entity/group: */
1021 	struct rt_rq		*my_q;
1022 #endif
1023 };
1024 
1025 
1026 struct rcu_node;
1027 
1028 enum perf_event_task_context {
1029 	perf_invalid_context = -1,
1030 	perf_hw_context = 0,
1031 	perf_sw_context,
1032 	perf_nr_task_contexts,
1033 };
1034 
1035 struct task_struct {
1036 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1037 	void *stack;
1038 	atomic_t usage;
1039 	unsigned int flags;	/* per process flags, defined below */
1040 	unsigned int ptrace;
1041 
1042 #ifdef CONFIG_SMP
1043 	struct llist_node wake_entry;
1044 	int on_cpu;
1045 #endif
1046 	int on_rq;
1047 
1048 	int prio, static_prio, normal_prio;
1049 	unsigned int rt_priority;
1050 	const struct sched_class *sched_class;
1051 	struct sched_entity se;
1052 	struct sched_rt_entity rt;
1053 #ifdef CONFIG_CGROUP_SCHED
1054 	struct task_group *sched_task_group;
1055 #endif
1056 
1057 #ifdef CONFIG_PREEMPT_NOTIFIERS
1058 	/* list of struct preempt_notifier: */
1059 	struct hlist_head preempt_notifiers;
1060 #endif
1061 
1062 	/*
1063 	 * fpu_counter contains the number of consecutive context switches
1064 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1065 	 * saving becomes unlazy to save the trap. This is an unsigned char
1066 	 * so that after 256 times the counter wraps and the behavior turns
1067 	 * lazy again; this to deal with bursty apps that only use FPU for
1068 	 * a short time
1069 	 */
1070 	unsigned char fpu_counter;
1071 #ifdef CONFIG_BLK_DEV_IO_TRACE
1072 	unsigned int btrace_seq;
1073 #endif
1074 
1075 	unsigned int policy;
1076 	int nr_cpus_allowed;
1077 	cpumask_t cpus_allowed;
1078 
1079 #ifdef CONFIG_PREEMPT_RCU
1080 	int rcu_read_lock_nesting;
1081 	char rcu_read_unlock_special;
1082 	struct list_head rcu_node_entry;
1083 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1084 #ifdef CONFIG_TREE_PREEMPT_RCU
1085 	struct rcu_node *rcu_blocked_node;
1086 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1087 #ifdef CONFIG_RCU_BOOST
1088 	struct rt_mutex *rcu_boost_mutex;
1089 #endif /* #ifdef CONFIG_RCU_BOOST */
1090 
1091 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1092 	struct sched_info sched_info;
1093 #endif
1094 
1095 	struct list_head tasks;
1096 #ifdef CONFIG_SMP
1097 	struct plist_node pushable_tasks;
1098 #endif
1099 
1100 	struct mm_struct *mm, *active_mm;
1101 #ifdef CONFIG_COMPAT_BRK
1102 	unsigned brk_randomized:1;
1103 #endif
1104 #if defined(SPLIT_RSS_COUNTING)
1105 	struct task_rss_stat	rss_stat;
1106 #endif
1107 /* task state */
1108 	int exit_state;
1109 	int exit_code, exit_signal;
1110 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1111 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1112 
1113 	/* Used for emulating ABI behavior of previous Linux versions */
1114 	unsigned int personality;
1115 
1116 	unsigned did_exec:1;
1117 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1118 				 * execve */
1119 	unsigned in_iowait:1;
1120 
1121 	/* Revert to default priority/policy when forking */
1122 	unsigned sched_reset_on_fork:1;
1123 	unsigned sched_contributes_to_load:1;
1124 
1125 	unsigned long atomic_flags; /* Flags needing atomic access. */
1126 
1127 	pid_t pid;
1128 	pid_t tgid;
1129 
1130 #ifdef CONFIG_CC_STACKPROTECTOR
1131 	/* Canary value for the -fstack-protector gcc feature */
1132 	unsigned long stack_canary;
1133 #endif
1134 	/*
1135 	 * pointers to (original) parent process, youngest child, younger sibling,
1136 	 * older sibling, respectively.  (p->father can be replaced with
1137 	 * p->real_parent->pid)
1138 	 */
1139 	struct task_struct __rcu *real_parent; /* real parent process */
1140 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1141 	/*
1142 	 * children/sibling forms the list of my natural children
1143 	 */
1144 	struct list_head children;	/* list of my children */
1145 	struct list_head sibling;	/* linkage in my parent's children list */
1146 	struct task_struct *group_leader;	/* threadgroup leader */
1147 
1148 	/*
1149 	 * ptraced is the list of tasks this task is using ptrace on.
1150 	 * This includes both natural children and PTRACE_ATTACH targets.
1151 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1152 	 */
1153 	struct list_head ptraced;
1154 	struct list_head ptrace_entry;
1155 
1156 	/* PID/PID hash table linkage. */
1157 	struct pid_link pids[PIDTYPE_MAX];
1158 	struct list_head thread_group;
1159 	struct list_head thread_node;
1160 
1161 	struct completion *vfork_done;		/* for vfork() */
1162 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1163 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1164 
1165 	cputime_t utime, stime, utimescaled, stimescaled;
1166 	cputime_t gtime;
1167 	unsigned long long cpu_power;
1168 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1169 	struct cputime prev_cputime;
1170 #endif
1171 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1172 	seqlock_t vtime_seqlock;
1173 	unsigned long long vtime_snap;
1174 	enum {
1175 		VTIME_SLEEPING = 0,
1176 		VTIME_USER,
1177 		VTIME_SYS,
1178 	} vtime_snap_whence;
1179 #endif
1180 	unsigned long nvcsw, nivcsw; /* context switch counts */
1181 	struct timespec start_time; 		/* monotonic time */
1182 	struct timespec real_start_time;	/* boot based time */
1183 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1184 	unsigned long min_flt, maj_flt;
1185 
1186 	struct task_cputime cputime_expires;
1187 	struct list_head cpu_timers[3];
1188 
1189 /* process credentials */
1190 	const struct cred __rcu *real_cred; /* objective and real subjective task
1191 					 * credentials (COW) */
1192 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1193 					 * credentials (COW) */
1194 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1195 				     - access with [gs]et_task_comm (which lock
1196 				       it with task_lock())
1197 				     - initialized normally by setup_new_exec */
1198 /* file system info */
1199 	int link_count, total_link_count;
1200 #ifdef CONFIG_SYSVIPC
