• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <net/tcp_states.h>
71 
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 	return 0;
82 }
83 static inline
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89  * This structure really needs to be cleaned up.
90  * Most of it is for TCP, and not used by any of
91  * the other protocols.
92  */
93 
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 					printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106 
107 /* This is the per-socket lock.  The spinlock provides a synchronization
108  * between user contexts and software interrupt processing, whereas the
109  * mini-semaphore synchronizes multiple users amongst themselves.
110  */
111 typedef struct {
112 	spinlock_t		slock;
113 	int			owned;
114 	wait_queue_head_t	wq;
115 	/*
116 	 * We express the mutex-alike socket_lock semantics
117 	 * to the lock validator by explicitly managing
118 	 * the slock as a lock variant (in addition to
119 	 * the slock itself):
120 	 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 	struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125 
126 struct sock;
127 struct proto;
128 struct net;
129 
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132 
133 /**
134  *	struct sock_common - minimal network layer representation of sockets
135  *	@skc_daddr: Foreign IPv4 addr
136  *	@skc_rcv_saddr: Bound local IPv4 addr
137  *	@skc_hash: hash value used with various protocol lookup tables
138  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
139  *	@skc_dport: placeholder for inet_dport/tw_dport
140  *	@skc_num: placeholder for inet_num/tw_num
141  *	@skc_family: network address family
142  *	@skc_state: Connection state
143  *	@skc_reuse: %SO_REUSEADDR setting
144  *	@skc_reuseport: %SO_REUSEPORT setting
145  *	@skc_bound_dev_if: bound device index if != 0
146  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
147  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148  *	@skc_prot: protocol handlers inside a network family
149  *	@skc_net: reference to the network namespace of this socket
150  *	@skc_node: main hash linkage for various protocol lookup tables
151  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152  *	@skc_tx_queue_mapping: tx queue number for this connection
153  *	@skc_refcnt: reference count
154  *
155  *	This is the minimal network layer representation of sockets, the header
156  *	for struct sock and struct inet_timewait_sock.
157  */
158 struct sock_common {
159 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 	 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
161 	 */
162 	union {
163 		__addrpair	skc_addrpair;
164 		struct {
165 			__be32	skc_daddr;
166 			__be32	skc_rcv_saddr;
167 		};
168 	};
169 	union  {
170 		unsigned int	skc_hash;
171 		__u16		skc_u16hashes[2];
172 	};
173 	/* skc_dport && skc_num must be grouped as well */
174 	union {
175 		__portpair	skc_portpair;
176 		struct {
177 			__be16	skc_dport;
178 			__u16	skc_num;
179 		};
180 	};
181 
182 	unsigned short		skc_family;
183 	volatile unsigned char	skc_state;
184 	unsigned char		skc_reuse:4;
185 	unsigned char		skc_reuseport:4;
186 	int			skc_bound_dev_if;
187 	union {
188 		struct hlist_node	skc_bind_node;
189 		struct hlist_nulls_node skc_portaddr_node;
190 	};
191 	struct proto		*skc_prot;
192 #ifdef CONFIG_NET_NS
193 	struct net	 	*skc_net;
194 #endif
195 	/*
196 	 * fields between dontcopy_begin/dontcopy_end
197 	 * are not copied in sock_copy()
198 	 */
199 	/* private: */
200 	int			skc_dontcopy_begin[0];
201 	/* public: */
202 	union {
203 		struct hlist_node	skc_node;
204 		struct hlist_nulls_node skc_nulls_node;
205 	};
206 	int			skc_tx_queue_mapping;
207 	atomic_t		skc_refcnt;
208 	/* private: */
209 	int                     skc_dontcopy_end[0];
210 	/* public: */
211 };
212 
213 struct cg_proto;
214 /**
215   *	struct sock - network layer representation of sockets
216   *	@__sk_common: shared layout with inet_timewait_sock
217   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
218   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
219   *	@sk_lock:	synchronizer
220   *	@sk_rcvbuf: size of receive buffer in bytes
221   *	@sk_wq: sock wait queue and async head
222   *	@sk_rx_dst: receive input route used by early tcp demux
223   *	@sk_dst_cache: destination cache
224   *	@sk_dst_lock: destination cache lock
225   *	@sk_policy: flow policy
226   *	@sk_receive_queue: incoming packets
227   *	@sk_wmem_alloc: transmit queue bytes committed
228   *	@sk_write_queue: Packet sending queue
229   *	@sk_async_wait_queue: DMA copied packets
230   *	@sk_omem_alloc: "o" is "option" or "other"
231   *	@sk_wmem_queued: persistent queue size
232   *	@sk_forward_alloc: space allocated forward
233   *	@sk_allocation: allocation mode
234   *	@sk_sndbuf: size of send buffer in bytes
235   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
236   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
237   *	@sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
238   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
239   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
240   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
241   *	@sk_gso_max_size: Maximum GSO segment size to build
242   *	@sk_gso_max_segs: Maximum number of GSO segments
243   *	@sk_lingertime: %SO_LINGER l_linger setting
244   *	@sk_backlog: always used with the per-socket spinlock held
245   *	@sk_callback_lock: used with the callbacks in the end of this struct
246   *	@sk_error_queue: rarely used
247   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
248   *			  IPV6_ADDRFORM for instance)
249   *	@sk_err: last error
250   *	@sk_err_soft: errors that don't cause failure but are the cause of a
251   *		      persistent failure not just 'timed out'
252   *	@sk_drops: raw/udp drops counter
253   *	@sk_ack_backlog: current listen backlog
254   *	@sk_max_ack_backlog: listen backlog set in listen()
255   *	@sk_priority: %SO_PRIORITY setting
256   *	@sk_cgrp_prioidx: socket group's priority map index
257   *	@sk_type: socket type (%SOCK_STREAM, etc)
258   *	@sk_protocol: which protocol this socket belongs in this network family
259   *	@sk_peer_pid: &struct pid for this socket's peer
260   *	@sk_peer_cred: %SO_PEERCRED setting
261   *	@sk_rcvlowat: %SO_RCVLOWAT setting
262   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
263   *	@sk_sndtimeo: %SO_SNDTIMEO setting
264   *	@sk_rxhash: flow hash received from netif layer
265   *	@sk_filter: socket filtering instructions
266   *	@sk_protinfo: private area, net family specific, when not using slab
267   *	@sk_timer: sock cleanup timer
268   *	@sk_stamp: time stamp of last packet received
269   *	@sk_socket: Identd and reporting IO signals
270   *	@sk_user_data: RPC layer private data
271   *	@sk_frag: cached page frag
272   *	@sk_peek_off: current peek_offset value
273   *	@sk_send_head: front of stuff to transmit
274   *	@sk_security: used by security modules
275   *	@sk_mark: generic packet mark
276   *	@sk_classid: this socket's cgroup classid
277   *	@sk_cgrp: this socket's cgroup-specific proto data
278   *	@sk_write_pending: a write to stream socket waits to start
279   *	@sk_state_change: callback to indicate change in the state of the sock
280   *	@sk_data_ready: callback to indicate there is data to be processed
281   *	@sk_write_space: callback to indicate there is bf sending space available
282   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
283   *	@sk_backlog_rcv: callback to process the backlog
284   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
285  */
286 struct sock {
287 	/*
288 	 * Now struct inet_timewait_sock also uses sock_common, so please just
289 	 * don't add nothing before this first member (__sk_common) --acme
290 	 */
291 	struct sock_common	__sk_common;
292 #define sk_node			__sk_common.skc_node
293 #define sk_nulls_node		__sk_common.skc_nulls_node
294 #define sk_refcnt		__sk_common.skc_refcnt
295 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
296 
297 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
298 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
299 #define sk_hash			__sk_common.skc_hash
300 #define sk_family		__sk_common.skc_family
301 #define sk_state		__sk_common.skc_state
302 #define sk_reuse		__sk_common.skc_reuse
303 #define sk_reuseport		__sk_common.skc_reuseport
304 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
305 #define sk_bind_node		__sk_common.skc_bind_node
306 #define sk_prot			__sk_common.skc_prot
307 #define sk_net			__sk_common.skc_net
308 	socket_lock_t		sk_lock;
309 	struct sk_buff_head	sk_receive_queue;
310 	/*
311 	 * The backlog queue is special, it is always used with
312 	 * the per-socket spinlock held and requires low latency
313 	 * access. Therefore we special case it's implementation.
314 	 * Note : rmem_alloc is in this structure to fill a hole
315 	 * on 64bit arches, not because its logically part of
316 	 * backlog.
