• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3 
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17 
18 /*
19  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
20  * allocation mode flags.
21  */
22 enum mapping_flags {
23 	AS_EIO		= __GFP_BITS_SHIFT + 0,	/* IO error on async write */
24 	AS_ENOSPC	= __GFP_BITS_SHIFT + 1,	/* ENOSPC on async write */
25 	AS_MM_ALL_LOCKS	= __GFP_BITS_SHIFT + 2,	/* under mm_take_all_locks() */
26 	AS_UNEVICTABLE	= __GFP_BITS_SHIFT + 3,	/* e.g., ramdisk, SHM_LOCK */
27 	AS_BALLOON_MAP  = __GFP_BITS_SHIFT + 4, /* balloon page special map */
28 };
29 
mapping_set_error(struct address_space * mapping,int error)30 static inline void mapping_set_error(struct address_space *mapping, int error)
31 {
32 	if (unlikely(error)) {
33 		if (error == -ENOSPC)
34 			set_bit(AS_ENOSPC, &mapping->flags);
35 		else
36 			set_bit(AS_EIO, &mapping->flags);
37 	}
38 }
39 
mapping_set_unevictable(struct address_space * mapping)40 static inline void mapping_set_unevictable(struct address_space *mapping)
41 {
42 	set_bit(AS_UNEVICTABLE, &mapping->flags);
43 }
44 
mapping_clear_unevictable(struct address_space * mapping)45 static inline void mapping_clear_unevictable(struct address_space *mapping)
46 {
47 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
48 }
49 
mapping_unevictable(struct address_space * mapping)50 static inline int mapping_unevictable(struct address_space *mapping)
51 {
52 	if (mapping)
53 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 	return !!mapping;
55 }
56 
mapping_set_balloon(struct address_space * mapping)57 static inline void mapping_set_balloon(struct address_space *mapping)
58 {
59 	set_bit(AS_BALLOON_MAP, &mapping->flags);
60 }
61 
mapping_clear_balloon(struct address_space * mapping)62 static inline void mapping_clear_balloon(struct address_space *mapping)
63 {
64 	clear_bit(AS_BALLOON_MAP, &mapping->flags);
65 }
66 
mapping_balloon(struct address_space * mapping)67 static inline int mapping_balloon(struct address_space *mapping)
68 {
69 	return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags);
70 }
71 
mapping_gfp_mask(struct address_space * mapping)72 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
73 {
74 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
75 }
76 
77 /*
78  * This is non-atomic.  Only to be used before the mapping is activated.
79  * Probably needs a barrier...
80  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)81 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
82 {
83 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
84 				(__force unsigned long)mask;
85 }
86 
87 /*
88  * The page cache can done in larger chunks than
89  * one page, because it allows for more efficient
90  * throughput (it can then be mapped into user
91  * space in smaller chunks for same flexibility).
92  *
93  * Or rather, it _will_ be done in larger chunks.
94  */
95 #define PAGE_CACHE_SHIFT	PAGE_SHIFT
96 #define PAGE_CACHE_SIZE		PAGE_SIZE
97 #define PAGE_CACHE_MASK		PAGE_MASK
98 #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
99 
100 #define page_cache_get(page)		get_page(page)
101 #define page_cache_release(page)	put_page(page)
102 void release_pages(struct page **pages, int nr, int cold);
103 
104 /*
105  * speculatively take a reference to a page.
106  * If the page is free (_count == 0), then _count is untouched, and 0
107  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
108  *
109  * This function must be called inside the same rcu_read_lock() section as has
110  * been used to lookup the page in the pagecache radix-tree (or page table):
111  * this allows allocators to use a synchronize_rcu() to stabilize _count.
112  *
113  * Unless an RCU grace period has passed, the count of all pages coming out
114  * of the allocator must be considered unstable. page_count may return higher
115  * than expected, and put_page must be able to do the right thing when the
116  * page has been finished with, no matter what it is subsequently allocated
117  * for (because put_page is what is used here to drop an invalid speculative
118  * reference).
119  *
120  * This is the interesting part of the lockless pagecache (and lockless
121  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
122  * has the following pattern:
123  * 1. find page in radix tree
124  * 2. conditionally increment refcount
125  * 3. check the page is still in pagecache (if no, goto 1)
126  *
127  * Remove-side that cares about stability of _count (eg. reclaim) has the
128  * following (with tree_lock held for write):
129  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
130  * B. remove page from pagecache
131  * C. free the page
132  *
133  * There are 2 critical interleavings that matter:
134  * - 2 runs before A: in this case, A sees elevated refcount and bails out
135  * - A runs before 2: in this case, 2 sees zero refcount and retries;
136  *   subsequently, B will complete and 1 will find no page, causing the
137  *   lookup to return NULL.
