1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <net/tcp_states.h>
71
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
80 {
81 return 0;
82 }
83 static inline
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
85 {
86 }
87 #endif
88 /*
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
92 */
93
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
103 {
104 }
105 #endif
106
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
110 */
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
115 /*
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
120 */
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
125
126 struct sock;
127 struct proto;
128 struct net;
129
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
132
133 /**
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
154 *
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
157 */
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH()
161 */
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
167 };
168 };
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
172 };
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
179 };
180 };
181
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:4;
186 int skc_bound_dev_if;
187 union {
188 struct hlist_node skc_bind_node;
189 struct hlist_nulls_node skc_portaddr_node;
190 };
191 struct proto *skc_prot;
192 #ifdef CONFIG_NET_NS
193 struct net *skc_net;
194 #endif
195 /*
196 * fields between dontcopy_begin/dontcopy_end
197 * are not copied in sock_copy()
198 */
199 /* private: */
200 int skc_dontcopy_begin[0];
201 /* public: */
202 union {
203 struct hlist_node skc_node;
204 struct hlist_nulls_node skc_nulls_node;
205 };
206 int skc_tx_queue_mapping;
207 atomic_t skc_refcnt;
208 /* private: */
209 int skc_dontcopy_end[0];
210 /* public: */
211 };
212
213 struct cg_proto;
214 /**
215 * struct sock - network layer representation of sockets
216 * @__sk_common: shared layout with inet_timewait_sock
217 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
218 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
219 * @sk_lock: synchronizer
220 * @sk_rcvbuf: size of receive buffer in bytes
221 * @sk_wq: sock wait queue and async head
222 * @sk_rx_dst: receive input route used by early tcp demux
223 * @sk_dst_cache: destination cache
224 * @sk_dst_lock: destination cache lock
225 * @sk_policy: flow policy
226 * @sk_receive_queue: incoming packets
227 * @sk_wmem_alloc: transmit queue bytes committed
228 * @sk_write_queue: Packet sending queue
229 * @sk_async_wait_queue: DMA copied packets
230 * @sk_omem_alloc: "o" is "option" or "other"
231 * @sk_wmem_queued: persistent queue size
232 * @sk_forward_alloc: space allocated forward
233 * @sk_allocation: allocation mode
234 * @sk_sndbuf: size of send buffer in bytes
235 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
236 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
237 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
238 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
239 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
240 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
241 * @sk_gso_max_size: Maximum GSO segment size to build
242 * @sk_gso_max_segs: Maximum number of GSO segments
243 * @sk_lingertime: %SO_LINGER l_linger setting
244 * @sk_backlog: always used with the per-socket spinlock held
245 * @sk_callback_lock: used with the callbacks in the end of this struct
246 * @sk_error_queue: rarely used
247 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
248 * IPV6_ADDRFORM for instance)
249 * @sk_err: last error
250 * @sk_err_soft: errors that don't cause failure but are the cause of a
251 * persistent failure not just 'timed out'
252 * @sk_drops: raw/udp drops counter
253 * @sk_ack_backlog: current listen backlog
254 * @sk_max_ack_backlog: listen backlog set in listen()
255 * @sk_priority: %SO_PRIORITY setting
256 * @sk_cgrp_prioidx: socket group's priority map index
257 * @sk_type: socket type (%SOCK_STREAM, etc)
258 * @sk_protocol: which protocol this socket belongs in this network family
259 * @sk_peer_pid: &struct pid for this socket's peer
260 * @sk_peer_cred: %SO_PEERCRED setting
261 * @sk_rcvlowat: %SO_RCVLOWAT setting
262 * @sk_rcvtimeo: %SO_RCVTIMEO setting
263 * @sk_sndtimeo: %SO_SNDTIMEO setting
264 * @sk_rxhash: flow hash received from netif layer
265 * @sk_filter: socket filtering instructions
266 * @sk_protinfo: private area, net family specific, when not using slab
267 * @sk_timer: sock cleanup timer
268 * @sk_stamp: time stamp of last packet received
269 * @sk_socket: Identd and reporting IO signals
270 * @sk_user_data: RPC layer private data
271 * @sk_frag: cached page frag
272 * @sk_peek_off: current peek_offset value
273 * @sk_send_head: front of stuff to transmit
274 * @sk_security: used by security modules
275 * @sk_mark: generic packet mark
276 * @sk_classid: this socket's cgroup classid
277 * @sk_cgrp: this socket's cgroup-specific proto data
278 * @sk_write_pending: a write to stream socket waits to start
279 * @sk_state_change: callback to indicate change in the state of the sock
280 * @sk_data_ready: callback to indicate there is data to be processed
281 * @sk_write_space: callback to indicate there is bf sending space available
282 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
283 * @sk_backlog_rcv: callback to process the backlog
284 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
285 */
286 struct sock {
287 /*
288 * Now struct inet_timewait_sock also uses sock_common, so please just
289 * don't add nothing before this first member (__sk_common) --acme
290 */
291 struct sock_common __sk_common;
292 #define sk_node __sk_common.skc_node
293 #define sk_nulls_node __sk_common.skc_nulls_node
294 #define sk_refcnt __sk_common.skc_refcnt
295 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
296
297 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
298 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
299 #define sk_hash __sk_common.skc_hash
300 #define sk_family __sk_common.skc_family
301 #define sk_state __sk_common.skc_state
302 #define sk_reuse __sk_common.skc_reuse
303 #define sk_reuseport __sk_common.skc_reuseport
304 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
305 #define sk_bind_node __sk_common.skc_bind_node
306 #define sk_prot __sk_common.skc_prot
307 #define sk_net __sk_common.skc_net
308 socket_lock_t sk_lock;
309 struct sk_buff_head sk_receive_queue;
310 /*
311 * The backlog queue is special, it is always used with
312 * the per-socket spinlock held and requires low latency
313 * access. Therefore we special case it's implementation.
314 * Note : rmem_alloc is in this structure to fill a hole
315 * on 64bit arches, not because its logically part of
316 * backlog.
317 */
318 struct {
319 atomic_t rmem_alloc;
320 int len;
321 struct sk_buff *head;
322 struct sk_buff *tail;
323 } sk_backlog;
324 #define sk_rmem_alloc sk_backlog.rmem_alloc
325 int sk_forward_alloc;
326 #ifdef CONFIG_RPS
327 __u32 sk_rxhash;
328 #endif
329 atomic_t sk_drops;
330 int sk_rcvbuf;
331
332 struct sk_filter __rcu *sk_filter;
333 struct socket_wq __rcu *sk_wq;
334
335 #ifdef CONFIG_NET_DMA
336 struct sk_buff_head sk_async_wait_queue;
337 #endif
338
339 #ifdef CONFIG_XFRM
340 struct xfrm_policy *sk_policy[2];
341 #endif
342 unsigned long sk_flags;
343 struct dst_entry *sk_rx_dst;
344 struct dst_entry __rcu *sk_dst_cache;
345 spinlock_t sk_dst_lock;
346 atomic_t sk_wmem_alloc;
347 atomic_t sk_omem_alloc;
348 int sk_sndbuf;
349 struct sk_buff_head sk_write_queue;
350 kmemcheck_bitfield_begin(flags);
351 unsigned int sk_shutdown : 2,
352 sk_no_check : 2,
353 sk_userlocks : 4,
354 sk_protocol : 8,
355 sk_type : 16;
356 kmemcheck_bitfield_end(flags);
357 int sk_wmem_queued;
358 gfp_t sk_allocation;
359 netdev_features_t sk_route_caps;
360 netdev_features_t sk_route_nocaps;
361 int sk_gso_type;
362 unsigned int sk_gso_max_size;
363 u16 sk_gso_max_segs;
364 int sk_rcvlowat;
365 unsigned long sk_lingertime;
366 struct sk_buff_head sk_error_queue;
367 struct proto *sk_prot_creator;
368 rwlock_t sk_callback_lock;
369 int sk_err,
370 sk_err_soft;
371 unsigned short sk_ack_backlog;
372 unsigned short sk_max_ack_backlog;
373 __u32 sk_priority;
374 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
375 __u32 sk_cgrp_prioidx;
376 #endif
377 struct pid *sk_peer_pid;
378 const struct cred *sk_peer_cred;
379 long sk_rcvtimeo;
380 long sk_sndtimeo;
381 void *sk_protinfo;
382 struct timer_list sk_timer;
383 ktime_t sk_stamp;
384 struct socket *sk_socket;
385 void *sk_user_data;
386 struct page_frag sk_frag;
387 struct sk_buff *sk_send_head;
388 __s32 sk_peek_off;
389 int sk_write_pending;
390 #ifdef CONFIG_SECURITY
391 void *sk_security;
392 #endif
393 __u32 sk_mark;
394 kuid_t sk_uid;
395 u32 sk_classid;
396 struct cg_proto *sk_cgrp;
397 void (*sk_state_change)(struct sock *sk);
398 void (*sk_data_ready)(struct sock *sk, int bytes);
399 void (*sk_write_space)(struct sock *sk);
400 void (*sk_error_report)(struct sock *sk);
401 int (*sk_backlog_rcv)(struct sock *sk,
402 struct sk_buff *skb);
403 void (*sk_destruct)(struct sock *sk);
404 };
405
406 /*
407 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
408 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
409 * on a socket means that the socket will reuse everybody else's port
410 * without looking at the other's sk_reuse value.