317 	 */
318 	struct {
319 		atomic_t	rmem_alloc;
320 		int		len;
321 		struct sk_buff	*head;
322 		struct sk_buff	*tail;
323 	} sk_backlog;
324 #define sk_rmem_alloc sk_backlog.rmem_alloc
325 	int			sk_forward_alloc;
326 #ifdef CONFIG_RPS
327 	__u32			sk_rxhash;
328 #endif
329 	atomic_t		sk_drops;
330 	int			sk_rcvbuf;
331 
332 	struct sk_filter __rcu	*sk_filter;
333 	struct socket_wq __rcu	*sk_wq;
334 
335 #ifdef CONFIG_NET_DMA
336 	struct sk_buff_head	sk_async_wait_queue;
337 #endif
338 
339 #ifdef CONFIG_XFRM
340 	struct xfrm_policy	*sk_policy[2];
341 #endif
342 	unsigned long 		sk_flags;
343 	struct dst_entry	*sk_rx_dst;
344 	struct dst_entry __rcu	*sk_dst_cache;
345 	spinlock_t		sk_dst_lock;
346 	atomic_t		sk_wmem_alloc;
347 	atomic_t		sk_omem_alloc;
348 	int			sk_sndbuf;
349 	struct sk_buff_head	sk_write_queue;
350 	kmemcheck_bitfield_begin(flags);
351 	unsigned int		sk_shutdown  : 2,
352 				sk_no_check  : 2,
353 				sk_userlocks : 4,
354 				sk_protocol  : 8,
355 				sk_type      : 16;
356 	kmemcheck_bitfield_end(flags);
357 	int			sk_wmem_queued;
358 	gfp_t			sk_allocation;
359 	netdev_features_t	sk_route_caps;
360 	netdev_features_t	sk_route_nocaps;
361 	int			sk_gso_type;
362 	unsigned int		sk_gso_max_size;
363 	u16			sk_gso_max_segs;
364 	int			sk_rcvlowat;
365 	unsigned long	        sk_lingertime;
366 	struct sk_buff_head	sk_error_queue;
367 	struct proto		*sk_prot_creator;
368 	rwlock_t		sk_callback_lock;
369 	int			sk_err,
370 				sk_err_soft;
371 	unsigned short		sk_ack_backlog;
372 	unsigned short		sk_max_ack_backlog;
373 	__u32			sk_priority;
374 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
375 	__u32			sk_cgrp_prioidx;
376 #endif
377 	struct pid		*sk_peer_pid;
378 	const struct cred	*sk_peer_cred;
379 	long			sk_rcvtimeo;
380 	long			sk_sndtimeo;
381 	void			*sk_protinfo;
382 	struct timer_list	sk_timer;
383 	ktime_t			sk_stamp;
384 	struct socket		*sk_socket;
385 	void			*sk_user_data;
386 	struct page_frag	sk_frag;
387 	struct sk_buff		*sk_send_head;
388 	__s32			sk_peek_off;
389 	int			sk_write_pending;
390 #ifdef CONFIG_SECURITY
391 	void			*sk_security;
392 #endif
393 	__u32			sk_mark;
394 	kuid_t			sk_uid;
395 	u32			sk_classid;
396 	struct cg_proto		*sk_cgrp;
397 	void			(*sk_state_change)(struct sock *sk);
398 	void			(*sk_data_ready)(struct sock *sk, int bytes);
399 	void			(*sk_write_space)(struct sock *sk);
400 	void			(*sk_error_report)(struct sock *sk);
401 	int			(*sk_backlog_rcv)(struct sock *sk,
402 						  struct sk_buff *skb);
403 	void                    (*sk_destruct)(struct sock *sk);
404 };
405 
406 /*
407  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
408  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
409  * on a socket means that the socket will reuse everybody else's port
410  * without looking at the other's sk_reuse value.
411  */
412 
413 #define SK_NO_REUSE	0
414 #define SK_CAN_REUSE	1
415 #define SK_FORCE_REUSE	2
416 
sk_peek_offset(struct sock * sk,int flags)417 static inline int sk_peek_offset(struct sock *sk, int flags)
418 {
419 	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
420 		return sk->sk_peek_off;
421 	else
422 		return 0;
423 }
424 
sk_peek_offset_bwd(struct sock * sk,int val)425 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
426 {
427 	if (sk->sk_peek_off >= 0) {
428 		if (sk->sk_peek_off >= val)
429 			sk->sk_peek_off -= val;
430 		else
431 			sk->sk_peek_off = 0;
432 	}
433 }
434 
sk_peek_offset_fwd(struct sock * sk,int val)435 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
436 {
437 	if (sk->sk_peek_off >= 0)
438 		sk->sk_peek_off += val;
439 }
440 
441 /*
442  * Hashed lists helper routines
443  */
sk_entry(const struct hlist_node * node)444 static inline struct sock *sk_entry(const struct hlist_node *node)
445 {
446 	return hlist_entry(node, struct sock, sk_node);
447 }
448 
__sk_head(const struct hlist_head * head)449 static inline struct sock *__sk_head(const struct hlist_head *head)
450 {
451 	return hlist_entry(head->first, struct sock, sk_node);
452 }
453 
sk_head(const struct hlist_head * head)454 static inline struct sock *sk_head(const struct hlist_head *head)
455 {
456 	return hlist_empty(head) ? NULL : __sk_head(head);
457 }
458 
__sk_nulls_head(const struct hlist_nulls_head * head)459 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
460 {
461 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
462 }
463 
sk_nulls_head(const struct hlist_nulls_head * head)464 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
465 {
466 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
467 }
468 
sk_next(const struct sock * sk)469 static inline struct sock *sk_next(const struct sock *sk)
470 {
471 	return sk->sk_node.next ?
472 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
473 }
474 
sk_nulls_next(const struct sock * sk)475 static inline struct sock *sk_nulls_next(const struct sock *sk)
476 {
477 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
478 		hlist_nulls_entry(sk->sk_nulls_node.next,
479 				  struct sock, sk_nulls_node) :
480 		NULL;
481 }
482 
sk_unhashed(const struct sock * sk)483 static inline bool sk_unhashed(const struct sock *sk)
484 {
485 	return hlist_unhashed(&sk->sk_node);
486 }
487 
sk_hashed(const struct sock * sk)488 static inline bool sk_hashed(const struct sock *sk)
489 {
490 	return !sk_unhashed(sk);
491 }
492 
sk_node_init(struct hlist_node * node)493 static inline void sk_node_init(struct hlist_node *node)
494 {
495 	node->pprev = NULL;
496 }
497 
sk_nulls_node_init(struct hlist_nulls_node * node)498 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
499 {
500 	node->pprev = NULL;
501 }
502 
__sk_del_node(struct sock * sk)503 static inline void __sk_del_node(struct sock *sk)
504 {
505 	__hlist_del(&sk->sk_node);
506 }
507 
508 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)509 static inline bool __sk_del_node_init(struct sock *sk)
510 {
511 	if (sk_hashed(sk)) {
512 		__sk_del_node(sk);
513 		sk_node_init(&sk->sk_node);
514 		return true;
515 	}
516 	return false;
517 }
518 
519 /* Grab socket reference count. This operation is valid only
520    when sk is ALREADY grabbed f.e. it is found in hash table
521    or a list and the lookup is made under lock preventing hash table
522    modifications.
523  */
524 
sock_hold(struct sock * sk)525 static inline void sock_hold(struct sock *sk)
526 {
527 	atomic_inc(&sk->sk_refcnt);
528 }
529 
530 /* Ungrab socket in the context, which assumes that socket refcnt
531    cannot hit zero, f.e. it is true in context of any socketcall.
532  */
__sock_put(struct sock * sk)533 static inline void __sock_put(struct sock *sk)
534 {
535 	atomic_dec(&sk->sk_refcnt);
536 }
537 
sk_del_node_init(struct sock * sk)538 static inline bool sk_del_node_init(struct sock *sk)
539 {
540 	bool rc = __sk_del_node_init(sk);
541 
542 	if (rc) {
543 		/* paranoid for a while -acme */
544 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
545 		__sock_put(sk);
546 	}
547 	return rc;
548 }
549 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
550 
__sk_nulls_del_node_init_rcu(struct sock * sk)551 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
552 {
553 	if (sk_hashed(sk)) {
554 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
555 		return true;
556 	}
557 	return false;
558 }
559 
sk_nulls_del_node_init_rcu(struct sock * sk)560 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
561 {
562 	bool rc = __sk_nulls_del_node_init_rcu(sk);
563 
564 	if (rc) {
565 		/* paranoid for a while -acme */
566 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
567 		__sock_put(sk);
568 	}
569 	return rc;
570 }
571 
__sk_add_node(struct sock * sk,struct hlist_head * list)572 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
573 {
574 	hlist_add_head(&sk->sk_node, list);
575 }
576 
sk_add_node(struct sock * sk,struct hlist_head * list)577 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
578 {
579 	sock_hold(sk);
580 	__sk_add_node(sk, list);
581 }
582 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)583 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
584 {
585 	sock_hold(sk);
586 	hlist_add_head_rcu(&sk->sk_node, list);
587 }
588 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)589 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
590 {
591 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
592 }
593 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)594 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
595 {
596 	sock_hold(sk);
597 	__sk_nulls_add_node_rcu(sk, list);
598 }
599 
__sk_del_bind_node(struct sock * sk)600 static inline void __sk_del_bind_node(struct sock *sk)
601 {
602 	__hlist_del(&sk->sk_bind_node);
603 }
604 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)605 static inline void sk_add_bind_node(struct sock *sk,
606 					struct hlist_head *list)
607 {
608 	hlist_add_head(&sk->sk_bind_node, list);
609 }
610 
611 #define sk_for_each(__sk, list) \
612 	hlist_for_each_entry(__sk, list, sk_node)
613 #define sk_for_each_rcu(__sk, list) \
614 	hlist_for_each_entry_rcu(__sk, list, sk_node)
615 #define sk_nulls_for_each(__sk, node, list) \
616 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
617 #define sk_nulls_for_each_rcu(__sk, node, list) \
618 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
619 #define sk_for_each_from(__sk) \
620 	hlist_for_each_entry_from(__sk, sk_node)
621 #define sk_nulls_for_each_from(__sk, node) \
622 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
623 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
624 #define sk_for_each_safe(__sk, tmp, list) \
625 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
626 #define sk_for_each_bound(__sk, list) \
627 	hlist_for_each_entry(__sk, list, sk_bind_node)
628 
sk_user_ns(struct sock * sk)629 static inline struct user_namespace *sk_user_ns(struct sock *sk)
630 {
631 	/* Careful only use this in a context where these parameters
632 	 * can not change and must all be valid, such as recvmsg from
633 	 * userspace.