138  *
139  * It is possible that between 1 and 2, the page is removed then the exact same
140  * page is inserted into the same position in pagecache. That's OK: the
141  * old find_get_page using tree_lock could equally have run before or after
142  * such a re-insertion, depending on order that locks are granted.
143  *
144  * Lookups racing against pagecache insertion isn't a big problem: either 1
145  * will find the page or it will not. Likewise, the old find_get_page could run
146  * either before the insertion or afterwards, depending on timing.
147  */
page_cache_get_speculative(struct page * page)148 static inline int page_cache_get_speculative(struct page *page)
149 {
150 	VM_BUG_ON(in_interrupt());
151 
152 #ifdef CONFIG_TINY_RCU
153 # ifdef CONFIG_PREEMPT_COUNT
154 	VM_BUG_ON(!in_atomic());
155 # endif
156 	/*
157 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
158 	 * this for us.
159 	 *
160 	 * Pagecache won't be truncated from interrupt context, so if we have
161 	 * found a page in the radix tree here, we have pinned its refcount by
162 	 * disabling preempt, and hence no need for the "speculative get" that
163 	 * SMP requires.
164 	 */
165 	VM_BUG_ON(page_count(page) == 0);
166 	atomic_inc(&page->_count);
167 
168 #else
169 	if (unlikely(!get_page_unless_zero(page))) {
170 		/*
171 		 * Either the page has been freed, or will be freed.
172 		 * In either case, retry here and the caller should
173 		 * do the right thing (see comments above).
174 		 */
175 		return 0;
176 	}
177 #endif
178 	VM_BUG_ON(PageTail(page));
179 
180 	return 1;
181 }
182 
183 /*
184  * Same as above, but add instead of inc (could just be merged)
185  */
page_cache_add_speculative(struct page * page,int count)186 static inline int page_cache_add_speculative(struct page *page, int count)
187 {
188 	VM_BUG_ON(in_interrupt());
189 
190 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
191 # ifdef CONFIG_PREEMPT_COUNT
192 	VM_BUG_ON(!in_atomic());
193 # endif
194 	VM_BUG_ON(page_count(page) == 0);
195 	atomic_add(count, &page->_count);
196 
197 #else
198 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
199 		return 0;
200 #endif
201 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
202 
203 	return 1;
204 }
205 
page_freeze_refs(struct page * page,int count)206 static inline int page_freeze_refs(struct page *page, int count)
207 {
208 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
209 }
210 
page_unfreeze_refs(struct page * page,int count)211 static inline void page_unfreeze_refs(struct page *page, int count)
212 {
213 	VM_BUG_ON(page_count(page) != 0);
214 	VM_BUG_ON(count == 0);
215 
216 	atomic_set(&page->_count, count);
217 }
218 
219 #ifdef CONFIG_NUMA
220 extern struct page *__page_cache_alloc(gfp_t gfp);
221 #else
__page_cache_alloc(gfp_t gfp)222 static inline struct page *__page_cache_alloc(gfp_t gfp)
223 {
224 	return alloc_pages(gfp, 0);
225 }
226 #endif
227 
page_cache_alloc(struct address_space * x)228 static inline struct page *page_cache_alloc(struct address_space *x)
229 {
230 	return __page_cache_alloc(mapping_gfp_mask(x));
231 }
232 
page_cache_alloc_cold(struct address_space * x)233 static inline struct page *page_cache_alloc_cold(struct address_space *x)
234 {
235 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
236 }
237 
page_cache_alloc_readahead(struct address_space * x)238 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
239 {
240 	return __page_cache_alloc(mapping_gfp_mask(x) |
241 				  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
242 }
243 
244 typedef int filler_t(void *, struct page *);
245 
246 pgoff_t page_cache_next_hole(struct address_space *mapping,
247                              pgoff_t index, unsigned long max_scan);
248 
249 extern struct page * find_get_page_flags(struct address_space *mapping,
250 					 pgoff_t index, int fgp_flags);
251 
252 #define FGP_ACCESSED		0x00000001
253 
find_get_page(struct address_space * mapping,pgoff_t index)254 static inline struct page* find_get_page(struct address_space *mapping,
255 					 pgoff_t index)
256 {
257 	return find_get_page_flags(mapping, index, 0);
258 }
259 
260 
261 extern struct page * find_lock_page(struct address_space *mapping,
262 				pgoff_t index);
263 extern struct page * find_or_create_page(struct address_space *mapping,
264 				pgoff_t index, gfp_t gfp_mask);
265 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
266 			unsigned int nr_pages, struct page **pages);
267 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
268 			       unsigned int nr_pages, struct page **pages);
269 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
270 			int tag, unsigned int nr_pages, struct page **pages);
271 
272 struct page *grab_cache_page_write_begin(struct address_space *mapping,
273 			pgoff_t index, unsigned flags);
274 
275 /*
276  * Returns locked page at given index in given cache, creating it if needed.
