• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6 
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9 
10 /*
11  * On almost all architectures and configurations, 0 can be used as the
12  * upper ceiling to free_pgtables(): on many architectures it has the same
13  * effect as using TASK_SIZE.  However, there is one configuration which
14  * must impose a more careful limit, to avoid freeing kernel pgtables.
15  */
16 #ifndef USER_PGTABLES_CEILING
17 #define USER_PGTABLES_CEILING	0UL
18 #endif
19 
20 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
21 extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 				 unsigned long address, pte_t *ptep,
23 				 pte_t entry, int dirty);
24 #endif
25 
26 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 				 unsigned long address, pmd_t *pmdp,
29 				 pmd_t entry, int dirty);
30 #endif
31 
32 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)33 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 					    unsigned long address,
35 					    pte_t *ptep)
36 {
37 	pte_t pte = *ptep;
38 	int r = 1;
39 	if (!pte_young(pte))
40 		r = 0;
41 	else
42 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 	return r;
44 }
45 #endif
46 
47 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)49 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 					    unsigned long address,
51 					    pmd_t *pmdp)
52 {
53 	pmd_t pmd = *pmdp;
54 	int r = 1;
55 	if (!pmd_young(pmd))
56 		r = 0;
57 	else
58 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 	return r;
60 }
61 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)62 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 					    unsigned long address,
64 					    pmd_t *pmdp)
65 {
66 	BUG();
67 	return 0;
68 }
69 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
70 #endif
71 
72 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
73 int ptep_clear_flush_young(struct vm_area_struct *vma,
74 			   unsigned long address, pte_t *ptep);
75 #endif
76 
77 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78 int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 			   unsigned long address, pmd_t *pmdp);
80 #endif
81 
82 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)83 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 				       unsigned long address,
85 				       pte_t *ptep)
86 {
87 	pte_t pte = *ptep;
88 	pte_clear(mm, address, ptep);
89 	return pte;
90 }
91 #endif
92 
93 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)95 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 				       unsigned long address,
97 				       pmd_t *pmdp)
98 {
99 	pmd_t pmd = *pmdp;
100 	pmd_clear(pmdp);
101 	return pmd;
102 }
103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
104 #endif
105 
106 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 					    unsigned long address, pte_t *ptep,
109 					    int full)
110 {
111 	pte_t pte;
112 	pte = ptep_get_and_clear(mm, address, ptep);
113 	return pte;
114 }
115 #endif
116 
117 /*
118  * Some architectures may be able to avoid expensive synchronization
119  * primitives when modifications are made to PTE's which are already
120  * not present, or in the process of an address space destruction.
121  */
122 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)123 static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 					      unsigned long address,
125 					      pte_t *ptep,
126 					      int full)
127 {
128 	pte_clear(mm, address, ptep);
129 }
130 #endif
131 
132 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 			      unsigned long address,
135 			      pte_t *ptep);
136 #endif
137 
138 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 			      unsigned long address,
141 			      pmd_t *pmdp);
142 #endif
143 
144 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)146 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147 {
148 	pte_t old_pte = *ptep;
149 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150 }
151 #endif
152 
153 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)155 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 				      unsigned long address, pmd_t *pmdp)
157 {
158 	pmd_t old_pmd = *pmdp;
159 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160 }
161 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)162 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 				      unsigned long address, pmd_t *pmdp)
164 {
165 	BUG();
166 }
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 #endif
169 
170 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 				 unsigned long address, pmd_t *pmdp);
173 #endif
174 
175 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
177 #endif
178 
179 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
180 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
181 #endif
182 
183 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
184 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