634 	 */
635 	return sk->sk_socket->file->f_cred->user_ns;
636 }
637 
638 /* Sock flags */
639 enum sock_flags {
640 	SOCK_DEAD,
641 	SOCK_DONE,
642 	SOCK_URGINLINE,
643 	SOCK_KEEPOPEN,
644 	SOCK_LINGER,
645 	SOCK_DESTROY,
646 	SOCK_BROADCAST,
647 	SOCK_TIMESTAMP,
648 	SOCK_ZAPPED,
649 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
650 	SOCK_DBG, /* %SO_DEBUG setting */
651 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
652 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
653 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
654 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
655 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
656 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
657 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
658 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
659 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
660 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
661 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
662 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
663 	SOCK_FASYNC, /* fasync() active */
664 	SOCK_RXQ_OVFL,
665 	SOCK_ZEROCOPY, /* buffers from userspace */
666 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
667 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
668 		     * Will use last 4 bytes of packet sent from
669 		     * user-space instead.
670 		     */
671 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
672 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
673 };
674 
sock_copy_flags(struct sock * nsk,struct sock * osk)675 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
676 {
677 	nsk->sk_flags = osk->sk_flags;
678 }
679 
sock_set_flag(struct sock * sk,enum sock_flags flag)680 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
681 {
682 	__set_bit(flag, &sk->sk_flags);
683 }
684 
sock_reset_flag(struct sock * sk,enum sock_flags flag)685 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
686 {
687 	__clear_bit(flag, &sk->sk_flags);
688 }
689 
sock_flag(const struct sock * sk,enum sock_flags flag)690 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
691 {
692 	return test_bit(flag, &sk->sk_flags);
693 }
694 
695 #ifdef CONFIG_NET
696 extern struct static_key memalloc_socks;
sk_memalloc_socks(void)697 static inline int sk_memalloc_socks(void)
698 {
699 	return static_key_false(&memalloc_socks);
700 }
701 #else
702 
sk_memalloc_socks(void)703 static inline int sk_memalloc_socks(void)
704 {
705 	return 0;
706 }
707 
708 #endif
709 
sk_gfp_atomic(struct sock * sk,gfp_t gfp_mask)710 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
711 {
712 	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
713 }
714 
sk_acceptq_removed(struct sock * sk)715 static inline void sk_acceptq_removed(struct sock *sk)
716 {
717 	sk->sk_ack_backlog--;
718 }
719 
sk_acceptq_added(struct sock * sk)720 static inline void sk_acceptq_added(struct sock *sk)
721 {
722 	sk->sk_ack_backlog++;
723 }
724 
sk_acceptq_is_full(const struct sock * sk)725 static inline bool sk_acceptq_is_full(const struct sock *sk)
726 {
727 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
728 }
729 
730 /*
731  * Compute minimal free write space needed to queue new packets.
732  */
sk_stream_min_wspace(const struct sock * sk)733 static inline int sk_stream_min_wspace(const struct sock *sk)
734 {
735 	return sk->sk_wmem_queued >> 1;
736 }
737 
sk_stream_wspace(const struct sock * sk)738 static inline int sk_stream_wspace(const struct sock *sk)
739 {
740 	return sk->sk_sndbuf - sk->sk_wmem_queued;
741 }
742 
743 extern void sk_stream_write_space(struct sock *sk);
744 
sk_stream_memory_free(const struct sock * sk)745 static inline bool sk_stream_memory_free(const struct sock *sk)
746 {
747 	return sk->sk_wmem_queued < sk->sk_sndbuf;
748 }
749 
750 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)751 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
752 {
753 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
754 	skb_dst_force(skb);
755 
756 	if (!sk->sk_backlog.tail)
757 		sk->sk_backlog.head = skb;
758 	else
759 		sk->sk_backlog.tail->next = skb;
760 
761 	sk->sk_backlog.tail = skb;
762 	skb->next = NULL;
763 }
764 
765 /*
766  * Take into account size of receive queue and backlog queue
767  * Do not take into account this skb truesize,
768  * to allow even a single big packet to come.
769  */
sk_rcvqueues_full(const struct sock * sk,const struct sk_buff * skb,unsigned int limit)770 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
771 				     unsigned int limit)
772 {
773 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
774 
775 	return qsize > limit;
776 }
777 
778 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)779 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
780 					      unsigned int limit)
781 {
782 	if (sk_rcvqueues_full(sk, skb, limit))
783 		return -ENOBUFS;
784 
785 	__sk_add_backlog(sk, skb);
786 	sk->sk_backlog.len += skb->truesize;
787 	return 0;
788 }
789 
790 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
791 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)792 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
793 {
794 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
795 		return __sk_backlog_rcv(sk, skb);
796 
797 	return sk->sk_backlog_rcv(sk, skb);
798 }
799 
sock_rps_record_flow(const struct sock * sk)800 static inline void sock_rps_record_flow(const struct sock *sk)
801 {
802 #ifdef CONFIG_RPS
803 	struct rps_sock_flow_table *sock_flow_table;
804 
805 	rcu_read_lock();
806 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
807 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
808 	rcu_read_unlock();
809 #endif
810 }
811 
sock_rps_reset_flow(const struct sock * sk)812 static inline void sock_rps_reset_flow(const struct sock *sk)
813 {
814 #ifdef CONFIG_RPS
815 	struct rps_sock_flow_table *sock_flow_table;
816 
817 	rcu_read_lock();
818 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
819 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
820 	rcu_read_unlock();
821 #endif
822 }
823 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)824 static inline void sock_rps_save_rxhash(struct sock *sk,
825 					const struct sk_buff *skb)
826 {
827 #ifdef CONFIG_RPS
828 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
829 		sock_rps_reset_flow(sk);
830 		sk->sk_rxhash = skb->rxhash;
831 	}
832 #endif
833 }
834 
sock_rps_reset_rxhash(struct sock * sk)835 static inline void sock_rps_reset_rxhash(struct sock *sk)
836 {
837 #ifdef CONFIG_RPS
838 	sock_rps_reset_flow(sk);
839 	sk->sk_rxhash = 0;
840 #endif
841 }
842 
843 #define sk_wait_event(__sk, __timeo, __condition)			\
844 	({	int __rc;						\
845 		release_sock(__sk);					\
846 		__rc = __condition;					\
847 		if (!__rc) {						\
848 			*(__timeo) = schedule_timeout(*(__timeo));	\
849 		}							\
850 		lock_sock(__sk);					\
851 		__rc = __condition;					\
852 		__rc;							\
853 	})
854 
855 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
856 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
857 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
858 extern int sk_stream_error(struct sock *sk, int flags, int err);
859 extern void sk_stream_kill_queues(struct sock *sk);
860 extern void sk_set_memalloc(struct sock *sk);
861 extern void sk_clear_memalloc(struct sock *sk);
862 
863 extern int sk_wait_data(struct sock *sk, long *timeo);
864 
865 struct request_sock_ops;
866 struct timewait_sock_ops;
867 struct inet_hashinfo;
868 struct raw_hashinfo;
869 struct module;
870 
871 /*
872  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
873  * un-modified. Special care is taken when initializing object to zero.
874  */
sk_prot_clear_nulls(struct sock * sk,int size)875 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
876 {
877 	if (offsetof(struct sock, sk_node.next) != 0)
878 		memset(sk, 0, offsetof(struct sock, sk_node.next));
879 	memset(&sk->sk_node.pprev, 0,
880 	       size - offsetof(struct sock, sk_node.pprev));
881 }
882 
883 /* Networking protocol blocks we attach to sockets.