1201 /* ipc stuff */
1202 	struct sysv_sem sysvsem;
1203 #endif
1204 #ifdef CONFIG_DETECT_HUNG_TASK
1205 /* hung task detection */
1206 	unsigned long last_switch_count;
1207 #endif
1208 /* CPU-specific state of this task */
1209 	struct thread_struct thread;
1210 /* filesystem information */
1211 	struct fs_struct *fs;
1212 /* open file information */
1213 	struct files_struct *files;
1214 /* namespaces */
1215 	struct nsproxy *nsproxy;
1216 /* signal handlers */
1217 	struct signal_struct *signal;
1218 	struct sighand_struct *sighand;
1219 
1220 	sigset_t blocked, real_blocked;
1221 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1222 	struct sigpending pending;
1223 
1224 	unsigned long sas_ss_sp;
1225 	size_t sas_ss_size;
1226 	int (*notifier)(void *priv);
1227 	void *notifier_data;
1228 	sigset_t *notifier_mask;
1229 	struct callback_head *task_works;
1230 
1231 	struct audit_context *audit_context;
1232 #ifdef CONFIG_AUDITSYSCALL
1233 	kuid_t loginuid;
1234 	unsigned int sessionid;
1235 #endif
1236 	struct seccomp seccomp;
1237 
1238 /* Thread group tracking */
1239    	u32 parent_exec_id;
1240    	u32 self_exec_id;
1241 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1242  * mempolicy */
1243 	spinlock_t alloc_lock;
1244 
1245 	/* Protection of the PI data structures: */
1246 	raw_spinlock_t pi_lock;
1247 
1248 #ifdef CONFIG_RT_MUTEXES
1249 	/* PI waiters blocked on a rt_mutex held by this task */
1250 	struct plist_head pi_waiters;
1251 	/* Deadlock detection and priority inheritance handling */
1252 	struct rt_mutex_waiter *pi_blocked_on;
1253 #endif
1254 
1255 #ifdef CONFIG_DEBUG_MUTEXES
1256 	/* mutex deadlock detection */
1257 	struct mutex_waiter *blocked_on;
1258 #endif
1259 #ifdef CONFIG_TRACE_IRQFLAGS
1260 	unsigned int irq_events;
1261 	unsigned long hardirq_enable_ip;
1262 	unsigned long hardirq_disable_ip;
1263 	unsigned int hardirq_enable_event;
1264 	unsigned int hardirq_disable_event;
1265 	int hardirqs_enabled;
1266 	int hardirq_context;
1267 	unsigned long softirq_disable_ip;
1268 	unsigned long softirq_enable_ip;
1269 	unsigned int softirq_disable_event;
1270 	unsigned int softirq_enable_event;
1271 	int softirqs_enabled;
1272 	int softirq_context;
1273 #endif
1274 #ifdef CONFIG_LOCKDEP
1275 # define MAX_LOCK_DEPTH 48UL
1276 	u64 curr_chain_key;
1277 	int lockdep_depth;
1278 	unsigned int lockdep_recursion;
1279 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1280 	gfp_t lockdep_reclaim_gfp;
1281 #endif
1282 
1283 /* journalling filesystem info */
1284 	void *journal_info;
1285 
1286 /* stacked block device info */
1287 	struct bio_list *bio_list;
1288 
1289 #ifdef CONFIG_BLOCK
1290 /* stack plugging */
1291 	struct blk_plug *plug;
1292 #endif
1293 
1294 /* VM state */
1295 	struct reclaim_state *reclaim_state;
1296 
1297 	struct backing_dev_info *backing_dev_info;
1298 
1299 	struct io_context *io_context;
1300 
1301 	unsigned long ptrace_message;
1302 	siginfo_t *last_siginfo; /* For ptrace use.  */
1303 	struct task_io_accounting ioac;
1304 #if defined(CONFIG_TASK_XACCT)
1305 	u64 acct_rss_mem1;	/* accumulated rss usage */
1306 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1307 	cputime_t acct_timexpd;	/* stime + utime since last update */
1308 #endif
1309 #ifdef CONFIG_CPUSETS
1310 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1311 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1312 	int cpuset_mem_spread_rotor;
1313 	int cpuset_slab_spread_rotor;
1314 #endif
1315 #ifdef CONFIG_CGROUPS
1316 	/* Control Group info protected by css_set_lock */
1317 	struct css_set __rcu *cgroups;
1318 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1319 	struct list_head cg_list;
1320 #endif
1321 #ifdef CONFIG_FUTEX
1322 	struct robust_list_head __user *robust_list;
1323 #ifdef CONFIG_COMPAT
1324 	struct compat_robust_list_head __user *compat_robust_list;
1325 #endif
1326 	struct list_head pi_state_list;
1327 	struct futex_pi_state *pi_state_cache;
1328 #endif
1329 #ifdef CONFIG_PERF_EVENTS
1330 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1331 	struct mutex perf_event_mutex;
1332 	struct list_head perf_event_list;
1333 #endif
1334 #ifdef CONFIG_NUMA
1335 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1336 	short il_next;
1337 	short pref_node_fork;
1338 #endif
1339 #ifdef CONFIG_NUMA_BALANCING
1340 	int numa_scan_seq;
1341 	int numa_migrate_seq;
1342 	unsigned int numa_scan_period;
1343 	u64 node_stamp;			/* migration stamp  */
1344 	struct callback_head numa_work;
1345 #endif /* CONFIG_NUMA_BALANCING */
1346 
1347 	struct rcu_head rcu;
1348 
1349 	/*
1350 	 * cache last used pipe for splice
1351 	 */
1352 	struct pipe_inode_info *splice_pipe;
1353 
1354 	struct page_frag task_frag;
1355 
1356 #ifdef	CONFIG_TASK_DELAY_ACCT
1357 	struct task_delay_info *delays;
1358 #endif
1359 #ifdef CONFIG_FAULT_INJECTION
1360 	int make_it_fail;
1361 #endif
1362 	/*
1363 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1364 	 * balance_dirty_pages() for some dirty throttling pause
1365 	 */
1366 	int nr_dirtied;
1367 	int nr_dirtied_pause;
1368 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1369 
1370 #ifdef CONFIG_LATENCYTOP
1371 	int latency_record_count;
1372 	struct latency_record latency_record[LT_SAVECOUNT];
1373 #endif
1374 	/*
1375 	 * time slack values; these are used to round up poll() and
1376 	 * select() etc timeout values. These are in nanoseconds.
1377 	 */
1378 	unsigned long timer_slack_ns;
1379 	unsigned long default_timer_slack_ns;
1380 
1381 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1382 	/* Index of current stored address in ret_stack */
1383 	int curr_ret_stack;
1384 	/* Stack of return addresses for return function tracing */
1385 	struct ftrace_ret_stack	*ret_stack;
1386 	/* time stamp for last schedule */
1387 	unsigned long long ftrace_timestamp;
1388 	/*
1389 	 * Number of functions that haven't been traced
1390 	 * because of depth overrun.