411 */
412
413 #define SK_NO_REUSE 0
414 #define SK_CAN_REUSE 1
415 #define SK_FORCE_REUSE 2
416
sk_peek_offset(struct sock * sk,int flags)417 static inline int sk_peek_offset(struct sock *sk, int flags)
418 {
419 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
420 return sk->sk_peek_off;
421 else
422 return 0;
423 }
424
sk_peek_offset_bwd(struct sock * sk,int val)425 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
426 {
427 if (sk->sk_peek_off >= 0) {
428 if (sk->sk_peek_off >= val)
429 sk->sk_peek_off -= val;
430 else
431 sk->sk_peek_off = 0;
432 }
433 }
434
sk_peek_offset_fwd(struct sock * sk,int val)435 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
436 {
437 if (sk->sk_peek_off >= 0)
438 sk->sk_peek_off += val;
439 }
440
441 /*
442 * Hashed lists helper routines
443 */
sk_entry(const struct hlist_node * node)444 static inline struct sock *sk_entry(const struct hlist_node *node)
445 {
446 return hlist_entry(node, struct sock, sk_node);
447 }
448
__sk_head(const struct hlist_head * head)449 static inline struct sock *__sk_head(const struct hlist_head *head)
450 {
451 return hlist_entry(head->first, struct sock, sk_node);
452 }
453
sk_head(const struct hlist_head * head)454 static inline struct sock *sk_head(const struct hlist_head *head)
455 {
456 return hlist_empty(head) ? NULL : __sk_head(head);
457 }
458
__sk_nulls_head(const struct hlist_nulls_head * head)459 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
460 {
461 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
462 }
463
sk_nulls_head(const struct hlist_nulls_head * head)464 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
465 {
466 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
467 }
468
sk_next(const struct sock * sk)469 static inline struct sock *sk_next(const struct sock *sk)
470 {
471 return sk->sk_node.next ?
472 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
473 }
474
sk_nulls_next(const struct sock * sk)475 static inline struct sock *sk_nulls_next(const struct sock *sk)
476 {
477 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
478 hlist_nulls_entry(sk->sk_nulls_node.next,
479 struct sock, sk_nulls_node) :
480 NULL;
481 }
482
sk_unhashed(const struct sock * sk)483 static inline bool sk_unhashed(const struct sock *sk)
484 {
485 return hlist_unhashed(&sk->sk_node);
486 }
487
sk_hashed(const struct sock * sk)488 static inline bool sk_hashed(const struct sock *sk)
489 {
490 return !sk_unhashed(sk);
491 }
492
sk_node_init(struct hlist_node * node)493 static inline void sk_node_init(struct hlist_node *node)
494 {
495 node->pprev = NULL;
496 }
497
sk_nulls_node_init(struct hlist_nulls_node * node)498 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
499 {
500 node->pprev = NULL;
501 }
502
__sk_del_node(struct sock * sk)503 static inline void __sk_del_node(struct sock *sk)
504 {
505 __hlist_del(&sk->sk_node);
506 }
507
508 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)509 static inline bool __sk_del_node_init(struct sock *sk)
510 {
511 if (sk_hashed(sk)) {
512 __sk_del_node(sk);
513 sk_node_init(&sk->sk_node);
514 return true;
515 }
516 return false;
517 }
518
519 /* Grab socket reference count. This operation is valid only
520 when sk is ALREADY grabbed f.e. it is found in hash table
521 or a list and the lookup is made under lock preventing hash table
522 modifications.
523 */
524
sock_hold(struct sock * sk)525 static inline void sock_hold(struct sock *sk)
526 {
527 atomic_inc(&sk->sk_refcnt);
528 }
529
530 /* Ungrab socket in the context, which assumes that socket refcnt
531 cannot hit zero, f.e. it is true in context of any socketcall.
532 */
__sock_put(struct sock * sk)533 static inline void __sock_put(struct sock *sk)
534 {
535 atomic_dec(&sk->sk_refcnt);
536 }
537
sk_del_node_init(struct sock * sk)538 static inline bool sk_del_node_init(struct sock *sk)
539 {
540 bool rc = __sk_del_node_init(sk);
541
542 if (rc) {
543 /* paranoid for a while -acme */
544 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
545 __sock_put(sk);
546 }
547 return rc;
548 }
549 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
550
__sk_nulls_del_node_init_rcu(struct sock * sk)551 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
552 {
553 if (sk_hashed(sk)) {
554 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
555 return true;
556 }
557 return false;
558 }
559
sk_nulls_del_node_init_rcu(struct sock * sk)560 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
561 {
562 bool rc = __sk_nulls_del_node_init_rcu(sk);
563
564 if (rc) {
565 /* paranoid for a while -acme */
566 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
567 __sock_put(sk);
568 }
569 return rc;
570 }
571
__sk_add_node(struct sock * sk,struct hlist_head * list)572 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
573 {
574 hlist_add_head(&sk->sk_node, list);
575 }
576
sk_add_node(struct sock * sk,struct hlist_head * list)577 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
578 {
579 sock_hold(sk);
580 __sk_add_node(sk, list);
581 }
582
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)583 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
584 {
585 sock_hold(sk);
586 hlist_add_head_rcu(&sk->sk_node, list);
587 }
588
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)589 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
590 {
591 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
592 }
593
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)594 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
595 {
596 sock_hold(sk);
597 __sk_nulls_add_node_rcu(sk, list);
598 }
599
__sk_del_bind_node(struct sock * sk)600 static inline void __sk_del_bind_node(struct sock *sk)
601 {
602 __hlist_del(&sk->sk_bind_node);
603 }
604
sk_add_bind_node(struct sock * sk,struct hlist_head * list)605 static inline void sk_add_bind_node(struct sock *sk,
606 struct hlist_head *list)
607 {
608 hlist_add_head(&sk->sk_bind_node, list);
609 }
610
611 #define sk_for_each(__sk, list) \
612 hlist_for_each_entry(__sk, list, sk_node)
613 #define sk_for_each_rcu(__sk, list) \
614 hlist_for_each_entry_rcu(__sk, list, sk_node)
615 #define sk_nulls_for_each(__sk, node, list) \
616 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
617 #define sk_nulls_for_each_rcu(__sk, node, list) \
618 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
619 #define sk_for_each_from(__sk) \
620 hlist_for_each_entry_from(__sk, sk_node)
621 #define sk_nulls_for_each_from(__sk, node) \
622 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
623 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
624 #define sk_for_each_safe(__sk, tmp, list) \
625 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
626 #define sk_for_each_bound(__sk, list) \
627 hlist_for_each_entry(__sk, list, sk_bind_node)
628
sk_user_ns(struct sock * sk)629 static inline struct user_namespace *sk_user_ns(struct sock *sk)
630 {
631 /* Careful only use this in a context where these parameters
632 * can not change and must all be valid, such as recvmsg from
633 * userspace.
634 */
635 return sk->sk_socket->file->f_cred->user_ns;
636 }
637
638 /* Sock flags */
639 enum sock_flags {
640 SOCK_DEAD,
641 SOCK_DONE,
642 SOCK_URGINLINE,
643 SOCK_KEEPOPEN,
644 SOCK_LINGER,
645 SOCK_DESTROY,
646 SOCK_BROADCAST,
647 SOCK_TIMESTAMP,
648 SOCK_ZAPPED,
649 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
650 SOCK_DBG, /* %SO_DEBUG setting */
651 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
652 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
653 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
654 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
655 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
656 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
657 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
658 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
659 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
660 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
661 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
662 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
663 SOCK_FASYNC, /* fasync() active */
664 SOCK_RXQ_OVFL,
665 SOCK_ZEROCOPY, /* buffers from userspace */
666 SOCK_WIFI_STATUS, /* push wifi status to userspace */
667 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
668 * Will use last 4 bytes of packet sent from
669 * user-space instead.