884  * socket layer -> transport layer interface
885  * transport -> network interface is defined by struct inet_proto
886  */
887 struct proto {
888 	void			(*close)(struct sock *sk,
889 					long timeout);
890 	int			(*connect)(struct sock *sk,
891 					struct sockaddr *uaddr,
892 					int addr_len);
893 	int			(*disconnect)(struct sock *sk, int flags);
894 
895 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
896 
897 	int			(*ioctl)(struct sock *sk, int cmd,
898 					 unsigned long arg);
899 	int			(*init)(struct sock *sk);
900 	void			(*destroy)(struct sock *sk);
901 	void			(*shutdown)(struct sock *sk, int how);
902 	int			(*setsockopt)(struct sock *sk, int level,
903 					int optname, char __user *optval,
904 					unsigned int optlen);
905 	int			(*getsockopt)(struct sock *sk, int level,
906 					int optname, char __user *optval,
907 					int __user *option);
908 #ifdef CONFIG_COMPAT
909 	int			(*compat_setsockopt)(struct sock *sk,
910 					int level,
911 					int optname, char __user *optval,
912 					unsigned int optlen);
913 	int			(*compat_getsockopt)(struct sock *sk,
914 					int level,
915 					int optname, char __user *optval,
916 					int __user *option);
917 	int			(*compat_ioctl)(struct sock *sk,
918 					unsigned int cmd, unsigned long arg);
919 #endif
920 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
921 					   struct msghdr *msg, size_t len);
922 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
923 					   struct msghdr *msg,
924 					   size_t len, int noblock, int flags,
925 					   int *addr_len);
926 	int			(*sendpage)(struct sock *sk, struct page *page,
927 					int offset, size_t size, int flags);
928 	int			(*bind)(struct sock *sk,
929 					struct sockaddr *uaddr, int addr_len);
930 
931 	int			(*backlog_rcv) (struct sock *sk,
932 						struct sk_buff *skb);
933 
934 	void		(*release_cb)(struct sock *sk);
935 	void		(*mtu_reduced)(struct sock *sk);
936 
937 	/* Keeping track of sk's, looking them up, and port selection methods. */
938 	void			(*hash)(struct sock *sk);
939 	void			(*unhash)(struct sock *sk);
940 	void			(*rehash)(struct sock *sk);
941 	int			(*get_port)(struct sock *sk, unsigned short snum);
942 	void			(*clear_sk)(struct sock *sk, int size);
943 
944 	/* Keeping track of sockets in use */
945 #ifdef CONFIG_PROC_FS
946 	unsigned int		inuse_idx;
947 #endif
948 
949 	/* Memory pressure */
950 	void			(*enter_memory_pressure)(struct sock *sk);
951 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
952 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
953 	/*
954 	 * Pressure flag: try to collapse.
955 	 * Technical note: it is used by multiple contexts non atomically.
956 	 * All the __sk_mem_schedule() is of this nature: accounting
957 	 * is strict, actions are advisory and have some latency.
958 	 */
959 	int			*memory_pressure;
960 	long			*sysctl_mem;
961 	int			*sysctl_wmem;
962 	int			*sysctl_rmem;
963 	int			max_header;
964 	bool			no_autobind;
965 
966 	struct kmem_cache	*slab;
967 	unsigned int		obj_size;
968 	int			slab_flags;
969 
970 	struct percpu_counter	*orphan_count;
971 
972 	struct request_sock_ops	*rsk_prot;
973 	struct timewait_sock_ops *twsk_prot;
974 
975 	union {
976 		struct inet_hashinfo	*hashinfo;
977 		struct udp_table	*udp_table;
978 		struct raw_hashinfo	*raw_hash;
979 	} h;
980 
981 	struct module		*owner;
982 
983 	char			name[32];
984 
985 	struct list_head	node;
986 #ifdef SOCK_REFCNT_DEBUG
987 	atomic_t		socks;
988 #endif
989 #ifdef CONFIG_MEMCG_KMEM
990 	/*
991 	 * cgroup specific init/deinit functions. Called once for all
992 	 * protocols that implement it, from cgroups populate function.
993 	 * This function has to setup any files the protocol want to
994 	 * appear in the kmem cgroup filesystem.
995 	 */
996 	int			(*init_cgroup)(struct mem_cgroup *memcg,
997 					       struct cgroup_subsys *ss);
998 	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
999 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
1000 #endif
1001 	int			(*diag_destroy)(struct sock *sk, int err);
1002 };
1003 
1004 /*
1005  * Bits in struct cg_proto.flags
1006  */
1007 enum cg_proto_flags {
1008 	/* Currently active and new sockets should be assigned to cgroups */
1009 	MEMCG_SOCK_ACTIVE,
1010 	/* It was ever activated; we must disarm static keys on destruction */
1011 	MEMCG_SOCK_ACTIVATED,
1012 };
1013 
1014 struct cg_proto {
1015 	void			(*enter_memory_pressure)(struct sock *sk);
1016 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
1017 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1018 	int			*memory_pressure;
1019 	long			*sysctl_mem;
1020 	unsigned long		flags;
1021 	/*
1022 	 * memcg field is used to find which memcg we belong directly
1023 	 * Each memcg struct can hold more than one cg_proto, so container_of
1024 	 * won't really cut.
1025 	 *
1026 	 * The elegant solution would be having an inverse function to
1027 	 * proto_cgroup in struct proto, but that means polluting the structure
1028 	 * for everybody, instead of just for memcg users.
1029 	 */
1030 	struct mem_cgroup	*memcg;
1031 };
1032 
1033 extern int proto_register(struct proto *prot, int alloc_slab);
1034 extern void proto_unregister(struct proto *prot);
1035 
memcg_proto_active(struct cg_proto * cg_proto)1036 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1037 {
1038 	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1039 }
1040 
memcg_proto_activated(struct cg_proto * cg_proto)1041 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1042 {
1043 	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1044 }
1045 
1046 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1047 static inline void sk_refcnt_debug_inc(struct sock *sk)
1048 {
1049 	atomic_inc(&sk->sk_prot->socks);
1050 }
1051 
sk_refcnt_debug_dec(struct sock * sk)1052 static inline void sk_refcnt_debug_dec(struct sock *sk)
1053 {
1054 	atomic_dec(&sk->sk_prot->socks);
1055 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1056 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1057 }
1058 
sk_refcnt_debug_release(const struct sock * sk)1059 static inline void sk_refcnt_debug_release(const struct sock *sk)
1060 {
1061 	if (atomic_read(&sk->sk_refcnt) != 1)
1062 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1063 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1064 }
1065 #else /* SOCK_REFCNT_DEBUG */
1066 #define sk_refcnt_debug_inc(sk) do { } while (0)
1067 #define sk_refcnt_debug_dec(sk) do { } while (0)
1068 #define sk_refcnt_debug_release(sk) do { } while (0)
1069 #endif /* SOCK_REFCNT_DEBUG */
1070 
1071 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1072 extern struct static_key memcg_socket_limit_enabled;
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)1073 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1074 					       struct cg_proto *cg_proto)
1075 {
1076 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1077 }
1078 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1079 #else
1080 #define mem_cgroup_sockets_enabled 0
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)1081 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1082 					       struct cg_proto *cg_proto)
1083 {
1084 	return NULL;
1085 }
1086 #endif
1087 
1088 
sk_has_memory_pressure(const struct sock * sk)1089 static inline bool sk_has_memory_pressure(const struct sock *sk)
1090 {
1091 	return sk->sk_prot->memory_pressure != NULL;
1092 }
1093 
sk_under_memory_pressure(const struct sock * sk)1094 static inline bool sk_under_memory_pressure(const struct sock *sk)
1095 {
1096 	if (!sk->sk_prot->memory_pressure)
1097 		return false;
1098 
1099 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1100 		return !!*sk->sk_cgrp->memory_pressure;
1101 
1102 	return !!*sk->sk_prot->memory_pressure;
1103 }
1104 
sk_leave_memory_pressure(struct sock * sk)1105 static inline void sk_leave_memory_pressure(struct sock *sk)
1106 {
1107 	int *memory_pressure = sk->sk_prot->memory_pressure;
1108 
1109 	if (!memory_pressure)
1110 		return;
1111 
1112 	if (*memory_pressure)
1113 		*memory_pressure = 0;
1114 
1115 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 		struct cg_proto *cg_proto = sk->sk_cgrp;
1117 		struct proto *prot = sk->sk_prot;
1118 
1119 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1120 			if (*cg_proto->memory_pressure)
1121 				*cg_proto->memory_pressure = 0;
1122 	}
1123 
1124 }
1125 
sk_enter_memory_pressure(struct sock * sk)1126 static inline void sk_enter_memory_pressure(struct sock *sk)
1127 {
1128 	if (!sk->sk_prot->enter_memory_pressure)
1129 		return;
1130 
1131 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1132 		struct cg_proto *cg_proto = sk->sk_cgrp;
1133 		struct proto *prot = sk->sk_prot;
1134 
1135 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1136 			cg_proto->enter_memory_pressure(sk);
1137 	}
1138 
1139 	sk->sk_prot->enter_memory_pressure(sk);
1140 }
1141 
sk_prot_mem_limits(const struct sock * sk,int index)1142 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1143 {
1144 	long *prot = sk->sk_prot->sysctl_mem;
1145 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1146 		prot = sk->sk_cgrp->sysctl_mem;