1391 	 */
1392 	atomic_t trace_overrun;
1393 	/* Pause for the tracing */
1394 	atomic_t tracing_graph_pause;
1395 #endif
1396 #ifdef CONFIG_TRACING
1397 	/* state flags for use by tracers */
1398 	unsigned long trace;
1399 	/* bitmask and counter of trace recursion */
1400 	unsigned long trace_recursion;
1401 #endif /* CONFIG_TRACING */
1402 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1403 	struct memcg_batch_info {
1404 		int do_batch;	/* incremented when batch uncharge started */
1405 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1406 		unsigned long nr_pages;	/* uncharged usage */
1407 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1408 	} memcg_batch;
1409 	unsigned int memcg_kmem_skip_account;
1410 #endif
1411 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1412 	atomic_t ptrace_bp_refcnt;
1413 #endif
1414 #ifdef CONFIG_UPROBES
1415 	struct uprobe_task *utask;
1416 #endif
1417 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1418 	unsigned int	sequential_io;
1419 	unsigned int	sequential_io_avg;
1420 #endif
1421 };
1422 
1423 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1424 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1425 
1426 #ifdef CONFIG_NUMA_BALANCING
1427 extern void task_numa_fault(int node, int pages, bool migrated);
1428 extern void set_numabalancing_state(bool enabled);
1429 #else
task_numa_fault(int node,int pages,bool migrated)1430 static inline void task_numa_fault(int node, int pages, bool migrated)
1431 {
1432 }
set_numabalancing_state(bool enabled)1433 static inline void set_numabalancing_state(bool enabled)
1434 {
1435 }
1436 #endif
1437 
task_pid(struct task_struct * task)1438 static inline struct pid *task_pid(struct task_struct *task)
1439 {
1440 	return task->pids[PIDTYPE_PID].pid;
1441 }
1442 
task_tgid(struct task_struct * task)1443 static inline struct pid *task_tgid(struct task_struct *task)
1444 {
1445 	return task->group_leader->pids[PIDTYPE_PID].pid;
1446 }
1447 
1448 /*
1449  * Without tasklist or rcu lock it is not safe to dereference
1450  * the result of task_pgrp/task_session even if task == current,
1451  * we can race with another thread doing sys_setsid/sys_setpgid.
1452  */
task_pgrp(struct task_struct * task)1453 static inline struct pid *task_pgrp(struct task_struct *task)
1454 {
1455 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1456 }
1457 
task_session(struct task_struct * task)1458 static inline struct pid *task_session(struct task_struct *task)
1459 {
1460 	return task->group_leader->pids[PIDTYPE_SID].pid;
1461 }
1462 
1463 struct pid_namespace;
1464 
1465 /*
1466  * the helpers to get the task's different pids as they are seen
1467  * from various namespaces
1468  *
1469  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1470  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1471  *                     current.
1472  * task_xid_nr_ns()  : id seen from the ns specified;
1473  *
1474  * set_task_vxid()   : assigns a virtual id to a task;
1475  *
1476  * see also pid_nr() etc in include/linux/pid.h
1477  */
1478 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1479 			struct pid_namespace *ns);
1480 
task_pid_nr(struct task_struct * tsk)1481 static inline pid_t task_pid_nr(struct task_struct *tsk)
1482 {
1483 	return tsk->pid;
1484 }
1485 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1486 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1487 					struct pid_namespace *ns)
1488 {
1489 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1490 }
1491 
task_pid_vnr(struct task_struct * tsk)1492 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1493 {
1494 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1495 }
1496 
1497 
task_tgid_nr(struct task_struct * tsk)1498 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1499 {
1500 	return tsk->tgid;
1501 }
1502 
1503 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1504 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1505 					struct pid_namespace *ns)
1506 {
1507 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1508 }
1509 
task_pgrp_vnr(struct task_struct * tsk)1510 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1511 {
1512 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1513 }
1514 
1515 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1516 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1517 					struct pid_namespace *ns)
1518 {
1519 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1520 }
1521 
task_session_vnr(struct task_struct * tsk)1522 static inline pid_t task_session_vnr(struct task_struct *tsk)
1523 {
1524 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1525 }
1526 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1527 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1528 {
1529 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1530 }
1531 
task_tgid_vnr(struct task_struct * tsk)1532 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1533 {
1534 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1535 }
1536 
1537 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)1538 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1539 {
1540 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1541 }
1542 
1543 /**
1544  * pid_alive - check that a task structure is not stale
1545  * @p: Task structure to be checked.
1546  *
1547  * Test if a process is not yet dead (at most zombie state)
1548  * If pid_alive fails, then pointers within the task structure
1549  * can be stale and must not be dereferenced.
1550  */
pid_alive(struct task_struct * p)1551 static inline int pid_alive(struct task_struct *p)
1552 {
1553 	return p->pids[PIDTYPE_PID].pid != NULL;
1554 }
1555 
1556 /**
1557  * is_global_init - check if a task structure is init
1558  * @tsk: Task structure to be checked.
1559  *
1560  * Check if a task structure is the first user space task the kernel created.
1561  */
is_global_init(struct task_struct * tsk)1562 static inline int is_global_init(struct task_struct *tsk)
1563 {
1564 	return tsk->pid == 1;
1565 }
1566 
1567 extern struct pid *cad_pid;
1568 
1569 extern void free_task(struct task_struct *tsk);
1570 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1571 
1572 extern void __put_task_struct(struct task_struct *t);
1573 
put_task_struct(struct task_struct * t)1574 static inline void put_task_struct(struct task_struct *t)
1575 {
1576 	if (atomic_dec_and_test(&t->usage))
1577 		__put_task_struct(t);
1578 }
1579 
1580 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1581 extern void task_cputime(struct task_struct *t,
1582 			 cputime_t *utime, cputime_t *stime);
1583 extern void task_cputime_scaled(struct task_struct *t,
1584 				cputime_t *utimescaled, cputime_t *stimescaled);
1585 extern cputime_t task_gtime(struct task_struct *t);
1586 #else
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)1587 static inline void task_cputime(struct task_struct *t,
1588 				cputime_t *utime, cputime_t *stime)
1589 {
1590 	if (utime)
1591 		*utime = t->utime;
1592 	if (stime)
1593 		*stime = t->stime;
1594 }
1595 
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)1596 static inline void task_cputime_scaled(struct task_struct *t,
1597 				       cputime_t *utimescaled,
1598 				       cputime_t *stimescaled)
1599 {
1600 	if (utimescaled)
1601 		*utimescaled = t->utimescaled;
1602 	if (stimescaled)
1603 		*stimescaled = t->stimescaled;
1604 }
1605 
task_gtime(struct task_struct * t)1606 static inline cputime_t task_gtime(struct task_struct *t)
1607 {
1608 	return t->gtime;
1609 }
1610 #endif
1611 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1612 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1613 
1614 extern int task_free_register(struct notifier_block *n);
1615 extern int task_free_unregister(struct notifier_block *n);
1616 
1617 /*
1618  * Per process flags
1619  */
1620 #define PF_EXITING	0x00000004	/* getting shut down */
1621 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1622 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1623 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1624 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1625 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1626 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1627 #define PF_DUMPCORE	0x00000200	/* dumped core */
1628 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1629 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1630 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1631 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1632 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1633 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1634 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1635 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1636 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1637 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1638 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1639 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1640 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1641 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1642 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1643 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1644 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1645 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1646 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1647 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1648 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1649 
1650 /*
1651  * Only the _current_ task can read/write to tsk->flags, but other
1652  * tasks can access tsk->flags in readonly mode for example
1653  * with tsk_used_math (like during threaded core dumping).