670 */
671 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
672 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
673 };
674
sock_copy_flags(struct sock * nsk,struct sock * osk)675 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
676 {
677 nsk->sk_flags = osk->sk_flags;
678 }
679
sock_set_flag(struct sock * sk,enum sock_flags flag)680 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
681 {
682 __set_bit(flag, &sk->sk_flags);
683 }
684
sock_reset_flag(struct sock * sk,enum sock_flags flag)685 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
686 {
687 __clear_bit(flag, &sk->sk_flags);
688 }
689
sock_flag(const struct sock * sk,enum sock_flags flag)690 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
691 {
692 return test_bit(flag, &sk->sk_flags);
693 }
694
695 #ifdef CONFIG_NET
696 extern struct static_key memalloc_socks;
sk_memalloc_socks(void)697 static inline int sk_memalloc_socks(void)
698 {
699 return static_key_false(&memalloc_socks);
700 }
701 #else
702
sk_memalloc_socks(void)703 static inline int sk_memalloc_socks(void)
704 {
705 return 0;
706 }
707
708 #endif
709
sk_gfp_atomic(struct sock * sk,gfp_t gfp_mask)710 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
711 {
712 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
713 }
714
sk_acceptq_removed(struct sock * sk)715 static inline void sk_acceptq_removed(struct sock *sk)
716 {
717 sk->sk_ack_backlog--;
718 }
719
sk_acceptq_added(struct sock * sk)720 static inline void sk_acceptq_added(struct sock *sk)
721 {
722 sk->sk_ack_backlog++;
723 }
724
sk_acceptq_is_full(const struct sock * sk)725 static inline bool sk_acceptq_is_full(const struct sock *sk)
726 {
727 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
728 }
729
730 /*
731 * Compute minimal free write space needed to queue new packets.
732 */
sk_stream_min_wspace(const struct sock * sk)733 static inline int sk_stream_min_wspace(const struct sock *sk)
734 {
735 return sk->sk_wmem_queued >> 1;
736 }
737
sk_stream_wspace(const struct sock * sk)738 static inline int sk_stream_wspace(const struct sock *sk)
739 {
740 return sk->sk_sndbuf - sk->sk_wmem_queued;
741 }
742
743 extern void sk_stream_write_space(struct sock *sk);
744
sk_stream_memory_free(const struct sock * sk)745 static inline bool sk_stream_memory_free(const struct sock *sk)
746 {
747 return sk->sk_wmem_queued < sk->sk_sndbuf;
748 }
749
750 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)751 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
752 {
753 /* dont let skb dst not refcounted, we are going to leave rcu lock */
754 skb_dst_force(skb);
755
756 if (!sk->sk_backlog.tail)
757 sk->sk_backlog.head = skb;
758 else
759 sk->sk_backlog.tail->next = skb;
760
761 sk->sk_backlog.tail = skb;
762 skb->next = NULL;
763 }
764
765 /*
766 * Take into account size of receive queue and backlog queue
767 * Do not take into account this skb truesize,
768 * to allow even a single big packet to come.
769 */
sk_rcvqueues_full(const struct sock * sk,const struct sk_buff * skb,unsigned int limit)770 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
771 unsigned int limit)
772 {
773 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
774
775 return qsize > limit;
776 }
777
778 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)779 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
780 unsigned int limit)
781 {
782 if (sk_rcvqueues_full(sk, skb, limit))
783 return -ENOBUFS;
784
785 __sk_add_backlog(sk, skb);
786 sk->sk_backlog.len += skb->truesize;
787 return 0;
788 }
789
790 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
791
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)792 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
793 {
794 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
795 return __sk_backlog_rcv(sk, skb);
796
797 return sk->sk_backlog_rcv(sk, skb);
798 }
799
sock_rps_record_flow(const struct sock * sk)800 static inline void sock_rps_record_flow(const struct sock *sk)
801 {
802 #ifdef CONFIG_RPS
803 struct rps_sock_flow_table *sock_flow_table;
804
805 rcu_read_lock();
806 sock_flow_table = rcu_dereference(rps_sock_flow_table);
807 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
808 rcu_read_unlock();
809 #endif
810 }
811
sock_rps_reset_flow(const struct sock * sk)812 static inline void sock_rps_reset_flow(const struct sock *sk)
813 {
814 #ifdef CONFIG_RPS
815 struct rps_sock_flow_table *sock_flow_table;
816
817 rcu_read_lock();
818 sock_flow_table = rcu_dereference(rps_sock_flow_table);
819 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
820 rcu_read_unlock();
821 #endif
822 }
823
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)824 static inline void sock_rps_save_rxhash(struct sock *sk,
825 const struct sk_buff *skb)
826 {
827 #ifdef CONFIG_RPS
828 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
829 sock_rps_reset_flow(sk);
830 sk->sk_rxhash = skb->rxhash;
831 }
832 #endif
833 }
834
sock_rps_reset_rxhash(struct sock * sk)835 static inline void sock_rps_reset_rxhash(struct sock *sk)
836 {
837 #ifdef CONFIG_RPS
838 sock_rps_reset_flow(sk);
839 sk->sk_rxhash = 0;
840 #endif
841 }
842
843 #define sk_wait_event(__sk, __timeo, __condition) \
844 ({ int __rc; \
845 release_sock(__sk); \
846 __rc = __condition; \
847 if (!__rc) { \
848 *(__timeo) = schedule_timeout(*(__timeo)); \
849 } \
850 lock_sock(__sk); \
851 __rc = __condition; \
852 __rc; \
853 })
854
855 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
856 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
857 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
858 extern int sk_stream_error(struct sock *sk, int flags, int err);
859 extern void sk_stream_kill_queues(struct sock *sk);
860 extern void sk_set_memalloc(struct sock *sk);
861 extern void sk_clear_memalloc(struct sock *sk);
862
863 extern int sk_wait_data(struct sock *sk, long *timeo);
864
865 struct request_sock_ops;
866 struct timewait_sock_ops;
867 struct inet_hashinfo;
868 struct raw_hashinfo;
869 struct module;
870
871 /*
872 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
873 * un-modified. Special care is taken when initializing object to zero.
874 */
sk_prot_clear_nulls(struct sock * sk,int size)875 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
876 {
877 if (offsetof(struct sock, sk_node.next) != 0)
878 memset(sk, 0, offsetof(struct sock, sk_node.next));
879 memset(&sk->sk_node.pprev, 0,
880 size - offsetof(struct sock, sk_node.pprev));
881 }
882
883 /* Networking protocol blocks we attach to sockets.
884 * socket layer -> transport layer interface
885 * transport -> network interface is defined by struct inet_proto
886 */
887 struct proto {
888 void (*close)(struct sock *sk,
889 long timeout);
890 int (*connect)(struct sock *sk,
891 struct sockaddr *uaddr,
892 int addr_len);
893 int (*disconnect)(struct sock *sk, int flags);
894
895 struct sock * (*accept)(struct sock *sk, int flags, int *err);
896
897 int (*ioctl)(struct sock *sk, int cmd,
898 unsigned long arg);
899 int (*init)(struct sock *sk);
900 void (*destroy)(struct sock *sk);
901 void (*shutdown)(struct sock *sk, int how);
902 int (*setsockopt)(struct sock *sk, int level,
903 int optname, char __user *optval,
904 unsigned int optlen);
905 int (*getsockopt)(struct sock *sk, int level,
906 int optname, char __user *optval,
907 int __user *option);
908 #ifdef CONFIG_COMPAT
909 int (*compat_setsockopt)(struct sock *sk,
910 int level,
911 int optname, char __user *optval,
912 unsigned int optlen);
913 int (*compat_getsockopt)(struct sock *sk,
914 int level,
915 int optname, char __user *optval,
916 int __user *option);
917 int (*compat_ioctl)(struct sock *sk,
918 unsigned int cmd, unsigned long arg);
919 #endif
920 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
921 struct msghdr *msg, size_t len);
922 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
923 struct msghdr *msg,
924 size_t len, int noblock, int flags,
925 int *addr_len);
926 int (*sendpage)(struct sock *sk, struct page *page,
927 int offset, size_t size, int flags);
928 int (*bind)(struct sock *sk,
929 struct sockaddr *uaddr, int addr_len);
930
931 int (*backlog_rcv) (struct sock *sk,
932 struct sk_buff *skb);
933
934 void (*release_cb)(struct sock *sk);
935 void (*mtu_reduced)(struct sock *sk);
936
937 /* Keeping track of sk's, looking them up, and port selection methods. */
938 void (*hash)(struct sock *sk);
939 void (*unhash)(struct sock *sk);
940 void (*rehash)(struct sock *sk);
941 int (*get_port)(struct sock *sk, unsigned short snum);
942 void (*clear_sk)(struct sock *sk, int size);
943
944 /* Keeping track of sockets in use */
945 #ifdef CONFIG_PROC_FS
946 unsigned int inuse_idx;
947 #endif
948
949 /* Memory pressure */
950 void (*enter_memory_pressure)(struct sock *sk);
951 atomic_long_t *memory_allocated; /* Current allocated memory. */
952 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
953 /*
954 * Pressure flag: try to collapse.