277  */
grab_cache_page(struct address_space * mapping,pgoff_t index)278 static inline struct page *grab_cache_page(struct address_space *mapping,
279 								pgoff_t index)
280 {
281 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
282 }
283 
284 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
285 				pgoff_t index);
286 extern struct page * read_cache_page_async(struct address_space *mapping,
287 				pgoff_t index, filler_t *filler, void *data);
288 extern struct page * read_cache_page(struct address_space *mapping,
289 				pgoff_t index, filler_t *filler, void *data);
290 extern struct page * read_cache_page_gfp(struct address_space *mapping,
291 				pgoff_t index, gfp_t gfp_mask);
292 extern int read_cache_pages(struct address_space *mapping,
293 		struct list_head *pages, filler_t *filler, void *data);
294 
read_mapping_page_async(struct address_space * mapping,pgoff_t index,void * data)295 static inline struct page *read_mapping_page_async(
296 				struct address_space *mapping,
297 				pgoff_t index, void *data)
298 {
299 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
300 	return read_cache_page_async(mapping, index, filler, data);
301 }
302 
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)303 static inline struct page *read_mapping_page(struct address_space *mapping,
304 				pgoff_t index, void *data)
305 {
306 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
307 	return read_cache_page(mapping, index, filler, data);
308 }
309 
310 /*
311  * Return byte-offset into filesystem object for page.
312  */
page_offset(struct page * page)313 static inline loff_t page_offset(struct page *page)
314 {
315 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
316 }
317 
page_file_offset(struct page * page)318 static inline loff_t page_file_offset(struct page *page)
319 {
320 	return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
321 }
322 
323 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
324 				     unsigned long address);
325 
linear_page_index(struct vm_area_struct * vma,unsigned long address)326 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
327 					unsigned long address)
328 {
329 	pgoff_t pgoff;
330 	if (unlikely(is_vm_hugetlb_page(vma)))
331 		return linear_hugepage_index(vma, address);
332 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
333 	pgoff += vma->vm_pgoff;
334 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
335 }
336 
337 extern void __lock_page(struct page *page);
338 extern int __lock_page_killable(struct page *page);
339 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
340 				unsigned int flags);
341 extern void unlock_page(struct page *page);
342 
__set_page_locked(struct page * page)343 static inline void __set_page_locked(struct page *page)
344 {
345 	__set_bit(PG_locked, &page->flags);
346 }
347 
__clear_page_locked(struct page * page)348 static inline void __clear_page_locked(struct page *page)
349 {
350 	__clear_bit(PG_locked, &page->flags);
351 }
352 
trylock_page(struct page * page)353 static inline int trylock_page(struct page *page)
354 {
355 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
356 }
357 
358 /*
359  * lock_page may only be called if we have the page's inode pinned.
360  */
lock_page(struct page * page)361 static inline void lock_page(struct page *page)
362 {
363 	might_sleep();
364 	if (!trylock_page(page))
365 		__lock_page(page);
366 }
367 
368 /*
369  * lock_page_killable is like lock_page but can be interrupted by fatal
370  * signals.  It returns 0 if it locked the page and -EINTR if it was
371  * killed while waiting.
372  */
lock_page_killable(struct page * page)373 static inline int lock_page_killable(struct page *page)
374 {
375 	might_sleep();
376 	if (!trylock_page(page))
377 		return __lock_page_killable(page);
378 	return 0;
379 }
380 
381 /*
382  * lock_page_or_retry - Lock the page, unless this would block and the
383  * caller indicated that it can handle a retry.
384  */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)385 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
386 				     unsigned int flags)
387 {
388 	might_sleep();
389 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
390 }
391 
392 /*
393  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
394  * Never use this directly!
395  */
396 extern void wait_on_page_bit(struct page *page, int bit_nr);
397 
398 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
399 
wait_on_page_locked_killable(struct page * page)400 static inline int wait_on_page_locked_killable(struct page *page)
401 {
402 	if (PageLocked(page))
403 		return wait_on_page_bit_killable(page, PG_locked);
404 	return 0;
405 }
406 
407 /*
408  * Wait for a page to be unlocked.
409  *
410  * This must be called with the caller "holding" the page,
411  * ie with increased "page->count" so that the page won't
412  * go away during the wait..