1147 	return prot[index];
1148 }
1149 
memcg_memory_allocated_add(struct cg_proto * prot,unsigned long amt,int * parent_status)1150 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1151 					      unsigned long amt,
1152 					      int *parent_status)
1153 {
1154 	struct res_counter *fail;
1155 	int ret;
1156 
1157 	ret = res_counter_charge_nofail(prot->memory_allocated,
1158 					amt << PAGE_SHIFT, &fail);
1159 	if (ret < 0)
1160 		*parent_status = OVER_LIMIT;
1161 }
1162 
memcg_memory_allocated_sub(struct cg_proto * prot,unsigned long amt)1163 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1164 					      unsigned long amt)
1165 {
1166 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1167 }
1168 
memcg_memory_allocated_read(struct cg_proto * prot)1169 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1170 {
1171 	u64 ret;
1172 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1173 	return ret >> PAGE_SHIFT;
1174 }
1175 
1176 static inline long
sk_memory_allocated(const struct sock * sk)1177 sk_memory_allocated(const struct sock *sk)
1178 {
1179 	struct proto *prot = sk->sk_prot;
1180 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1181 		return memcg_memory_allocated_read(sk->sk_cgrp);
1182 
1183 	return atomic_long_read(prot->memory_allocated);
1184 }
1185 
1186 static inline long
sk_memory_allocated_add(struct sock * sk,int amt,int * parent_status)1187 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1188 {
1189 	struct proto *prot = sk->sk_prot;
1190 
1191 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1192 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1193 		/* update the root cgroup regardless */
1194 		atomic_long_add_return(amt, prot->memory_allocated);
1195 		return memcg_memory_allocated_read(sk->sk_cgrp);
1196 	}
1197 
1198 	return atomic_long_add_return(amt, prot->memory_allocated);
1199 }
1200 
1201 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1202 sk_memory_allocated_sub(struct sock *sk, int amt)
1203 {
1204 	struct proto *prot = sk->sk_prot;
1205 
1206 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1207 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1208 
1209 	atomic_long_sub(amt, prot->memory_allocated);
1210 }
1211 
sk_sockets_allocated_dec(struct sock * sk)1212 static inline void sk_sockets_allocated_dec(struct sock *sk)
1213 {
1214 	struct proto *prot = sk->sk_prot;
1215 
1216 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1217 		struct cg_proto *cg_proto = sk->sk_cgrp;
1218 
1219 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1220 			percpu_counter_dec(cg_proto->sockets_allocated);
1221 	}
1222 
1223 	percpu_counter_dec(prot->sockets_allocated);
1224 }
1225 
sk_sockets_allocated_inc(struct sock * sk)1226 static inline void sk_sockets_allocated_inc(struct sock *sk)
1227 {
1228 	struct proto *prot = sk->sk_prot;
1229 
1230 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1231 		struct cg_proto *cg_proto = sk->sk_cgrp;
1232 
1233 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1234 			percpu_counter_inc(cg_proto->sockets_allocated);
1235 	}
1236 
1237 	percpu_counter_inc(prot->sockets_allocated);
1238 }
1239 
1240 static inline int
sk_sockets_allocated_read_positive(struct sock * sk)1241 sk_sockets_allocated_read_positive(struct sock *sk)
1242 {
1243 	struct proto *prot = sk->sk_prot;
1244 
1245 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1246 		return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1247 
1248 	return percpu_counter_read_positive(prot->sockets_allocated);
1249 }
1250 
1251 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1252 proto_sockets_allocated_sum_positive(struct proto *prot)
1253 {
1254 	return percpu_counter_sum_positive(prot->sockets_allocated);
1255 }
1256 
1257 static inline long
proto_memory_allocated(struct proto * prot)1258 proto_memory_allocated(struct proto *prot)
1259 {
1260 	return atomic_long_read(prot->memory_allocated);
1261 }
1262 
1263 static inline bool
proto_memory_pressure(struct proto * prot)1264 proto_memory_pressure(struct proto *prot)
1265 {
1266 	if (!prot->memory_pressure)
1267 		return false;
1268 	return !!*prot->memory_pressure;
1269 }
1270 
1271 
1272 #ifdef CONFIG_PROC_FS
1273 /* Called with local bh disabled */
1274 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1275 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1276 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1277 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1278 		int inc)
1279 {
1280 }
1281 #endif
1282 
1283 
1284 /* With per-bucket locks this operation is not-atomic, so that
1285  * this version is not worse.
1286  */
__sk_prot_rehash(struct sock * sk)1287 static inline void __sk_prot_rehash(struct sock *sk)
1288 {
1289 	sk->sk_prot->unhash(sk);
1290 	sk->sk_prot->hash(sk);
1291 }
1292 
1293 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1294 
1295 /* About 10 seconds */
1296 #define SOCK_DESTROY_TIME (10*HZ)
1297 
1298 /* Sockets 0-1023 can't be bound to unless you are superuser */
1299 #define PROT_SOCK	1024
1300 
1301 #define SHUTDOWN_MASK	3
1302 #define RCV_SHUTDOWN	1
1303 #define SEND_SHUTDOWN	2
1304 
1305 #define SOCK_SNDBUF_LOCK	1
1306 #define SOCK_RCVBUF_LOCK	2
1307 #define SOCK_BINDADDR_LOCK	4
1308 #define SOCK_BINDPORT_LOCK	8
1309 
1310 /* sock_iocb: used to kick off async processing of socket ios */
1311 struct sock_iocb {
1312 	struct list_head	list;
1313 
1314 	int			flags;
1315 	int			size;
1316 	struct socket		*sock;
1317 	struct sock		*sk;
1318 	struct scm_cookie	*scm;
1319 	struct msghdr		*msg, async_msg;
1320 	struct kiocb		*kiocb;
1321 };
1322 
kiocb_to_siocb(struct kiocb * iocb)1323 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1324 {
1325 	return (struct sock_iocb *)iocb->private;
1326 }
1327 
siocb_to_kiocb(struct sock_iocb * si)1328 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1329 {
1330 	return si->kiocb;
1331 }
1332 
1333 struct socket_alloc {
1334 	struct socket socket;
1335 	struct inode vfs_inode;
1336 };
1337 
SOCKET_I(struct inode * inode)1338 static inline struct socket *SOCKET_I(struct inode *inode)
1339 {
1340 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1341 }
1342 
SOCK_INODE(struct socket * socket)1343 static inline struct inode *SOCK_INODE(struct socket *socket)
1344 {
1345 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1346 }
1347 
1348 /*
1349  * Functions for memory accounting
1350  */
1351 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1352 extern void __sk_mem_reclaim(struct sock *sk);
1353 
1354 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1355 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1356 #define SK_MEM_SEND	0
1357 #define SK_MEM_RECV	1
1358 
sk_mem_pages(int amt)1359 static inline int sk_mem_pages(int amt)
1360 {
1361 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1362 }
1363 
sk_has_account(struct sock * sk)1364 static inline bool sk_has_account(struct sock *sk)
1365 {
1366 	/* return true if protocol supports memory accounting */
1367 	return !!sk->sk_prot->memory_allocated;
1368 }
1369 
sk_wmem_schedule(struct sock * sk,int size)1370 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1371 {
1372 	if (!sk_has_account(sk))
1373 		return true;
1374 	return size <= sk->sk_forward_alloc ||
1375 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1376 }
1377 
1378 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1379 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1380 {
1381 	if (!sk_has_account(sk))
1382 		return true;
1383 	return size<= sk->sk_forward_alloc ||
1384 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1385 		skb_pfmemalloc(skb);
1386 }
1387 
sk_mem_reclaim(struct sock * sk)1388 static inline void sk_mem_reclaim(struct sock *sk)
1389 {
1390 	if (!sk_has_account(sk))
1391 		return;
1392 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1393 		__sk_mem_reclaim(sk);
1394 }
1395 
sk_mem_reclaim_partial(struct sock * sk)1396 static inline void sk_mem_reclaim_partial(struct sock *sk)
1397 {
1398 	if (!sk_has_account(sk))
1399 		return;
1400 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1401 		__sk_mem_reclaim(sk);
1402 }
1403 
sk_mem_charge(struct sock * sk,int size)1404 static inline void sk_mem_charge(struct sock *sk, int size)
1405 {
1406 	if (!sk_has_account(sk))
1407 		return;
1408 	sk->sk_forward_alloc -= size;
1409 }
1410 
sk_mem_uncharge(struct sock * sk,int size)1411 static inline void sk_mem_uncharge(struct sock *sk, int size)
1412 {
1413 	if (!sk_has_account(sk))
1414 		return;
1415 	sk->sk_forward_alloc += size;
1416 }
1417 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1418 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1419 {
1420 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1421 	sk->sk_wmem_queued -= skb->truesize;
1422 	sk_mem_uncharge(sk, skb->truesize);
1423 	__kfree_skb(skb);
1424 }
1425 
1426 /* Used by processes to "lock" a socket state, so that
1427  * interrupts and bottom half handlers won't change it
1428  * from under us. It essentially blocks any incoming
1429  * packets, so that we won't get any new data or any
1430  * packets that change the state of the socket.