955 * Technical note: it is used by multiple contexts non atomically.
956 * All the __sk_mem_schedule() is of this nature: accounting
957 * is strict, actions are advisory and have some latency.
958 */
959 int *memory_pressure;
960 long *sysctl_mem;
961 int *sysctl_wmem;
962 int *sysctl_rmem;
963 int max_header;
964 bool no_autobind;
965
966 struct kmem_cache *slab;
967 unsigned int obj_size;
968 int slab_flags;
969
970 struct percpu_counter *orphan_count;
971
972 struct request_sock_ops *rsk_prot;
973 struct timewait_sock_ops *twsk_prot;
974
975 union {
976 struct inet_hashinfo *hashinfo;
977 struct udp_table *udp_table;
978 struct raw_hashinfo *raw_hash;
979 } h;
980
981 struct module *owner;
982
983 char name[32];
984
985 struct list_head node;
986 #ifdef SOCK_REFCNT_DEBUG
987 atomic_t socks;
988 #endif
989 #ifdef CONFIG_MEMCG_KMEM
990 /*
991 * cgroup specific init/deinit functions. Called once for all
992 * protocols that implement it, from cgroups populate function.
993 * This function has to setup any files the protocol want to
994 * appear in the kmem cgroup filesystem.
995 */
996 int (*init_cgroup)(struct mem_cgroup *memcg,
997 struct cgroup_subsys *ss);
998 void (*destroy_cgroup)(struct mem_cgroup *memcg);
999 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1000 #endif
1001 int (*diag_destroy)(struct sock *sk, int err);
1002 };
1003
1004 /*
1005 * Bits in struct cg_proto.flags
1006 */
1007 enum cg_proto_flags {
1008 /* Currently active and new sockets should be assigned to cgroups */
1009 MEMCG_SOCK_ACTIVE,
1010 /* It was ever activated; we must disarm static keys on destruction */
1011 MEMCG_SOCK_ACTIVATED,
1012 };
1013
1014 struct cg_proto {
1015 void (*enter_memory_pressure)(struct sock *sk);
1016 struct res_counter *memory_allocated; /* Current allocated memory. */
1017 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1018 int *memory_pressure;
1019 long *sysctl_mem;
1020 unsigned long flags;
1021 /*
1022 * memcg field is used to find which memcg we belong directly
1023 * Each memcg struct can hold more than one cg_proto, so container_of
1024 * won't really cut.
1025 *
1026 * The elegant solution would be having an inverse function to
1027 * proto_cgroup in struct proto, but that means polluting the structure
1028 * for everybody, instead of just for memcg users.
1029 */
1030 struct mem_cgroup *memcg;
1031 };
1032
1033 extern int proto_register(struct proto *prot, int alloc_slab);
1034 extern void proto_unregister(struct proto *prot);
1035
memcg_proto_active(struct cg_proto * cg_proto)1036 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1037 {
1038 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1039 }
1040
memcg_proto_activated(struct cg_proto * cg_proto)1041 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1042 {
1043 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1044 }
1045
1046 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1047 static inline void sk_refcnt_debug_inc(struct sock *sk)
1048 {
1049 atomic_inc(&sk->sk_prot->socks);
1050 }
1051
sk_refcnt_debug_dec(struct sock * sk)1052 static inline void sk_refcnt_debug_dec(struct sock *sk)
1053 {
1054 atomic_dec(&sk->sk_prot->socks);
1055 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1056 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1057 }
1058
sk_refcnt_debug_release(const struct sock * sk)1059 static inline void sk_refcnt_debug_release(const struct sock *sk)
1060 {
1061 if (atomic_read(&sk->sk_refcnt) != 1)
1062 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1063 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1064 }
1065 #else /* SOCK_REFCNT_DEBUG */
1066 #define sk_refcnt_debug_inc(sk) do { } while (0)
1067 #define sk_refcnt_debug_dec(sk) do { } while (0)
1068 #define sk_refcnt_debug_release(sk) do { } while (0)
1069 #endif /* SOCK_REFCNT_DEBUG */
1070
1071 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1072 extern struct static_key memcg_socket_limit_enabled;
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)1073 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1074 struct cg_proto *cg_proto)
1075 {
1076 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1077 }
1078 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1079 #else
1080 #define mem_cgroup_sockets_enabled 0
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)1081 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1082 struct cg_proto *cg_proto)
1083 {
1084 return NULL;
1085 }
1086 #endif
1087
1088
sk_has_memory_pressure(const struct sock * sk)1089 static inline bool sk_has_memory_pressure(const struct sock *sk)
1090 {
1091 return sk->sk_prot->memory_pressure != NULL;
1092 }
1093
sk_under_memory_pressure(const struct sock * sk)1094 static inline bool sk_under_memory_pressure(const struct sock *sk)
1095 {
1096 if (!sk->sk_prot->memory_pressure)
1097 return false;
1098
1099 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1100 return !!*sk->sk_cgrp->memory_pressure;
1101
1102 return !!*sk->sk_prot->memory_pressure;
1103 }
1104
sk_leave_memory_pressure(struct sock * sk)1105 static inline void sk_leave_memory_pressure(struct sock *sk)
1106 {
1107 int *memory_pressure = sk->sk_prot->memory_pressure;
1108
1109 if (!memory_pressure)
1110 return;
1111
1112 if (*memory_pressure)
1113 *memory_pressure = 0;
1114
1115 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 struct cg_proto *cg_proto = sk->sk_cgrp;
1117 struct proto *prot = sk->sk_prot;
1118
1119 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1120 if (*cg_proto->memory_pressure)
1121 *cg_proto->memory_pressure = 0;
1122 }
1123
1124 }
1125
sk_enter_memory_pressure(struct sock * sk)1126 static inline void sk_enter_memory_pressure(struct sock *sk)
1127 {
1128 if (!sk->sk_prot->enter_memory_pressure)
1129 return;
1130
1131 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1132 struct cg_proto *cg_proto = sk->sk_cgrp;
1133 struct proto *prot = sk->sk_prot;
1134
1135 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1136 cg_proto->enter_memory_pressure(sk);
1137 }
1138
1139 sk->sk_prot->enter_memory_pressure(sk);
1140 }
1141
sk_prot_mem_limits(const struct sock * sk,int index)1142 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1143 {
1144 long *prot = sk->sk_prot->sysctl_mem;
1145 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1146 prot = sk->sk_cgrp->sysctl_mem;
1147 return prot[index];
1148 }
1149
memcg_memory_allocated_add(struct cg_proto * prot,unsigned long amt,int * parent_status)1150 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1151 unsigned long amt,
1152 int *parent_status)
1153 {
1154 struct res_counter *fail;
1155 int ret;
1156
1157 ret = res_counter_charge_nofail(prot->memory_allocated,
1158 amt << PAGE_SHIFT, &fail);
1159 if (ret < 0)
1160 *parent_status = OVER_LIMIT;
1161 }
1162
memcg_memory_allocated_sub(struct cg_proto * prot,unsigned long amt)1163 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1164 unsigned long amt)
1165 {
1166 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1167 }
1168
memcg_memory_allocated_read(struct cg_proto * prot)1169 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1170 {
1171 u64 ret;
1172 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1173 return ret >> PAGE_SHIFT;
1174 }
1175
1176 static inline long
sk_memory_allocated(const struct sock * sk)1177 sk_memory_allocated(const struct sock *sk)
1178 {
1179 struct proto *prot = sk->sk_prot;
1180 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1181 return memcg_memory_allocated_read(sk->sk_cgrp);
1182
1183 return atomic_long_read(prot->memory_allocated);
1184 }
1185
1186 static inline long
sk_memory_allocated_add(struct sock * sk,int amt,int * parent_status)1187 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1188 {
1189 struct proto *prot = sk->sk_prot;
1190
1191 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1192 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1193 /* update the root cgroup regardless */