185 			    pmd_t *pmdp);
186 #endif
187 
188 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)189 static inline int pte_same(pte_t pte_a, pte_t pte_b)
190 {
191 	return pte_val(pte_a) == pte_val(pte_b);
192 }
193 #endif
194 
195 #ifndef __HAVE_ARCH_PMD_SAME
196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_same(pmd_t pmd_a,pmd_t pmd_b)197 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
198 {
199 	return pmd_val(pmd_a) == pmd_val(pmd_b);
200 }
201 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmd_same(pmd_t pmd_a,pmd_t pmd_b)202 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
203 {
204 	BUG();
205 	return 0;
206 }
207 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
208 #endif
209 
210 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
211 #define page_test_and_clear_young(pfn) (0)
212 #endif
213 
214 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
215 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
216 #endif
217 
218 #ifndef __HAVE_ARCH_MOVE_PTE
219 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
220 #endif
221 
222 #ifndef pte_accessible
223 # define pte_accessible(pte)		((void)(pte),1)
224 #endif
225 
226 #ifndef flush_tlb_fix_spurious_fault
227 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
228 #endif
229 
230 #ifndef pgprot_noncached
231 #define pgprot_noncached(prot)	(prot)
232 #endif
233 
234 #ifndef pgprot_writecombine
235 #define pgprot_writecombine pgprot_noncached
236 #endif
237 
238 /*
239  * When walking page tables, get the address of the next boundary,
240  * or the end address of the range if that comes earlier.  Although no
241  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
242  */
243 
244 #define pgd_addr_end(addr, end)						\
245 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
246 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
247 })
248 
249 #ifndef pud_addr_end
250 #define pud_addr_end(addr, end)						\
251 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
252 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
253 })
254 #endif
255 
256 #ifndef pmd_addr_end
257 #define pmd_addr_end(addr, end)						\
258 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
259 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
260 })
261 #endif
262 
263 /*
264  * When walking page tables, we usually want to skip any p?d_none entries;
265  * and any p?d_bad entries - reporting the error before resetting to none.
266  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
267  */
268 void pgd_clear_bad(pgd_t *);
269 void pud_clear_bad(pud_t *);
270 void pmd_clear_bad(pmd_t *);
271 
pgd_none_or_clear_bad(pgd_t * pgd)272 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
273 {
274 	if (pgd_none(*pgd))
275 		return 1;
276 	if (unlikely(pgd_bad(*pgd))) {
277 		pgd_clear_bad(pgd);
278 		return 1;
279 	}
280 	return 0;
281 }
282 
pud_none_or_clear_bad(pud_t * pud)283 static inline int pud_none_or_clear_bad(pud_t *pud)
284 {
285 	if (pud_none(*pud))
286 		return 1;
287 	if (unlikely(pud_bad(*pud))) {
288 		pud_clear_bad(pud);
289 		return 1;
290 	}
291 	return 0;
292 }
293 
pmd_none_or_clear_bad(pmd_t * pmd)294 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
295 {
296 	if (pmd_none(*pmd))
297 		return 1;
298 	if (unlikely(pmd_bad(*pmd))) {
299 		pmd_clear_bad(pmd);
300 		return 1;
301 	}
302 	return 0;
303 }
304 
__ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)305 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
306 					     unsigned long addr,
307 					     pte_t *ptep)
308 {
309 	/*
310 	 * Get the current pte state, but zero it out to make it
311 	 * non-present, preventing the hardware from asynchronously
312 	 * updating it.
313 	 */
314 	return ptep_get_and_clear(mm, addr, ptep);
315 }
316 
__ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)317 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
318 					     unsigned long addr,
319 					     pte_t *ptep, pte_t pte)
320 {
321 	/*
322 	 * The pte is non-present, so there's no hardware state to
323 	 * preserve.
324 	 */
325 	set_pte_at(mm, addr, ptep, pte);
326 }
327 
328 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
329 /*
330  * Start a pte protection read-modify-write transaction, which
331  * protects against asynchronous hardware modifications to the pte.
332  * The intention is not to prevent the hardware from making pte
333  * updates, but to prevent any updates it may make from being lost.
334  *
335  * This does not protect against other software modifications of the
336  * pte; the appropriate pte lock must be held over the transation.
337  *
338  * Note that this interface is intended to be batchable, meaning that
339  * ptep_modify_prot_commit may not actually update the pte, but merely
340  * queue the update to be done at some later time.  The update must be
341  * actually committed before the pte lock is released, however.