1431  *
1432  * While locked, BH processing will add new packets to
1433  * the backlog queue.  This queue is processed by the
1434  * owner of the socket lock right before it is released.
1435  *
1436  * Since ~2.3.5 it is also exclusive sleep lock serializing
1437  * accesses from user process context.
1438  */
1439 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1440 
1441 /*
1442  * Macro so as to not evaluate some arguments when
1443  * lockdep is not enabled.
1444  *
1445  * Mark both the sk_lock and the sk_lock.slock as a
1446  * per-address-family lock class.
1447  */
1448 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1449 do {									\
1450 	sk->sk_lock.owned = 0;						\
1451 	init_waitqueue_head(&sk->sk_lock.wq);				\
1452 	spin_lock_init(&(sk)->sk_lock.slock);				\
1453 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1454 			sizeof((sk)->sk_lock));				\
1455 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1456 				(skey), (sname));				\
1457 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1458 } while (0)
1459 
1460 extern void lock_sock_nested(struct sock *sk, int subclass);
1461 
lock_sock(struct sock * sk)1462 static inline void lock_sock(struct sock *sk)
1463 {
1464 	lock_sock_nested(sk, 0);
1465 }
1466 
1467 extern void release_sock(struct sock *sk);
1468 
1469 /* BH context may only use the following locking interface. */
1470 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1471 #define bh_lock_sock_nested(__sk) \
1472 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1473 				SINGLE_DEPTH_NESTING)
1474 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1475 
1476 extern bool lock_sock_fast(struct sock *sk);
1477 /**
1478  * unlock_sock_fast - complement of lock_sock_fast
1479  * @sk: socket
1480  * @slow: slow mode
1481  *
1482  * fast unlock socket for user context.
1483  * If slow mode is on, we call regular release_sock()
1484  */
unlock_sock_fast(struct sock * sk,bool slow)1485 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1486 {
1487 	if (slow)
1488 		release_sock(sk);
1489 	else
1490 		spin_unlock_bh(&sk->sk_lock.slock);
1491 }
1492 
1493 
1494 extern struct sock		*sk_alloc(struct net *net, int family,
1495 					  gfp_t priority,
1496 					  struct proto *prot);
1497 extern void			sk_free(struct sock *sk);
1498 extern void			sk_release_kernel(struct sock *sk);
1499 extern struct sock		*sk_clone_lock(const struct sock *sk,
1500 					       const gfp_t priority);
1501 
1502 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1503 					      unsigned long size, int force,
1504 					      gfp_t priority);
1505 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1506 					      unsigned long size, int force,
1507 					      gfp_t priority);
1508 extern void			sock_wfree(struct sk_buff *skb);
1509 extern void			sock_rfree(struct sk_buff *skb);
1510 extern void			sock_edemux(struct sk_buff *skb);
1511 
1512 extern int			sock_setsockopt(struct socket *sock, int level,
1513 						int op, char __user *optval,
1514 						unsigned int optlen);
1515 
1516 extern int			sock_getsockopt(struct socket *sock, int level,
1517 						int op, char __user *optval,
1518 						int __user *optlen);
1519 extern struct sk_buff		*sock_alloc_send_skb(struct sock *sk,
1520 						     unsigned long size,
1521 						     int noblock,
1522 						     int *errcode);
1523 extern struct sk_buff		*sock_alloc_send_pskb(struct sock *sk,
1524 						      unsigned long header_len,
1525 						      unsigned long data_len,
1526 						      int noblock,
1527 						      int *errcode);
1528 extern void *sock_kmalloc(struct sock *sk, int size,
1529 			  gfp_t priority);
1530 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1531 extern void sk_send_sigurg(struct sock *sk);
1532 
1533 /*
1534  * Functions to fill in entries in struct proto_ops when a protocol
1535  * does not implement a particular function.
1536  */
1537 extern int                      sock_no_bind(struct socket *,
1538 					     struct sockaddr *, int);
1539 extern int                      sock_no_connect(struct socket *,
1540 						struct sockaddr *, int, int);
1541 extern int                      sock_no_socketpair(struct socket *,
1542 						   struct socket *);
1543 extern int                      sock_no_accept(struct socket *,
1544 					       struct socket *, int);
1545 extern int                      sock_no_getname(struct socket *,
1546 						struct sockaddr *, int *, int);
1547 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1548 					     struct poll_table_struct *);
1549 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1550 					      unsigned long);
1551 extern int			sock_no_listen(struct socket *, int);
1552 extern int                      sock_no_shutdown(struct socket *, int);
1553 extern int			sock_no_getsockopt(struct socket *, int , int,
1554 						   char __user *, int __user *);
1555 extern int			sock_no_setsockopt(struct socket *, int, int,
1556 						   char __user *, unsigned int);
1557 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1558 						struct msghdr *, size_t);
1559 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1560 						struct msghdr *, size_t, int);
1561 extern int			sock_no_mmap(struct file *file,
1562 					     struct socket *sock,
1563 					     struct vm_area_struct *vma);
1564 extern ssize_t			sock_no_sendpage(struct socket *sock,
1565 						struct page *page,
1566 						int offset, size_t size,
1567 						int flags);
1568 
1569 /*
1570  * Functions to fill in entries in struct proto_ops when a protocol
1571  * uses the inet style.
1572  */
1573 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1574 				  char __user *optval, int __user *optlen);
1575 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1576 			       struct msghdr *msg, size_t size, int flags);
1577 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1578 				  char __user *optval, unsigned int optlen);
1579 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1580 		int optname, char __user *optval, int __user *optlen);
1581 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1582 		int optname, char __user *optval, unsigned int optlen);
1583 
1584 extern void sk_common_release(struct sock *sk);
1585 
1586 /*
1587  *	Default socket callbacks and setup code
1588  */
1589 
1590 /* Initialise core socket variables */
1591 extern void sock_init_data(struct socket *sock, struct sock *sk);
1592 
1593 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1594 
1595 /**
1596  *	sk_filter_release - release a socket filter
1597  *	@fp: filter to remove
1598  *
1599  *	Remove a filter from a socket and release its resources.
1600  */
1601 
sk_filter_release(struct sk_filter * fp)1602 static inline void sk_filter_release(struct sk_filter *fp)
1603 {
1604 	if (atomic_dec_and_test(&fp->refcnt))
1605 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1606 }
1607 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1608 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1609 {
1610 	unsigned int size = sk_filter_len(fp);
1611 
1612 	atomic_sub(size, &sk->sk_omem_alloc);
1613 	sk_filter_release(fp);
1614 }
1615 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1616 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1617 {
1618 	atomic_inc(&fp->refcnt);
1619 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1620 }
1621 
1622 /*
1623  * Socket reference counting postulates.
1624  *
1625  * * Each user of socket SHOULD hold a reference count.
1626  * * Each access point to socket (an hash table bucket, reference from a list,
1627  *   running timer, skb in flight MUST hold a reference count.
1628  * * When reference count hits 0, it means it will never increase back.
1629  * * When reference count hits 0, it means that no references from
1630  *   outside exist to this socket and current process on current CPU
1631  *   is last user and may/should destroy this socket.
1632  * * sk_free is called from any context: process, BH, IRQ. When
1633  *   it is called, socket has no references from outside -> sk_free
1634  *   may release descendant resources allocated by the socket, but
1635  *   to the time when it is called, socket is NOT referenced by any
1636  *   hash tables, lists etc.
1637  * * Packets, delivered from outside (from network or from another process)
1638  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1639  *   when they sit in queue. Otherwise, packets will leak to hole, when
1640  *   socket is looked up by one cpu and unhasing is made by another CPU.
1641  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1642  *   (leak to backlog). Packet socket does all the processing inside
1643  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1644  *   use separate SMP lock, so that they are prone too.
1645  */
1646 
1647 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1648 static inline void sock_put(struct sock *sk)
1649 {
1650 	if (atomic_dec_and_test(&sk->sk_refcnt))
1651 		sk_free(sk);
1652 }
1653 
1654 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1655 			  const int nested);
1656 
sk_tx_queue_set(struct sock * sk,int tx_queue)1657 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1658 {
1659 	sk->sk_tx_queue_mapping = tx_queue;
1660 }
1661 
sk_tx_queue_clear(struct sock * sk)1662 static inline void sk_tx_queue_clear(struct sock *sk)
1663 {
1664 	sk->sk_tx_queue_mapping = -1;
1665 }
1666 
sk_tx_queue_get(const struct sock * sk)1667 static inline int sk_tx_queue_get(const struct sock *sk)
1668 {
1669 	return sk ? sk->sk_tx_queue_mapping : -1;
1670 }
1671 
sk_set_socket(struct sock * sk,struct socket * sock)1672 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1673 {
1674 	sk_tx_queue_clear(sk);
1675 	sk->sk_socket = sock;
1676 }
1677 
sk_sleep(struct sock * sk)1678 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1679 {
1680 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1681 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1682 }
1683 /* Detach socket from process context.
1684  * Announce socket dead, detach it from wait queue and inode.
1685  * Note that parent inode held reference count on this struct sock,
1686  * we do not release it in this function, because protocol
1687  * probably wants some additional cleanups or even continuing
1688  * to work with this socket (TCP).