1194 atomic_long_add_return(amt, prot->memory_allocated);
1195 return memcg_memory_allocated_read(sk->sk_cgrp);
1196 }
1197
1198 return atomic_long_add_return(amt, prot->memory_allocated);
1199 }
1200
1201 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1202 sk_memory_allocated_sub(struct sock *sk, int amt)
1203 {
1204 struct proto *prot = sk->sk_prot;
1205
1206 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1207 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1208
1209 atomic_long_sub(amt, prot->memory_allocated);
1210 }
1211
sk_sockets_allocated_dec(struct sock * sk)1212 static inline void sk_sockets_allocated_dec(struct sock *sk)
1213 {
1214 struct proto *prot = sk->sk_prot;
1215
1216 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1217 struct cg_proto *cg_proto = sk->sk_cgrp;
1218
1219 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1220 percpu_counter_dec(cg_proto->sockets_allocated);
1221 }
1222
1223 percpu_counter_dec(prot->sockets_allocated);
1224 }
1225
sk_sockets_allocated_inc(struct sock * sk)1226 static inline void sk_sockets_allocated_inc(struct sock *sk)
1227 {
1228 struct proto *prot = sk->sk_prot;
1229
1230 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1231 struct cg_proto *cg_proto = sk->sk_cgrp;
1232
1233 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1234 percpu_counter_inc(cg_proto->sockets_allocated);
1235 }
1236
1237 percpu_counter_inc(prot->sockets_allocated);
1238 }
1239
1240 static inline int
sk_sockets_allocated_read_positive(struct sock * sk)1241 sk_sockets_allocated_read_positive(struct sock *sk)
1242 {
1243 struct proto *prot = sk->sk_prot;
1244
1245 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1246 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1247
1248 return percpu_counter_read_positive(prot->sockets_allocated);
1249 }
1250
1251 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1252 proto_sockets_allocated_sum_positive(struct proto *prot)
1253 {
1254 return percpu_counter_sum_positive(prot->sockets_allocated);
1255 }
1256
1257 static inline long
proto_memory_allocated(struct proto * prot)1258 proto_memory_allocated(struct proto *prot)
1259 {
1260 return atomic_long_read(prot->memory_allocated);
1261 }
1262
1263 static inline bool
proto_memory_pressure(struct proto * prot)1264 proto_memory_pressure(struct proto *prot)
1265 {
1266 if (!prot->memory_pressure)
1267 return false;
1268 return !!*prot->memory_pressure;
1269 }
1270
1271
1272 #ifdef CONFIG_PROC_FS
1273 /* Called with local bh disabled */
1274 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1275 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1276 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1277 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1278 int inc)
1279 {
1280 }
1281 #endif
1282
1283
1284 /* With per-bucket locks this operation is not-atomic, so that
1285 * this version is not worse.
1286 */
__sk_prot_rehash(struct sock * sk)1287 static inline void __sk_prot_rehash(struct sock *sk)
1288 {
1289 sk->sk_prot->unhash(sk);
1290 sk->sk_prot->hash(sk);
1291 }
1292
1293 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1294
1295 /* About 10 seconds */
1296 #define SOCK_DESTROY_TIME (10*HZ)
1297
1298 /* Sockets 0-1023 can't be bound to unless you are superuser */
1299 #define PROT_SOCK 1024
1300
1301 #define SHUTDOWN_MASK 3
1302 #define RCV_SHUTDOWN 1
1303 #define SEND_SHUTDOWN 2
1304
1305 #define SOCK_SNDBUF_LOCK 1
1306 #define SOCK_RCVBUF_LOCK 2
1307 #define SOCK_BINDADDR_LOCK 4
1308 #define SOCK_BINDPORT_LOCK 8
1309
1310 /* sock_iocb: used to kick off async processing of socket ios */
1311 struct sock_iocb {
1312 struct list_head list;
1313
1314 int flags;
1315 int size;
1316 struct socket *sock;
1317 struct sock *sk;
1318 struct scm_cookie *scm;
1319 struct msghdr *msg, async_msg;
1320 struct kiocb *kiocb;
1321 };
1322
kiocb_to_siocb(struct kiocb * iocb)1323 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1324 {
1325 return (struct sock_iocb *)iocb->private;
1326 }
1327
siocb_to_kiocb(struct sock_iocb * si)1328 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1329 {
1330 return si->kiocb;
1331 }
1332
1333 struct socket_alloc {
1334 struct socket socket;
1335 struct inode vfs_inode;
1336 };
1337
SOCKET_I(struct inode * inode)1338 static inline struct socket *SOCKET_I(struct inode *inode)
1339 {
1340 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1341 }
1342
SOCK_INODE(struct socket * socket)1343 static inline struct inode *SOCK_INODE(struct socket *socket)
1344 {
1345 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1346 }
1347
1348 /*
1349 * Functions for memory accounting
1350 */
1351 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1352 extern void __sk_mem_reclaim(struct sock *sk);
1353
1354 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1355 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1356 #define SK_MEM_SEND 0
1357 #define SK_MEM_RECV 1
1358
sk_mem_pages(int amt)1359 static inline int sk_mem_pages(int amt)
1360 {
1361 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1362 }
1363
sk_has_account(struct sock * sk)1364 static inline bool sk_has_account(struct sock *sk)
1365 {
1366 /* return true if protocol supports memory accounting */
1367 return !!sk->sk_prot->memory_allocated;
1368 }
1369
sk_wmem_schedule(struct sock * sk,int size)1370 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1371 {
1372 if (!sk_has_account(sk))
1373 return true;
1374 return size <= sk->sk_forward_alloc ||
1375 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1376 }
1377
1378 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1379 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1380 {
1381 if (!sk_has_account(sk))
1382 return true;
1383 return size<= sk->sk_forward_alloc ||
1384 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1385 skb_pfmemalloc(skb);
1386 }
1387
sk_mem_reclaim(struct sock * sk)1388 static inline void sk_mem_reclaim(struct sock *sk)
1389 {
1390 if (!sk_has_account(sk))
1391 return;
1392 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1393 __sk_mem_reclaim(sk);
1394 }
1395
sk_mem_reclaim_partial(struct sock * sk)1396 static inline void sk_mem_reclaim_partial(struct sock *sk)
1397 {
1398 if (!sk_has_account(sk))
1399 return;
1400 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1401 __sk_mem_reclaim(sk);
1402 }
1403
sk_mem_charge(struct sock * sk,int size)1404 static inline void sk_mem_charge(struct sock *sk, int size)
1405 {
1406 if (!sk_has_account(sk))
1407 return;
1408 sk->sk_forward_alloc -= size;
1409 }
1410
sk_mem_uncharge(struct sock * sk,int size)1411 static inline void sk_mem_uncharge(struct sock *sk, int size)
1412 {
1413 if (!sk_has_account(sk))
1414 return;
1415 sk->sk_forward_alloc += size;
1416 }
1417
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1418 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1419 {
1420 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1421 sk->sk_wmem_queued -= skb->truesize;
1422 sk_mem_uncharge(sk, skb->truesize);
1423 __kfree_skb(skb);
1424 }
1425
1426 /* Used by processes to "lock" a socket state, so that
1427 * interrupts and bottom half handlers won't change it
1428 * from under us. It essentially blocks any incoming
1429 * packets, so that we won't get any new data or any
1430 * packets that change the state of the socket.
1431 *
1432 * While locked, BH processing will add new packets to
1433 * the backlog queue. This queue is processed by the
1434 * owner of the socket lock right before it is released.
1435 *
1436 * Since ~2.3.5 it is also exclusive sleep lock serializing
1437 * accesses from user process context.
1438 */
1439 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1440
1441 /*
1442 * Macro so as to not evaluate some arguments when
1443 * lockdep is not enabled.
1444 *
1445 * Mark both the sk_lock and the sk_lock.slock as a
1446 * per-address-family lock class.