342  */
ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)343 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
344 					   unsigned long addr,
345 					   pte_t *ptep)
346 {
347 	return __ptep_modify_prot_start(mm, addr, ptep);
348 }
349 
350 /*
351  * Commit an update to a pte, leaving any hardware-controlled bits in
352  * the PTE unmodified.
353  */
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)354 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
355 					   unsigned long addr,
356 					   pte_t *ptep, pte_t pte)
357 {
358 	__ptep_modify_prot_commit(mm, addr, ptep, pte);
359 }
360 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
361 #endif /* CONFIG_MMU */
362 
363 /*
364  * A facility to provide lazy MMU batching.  This allows PTE updates and
365  * page invalidations to be delayed until a call to leave lazy MMU mode
366  * is issued.  Some architectures may benefit from doing this, and it is
367  * beneficial for both shadow and direct mode hypervisors, which may batch
368  * the PTE updates which happen during this window.  Note that using this
369  * interface requires that read hazards be removed from the code.  A read
370  * hazard could result in the direct mode hypervisor case, since the actual
371  * write to the page tables may not yet have taken place, so reads though
372  * a raw PTE pointer after it has been modified are not guaranteed to be
373  * up to date.  This mode can only be entered and left under the protection of
374  * the page table locks for all page tables which may be modified.  In the UP
375  * case, this is required so that preemption is disabled, and in the SMP case,
376  * it must synchronize the delayed page table writes properly on other CPUs.
377  */
378 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
379 #define arch_enter_lazy_mmu_mode()	do {} while (0)
380 #define arch_leave_lazy_mmu_mode()	do {} while (0)
381 #define arch_flush_lazy_mmu_mode()	do {} while (0)
382 #endif
383 
384 /*
385  * A facility to provide batching of the reload of page tables and
386  * other process state with the actual context switch code for
387  * paravirtualized guests.  By convention, only one of the batched
388  * update (lazy) modes (CPU, MMU) should be active at any given time,
389  * entry should never be nested, and entry and exits should always be
390  * paired.  This is for sanity of maintaining and reasoning about the
391  * kernel code.  In this case, the exit (end of the context switch) is
392  * in architecture-specific code, and so doesn't need a generic
393  * definition.
394  */
395 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
396 #define arch_start_context_switch(prev)	do {} while (0)
397 #endif
398 
399 #ifndef __HAVE_PFNMAP_TRACKING
400 /*
401  * Interfaces that can be used by architecture code to keep track of
402  * memory type of pfn mappings specified by the remap_pfn_range,
403  * vm_insert_pfn.
404  */
405 
406 /*
407  * track_pfn_remap is called when a _new_ pfn mapping is being established
408  * by remap_pfn_range() for physical range indicated by pfn and size.
409  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)410 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
411 				  unsigned long pfn, unsigned long addr,
412 				  unsigned long size)
413 {
414 	return 0;
415 }
416 
417 /*
418  * track_pfn_insert is called when a _new_ single pfn is established
419  * by vm_insert_pfn().
420  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn)421 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
422 				   unsigned long pfn)
423 {
424 	return 0;
425 }
426 
427 /*
428  * track_pfn_copy is called when vma that is covering the pfnmap gets
429  * copied through copy_page_range().
430  */
track_pfn_copy(struct vm_area_struct * vma)431 static inline int track_pfn_copy(struct vm_area_struct *vma)
432 {
433 	return 0;
434 }
435 
436 /*
437  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
438  * untrack can be called for a specific region indicated by pfn and size or
439  * can be for the entire vma (in which case pfn, size are zero).