1654  * There is however an exception to this rule during ptrace
1655  * or during fork: the ptracer task is allowed to write to the
1656  * child->flags of its traced child (same goes for fork, the parent
1657  * can write to the child->flags), because we're guaranteed the
1658  * child is not running and in turn not changing child->flags
1659  * at the same time the parent does it.
1660  */
1661 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1662 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1663 #define clear_used_math() clear_stopped_child_used_math(current)
1664 #define set_used_math() set_stopped_child_used_math(current)
1665 #define conditional_stopped_child_used_math(condition, child) \
1666 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1667 #define conditional_used_math(condition) \
1668 	conditional_stopped_child_used_math(condition, current)
1669 #define copy_to_stopped_child_used_math(child) \
1670 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1671 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1672 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1673 #define used_math() tsk_used_math(current)
1674 
1675 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
memalloc_noio_flags(gfp_t flags)1676 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1677 {
1678 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1679 		flags &= ~__GFP_IO;
1680 	return flags;
1681 }
1682 
memalloc_noio_save(void)1683 static inline unsigned int memalloc_noio_save(void)
1684 {
1685 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1686 	current->flags |= PF_MEMALLOC_NOIO;
1687 	return flags;
1688 }
1689 
memalloc_noio_restore(unsigned int flags)1690 static inline void memalloc_noio_restore(unsigned int flags)
1691 {
1692 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1693 }
1694 
1695 /* Per-process atomic flags. */
1696 #define PFA_NO_NEW_PRIVS 0x00000001	/* May not gain new privileges. */
1697 
task_no_new_privs(struct task_struct * p)1698 static inline bool task_no_new_privs(struct task_struct *p)
1699 {
1700 	return test_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1701 }
1702 
task_set_no_new_privs(struct task_struct * p)1703 static inline void task_set_no_new_privs(struct task_struct *p)
1704 {
1705 	set_bit(PFA_NO_NEW_PRIVS, &p->atomic_flags);
1706 }
1707 
1708 /*
1709  * task->jobctl flags
1710  */
1711 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1712 
1713 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1714 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1715 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1716 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1717 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1718 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1719 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1720 
1721 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1722 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1723 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1724 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1725 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1726 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1727 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1728 
1729 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1730 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1731 
1732 extern bool task_set_jobctl_pending(struct task_struct *task,
1733 				    unsigned int mask);
1734 extern void task_clear_jobctl_trapping(struct task_struct *task);
1735 extern void task_clear_jobctl_pending(struct task_struct *task,
1736 				      unsigned int mask);
1737 
1738 #ifdef CONFIG_PREEMPT_RCU
1739 
1740 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1741 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1742 
rcu_copy_process(struct task_struct * p)1743 static inline void rcu_copy_process(struct task_struct *p)
1744 {
1745 	p->rcu_read_lock_nesting = 0;
1746 	p->rcu_read_unlock_special = 0;
1747 #ifdef CONFIG_TREE_PREEMPT_RCU
1748 	p->rcu_blocked_node = NULL;
1749 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1750 #ifdef CONFIG_RCU_BOOST
1751 	p->rcu_boost_mutex = NULL;
1752 #endif /* #ifdef CONFIG_RCU_BOOST */
1753 	INIT_LIST_HEAD(&p->rcu_node_entry);
1754 }
1755 
1756 #else
1757 
rcu_copy_process(struct task_struct * p)1758 static inline void rcu_copy_process(struct task_struct *p)
1759 {
1760 }
1761 
1762 #endif
1763 
tsk_restore_flags(struct task_struct * task,unsigned long orig_flags,unsigned long flags)1764 static inline void tsk_restore_flags(struct task_struct *task,
1765 				unsigned long orig_flags, unsigned long flags)
1766 {
1767 	task->flags &= ~flags;
1768 	task->flags |= orig_flags & flags;
1769 }
1770 
1771 #ifdef CONFIG_SMP
1772 extern void do_set_cpus_allowed(struct task_struct *p,
1773 			       const struct cpumask *new_mask);
1774 
1775 extern int set_cpus_allowed_ptr(struct task_struct *p,
1776 				const struct cpumask *new_mask);
1777 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1778 static inline void do_set_cpus_allowed(struct task_struct *p,
1779 				      const struct cpumask *new_mask)
1780 {
1781 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1782 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1783 				       const struct cpumask *new_mask)
1784 {
1785 	if (!cpumask_test_cpu(0, new_mask))
1786 		return -EINVAL;
1787 	return 0;
1788 }
1789 #endif
1790 
1791 #ifdef CONFIG_NO_HZ_COMMON
1792 void calc_load_enter_idle(void);
1793 void calc_load_exit_idle(void);
1794 #else
calc_load_enter_idle(void)1795 static inline void calc_load_enter_idle(void) { }
calc_load_exit_idle(void)1796 static inline void calc_load_exit_idle(void) { }
1797 #endif /* CONFIG_NO_HZ_COMMON */
1798 
1799 #ifndef CONFIG_CPUMASK_OFFSTACK
set_cpus_allowed(struct task_struct * p,cpumask_t new_mask)1800 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1801 {
1802 	return set_cpus_allowed_ptr(p, &new_mask);
1803 }
1804 #endif
1805 
1806 /*
1807  * Do not use outside of architecture code which knows its limitations.
1808  *
1809  * sched_clock() has no promise of monotonicity or bounded drift between
1810  * CPUs, use (which you should not) requires disabling IRQs.
1811  *
1812  * Please use one of the three interfaces below.
1813  */
1814 extern unsigned long long notrace sched_clock(void);
1815 /*
1816  * See the comment in kernel/sched/clock.c
1817  */
1818 extern u64 cpu_clock(int cpu);
1819 extern u64 local_clock(void);
1820 extern u64 sched_clock_cpu(int cpu);
1821 
1822 
1823 extern void sched_clock_init(void);
1824 
1825 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)1826 static inline void sched_clock_tick(void)
1827 {
1828 }
1829 
sched_clock_idle_sleep_event(void)1830 static inline void sched_clock_idle_sleep_event(void)
1831 {
1832 }
1833 
sched_clock_idle_wakeup_event(u64 delta_ns)1834 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1835 {
1836 }
1837 #else
1838 /*
1839  * Architectures can set this to 1 if they have specified
1840  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1841  * but then during bootup it turns out that sched_clock()
1842  * is reliable after all:
1843  */
1844 extern int sched_clock_stable;
1845 
1846 extern void sched_clock_tick(void);
1847 extern void sched_clock_idle_sleep_event(void);
1848 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1849 #endif
1850 
1851 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1852 /*
1853  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1854  * The reason for this explicit opt-in is not to have perf penalty with
1855  * slow sched_clocks.