1447 */
1448 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1449 do { \
1450 sk->sk_lock.owned = 0; \
1451 init_waitqueue_head(&sk->sk_lock.wq); \
1452 spin_lock_init(&(sk)->sk_lock.slock); \
1453 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1454 sizeof((sk)->sk_lock)); \
1455 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1456 (skey), (sname)); \
1457 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1458 } while (0)
1459
1460 extern void lock_sock_nested(struct sock *sk, int subclass);
1461
lock_sock(struct sock * sk)1462 static inline void lock_sock(struct sock *sk)
1463 {
1464 lock_sock_nested(sk, 0);
1465 }
1466
1467 extern void release_sock(struct sock *sk);
1468
1469 /* BH context may only use the following locking interface. */
1470 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1471 #define bh_lock_sock_nested(__sk) \
1472 spin_lock_nested(&((__sk)->sk_lock.slock), \
1473 SINGLE_DEPTH_NESTING)
1474 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1475
1476 extern bool lock_sock_fast(struct sock *sk);
1477 /**
1478 * unlock_sock_fast - complement of lock_sock_fast
1479 * @sk: socket
1480 * @slow: slow mode
1481 *
1482 * fast unlock socket for user context.
1483 * If slow mode is on, we call regular release_sock()
1484 */
unlock_sock_fast(struct sock * sk,bool slow)1485 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1486 {
1487 if (slow)
1488 release_sock(sk);
1489 else
1490 spin_unlock_bh(&sk->sk_lock.slock);
1491 }
1492
1493
1494 extern struct sock *sk_alloc(struct net *net, int family,
1495 gfp_t priority,
1496 struct proto *prot);
1497 extern void sk_free(struct sock *sk);
1498 extern void sk_release_kernel(struct sock *sk);
1499 extern struct sock *sk_clone_lock(const struct sock *sk,
1500 const gfp_t priority);
1501
1502 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1503 unsigned long size, int force,
1504 gfp_t priority);
1505 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1506 unsigned long size, int force,
1507 gfp_t priority);
1508 extern void sock_wfree(struct sk_buff *skb);
1509 extern void sock_rfree(struct sk_buff *skb);
1510 extern void sock_edemux(struct sk_buff *skb);
1511
1512 extern int sock_setsockopt(struct socket *sock, int level,
1513 int op, char __user *optval,
1514 unsigned int optlen);
1515
1516 extern int sock_getsockopt(struct socket *sock, int level,
1517 int op, char __user *optval,
1518 int __user *optlen);
1519 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1520 unsigned long size,
1521 int noblock,
1522 int *errcode);
1523 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1524 unsigned long header_len,
1525 unsigned long data_len,
1526 int noblock,
1527 int *errcode);
1528 extern void *sock_kmalloc(struct sock *sk, int size,
1529 gfp_t priority);
1530 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1531 extern void sk_send_sigurg(struct sock *sk);
1532
1533 /*
1534 * Functions to fill in entries in struct proto_ops when a protocol
1535 * does not implement a particular function.
1536 */
1537 extern int sock_no_bind(struct socket *,
1538 struct sockaddr *, int);
1539 extern int sock_no_connect(struct socket *,
1540 struct sockaddr *, int, int);
1541 extern int sock_no_socketpair(struct socket *,
1542 struct socket *);
1543 extern int sock_no_accept(struct socket *,
1544 struct socket *, int);
1545 extern int sock_no_getname(struct socket *,
1546 struct sockaddr *, int *, int);
1547 extern unsigned int sock_no_poll(struct file *, struct socket *,
1548 struct poll_table_struct *);
1549 extern int sock_no_ioctl(struct socket *, unsigned int,
1550 unsigned long);
1551 extern int sock_no_listen(struct socket *, int);
1552 extern int sock_no_shutdown(struct socket *, int);
1553 extern int sock_no_getsockopt(struct socket *, int , int,
1554 char __user *, int __user *);
1555 extern int sock_no_setsockopt(struct socket *, int, int,
1556 char __user *, unsigned int);
1557 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1558 struct msghdr *, size_t);
1559 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1560 struct msghdr *, size_t, int);
1561 extern int sock_no_mmap(struct file *file,
1562 struct socket *sock,
1563 struct vm_area_struct *vma);
1564 extern ssize_t sock_no_sendpage(struct socket *sock,
1565 struct page *page,
1566 int offset, size_t size,
1567 int flags);
1568
1569 /*
1570 * Functions to fill in entries in struct proto_ops when a protocol
1571 * uses the inet style.
1572 */
1573 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1574 char __user *optval, int __user *optlen);
1575 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1576 struct msghdr *msg, size_t size, int flags);
1577 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1578 char __user *optval, unsigned int optlen);
1579 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1580 int optname, char __user *optval, int __user *optlen);
1581 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1582 int optname, char __user *optval, unsigned int optlen);
1583
1584 extern void sk_common_release(struct sock *sk);
1585
1586 /*
1587 * Default socket callbacks and setup code
1588 */
1589
1590 /* Initialise core socket variables */
1591 extern void sock_init_data(struct socket *sock, struct sock *sk);
1592
1593 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1594
1595 /**
1596 * sk_filter_release - release a socket filter
1597 * @fp: filter to remove
1598 *
1599 * Remove a filter from a socket and release its resources.
1600 */
1601
sk_filter_release(struct sk_filter * fp)1602 static inline void sk_filter_release(struct sk_filter *fp)
1603 {
1604 if (atomic_dec_and_test(&fp->refcnt))
1605 call_rcu(&fp->rcu, sk_filter_release_rcu);
1606 }
1607
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1608 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1609 {
1610 unsigned int size = sk_filter_len(fp);
1611
1612 atomic_sub(size, &sk->sk_omem_alloc);
1613 sk_filter_release(fp);
1614 }
1615
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1616 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1617 {
1618 atomic_inc(&fp->refcnt);
1619 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1620 }
1621
1622 /*
1623 * Socket reference counting postulates.
1624 *
1625 * * Each user of socket SHOULD hold a reference count.
1626 * * Each access point to socket (an hash table bucket, reference from a list,
1627 * running timer, skb in flight MUST hold a reference count.
1628 * * When reference count hits 0, it means it will never increase back.
1629 * * When reference count hits 0, it means that no references from
1630 * outside exist to this socket and current process on current CPU
1631 * is last user and may/should destroy this socket.
1632 * * sk_free is called from any context: process, BH, IRQ. When
1633 * it is called, socket has no references from outside -> sk_free
1634 * may release descendant resources allocated by the socket, but
1635 * to the time when it is called, socket is NOT referenced by any
1636 * hash tables, lists etc.
1637 * * Packets, delivered from outside (from network or from another process)
1638 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1639 * when they sit in queue. Otherwise, packets will leak to hole, when
1640 * socket is looked up by one cpu and unhasing is made by another CPU.
1641 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1642 * (leak to backlog). Packet socket does all the processing inside
1643 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1644 * use separate SMP lock, so that they are prone too.
1645 */
1646
1647 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1648 static inline void sock_put(struct sock *sk)
1649 {
1650 if (atomic_dec_and_test(&sk->sk_refcnt))
1651 sk_free(sk);
1652 }
1653
1654 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1655 const int nested);
1656
sk_tx_queue_set(struct sock * sk,int tx_queue)1657 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1658 {
1659 sk->sk_tx_queue_mapping = tx_queue;
1660 }
1661
sk_tx_queue_clear(struct sock * sk)1662 static inline void sk_tx_queue_clear(struct sock *sk)
1663 {
1664 sk->sk_tx_queue_mapping = -1;
1665 }
1666
sk_tx_queue_get(const struct sock * sk)1667 static inline int sk_tx_queue_get(const struct sock *sk)
1668 {
1669 return sk ? sk->sk_tx_queue_mapping : -1;
1670 }
1671
sk_set_socket(struct sock * sk,struct socket * sock)1672 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1673 {
1674 sk_tx_queue_clear(sk);
1675 sk->sk_socket = sock;
1676 }
1677
sk_sleep(struct sock * sk)1678 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1679 {
1680 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1681 return &rcu_dereference_raw(sk->sk_wq)->wait;
1682 }
1683 /* Detach socket from process context.
1684 * Announce socket dead, detach it from wait queue and inode.
1685 * Note that parent inode held reference count on this struct sock,
1686 * we do not release it in this function, because protocol
1687 * probably wants some additional cleanups or even continuing
1688 * to work with this socket (TCP).