1689  */
sock_orphan(struct sock * sk)1690 static inline void sock_orphan(struct sock *sk)
1691 {
1692 	write_lock_bh(&sk->sk_callback_lock);
1693 	sock_set_flag(sk, SOCK_DEAD);
1694 	sk_set_socket(sk, NULL);
1695 	sk->sk_wq  = NULL;
1696 	write_unlock_bh(&sk->sk_callback_lock);
1697 }
1698 
sock_graft(struct sock * sk,struct socket * parent)1699 static inline void sock_graft(struct sock *sk, struct socket *parent)
1700 {
1701 	write_lock_bh(&sk->sk_callback_lock);
1702 	sk->sk_wq = parent->wq;
1703 	parent->sk = sk;
1704 	sk_set_socket(sk, parent);
1705 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1706 	security_sock_graft(sk, parent);
1707 	write_unlock_bh(&sk->sk_callback_lock);
1708 }
1709 
1710 extern kuid_t sock_i_uid(struct sock *sk);
1711 extern unsigned long sock_i_ino(struct sock *sk);
1712 
sock_net_uid(const struct net * net,const struct sock * sk)1713 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1714 {
1715 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1716 }
1717 
1718 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1719 __sk_dst_get(struct sock *sk)
1720 {
1721 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1722 						       lockdep_is_held(&sk->sk_lock.slock));
1723 }
1724 
1725 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1726 sk_dst_get(struct sock *sk)
1727 {
1728 	struct dst_entry *dst;
1729 
1730 	rcu_read_lock();
1731 	dst = rcu_dereference(sk->sk_dst_cache);
1732 	if (dst)
1733 		dst_hold(dst);
1734 	rcu_read_unlock();
1735 	return dst;
1736 }
1737 
1738 extern void sk_reset_txq(struct sock *sk);
1739 
dst_negative_advice(struct sock * sk)1740 static inline void dst_negative_advice(struct sock *sk)
1741 {
1742 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1743 
1744 	if (dst && dst->ops->negative_advice) {
1745 		ndst = dst->ops->negative_advice(dst);
1746 
1747 		if (ndst != dst) {
1748 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1749 			sk_reset_txq(sk);
1750 		}
1751 	}
1752 }
1753 
1754 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1755 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1756 {
1757 	struct dst_entry *old_dst;
1758 
1759 	sk_tx_queue_clear(sk);
1760 	/*
1761 	 * This can be called while sk is owned by the caller only,
1762 	 * with no state that can be checked in a rcu_dereference_check() cond
1763 	 */
1764 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1765 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1766 	dst_release(old_dst);
1767 }
1768 
1769 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1770 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1771 {
1772 	spin_lock(&sk->sk_dst_lock);
1773 	__sk_dst_set(sk, dst);
1774 	spin_unlock(&sk->sk_dst_lock);
1775 }
1776 
1777 static inline void
__sk_dst_reset(struct sock * sk)1778 __sk_dst_reset(struct sock *sk)
1779 {
1780 	__sk_dst_set(sk, NULL);
1781 }
1782 
1783 static inline void
sk_dst_reset(struct sock * sk)1784 sk_dst_reset(struct sock *sk)
1785 {
1786 	spin_lock(&sk->sk_dst_lock);
1787 	__sk_dst_reset(sk);
1788 	spin_unlock(&sk->sk_dst_lock);
1789 }
1790 
1791 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1792 
1793 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1794 
sk_can_gso(const struct sock * sk)1795 static inline bool sk_can_gso(const struct sock *sk)
1796 {
1797 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1798 }
1799 
1800 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1801 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1802 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1803 {
1804 	sk->sk_route_nocaps |= flags;
1805 	sk->sk_route_caps &= ~flags;
1806 }
1807 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,char __user * from,char * to,int copy,int offset)1808 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1809 					   char __user *from, char *to,
1810 					   int copy, int offset)
1811 {
1812 	if (skb->ip_summed == CHECKSUM_NONE) {
1813 		int err = 0;
1814 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1815 		if (err)
1816 			return err;
1817 		skb->csum = csum_block_add(skb->csum, csum, offset);
1818 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1819 		if (!access_ok(VERIFY_READ, from, copy) ||
1820 		    __copy_from_user_nocache(to, from, copy))
1821 			return -EFAULT;
1822 	} else if (copy_from_user(to, from, copy))
1823 		return -EFAULT;
1824 
1825 	return 0;
1826 }
1827 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,char __user * from,int copy)1828 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1829 				       char __user *from, int copy)
1830 {
1831 	int err, offset = skb->len;
1832 
1833 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1834 				       copy, offset);
1835 	if (err)
1836 		__skb_trim(skb, offset);
1837 
1838 	return err;
1839 }
1840 
skb_copy_to_page_nocache(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1841 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1842 					   struct sk_buff *skb,
1843 					   struct page *page,
1844 					   int off, int copy)
1845 {
1846 	int err;
1847 
1848 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1849 				       copy, skb->len);
1850 	if (err)
1851 		return err;
1852 
1853 	skb->len	     += copy;
1854 	skb->data_len	     += copy;
1855 	skb->truesize	     += copy;
1856 	sk->sk_wmem_queued   += copy;
1857 	sk_mem_charge(sk, copy);
1858 	return 0;
1859 }
1860 
skb_copy_to_page(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1861 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1862 				   struct sk_buff *skb, struct page *page,
1863 				   int off, int copy)
1864 {
1865 	if (skb->ip_summed == CHECKSUM_NONE) {
1866 		int err = 0;
1867 		__wsum csum = csum_and_copy_from_user(from,
1868 						     page_address(page) + off,
1869 							    copy, 0, &err);
1870 		if (err)
1871 			return err;
1872 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1873 	} else if (copy_from_user(page_address(page) + off, from, copy))
1874 		return -EFAULT;
1875 
1876 	skb->len	     += copy;
1877 	skb->data_len	     += copy;
1878 	skb->truesize	     += copy;
1879 	sk->sk_wmem_queued   += copy;
1880 	sk_mem_charge(sk, copy);
1881 	return 0;
1882 }
1883 
1884 /**
1885  * sk_wmem_alloc_get - returns write allocations
1886  * @sk: socket
1887  *
1888  * Returns sk_wmem_alloc minus initial offset of one
1889  */
sk_wmem_alloc_get(const struct sock * sk)1890 static inline int sk_wmem_alloc_get(const struct sock *sk)
1891 {
1892 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1893 }
1894 
1895 /**
1896  * sk_rmem_alloc_get - returns read allocations
1897  * @sk: socket
1898  *
1899  * Returns sk_rmem_alloc
1900  */
sk_rmem_alloc_get(const struct sock * sk)1901 static inline int sk_rmem_alloc_get(const struct sock *sk)
1902 {
1903 	return atomic_read(&sk->sk_rmem_alloc);
1904 }
1905 
1906 /**
1907  * sk_has_allocations - check if allocations are outstanding
1908  * @sk: socket
1909  *
1910  * Returns true if socket has write or read allocations
1911  */
sk_has_allocations(const struct sock * sk)1912 static inline bool sk_has_allocations(const struct sock *sk)
1913 {
1914 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1915 }
1916 
1917 /**
1918  * wq_has_sleeper - check if there are any waiting processes
1919  * @wq: struct socket_wq
1920  *
1921  * Returns true if socket_wq has waiting processes
1922  *
1923  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1924  * barrier call. They were added due to the race found within the tcp code.
1925  *
1926  * Consider following tcp code paths:
1927  *
1928  * CPU1                  CPU2
1929  *
1930  * sys_select            receive packet
1931  *   ...                 ...
1932  *   __add_wait_queue    update tp->rcv_nxt
1933  *   ...                 ...
1934  *   tp->rcv_nxt check   sock_def_readable
1935  *   ...                 {
1936  *   schedule               rcu_read_lock();
1937  *                          wq = rcu_dereference(sk->sk_wq);
1938  *                          if (wq && waitqueue_active(&wq->wait))
1939  *                              wake_up_interruptible(&wq->wait)
1940  *                          ...
1941  *                       }
1942  *
1943  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1944  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1945  * could then endup calling schedule and sleep forever if there are no more
1946  * data on the socket.
1947  *
1948  */
wq_has_sleeper(struct socket_wq * wq)1949 static inline bool wq_has_sleeper(struct socket_wq *wq)
1950 {
1951 	/* We need to be sure we are in sync with the
1952 	 * add_wait_queue modifications to the wait queue.
1953 	 *
1954 	 * This memory barrier is paired in the sock_poll_wait.
1955 	 */
1956 	smp_mb();
1957 	return wq && waitqueue_active(&wq->wait);
1958 }
1959 
1960 /**
1961  * sock_poll_wait - place memory barrier behind the poll_wait call.
1962  * @filp:           file
1963  * @wait_address:   socket wait queue
1964  * @p:              poll_table
1965  *
1966  * See the comments in the wq_has_sleeper function.