1856  */
1857 extern void enable_sched_clock_irqtime(void);
1858 extern void disable_sched_clock_irqtime(void);
1859 #else
enable_sched_clock_irqtime(void)1860 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)1861 static inline void disable_sched_clock_irqtime(void) {}
1862 #endif
1863 
1864 extern unsigned long long
1865 task_sched_runtime(struct task_struct *task);
1866 
1867 /* sched_exec is called by processes performing an exec */
1868 #ifdef CONFIG_SMP
1869 extern void sched_exec(void);
1870 #else
1871 #define sched_exec()   {}
1872 #endif
1873 
1874 extern void sched_clock_idle_sleep_event(void);
1875 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1876 
1877 #ifdef CONFIG_HOTPLUG_CPU
1878 extern void idle_task_exit(void);
1879 #else
idle_task_exit(void)1880 static inline void idle_task_exit(void) {}
1881 #endif
1882 
1883 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1884 extern void wake_up_nohz_cpu(int cpu);
1885 #else
wake_up_nohz_cpu(int cpu)1886 static inline void wake_up_nohz_cpu(int cpu) { }
1887 #endif
1888 
1889 #ifdef CONFIG_NO_HZ_FULL
1890 extern bool sched_can_stop_tick(void);
1891 extern u64 scheduler_tick_max_deferment(void);
1892 #else
sched_can_stop_tick(void)1893 static inline bool sched_can_stop_tick(void) { return false; }
1894 #endif
1895 
1896 #ifdef CONFIG_SCHED_AUTOGROUP
1897 extern void sched_autogroup_create_attach(struct task_struct *p);
1898 extern void sched_autogroup_detach(struct task_struct *p);
1899 extern void sched_autogroup_fork(struct signal_struct *sig);
1900 extern void sched_autogroup_exit(struct signal_struct *sig);
1901 #ifdef CONFIG_PROC_FS
1902 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1903 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1904 #endif
1905 #else
sched_autogroup_create_attach(struct task_struct * p)1906 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)1907 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)1908 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)1909 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1910 #endif
1911 
1912 extern bool yield_to(struct task_struct *p, bool preempt);
1913 extern void set_user_nice(struct task_struct *p, long nice);
1914 extern int task_prio(const struct task_struct *p);
1915 extern int task_nice(const struct task_struct *p);
1916 extern int can_nice(const struct task_struct *p, const int nice);
1917 extern int task_curr(const struct task_struct *p);
1918 extern int idle_cpu(int cpu);
1919 extern int sched_setscheduler(struct task_struct *, int,
1920 			      const struct sched_param *);
1921 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1922 				      const struct sched_param *);
1923 extern struct task_struct *idle_task(int cpu);
1924 /**
1925  * is_idle_task - is the specified task an idle task?
1926  * @p: the task in question.
1927  */
is_idle_task(const struct task_struct * p)1928 static inline bool is_idle_task(const struct task_struct *p)
1929 {
1930 	return p->pid == 0;
1931 }
1932 extern struct task_struct *curr_task(int cpu);
1933 extern void set_curr_task(int cpu, struct task_struct *p);
1934 
1935 void yield(void);
1936 
1937 /*
1938  * The default (Linux) execution domain.
1939  */
1940 extern struct exec_domain	default_exec_domain;
1941 
1942 union thread_union {
1943 	struct thread_info thread_info;
1944 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1945 };
1946 
1947 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)1948 static inline int kstack_end(void *addr)
1949 {
1950 	/* Reliable end of stack detection:
1951 	 * Some APM bios versions misalign the stack
1952 	 */
1953 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1954 }
1955 #endif
1956 
1957 extern union thread_union init_thread_union;
1958 extern struct task_struct init_task;
1959 
1960 extern struct   mm_struct init_mm;
1961 
1962 extern struct pid_namespace init_pid_ns;
1963 
1964 /*
1965  * find a task by one of its numerical ids
1966  *
1967  * find_task_by_pid_ns():
1968  *      finds a task by its pid in the specified namespace
1969  * find_task_by_vpid():
1970  *      finds a task by its virtual pid
1971  *
1972  * see also find_vpid() etc in include/linux/pid.h
1973  */
1974 
1975 extern struct task_struct *find_task_by_vpid(pid_t nr);
1976 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1977 		struct pid_namespace *ns);
1978 
1979 extern void __set_special_pids(struct pid *pid);
1980 
1981 /* per-UID process charging. */
1982 extern struct user_struct * alloc_uid(kuid_t);
get_uid(struct user_struct * u)1983 static inline struct user_struct *get_uid(struct user_struct *u)
1984 {
1985 	atomic_inc(&u->__count);
1986 	return u;
1987 }
1988 extern void free_uid(struct user_struct *);
1989 
1990 #include <asm/current.h>
1991 
1992 extern void xtime_update(unsigned long ticks);
1993 
1994 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1995 extern int wake_up_process(struct task_struct *tsk);
1996 extern void wake_up_new_task(struct task_struct *tsk);
1997 #ifdef CONFIG_SMP
1998  extern void kick_process(struct task_struct *tsk);
1999 #else
kick_process(struct task_struct * tsk)2000  static inline void kick_process(struct task_struct *tsk) { }
2001 #endif
2002 extern void sched_fork(struct task_struct *p);
2003 extern void sched_dead(struct task_struct *p);
2004 
2005 extern void proc_caches_init(void);
2006 extern void flush_signals(struct task_struct *);
2007 extern void __flush_signals(struct task_struct *);
2008 extern void ignore_signals(struct task_struct *);
2009 extern void flush_signal_handlers(struct task_struct *, int force_default);
2010 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2011 
dequeue_signal_lock(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)2012 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2013 {
2014 	unsigned long flags;
2015 	int ret;
2016 
2017 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2018 	ret = dequeue_signal(tsk, mask, info);
2019 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2020 
2021 	return ret;
2022 }
2023 
2024 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2025 			      sigset_t *mask);
2026 extern void unblock_all_signals(void);
2027 extern void release_task(struct task_struct * p);
2028 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2029 extern int force_sigsegv(int, struct task_struct *);
2030 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2031 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2032 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2033 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2034 				const struct cred *, u32);
2035 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2036 extern int kill_pid(struct pid *pid, int sig, int priv);
2037 extern int kill_proc_info(int, struct siginfo *, pid_t);
2038 extern __must_check bool do_notify_parent(struct task_struct *, int);
2039 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2040 extern void force_sig(int, struct task_struct *);
2041 extern int send_sig(int, struct task_struct *, int);
2042 extern int zap_other_threads(struct task_struct *p);
2043 extern struct sigqueue *sigqueue_alloc(void);
2044 extern void sigqueue_free(struct sigqueue *);
2045 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2046 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2047 
restore_saved_sigmask(void)2048 static inline void restore_saved_sigmask(void)
2049 {
2050 	if (test_and_clear_restore_sigmask())
2051 		__set_current_blocked(&current->saved_sigmask);
2052 }
2053 
sigmask_to_save(void)2054 static inline sigset_t *sigmask_to_save(void)
2055 {
2056 	sigset_t *res = &current->blocked;
2057 	if (unlikely(test_restore_sigmask()))
2058 		res = &current->saved_sigmask;
2059 	return res;
2060 }
2061 
kill_cad_pid(int sig,int priv)2062 static inline int kill_cad_pid(int sig, int priv)
2063 {
2064 	return kill_pid(cad_pid, sig, priv);
2065 }
2066 
2067 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2068 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2069 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2070 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2071 
2072 /*
2073  * True if we are on the alternate signal stack.