1689 */
sock_orphan(struct sock * sk)1690 static inline void sock_orphan(struct sock *sk)
1691 {
1692 write_lock_bh(&sk->sk_callback_lock);
1693 sock_set_flag(sk, SOCK_DEAD);
1694 sk_set_socket(sk, NULL);
1695 sk->sk_wq = NULL;
1696 write_unlock_bh(&sk->sk_callback_lock);
1697 }
1698
sock_graft(struct sock * sk,struct socket * parent)1699 static inline void sock_graft(struct sock *sk, struct socket *parent)
1700 {
1701 write_lock_bh(&sk->sk_callback_lock);
1702 sk->sk_wq = parent->wq;
1703 parent->sk = sk;
1704 sk_set_socket(sk, parent);
1705 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1706 security_sock_graft(sk, parent);
1707 write_unlock_bh(&sk->sk_callback_lock);
1708 }
1709
1710 extern kuid_t sock_i_uid(struct sock *sk);
1711 extern unsigned long sock_i_ino(struct sock *sk);
1712
sock_net_uid(const struct net * net,const struct sock * sk)1713 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1714 {
1715 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1716 }
1717
1718 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1719 __sk_dst_get(struct sock *sk)
1720 {
1721 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1722 lockdep_is_held(&sk->sk_lock.slock));
1723 }
1724
1725 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1726 sk_dst_get(struct sock *sk)
1727 {
1728 struct dst_entry *dst;
1729
1730 rcu_read_lock();
1731 dst = rcu_dereference(sk->sk_dst_cache);
1732 if (dst)
1733 dst_hold(dst);
1734 rcu_read_unlock();
1735 return dst;
1736 }
1737
1738 extern void sk_reset_txq(struct sock *sk);
1739
dst_negative_advice(struct sock * sk)1740 static inline void dst_negative_advice(struct sock *sk)
1741 {
1742 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1743
1744 if (dst && dst->ops->negative_advice) {
1745 ndst = dst->ops->negative_advice(dst);
1746
1747 if (ndst != dst) {
1748 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1749 sk_reset_txq(sk);
1750 }
1751 }
1752 }
1753
1754 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1755 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1756 {
1757 struct dst_entry *old_dst;
1758
1759 sk_tx_queue_clear(sk);
1760 /*
1761 * This can be called while sk is owned by the caller only,
1762 * with no state that can be checked in a rcu_dereference_check() cond
1763 */
1764 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1765 rcu_assign_pointer(sk->sk_dst_cache, dst);
1766 dst_release(old_dst);
1767 }
1768
1769 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1770 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1771 {
1772 spin_lock(&sk->sk_dst_lock);
1773 __sk_dst_set(sk, dst);
1774 spin_unlock(&sk->sk_dst_lock);
1775 }
1776
1777 static inline void
__sk_dst_reset(struct sock * sk)1778 __sk_dst_reset(struct sock *sk)
1779 {
1780 __sk_dst_set(sk, NULL);
1781 }
1782
1783 static inline void
sk_dst_reset(struct sock * sk)1784 sk_dst_reset(struct sock *sk)
1785 {
1786 spin_lock(&sk->sk_dst_lock);
1787 __sk_dst_reset(sk);
1788 spin_unlock(&sk->sk_dst_lock);
1789 }
1790
1791 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1792
1793 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1794
sk_can_gso(const struct sock * sk)1795 static inline bool sk_can_gso(const struct sock *sk)
1796 {
1797 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1798 }
1799
1800 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1801
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1802 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1803 {
1804 sk->sk_route_nocaps |= flags;
1805 sk->sk_route_caps &= ~flags;
1806 }
1807
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,char __user * from,char * to,int copy,int offset)1808 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1809 char __user *from, char *to,
1810 int copy, int offset)
1811 {
1812 if (skb->ip_summed == CHECKSUM_NONE) {
1813 int err = 0;
1814 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1815 if (err)
1816 return err;
1817 skb->csum = csum_block_add(skb->csum, csum, offset);
1818 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1819 if (!access_ok(VERIFY_READ, from, copy) ||
1820 __copy_from_user_nocache(to, from, copy))
1821 return -EFAULT;
1822 } else if (copy_from_user(to, from, copy))
1823 return -EFAULT;
1824
1825 return 0;
1826 }
1827
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,char __user * from,int copy)1828 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1829 char __user *from, int copy)
1830 {
1831 int err, offset = skb->len;
1832
1833 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1834 copy, offset);
1835 if (err)
1836 __skb_trim(skb, offset);
1837
1838 return err;
1839 }
1840
skb_copy_to_page_nocache(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1841 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1842 struct sk_buff *skb,
1843 struct page *page,
1844 int off, int copy)
1845 {
1846 int err;
1847
1848 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1849 copy, skb->len);
1850 if (err)
1851 return err;
1852
1853 skb->len += copy;
1854 skb->data_len += copy;
1855 skb->truesize += copy;
1856 sk->sk_wmem_queued += copy;
1857 sk_mem_charge(sk, copy);
1858 return 0;
1859 }
1860
skb_copy_to_page(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1861 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1862 struct sk_buff *skb, struct page *page,
1863 int off, int copy)
1864 {
1865 if (skb->ip_summed == CHECKSUM_NONE) {
1866 int err = 0;
1867 __wsum csum = csum_and_copy_from_user(from,
1868 page_address(page) + off,
1869 copy, 0, &err);
1870 if (err)
1871 return err;
1872 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1873 } else if (copy_from_user(page_address(page) + off, from, copy))
1874 return -EFAULT;
1875
1876 skb->len += copy;
1877 skb->data_len += copy;
1878 skb->truesize += copy;
1879 sk->sk_wmem_queued += copy;
1880 sk_mem_charge(sk, copy);
1881 return 0;
1882 }
1883
1884 /**
1885 * sk_wmem_alloc_get - returns write allocations
1886 * @sk: socket
1887 *
1888 * Returns sk_wmem_alloc minus initial offset of one
1889 */
sk_wmem_alloc_get(const struct sock * sk)1890 static inline int sk_wmem_alloc_get(const struct sock *sk)
1891 {
1892 return atomic_read(&sk->sk_wmem_alloc) - 1;
1893 }
1894
1895 /**
1896 * sk_rmem_alloc_get - returns read allocations
1897 * @sk: socket
1898 *
1899 * Returns sk_rmem_alloc
1900 */
sk_rmem_alloc_get(const struct sock * sk)1901 static inline int sk_rmem_alloc_get(const struct sock *sk)
1902 {
1903 return atomic_read(&sk->sk_rmem_alloc);
1904 }
1905
1906 /**
1907 * sk_has_allocations - check if allocations are outstanding
1908 * @sk: socket
1909 *
1910 * Returns true if socket has write or read allocations
1911 */
sk_has_allocations(const struct sock * sk)1912 static inline bool sk_has_allocations(const struct sock *sk)
1913 {
1914 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1915 }
1916
1917 /**
1918 * wq_has_sleeper - check if there are any waiting processes
1919 * @wq: struct socket_wq
1920 *
1921 * Returns true if socket_wq has waiting processes
1922 *
1923 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1924 * barrier call. They were added due to the race found within the tcp code.
1925 *
1926 * Consider following tcp code paths:
1927 *
1928 * CPU1 CPU2
1929 *
1930 * sys_select receive packet
1931 * ... ...
1932 * __add_wait_queue update tp->rcv_nxt
1933 * ... ...
1934 * tp->rcv_nxt check sock_def_readable
1935 * ... {
1936 * schedule rcu_read_lock();
1937 * wq = rcu_dereference(sk->sk_wq);
1938 * if (wq && waitqueue_active(&wq->wait))
1939 * wake_up_interruptible(&wq->wait)
1940 * ...
1941 * }
1942 *
1943 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1944 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1945 * could then endup calling schedule and sleep forever if there are no more
1946 * data on the socket.
1947 *
1948 */
wq_has_sleeper(struct socket_wq * wq)1949 static inline bool wq_has_sleeper(struct socket_wq *wq)
1950 {
1951 /* We need to be sure we are in sync with the
1952 * add_wait_queue modifications to the wait queue.
1953 *
1954 * This memory barrier is paired in the sock_poll_wait.
1955 */
1956 smp_mb();
1957 return wq && waitqueue_active(&wq->wait);
1958 }
1959
1960 /**
1961 * sock_poll_wait - place memory barrier behind the poll_wait call.
1962 * @filp: file
1963 * @wait_address: socket wait queue
1964 * @p: poll_table
1965 *
1966 * See the comments in the wq_has_sleeper function.
1967 */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)1968 static inline void sock_poll_wait(struct file *filp,
1969 wait_queue_head_t *wait_address, poll_table *p)
1970 {
1971 if (!poll_does_not_wait(p) && wait_address) {
1972 poll_wait(filp, wait_address, p);
1973 /* We need to be sure we are in sync with the
1974 * socket flags modification.
1975 *
1976 * This memory barrier is paired in the wq_has_sleeper.