440  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)441 static inline void untrack_pfn(struct vm_area_struct *vma,
442 			       unsigned long pfn, unsigned long size)
443 {
444 }
445 #else
446 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
447 			   unsigned long pfn, unsigned long addr,
448 			   unsigned long size);
449 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
450 			    unsigned long pfn);
451 extern int track_pfn_copy(struct vm_area_struct *vma);
452 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
453 			unsigned long size);
454 #endif
455 
456 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)457 static inline int is_zero_pfn(unsigned long pfn)
458 {
459 	extern unsigned long zero_pfn;
460 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
461 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
462 }
463 
464 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
465 
466 #else
is_zero_pfn(unsigned long pfn)467 static inline int is_zero_pfn(unsigned long pfn)
468 {
469 	extern unsigned long zero_pfn;
470 	return pfn == zero_pfn;
471 }
472 
my_zero_pfn(unsigned long addr)473 static inline unsigned long my_zero_pfn(unsigned long addr)
474 {
475 	extern unsigned long zero_pfn;
476 	return zero_pfn;
477 }
478 #endif
479 
480 #ifdef CONFIG_MMU
481 
482 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)483 static inline int pmd_trans_huge(pmd_t pmd)
484 {
485 	return 0;
486 }
pmd_trans_splitting(pmd_t pmd)487 static inline int pmd_trans_splitting(pmd_t pmd)
488 {
489 	return 0;
490 }
491 #ifndef __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)492 static inline int pmd_write(pmd_t pmd)
493 {
494 	BUG();
495 	return 0;
496 }
497 #endif /* __HAVE_ARCH_PMD_WRITE */
498 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
499 
500 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)501 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
502 {
503 	/*
504 	 * Depend on compiler for an atomic pmd read. NOTE: this is
505 	 * only going to work, if the pmdval_t isn't larger than
506 	 * an unsigned long.
507 	 */
508 	return *pmdp;
509 }
510 #endif
511 
512 /*
513  * This function is meant to be used by sites walking pagetables with
514  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
515  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
516  * into a null pmd and the transhuge page fault can convert a null pmd
517  * into an hugepmd or into a regular pmd (if the hugepage allocation
518  * fails). While holding the mmap_sem in read mode the pmd becomes
519  * stable and stops changing under us only if it's not null and not a
520  * transhuge pmd. When those races occurs and this function makes a
521  * difference vs the standard pmd_none_or_clear_bad, the result is
522  * undefined so behaving like if the pmd was none is safe (because it
523  * can return none anyway). The compiler level barrier() is critically
524  * important to compute the two checks atomically on the same pmdval.
525  *
526  * For 32bit kernels with a 64bit large pmd_t this automatically takes
527  * care of reading the pmd atomically to avoid SMP race conditions
528  * against pmd_populate() when the mmap_sem is hold for reading by the
529  * caller (a special atomic read not done by "gcc" as in the generic
530  * version above, is also needed when THP is disabled because the page
531  * fault can populate the pmd from under us).
532  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)533 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
534 {
535 	pmd_t pmdval = pmd_read_atomic(pmd);
536 	/*
537 	 * The barrier will stabilize the pmdval in a register or on
538 	 * the stack so that it will stop changing under the code.
539 	 *
540 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
541 	 * pmd_read_atomic is allowed to return a not atomic pmdval
542 	 * (for example pointing to an hugepage that has never been
543 	 * mapped in the pmd). The below checks will only care about
544 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
545 	 * exception of pmd_none(). So the important thing is that if
546 	 * the low part of the pmd is found null, the high part will
547 	 * be also null or the pmd_none() check below would be
548 	 * confused.
549 	 */
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 	barrier();
552 #endif
553 	if (pmd_none(pmdval))
554 		return 1;
555 	if (unlikely(pmd_bad(pmdval))) {
556 		if (!pmd_trans_huge(pmdval))
557 			pmd_clear_bad(pmd);
558 		return 1;
559 	}
560 	return 0;
561 }
562 
563 /*
564  * This is a noop if Transparent Hugepage Support is not built into
565  * the kernel. Otherwise it is equivalent to
566  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
567  * places that already verified the pmd is not none and they want to
568  * walk ptes while holding the mmap sem in read mode (write mode don't
569  * need this). If THP is not enabled, the pmd can't go away under the
570  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
571  * run a pmd_trans_unstable before walking the ptes after
572  * split_huge_page_pmd returns (because it may have run when the pmd
573  * become null, but then a page fault can map in a THP and not a
574  * regular page).