2074  */
on_sig_stack(unsigned long sp)2075 static inline int on_sig_stack(unsigned long sp)
2076 {
2077 #ifdef CONFIG_STACK_GROWSUP
2078 	return sp >= current->sas_ss_sp &&
2079 		sp - current->sas_ss_sp < current->sas_ss_size;
2080 #else
2081 	return sp > current->sas_ss_sp &&
2082 		sp - current->sas_ss_sp <= current->sas_ss_size;
2083 #endif
2084 }
2085 
sas_ss_flags(unsigned long sp)2086 static inline int sas_ss_flags(unsigned long sp)
2087 {
2088 	return (current->sas_ss_size == 0 ? SS_DISABLE
2089 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2090 }
2091 
sigsp(unsigned long sp,struct ksignal * ksig)2092 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2093 {
2094 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2095 #ifdef CONFIG_STACK_GROWSUP
2096 		return current->sas_ss_sp;
2097 #else
2098 		return current->sas_ss_sp + current->sas_ss_size;
2099 #endif
2100 	return sp;
2101 }
2102 
2103 /*
2104  * Routines for handling mm_structs
2105  */
2106 extern struct mm_struct * mm_alloc(void);
2107 
2108 /* mmdrop drops the mm and the page tables */
2109 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)2110 static inline void mmdrop(struct mm_struct * mm)
2111 {
2112 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2113 		__mmdrop(mm);
2114 }
2115 
2116 /* mmput gets rid of the mappings and all user-space */
2117 extern void mmput(struct mm_struct *);
2118 /* Grab a reference to a task's mm, if it is not already going away */
2119 extern struct mm_struct *get_task_mm(struct task_struct *task);
2120 /*
2121  * Grab a reference to a task's mm, if it is not already going away
2122  * and ptrace_may_access with the mode parameter passed to it
2123  * succeeds.
2124  */
2125 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2126 /* Remove the current tasks stale references to the old mm_struct */
2127 extern void mm_release(struct task_struct *, struct mm_struct *);
2128 /* Allocate a new mm structure and copy contents from tsk->mm */
2129 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2130 
2131 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2132 			struct task_struct *);
2133 extern void flush_thread(void);
2134 extern void exit_thread(void);
2135 
2136 extern void exit_files(struct task_struct *);
2137 extern void __cleanup_sighand(struct sighand_struct *);
2138 
2139 extern void exit_itimers(struct signal_struct *);
2140 extern void flush_itimer_signals(void);
2141 
2142 extern void do_group_exit(int);
2143 
2144 extern int allow_signal(int);
2145 extern int disallow_signal(int);
2146 
2147 extern int do_execve(const char *,
2148 		     const char __user * const __user *,
2149 		     const char __user * const __user *);
2150 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2151 struct task_struct *fork_idle(int);
2152 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2153 
2154 extern void set_task_comm(struct task_struct *tsk, char *from);
2155 extern char *get_task_comm(char *to, struct task_struct *tsk);
2156 
2157 #ifdef CONFIG_SMP
2158 void scheduler_ipi(void);
2159 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2160 #else
scheduler_ipi(void)2161 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)2162 static inline unsigned long wait_task_inactive(struct task_struct *p,
2163 					       long match_state)
2164 {
2165 	return 1;
2166 }
2167 #endif
2168 
2169 #define next_task(p) \
2170 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2171 
2172 #define for_each_process(p) \
2173 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2174 
2175 extern bool current_is_single_threaded(void);
2176 
2177 /*
2178  * Careful: do_each_thread/while_each_thread is a double loop so
2179  *          'break' will not work as expected - use goto instead.
2180  */
2181 #define do_each_thread(g, t) \
2182 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2183 
2184 #define while_each_thread(g, t) \
2185 	while ((t = next_thread(t)) != g)
2186 
2187 #define __for_each_thread(signal, t)	\
2188 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2189 
2190 #define for_each_thread(p, t)		\
2191 	__for_each_thread((p)->signal, t)
2192 
2193 /* Careful: this is a double loop, 'break' won't work as expected. */
2194 #define for_each_process_thread(p, t)	\
2195 	for_each_process(p) for_each_thread(p, t)
2196 
get_nr_threads(struct task_struct * tsk)2197 static inline int get_nr_threads(struct task_struct *tsk)
2198 {
2199 	return tsk->signal->nr_threads;
2200 }
2201 
thread_group_leader(struct task_struct * p)2202 static inline bool thread_group_leader(struct task_struct *p)
2203 {
2204 	return p->exit_signal >= 0;
2205 }
2206 
2207 /* Do to the insanities of de_thread it is possible for a process
2208  * to have the pid of the thread group leader without actually being
2209  * the thread group leader.  For iteration through the pids in proc
2210  * all we care about is that we have a task with the appropriate
2211  * pid, we don't actually care if we have the right task.
2212  */
has_group_leader_pid(struct task_struct * p)2213 static inline int has_group_leader_pid(struct task_struct *p)
2214 {
2215 	return p->pid == p->tgid;
2216 }
2217 
2218 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)2219 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2220 {
2221 	return p1->tgid == p2->tgid;
2222 }
2223 
next_thread(const struct task_struct * p)2224 static inline struct task_struct *next_thread(const struct task_struct *p)
2225 {
2226 	return list_entry_rcu(p->thread_group.next,
2227 			      struct task_struct, thread_group);
2228 }
2229 
thread_group_empty(struct task_struct * p)2230 static inline int thread_group_empty(struct task_struct *p)
2231 {
2232 	return list_empty(&p->thread_group);
2233 }
2234 
2235 #define delay_group_leader(p) \
2236 		(thread_group_leader(p) && !thread_group_empty(p))
2237 
2238 /*
2239  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2240  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2241  * pins the final release of task.io_context.  Also protects ->cpuset and
2242  * ->cgroup.subsys[]. And ->vfork_done.
2243  *
2244  * Nests both inside and outside of read_lock(&tasklist_lock).