1967  */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)1968 static inline void sock_poll_wait(struct file *filp,
1969 		wait_queue_head_t *wait_address, poll_table *p)
1970 {
1971 	if (!poll_does_not_wait(p) && wait_address) {
1972 		poll_wait(filp, wait_address, p);
1973 		/* We need to be sure we are in sync with the
1974 		 * socket flags modification.
1975 		 *
1976 		 * This memory barrier is paired in the wq_has_sleeper.
1977 		 */
1978 		smp_mb();
1979 	}
1980 }
1981 
1982 /*
1983  *	Queue a received datagram if it will fit. Stream and sequenced
1984  *	protocols can't normally use this as they need to fit buffers in
1985  *	and play with them.
1986  *
1987  *	Inlined as it's very short and called for pretty much every
1988  *	packet ever received.
1989  */
1990 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1991 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1992 {
1993 	skb_orphan(skb);
1994 	skb->sk = sk;
1995 	skb->destructor = sock_wfree;
1996 	/*
1997 	 * We used to take a refcount on sk, but following operation
1998 	 * is enough to guarantee sk_free() wont free this sock until
1999 	 * all in-flight packets are completed
2000 	 */
2001 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2002 }
2003 
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2004 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2005 {
2006 	skb_orphan(skb);
2007 	skb->sk = sk;
2008 	skb->destructor = sock_rfree;
2009 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2010 	sk_mem_charge(sk, skb->truesize);
2011 }
2012 
2013 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2014 			   unsigned long expires);
2015 
2016 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2017 
2018 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2019 
2020 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2021 
2022 /*
2023  *	Recover an error report and clear atomically
2024  */
2025 
sock_error(struct sock * sk)2026 static inline int sock_error(struct sock *sk)
2027 {
2028 	int err;
2029 	if (likely(!sk->sk_err))
2030 		return 0;
2031 	err = xchg(&sk->sk_err, 0);
2032 	return -err;
2033 }
2034 
sock_wspace(struct sock * sk)2035 static inline unsigned long sock_wspace(struct sock *sk)
2036 {
2037 	int amt = 0;
2038 
2039 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2040 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2041 		if (amt < 0)
2042 			amt = 0;
2043 	}
2044 	return amt;
2045 }
2046 
sk_wake_async(struct sock * sk,int how,int band)2047 static inline void sk_wake_async(struct sock *sk, int how, int band)
2048 {
2049 	if (sock_flag(sk, SOCK_FASYNC))
2050 		sock_wake_async(sk->sk_socket, how, band);
2051 }
2052 
2053 #define SOCK_MIN_SNDBUF 2048
2054 /*
2055  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2056  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2057  */
2058 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2059 
sk_stream_moderate_sndbuf(struct sock * sk)2060 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2061 {
2062 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2063 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2064 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2065 	}
2066 }
2067 
2068 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2069 
2070 /**
2071  * sk_page_frag - return an appropriate page_frag
2072  * @sk: socket
2073  *
2074  * If socket allocation mode allows current thread to sleep, it means its
2075  * safe to use the per task page_frag instead of the per socket one.
2076  */
sk_page_frag(struct sock * sk)2077 static inline struct page_frag *sk_page_frag(struct sock *sk)
2078 {
2079 	if (sk->sk_allocation & __GFP_WAIT)
2080 		return &current->task_frag;
2081 
2082 	return &sk->sk_frag;
2083 }
2084 
2085 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2086 
2087 /*
2088  *	Default write policy as shown to user space via poll/select/SIGIO
2089  */
sock_writeable(const struct sock * sk)2090 static inline bool sock_writeable(const struct sock *sk)
2091 {
2092 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2093 }
2094 
gfp_any(void)2095 static inline gfp_t gfp_any(void)
2096 {
2097 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2098 }
2099 
sock_rcvtimeo(const struct sock * sk,bool noblock)2100 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2101 {
2102 	return noblock ? 0 : sk->sk_rcvtimeo;
2103 }
2104 
sock_sndtimeo(const struct sock * sk,bool noblock)2105 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2106 {
2107 	return noblock ? 0 : sk->sk_sndtimeo;
2108 }
2109 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2110 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2111 {
2112 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2113 }
2114 
2115 /* Alas, with timeout socket operations are not restartable.
2116  * Compare this to poll().
2117  */
sock_intr_errno(long timeo)2118 static inline int sock_intr_errno(long timeo)
2119 {
2120 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2121 }
2122 
2123 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2124 	struct sk_buff *skb);
2125 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2126 	struct sk_buff *skb);
2127 
2128 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2129 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2130 {
2131 	ktime_t kt = skb->tstamp;
2132 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2133 
2134 	/*
2135 	 * generate control messages if
2136 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2137 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2138 	 * - software time stamp available and wanted
2139 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
2140 	 * - hardware time stamps available and wanted
2141 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2142 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2143 	 */
2144 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2145 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2146 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2147 	    (hwtstamps->hwtstamp.tv64 &&
2148 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2149 	    (hwtstamps->syststamp.tv64 &&
2150 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2151 		__sock_recv_timestamp(msg, sk, skb);
2152 	else
2153 		sk->sk_stamp = kt;
2154 
2155 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2156 		__sock_recv_wifi_status(msg, sk, skb);
2157 }
2158 
2159 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2160 				     struct sk_buff *skb);
2161 
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2162 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2163 					  struct sk_buff *skb)
2164 {
2165 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2166 			   (1UL << SOCK_RCVTSTAMP)			| \
2167 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2168 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2169 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)	| \
2170 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2171 
2172 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2173 		__sock_recv_ts_and_drops(msg, sk, skb);
2174 	else
2175 		sk->sk_stamp = skb->tstamp;
2176 }
2177 
2178 /**
2179  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2180  * @sk:		socket sending this packet
2181  * @tx_flags:	filled with instructions for time stamping
2182  *
2183  * Currently only depends on SOCK_TIMESTAMPING* flags.
2184  */
2185 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2186 
2187 /**
2188  * sk_eat_skb - Release a skb if it is no longer needed
2189  * @sk: socket to eat this skb from
2190  * @skb: socket buffer to eat
2191  * @copied_early: flag indicating whether DMA operations copied this data early
2192  *
2193  * This routine must be called with interrupts disabled or with the socket
2194  * locked so that the sk_buff queue operation is ok.
2195 */
2196 #ifdef CONFIG_NET_DMA
sk_eat_skb(struct sock * sk,struct sk_buff * skb,bool copied_early)2197 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2198 {
2199 	__skb_unlink(skb, &sk->sk_receive_queue);
2200 	if (!copied_early)
2201 		__kfree_skb(skb);
2202 	else
2203 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2204 }
2205 #else
sk_eat_skb(struct sock * sk,struct sk_buff * skb,bool copied_early)2206 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2207 {
2208 	__skb_unlink(skb, &sk->sk_receive_queue);
2209 	__kfree_skb(skb);
2210 }
2211 #endif
2212 
2213 static inline
sock_net(const struct sock * sk)2214 struct net *sock_net(const struct sock *sk)
2215 {
2216 	return read_pnet(&sk->sk_net);
2217 }
2218 
2219 static inline
sock_net_set(struct sock * sk,struct net * net)2220 void sock_net_set(struct sock *sk, struct net *net)
2221 {
2222 	write_pnet(&sk->sk_net, net);
2223 }
2224 
2225 /*
2226  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2227  * They should not hold a reference to a namespace in order to allow
2228  * to stop it.
2229  * Sockets after sk_change_net should be released using sk_release_kernel
2230  */
sk_change_net(struct sock * sk,struct net * net)2231 static inline void sk_change_net(struct sock *sk, struct net *net)
2232 {
2233 	put_net(sock_net(sk));
2234 	sock_net_set(sk, hold_net(net));
2235 }
2236 
skb_steal_sock(struct sk_buff * skb)2237 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2238 {
2239 	if (skb->sk) {
2240 		struct sock *sk = skb->sk;
2241 
2242 		skb->destructor = NULL;
2243 		skb->sk = NULL;
2244 		return sk;
2245 	}
2246 	return NULL;
2247 }
2248 
2249 /* This helper checks if a socket is a full socket,
2250  * ie _not_ a timewait or request socket.
2251  * TODO: Check for TCPF_NEW_SYN_RECV when that starts to exist.
2252  */
sk_fullsock(const struct sock * sk)2253 static inline bool sk_fullsock(const struct sock *sk)
2254 {
2255 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT);
2256 }
2257 
2258 extern void sock_enable_timestamp(struct sock *sk, int flag);
2259 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2260 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2261 
2262 /*
2263  *	Enable debug/info messages
2264  */
2265 extern int net_msg_warn;
2266 #define NETDEBUG(fmt, args...) \
2267 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2268 
2269 #define LIMIT_NETDEBUG(fmt, args...) \
2270 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2271 
2272 extern __u32 sysctl_wmem_max;
2273 extern __u32 sysctl_rmem_max;
2274 
2275 extern int sysctl_optmem_max;
2276 
2277 extern __u32 sysctl_wmem_default;
2278 extern __u32 sysctl_rmem_default;
2279 
2280 #endif	/* _SOCK_H */
2281