1977 */
1978 smp_mb();
1979 }
1980 }
1981
1982 /*
1983 * Queue a received datagram if it will fit. Stream and sequenced
1984 * protocols can't normally use this as they need to fit buffers in
1985 * and play with them.
1986 *
1987 * Inlined as it's very short and called for pretty much every
1988 * packet ever received.
1989 */
1990
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1991 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1992 {
1993 skb_orphan(skb);
1994 skb->sk = sk;
1995 skb->destructor = sock_wfree;
1996 /*
1997 * We used to take a refcount on sk, but following operation
1998 * is enough to guarantee sk_free() wont free this sock until
1999 * all in-flight packets are completed
2000 */
2001 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2002 }
2003
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2004 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2005 {
2006 skb_orphan(skb);
2007 skb->sk = sk;
2008 skb->destructor = sock_rfree;
2009 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2010 sk_mem_charge(sk, skb->truesize);
2011 }
2012
2013 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2014 unsigned long expires);
2015
2016 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2017
2018 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2019
2020 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2021
2022 /*
2023 * Recover an error report and clear atomically
2024 */
2025
sock_error(struct sock * sk)2026 static inline int sock_error(struct sock *sk)
2027 {
2028 int err;
2029 if (likely(!sk->sk_err))
2030 return 0;
2031 err = xchg(&sk->sk_err, 0);
2032 return -err;
2033 }
2034
sock_wspace(struct sock * sk)2035 static inline unsigned long sock_wspace(struct sock *sk)
2036 {
2037 int amt = 0;
2038
2039 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2040 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2041 if (amt < 0)
2042 amt = 0;
2043 }
2044 return amt;
2045 }
2046
sk_wake_async(struct sock * sk,int how,int band)2047 static inline void sk_wake_async(struct sock *sk, int how, int band)
2048 {
2049 if (sock_flag(sk, SOCK_FASYNC))
2050 sock_wake_async(sk->sk_socket, how, band);
2051 }
2052
2053 #define SOCK_MIN_SNDBUF 2048
2054 /*
2055 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2056 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2057 */
2058 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2059
sk_stream_moderate_sndbuf(struct sock * sk)2060 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2061 {
2062 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2063 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2064 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2065 }
2066 }
2067
2068 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2069
2070 /**
2071 * sk_page_frag - return an appropriate page_frag
2072 * @sk: socket
2073 *
2074 * If socket allocation mode allows current thread to sleep, it means its
2075 * safe to use the per task page_frag instead of the per socket one.
2076 */
sk_page_frag(struct sock * sk)2077 static inline struct page_frag *sk_page_frag(struct sock *sk)
2078 {
2079 if (sk->sk_allocation & __GFP_WAIT)
2080 return ¤t->task_frag;
2081
2082 return &sk->sk_frag;
2083 }
2084
2085 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2086
2087 /*
2088 * Default write policy as shown to user space via poll/select/SIGIO
2089 */
sock_writeable(const struct sock * sk)2090 static inline bool sock_writeable(const struct sock *sk)
2091 {
2092 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2093 }
2094
gfp_any(void)2095 static inline gfp_t gfp_any(void)
2096 {
2097 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2098 }
2099
sock_rcvtimeo(const struct sock * sk,bool noblock)2100 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2101 {
2102 return noblock ? 0 : sk->sk_rcvtimeo;
2103 }
2104
sock_sndtimeo(const struct sock * sk,bool noblock)2105 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2106 {
2107 return noblock ? 0 : sk->sk_sndtimeo;
2108 }
2109
sock_rcvlowat(const struct sock * sk,int waitall,int len)2110 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2111 {
2112 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2113 }
2114
2115 /* Alas, with timeout socket operations are not restartable.
2116 * Compare this to poll().
2117 */
sock_intr_errno(long timeo)2118 static inline int sock_intr_errno(long timeo)
2119 {
2120 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2121 }
2122
2123 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2124 struct sk_buff *skb);
2125 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2126 struct sk_buff *skb);
2127
2128 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2129 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2130 {
2131 ktime_t kt = skb->tstamp;
2132 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2133
2134 /*
2135 * generate control messages if
2136 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2137 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2138 * - software time stamp available and wanted
2139 * (SOCK_TIMESTAMPING_SOFTWARE)
2140 * - hardware time stamps available and wanted
2141 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2142 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2143 */
2144 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2145 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2146 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2147 (hwtstamps->hwtstamp.tv64 &&
2148 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2149 (hwtstamps->syststamp.tv64 &&
2150 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2151 __sock_recv_timestamp(msg, sk, skb);
2152 else
2153 sk->sk_stamp = kt;
2154
2155 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2156 __sock_recv_wifi_status(msg, sk, skb);
2157 }
2158
2159 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2160 struct sk_buff *skb);
2161
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2162 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2163 struct sk_buff *skb)
2164 {
2165 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2166 (1UL << SOCK_RCVTSTAMP) | \
2167 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2168 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2169 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2170 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2171
2172 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2173 __sock_recv_ts_and_drops(msg, sk, skb);
2174 else
2175 sk->sk_stamp = skb->tstamp;
2176 }
2177
2178 /**
2179 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2180 * @sk: socket sending this packet
2181 * @tx_flags: filled with instructions for time stamping
2182 *
2183 * Currently only depends on SOCK_TIMESTAMPING* flags.
2184 */
2185 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2186
2187 /**
2188 * sk_eat_skb - Release a skb if it is no longer needed
2189 * @sk: socket to eat this skb from
2190 * @skb: socket buffer to eat
2191 * @copied_early: flag indicating whether DMA operations copied this data early
2192 *
2193 * This routine must be called with interrupts disabled or with the socket
2194 * locked so that the sk_buff queue operation is ok.
2195 */
2196 #ifdef CONFIG_NET_DMA
sk_eat_skb(struct sock * sk,struct sk_buff * skb,bool copied_early)2197 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2198 {
2199 __skb_unlink(skb, &sk->sk_receive_queue);
2200 if (!copied_early)
2201 __kfree_skb(skb);
2202 else
2203 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2204 }
2205 #else
sk_eat_skb(struct sock * sk,struct sk_buff * skb,bool copied_early)2206 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2207 {
2208 __skb_unlink(skb, &sk->sk_receive_queue);
2209 __kfree_skb(skb);
2210 }
2211 #endif
2212
2213 static inline
sock_net(const struct sock * sk)2214 struct net *sock_net(const struct sock *sk)
2215 {
2216 return read_pnet(&sk->sk_net);
2217 }
2218
2219 static inline
sock_net_set(struct sock * sk,struct net * net)2220 void sock_net_set(struct sock *sk, struct net *net)
2221 {
2222 write_pnet(&sk->sk_net, net);
2223 }
2224
2225 /*
2226 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2227 * They should not hold a reference to a namespace in order to allow
2228 * to stop it.
2229 * Sockets after sk_change_net should be released using sk_release_kernel
2230 */
sk_change_net(struct sock * sk,struct net * net)2231 static inline void sk_change_net(struct sock *sk, struct net *net)
2232 {
2233 put_net(sock_net(sk));
2234 sock_net_set(sk, hold_net(net));
2235 }
2236
skb_steal_sock(struct sk_buff * skb)2237 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2238 {
2239 if (skb->sk) {
2240 struct sock *sk = skb->sk;
2241
2242 skb->destructor = NULL;
2243 skb->sk = NULL;
2244 return sk;
2245 }
2246 return NULL;
2247 }
2248
2249 /* This helper checks if a socket is a full socket,
2250 * ie _not_ a timewait or request socket.
2251 * TODO: Check for TCPF_NEW_SYN_RECV when that starts to exist.
2252 */
sk_fullsock(const struct sock * sk)2253 static inline bool sk_fullsock(const struct sock *sk)
2254 {
2255 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT);
2256 }
2257
2258 extern void sock_enable_timestamp(struct sock *sk, int flag);
2259 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2260 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2261
2262 /*
2263 * Enable debug/info messages
2264 */
2265 extern int net_msg_warn;
2266 #define NETDEBUG(fmt, args...) \
2267 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2268
2269 #define LIMIT_NETDEBUG(fmt, args...) \
2270 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2271
2272 extern __u32 sysctl_wmem_max;
2273 extern __u32 sysctl_rmem_max;
2274
2275 extern int sysctl_optmem_max;
2276
2277 extern __u32 sysctl_wmem_default;
2278 extern __u32 sysctl_rmem_default;
2279
2280 #endif /* _SOCK_H */
2281