2245  * It must not be nested with write_lock_irq(&tasklist_lock),
2246  * neither inside nor outside.
2247  */
task_lock(struct task_struct * p)2248 static inline void task_lock(struct task_struct *p)
2249 {
2250 	spin_lock(&p->alloc_lock);
2251 }
2252 
task_unlock(struct task_struct * p)2253 static inline void task_unlock(struct task_struct *p)
2254 {
2255 	spin_unlock(&p->alloc_lock);
2256 }
2257 
2258 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2259 							unsigned long *flags);
2260 
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)2261 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2262 						       unsigned long *flags)
2263 {
2264 	struct sighand_struct *ret;
2265 
2266 	ret = __lock_task_sighand(tsk, flags);
2267 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2268 	return ret;
2269 }
2270 
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)2271 static inline void unlock_task_sighand(struct task_struct *tsk,
2272 						unsigned long *flags)
2273 {
2274 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2275 }
2276 
2277 #ifdef CONFIG_CGROUPS
threadgroup_change_begin(struct task_struct * tsk)2278 static inline void threadgroup_change_begin(struct task_struct *tsk)
2279 {
2280 	down_read(&tsk->signal->group_rwsem);
2281 }
threadgroup_change_end(struct task_struct * tsk)2282 static inline void threadgroup_change_end(struct task_struct *tsk)
2283 {
2284 	up_read(&tsk->signal->group_rwsem);
2285 }
2286 
2287 /**
2288  * threadgroup_lock - lock threadgroup
2289  * @tsk: member task of the threadgroup to lock
2290  *
2291  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2292  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2293  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2294  * needs to stay stable across blockable operations.
2295  *
2296  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2297  * synchronization.  While held, no new task will be added to threadgroup
2298  * and no existing live task will have its PF_EXITING set.
2299  *
2300  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2301  * sub-thread becomes a new leader.
2302  */
threadgroup_lock(struct task_struct * tsk)2303 static inline void threadgroup_lock(struct task_struct *tsk)
2304 {
2305 	down_write(&tsk->signal->group_rwsem);
2306 }
2307 
2308 /**
2309  * threadgroup_unlock - unlock threadgroup
2310  * @tsk: member task of the threadgroup to unlock
2311  *
2312  * Reverse threadgroup_lock().
2313  */
threadgroup_unlock(struct task_struct * tsk)2314 static inline void threadgroup_unlock(struct task_struct *tsk)
2315 {
2316 	up_write(&tsk->signal->group_rwsem);
2317 }
2318 #else
threadgroup_change_begin(struct task_struct * tsk)2319 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
threadgroup_change_end(struct task_struct * tsk)2320 static inline void threadgroup_change_end(struct task_struct *tsk) {}
threadgroup_lock(struct task_struct * tsk)2321 static inline void threadgroup_lock(struct task_struct *tsk) {}
threadgroup_unlock(struct task_struct * tsk)2322 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2323 #endif
2324 
2325 #ifndef __HAVE_THREAD_FUNCTIONS
2326 
2327 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2328 #define task_stack_page(task)	((task)->stack)
2329 
setup_thread_stack(struct task_struct * p,struct task_struct * org)2330 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2331 {
2332 	*task_thread_info(p) = *task_thread_info(org);
2333 	task_thread_info(p)->task = p;
2334 }
2335 
end_of_stack(struct task_struct * p)2336 static inline unsigned long *end_of_stack(struct task_struct *p)
2337 {
2338 	return (unsigned long *)(task_thread_info(p) + 1);
2339 }
2340 
2341 #endif
2342 
object_is_on_stack(void * obj)2343 static inline int object_is_on_stack(void *obj)
2344 {
2345 	void *stack = task_stack_page(current);
2346 
2347 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2348 }
2349 
2350 extern void thread_info_cache_init(void);
2351 
2352 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)2353 static inline unsigned long stack_not_used(struct task_struct *p)
2354 {
2355 	unsigned long *n = end_of_stack(p);
2356 
2357 	do { 	/* Skip over canary */
2358 		n++;
2359 	} while (!*n);
2360 
2361 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2362 }
2363 #endif
2364 
2365 /* set thread flags in other task's structures
2366  * - see asm/thread_info.h for TIF_xxxx flags available
2367  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2368 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2369 {
2370 	set_ti_thread_flag(task_thread_info(tsk), flag);
2371 }
2372 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2373 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2374 {
2375 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2376 }
2377 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2378 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2379 {
2380 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2381 }
2382 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2383 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2384 {
2385 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2386 }
2387 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2388 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2389 {
2390 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2391 }
2392 
set_tsk_need_resched(struct task_struct * tsk)2393 static inline void set_tsk_need_resched(struct task_struct *tsk)
2394 {
2395 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2396 }
2397 
clear_tsk_need_resched(struct task_struct * tsk)2398 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2399 {
2400 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2401 }
2402 
test_tsk_need_resched(struct task_struct * tsk)2403 static inline int test_tsk_need_resched(struct task_struct *tsk)
2404 {
2405 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2406 }
2407 
restart_syscall(void)2408 static inline int restart_syscall(void)
2409 {
2410 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2411 	return -ERESTARTNOINTR;
2412 }
2413 
signal_pending(struct task_struct * p)2414 static inline int signal_pending(struct task_struct *p)
2415 {
2416 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2417 }
2418 
__fatal_signal_pending(struct task_struct * p)2419 static inline int __fatal_signal_pending(struct task_struct *p)
2420 {
2421 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2422 }
2423 
fatal_signal_pending(struct task_struct * p)2424 static inline int fatal_signal_pending(struct task_struct *p)
2425 {
2426 	return signal_pending(p) && __fatal_signal_pending(p);
2427 }
2428 
signal_pending_state(long state,struct task_struct * p)2429 static inline int signal_pending_state(long state, struct task_struct *p)
2430 {
2431 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2432 		return 0;
2433 	if (!signal_pending(p))
2434 		return 0;
2435 
2436 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2437 }
2438 
need_resched(void)2439 static inline int need_resched(void)
2440 {
2441 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2442 }
2443 
2444 /*
2445  * cond_resched() and cond_resched_lock(): latency reduction via
2446  * explicit rescheduling in places that are safe. The return
2447  * value indicates whether a reschedule was done in fact.
2448  * cond_resched_lock() will drop the spinlock before scheduling,
2449  * cond_resched_softirq() will enable bhs before scheduling.