575  */
pmd_trans_unstable(pmd_t * pmd)576 static inline int pmd_trans_unstable(pmd_t *pmd)
577 {
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
580 #else
581 	return 0;
582 #endif
583 }
584 
585 #ifdef CONFIG_NUMA_BALANCING
586 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
587 /*
588  * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
589  * same bit too). It's set only when _PAGE_PRESET is not set and it's
590  * never set if _PAGE_PRESENT is set.
591  *
592  * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
593  * fault triggers on those regions if pte/pmd_numa returns true
594  * (because _PAGE_PRESENT is not set).
595  */
596 #ifndef pte_numa
pte_numa(pte_t pte)597 static inline int pte_numa(pte_t pte)
598 {
599 	return (pte_flags(pte) &
600 		(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
601 }
602 #endif
603 
604 #ifndef pmd_numa
pmd_numa(pmd_t pmd)605 static inline int pmd_numa(pmd_t pmd)
606 {
607 	return (pmd_flags(pmd) &
608 		(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
609 }
610 #endif
611 
612 /*
613  * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
614  * because they're called by the NUMA hinting minor page fault. If we
615  * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
616  * would be forced to set it later while filling the TLB after we
617  * return to userland. That would trigger a second write to memory
618  * that we optimize away by setting _PAGE_ACCESSED here.
619  */
620 #ifndef pte_mknonnuma
pte_mknonnuma(pte_t pte)621 static inline pte_t pte_mknonnuma(pte_t pte)
622 {
623 	pte = pte_clear_flags(pte, _PAGE_NUMA);
624 	return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
625 }
626 #endif
627 
628 #ifndef pmd_mknonnuma
pmd_mknonnuma(pmd_t pmd)629 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
630 {
631 	pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
632 	return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
633 }
634 #endif
635 
636 #ifndef pte_mknuma
pte_mknuma(pte_t pte)637 static inline pte_t pte_mknuma(pte_t pte)
638 {
639 	pte = pte_set_flags(pte, _PAGE_NUMA);
640 	return pte_clear_flags(pte, _PAGE_PRESENT);
641 }
642 #endif
643 
644 #ifndef pmd_mknuma
pmd_mknuma(pmd_t pmd)645 static inline pmd_t pmd_mknuma(pmd_t pmd)
646 {
647 	pmd = pmd_set_flags(pmd, _PAGE_NUMA);
648 	return pmd_clear_flags(pmd, _PAGE_PRESENT);
649 }
650 #endif
651 #else
652 extern int pte_numa(pte_t pte);
653 extern int pmd_numa(pmd_t pmd);
654 extern pte_t pte_mknonnuma(pte_t pte);
655 extern pmd_t pmd_mknonnuma(pmd_t pmd);
656 extern pte_t pte_mknuma(pte_t pte);
657 extern pmd_t pmd_mknuma(pmd_t pmd);
658 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
659 #else
pmd_numa(pmd_t pmd)660 static inline int pmd_numa(pmd_t pmd)
661 {
662 	return 0;
663 }
664 
pte_numa(pte_t pte)665 static inline int pte_numa(pte_t pte)
666 {
667 	return 0;
668 }
669 
pte_mknonnuma(pte_t pte)670 static inline pte_t pte_mknonnuma(pte_t pte)
671 {
672 	return pte;
673 }
674 
pmd_mknonnuma(pmd_t pmd)675 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
676 {
677 	return pmd;
678 }
679 
pte_mknuma(pte_t pte)680 static inline pte_t pte_mknuma(pte_t pte)
681 {
682 	return pte;
683 }
684 
pmd_mknuma(pmd_t pmd)685 static inline pmd_t pmd_mknuma(pmd_t pmd)
686 {
687 	return pmd;
688 }
689 #endif /* CONFIG_NUMA_BALANCING */
690 
691 #endif /* CONFIG_MMU */
692 
693 #endif /* !__ASSEMBLY__ */
694 
695 #endif /* _ASM_GENERIC_PGTABLE_H */
696