413  */
wait_on_page_locked(struct page * page)414 static inline void wait_on_page_locked(struct page *page)
415 {
416 	if (PageLocked(page))
417 		wait_on_page_bit(page, PG_locked);
418 }
419 
420 /*
421  * Wait for a page to complete writeback
422  */
wait_on_page_writeback(struct page * page)423 static inline void wait_on_page_writeback(struct page *page)
424 {
425 	if (PageWriteback(page))
426 		wait_on_page_bit(page, PG_writeback);
427 }
428 
429 extern void end_page_writeback(struct page *page);
430 void wait_for_stable_page(struct page *page);
431 
432 /*
433  * Add an arbitrary waiter to a page's wait queue
434  */
435 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
436 
437 /*
438  * Fault a userspace page into pagetables.  Return non-zero on a fault.
439  *
440  * This assumes that two userspace pages are always sufficient.  That's
441  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
442  */
fault_in_pages_writeable(char __user * uaddr,int size)443 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
444 {
445 	int ret;
446 
447 	if (unlikely(size == 0))
448 		return 0;
449 
450 	/*
451 	 * Writing zeroes into userspace here is OK, because we know that if
452 	 * the zero gets there, we'll be overwriting it.
453 	 */
454 	ret = __put_user(0, uaddr);
455 	if (ret == 0) {
456 		char __user *end = uaddr + size - 1;
457 
458 		/*
459 		 * If the page was already mapped, this will get a cache miss
460 		 * for sure, so try to avoid doing it.
461 		 */
462 		if (((unsigned long)uaddr & PAGE_MASK) !=
463 				((unsigned long)end & PAGE_MASK))
464 			ret = __put_user(0, end);
465 	}
466 	return ret;
467 }
468 
fault_in_pages_readable(const char __user * uaddr,int size)469 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
470 {
471 	volatile char c;
472 	int ret;
473 
474 	if (unlikely(size == 0))
475 		return 0;
476 
477 	ret = __get_user(c, uaddr);
478 	if (ret == 0) {
479 		const char __user *end = uaddr + size - 1;
480 
481 		if (((unsigned long)uaddr & PAGE_MASK) !=
482 				((unsigned long)end & PAGE_MASK)) {
483 			ret = __get_user(c, end);
484 			(void)c;
485 		}
486 	}
487 	return ret;
488 }
489 
490 /*
491  * Multipage variants of the above prefault helpers, useful if more than
492  * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
493  * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
494  * filemap.c hotpaths.
495  */
fault_in_multipages_writeable(char __user * uaddr,int size)496 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
497 {
498 	int ret = 0;
499 	char __user *end = uaddr + size - 1;
500 
501 	if (unlikely(size == 0))
502 		return ret;
503 
504 	/*
505 	 * Writing zeroes into userspace here is OK, because we know that if
506 	 * the zero gets there, we'll be overwriting it.
507 	 */
508 	while (uaddr <= end) {
509 		ret = __put_user(0, uaddr);
510 		if (ret != 0)
511 			return ret;
512 		uaddr += PAGE_SIZE;
513 	}
514 
515 	/* Check whether the range spilled into the next page. */
516 	if (((unsigned long)uaddr & PAGE_MASK) ==
517 			((unsigned long)end & PAGE_MASK))
518 		ret = __put_user(0, end);
519 
520 	return ret;
521 }
522 
fault_in_multipages_readable(const char __user * uaddr,int size)523 static inline int fault_in_multipages_readable(const char __user *uaddr,
524 					       int size)
525 {
526 	volatile char c;
527 	int ret = 0;
528 	const char __user *end = uaddr + size - 1;
529 
530 	if (unlikely(size == 0))
531 		return ret;
532 
533 	while (uaddr <= end) {
534 		ret = __get_user(c, uaddr);
535 		if (ret != 0)
536 			return ret;
537 		uaddr += PAGE_SIZE;
538 	}
539 
540 	/* Check whether the range spilled into the next page. */
541 	if (((unsigned long)uaddr & PAGE_MASK) ==
542 			((unsigned long)end & PAGE_MASK)) {
543 		ret = __get_user(c, end);
544 		(void)c;
545 	}
546 
547 	return ret;
548 }
549 
550 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
551 				pgoff_t index, gfp_t gfp_mask);
552 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
553 				pgoff_t index, gfp_t gfp_mask);
554 extern void delete_from_page_cache(struct page *page);
555 extern void __delete_from_page_cache(struct page *page);
556 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
557 
558 /*
559  * Like add_to_page_cache_locked, but used to add newly allocated pages:
560  * the page is new, so we can just run __set_page_locked() against it.
561  */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)562 static inline int add_to_page_cache(struct page *page,
563 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
564 {
565 	int error;
566 
567 	__set_page_locked(page);
568 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
569 	if (unlikely(error))
570 		__clear_page_locked(page);
571 	return error;
572 }
573 
574 #endif /* _LINUX_PAGEMAP_H */
575