2450  */
2451 extern int _cond_resched(void);
2452 
2453 #define cond_resched() ({			\
2454 	__might_sleep(__FILE__, __LINE__, 0);	\
2455 	_cond_resched();			\
2456 })
2457 
2458 extern int __cond_resched_lock(spinlock_t *lock);
2459 
2460 #ifdef CONFIG_PREEMPT_COUNT
2461 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2462 #else
2463 #define PREEMPT_LOCK_OFFSET	0
2464 #endif
2465 
2466 #define cond_resched_lock(lock) ({				\
2467 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2468 	__cond_resched_lock(lock);				\
2469 })
2470 
2471 extern int __cond_resched_softirq(void);
2472 
2473 #define cond_resched_softirq() ({					\
2474 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2475 	__cond_resched_softirq();					\
2476 })
2477 
2478 /*
2479  * Does a critical section need to be broken due to another
2480  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2481  * but a general need for low latency)
2482  */
spin_needbreak(spinlock_t * lock)2483 static inline int spin_needbreak(spinlock_t *lock)
2484 {
2485 #ifdef CONFIG_PREEMPT
2486 	return spin_is_contended(lock);
2487 #else
2488 	return 0;
2489 #endif
2490 }
2491 
2492 /*
2493  * Idle thread specific functions to determine the need_resched
2494  * polling state. We have two versions, one based on TS_POLLING in
2495  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2496  * thread_info.flags
2497  */
2498 #ifdef TS_POLLING
tsk_is_polling(struct task_struct * p)2499 static inline int tsk_is_polling(struct task_struct *p)
2500 {
2501 	return task_thread_info(p)->status & TS_POLLING;
2502 }
current_set_polling(void)2503 static inline void current_set_polling(void)
2504 {
2505 	current_thread_info()->status |= TS_POLLING;
2506 }
2507 
current_clr_polling(void)2508 static inline void current_clr_polling(void)
2509 {
2510 	current_thread_info()->status &= ~TS_POLLING;
2511 	smp_mb__after_clear_bit();
2512 }
2513 #elif defined(TIF_POLLING_NRFLAG)
tsk_is_polling(struct task_struct * p)2514 static inline int tsk_is_polling(struct task_struct *p)
2515 {
2516 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2517 }
current_set_polling(void)2518 static inline void current_set_polling(void)
2519 {
2520 	set_thread_flag(TIF_POLLING_NRFLAG);
2521 }
2522 
current_clr_polling(void)2523 static inline void current_clr_polling(void)
2524 {
2525 	clear_thread_flag(TIF_POLLING_NRFLAG);
2526 }
2527 #else
tsk_is_polling(struct task_struct * p)2528 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
current_set_polling(void)2529 static inline void current_set_polling(void) { }
current_clr_polling(void)2530 static inline void current_clr_polling(void) { }
2531 #endif
2532 
2533 /*
2534  * Thread group CPU time accounting.
2535  */
2536 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2537 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2538 
thread_group_cputime_init(struct signal_struct * sig)2539 static inline void thread_group_cputime_init(struct signal_struct *sig)
2540 {
2541 	raw_spin_lock_init(&sig->cputimer.lock);
2542 }
2543 
2544 /*
2545  * Reevaluate whether the task has signals pending delivery.
2546  * Wake the task if so.
2547  * This is required every time the blocked sigset_t changes.
2548  * callers must hold sighand->siglock.
2549  */
2550 extern void recalc_sigpending_and_wake(struct task_struct *t);
2551 extern void recalc_sigpending(void);
2552 
2553 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2554 
signal_wake_up(struct task_struct * t,bool resume)2555 static inline void signal_wake_up(struct task_struct *t, bool resume)
2556 {
2557 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2558 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)2559 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2560 {
2561 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2562 }
2563 
2564 /*
2565  * Wrappers for p->thread_info->cpu access. No-op on UP.
2566  */
2567 #ifdef CONFIG_SMP
2568 
task_cpu(const struct task_struct * p)2569 static inline unsigned int task_cpu(const struct task_struct *p)
2570 {
2571 	return task_thread_info(p)->cpu;
2572 }
2573 
2574 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2575 
2576 #else
2577 
task_cpu(const struct task_struct * p)2578 static inline unsigned int task_cpu(const struct task_struct *p)
2579 {
2580 	return 0;
2581 }
2582 
set_task_cpu(struct task_struct * p,unsigned int cpu)2583 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2584 {
2585 }
2586 
2587 #endif /* CONFIG_SMP */
2588 
2589 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2590 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2591 
2592 #ifdef CONFIG_CGROUP_SCHED
2593 extern struct task_group root_task_group;
2594 #endif /* CONFIG_CGROUP_SCHED */
2595 
2596 extern int task_can_switch_user(struct user_struct *up,
2597 					struct task_struct *tsk);
2598 
2599 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)2600 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2601 {
2602 	tsk->ioac.rchar += amt;
2603 }
2604 
add_wchar(struct task_struct * tsk,ssize_t amt)2605 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2606 {
2607 	tsk->ioac.wchar += amt;
2608 }
2609 
inc_syscr(struct task_struct * tsk)2610 static inline void inc_syscr(struct task_struct *tsk)
2611 {
2612 	tsk->ioac.syscr++;
2613 }
2614 
inc_syscw(struct task_struct * tsk)2615 static inline void inc_syscw(struct task_struct *tsk)
2616 {
2617 	tsk->ioac.syscw++;
2618 }
2619 
inc_syscfs(struct task_struct * tsk)2620 static inline void inc_syscfs(struct task_struct *tsk)
2621 {
2622 	tsk->ioac.syscfs++;
2623 }
2624 #else
add_rchar(struct task_struct * tsk,ssize_t amt)2625 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2626 {
2627 }
2628 
add_wchar(struct task_struct * tsk,ssize_t amt)2629 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2630 {
2631 }
2632 
inc_syscr(struct task_struct * tsk)2633 static inline void inc_syscr(struct task_struct *tsk)
2634 {
2635 }
2636 
inc_syscw(struct task_struct * tsk)2637 static inline void inc_syscw(struct task_struct *tsk)
2638 {
2639 }
inc_syscfs(struct task_struct * tsk)2640 static inline void inc_syscfs(struct task_struct *tsk)
2641 {
2642 }
2643 #endif
2644 
2645 #ifndef TASK_SIZE_OF
2646 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2647 #endif
2648 
2649 #ifdef CONFIG_MM_OWNER
2650 extern void mm_update_next_owner(struct mm_struct *mm);
2651 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2652 #else
mm_update_next_owner(struct mm_struct * mm)2653 static inline void mm_update_next_owner(struct mm_struct *mm)
2654 {
2655 }
2656 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)2657 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2658 {
2659 }
2660 #endif /* CONFIG_MM_OWNER */
2661 
task_rlimit(const struct task_struct * tsk,unsigned int limit)2662 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2663 		unsigned int limit)
2664 {
2665 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2666 }
2667 
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)2668 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2669 		unsigned int limit)
2670 {
2671 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2672 }
2673 
rlimit(unsigned int limit)2674 static inline unsigned long rlimit(unsigned int limit)
2675 {
2676 	return task_rlimit(current, limit);
2677 }
2678 
rlimit_max(unsigned int limit)2679 static inline unsigned long rlimit_max(unsigned int limit)
2680 {
2681 	return task_rlimit_max(current, limit);
2682 }
2683 
2684 #endif
2685