• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4  * Reader/writer consistent mechanism without starving writers. This type of
5  * lock for data where the reader wants a consistent set of information
6  * and is willing to retry if the information changes.  Readers never
7  * block but they may have to retry if a writer is in
8  * progress. Writers do not wait for readers.
9  *
10  * This is not as cache friendly as brlock. Also, this will not work
11  * for data that contains pointers, because any writer could
12  * invalidate a pointer that a reader was following.
13  *
14  * Expected reader usage:
15  * 	do {
16  *	    seq = read_seqbegin(&foo);
17  * 	...
18  *      } while (read_seqretry(&foo, seq));
19  *
20  *
21  * On non-SMP the spin locks disappear but the writer still needs
22  * to increment the sequence variables because an interrupt routine could
23  * change the state of the data.
24  *
25  * Based on x86_64 vsyscall gettimeofday
26  * by Keith Owens and Andrea Arcangeli
27  */
28 
29 #include <linux/spinlock.h>
30 #include <linux/preempt.h>
31 #include <asm/processor.h>
32 
33 /*
34  * Version using sequence counter only.
35  * This can be used when code has its own mutex protecting the
36  * updating starting before the write_seqcountbeqin() and ending
37  * after the write_seqcount_end().
38  */
39 typedef struct seqcount {
40 	unsigned sequence;
41 } seqcount_t;
42 
43 #define SEQCNT_ZERO { 0 }
44 #define seqcount_init(x)	do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0)
45 
46 /**
47  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
48  * @s: pointer to seqcount_t
49  * Returns: count to be passed to read_seqcount_retry
50  *
51  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
52  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
53  * provided before actually loading any of the variables that are to be
54  * protected in this critical section.
55  *
56  * Use carefully, only in critical code, and comment how the barrier is
57  * provided.
58  */
__read_seqcount_begin(const seqcount_t * s)59 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
60 {
61 	unsigned ret;
62 
63 repeat:
64 	ret = ACCESS_ONCE(s->sequence);
65 	if (unlikely(ret & 1)) {
66 		cpu_relax();
67 		goto repeat;
68 	}
69 	return ret;
70 }
71 
72 /**
73  * read_seqcount_begin - begin a seq-read critical section
74  * @s: pointer to seqcount_t
75  * Returns: count to be passed to read_seqcount_retry
76  *
77  * read_seqcount_begin opens a read critical section of the given seqcount.
78  * Validity of the critical section is tested by checking read_seqcount_retry
79  * function.
80  */
read_seqcount_begin(const seqcount_t * s)81 static inline unsigned read_seqcount_begin(const seqcount_t *s)
82 {
83 	unsigned ret = __read_seqcount_begin(s);
84 	smp_rmb();
85 	return ret;
86 }
87 
88 /**
89  * raw_seqcount_begin - begin a seq-read critical section
90  * @s: pointer to seqcount_t
91  * Returns: count to be passed to read_seqcount_retry
92  *
93  * raw_seqcount_begin opens a read critical section of the given seqcount.
94  * Validity of the critical section is tested by checking read_seqcount_retry
95  * function.
96  *
97  * Unlike read_seqcount_begin(), this function will not wait for the count
98  * to stabilize. If a writer is active when we begin, we will fail the
99  * read_seqcount_retry() instead of stabilizing at the beginning of the
100  * critical section.
101  */
raw_seqcount_begin(const seqcount_t * s)102 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
103 {
104 	unsigned ret = ACCESS_ONCE(s->sequence);
105 	smp_rmb();
106 	return ret & ~1;
107 }
108 
109 /**
110  * __read_seqcount_retry - end a seq-read critical section (without barrier)
111  * @s: pointer to seqcount_t
112  * @start: count, from read_seqcount_begin
113  * Returns: 1 if retry is required, else 0
114  *
115  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
116  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
117  * provided before actually loading any of the variables that are to be
118  * protected in this critical section.
119  *
120  * Use carefully, only in critical code, and comment how the barrier is
121  * provided.
122  */
__read_seqcount_retry(const seqcount_t * s,unsigned start)123 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
124 {
125 	return unlikely(s->sequence != start);
126 }
127 
128 /**
129  * read_seqcount_retry - end a seq-read critical section
130  * @s: pointer to seqcount_t
131  * @start: count, from read_seqcount_begin
132  * Returns: 1 if retry is required, else 0
133  *
134  * read_seqcount_retry closes a read critical section of the given seqcount.
135  * If the critical section was invalid, it must be ignored (and typically
136  * retried).
137  */
read_seqcount_retry(const seqcount_t * s,unsigned start)138 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
139 {
140 	smp_rmb();
141 	return __read_seqcount_retry(s, start);
142 }
143 
144 
145 /*
146  * Sequence counter only version assumes that callers are using their
147  * own mutexing.
148  */
write_seqcount_begin(seqcount_t * s)149 static inline void write_seqcount_begin(seqcount_t *s)
150 {
151 	s->sequence++;
152 	smp_wmb();
153 }
154 
write_seqcount_end(seqcount_t * s)155 static inline void write_seqcount_end(seqcount_t *s)
156 {
157 	smp_wmb();
158 	s->sequence++;
159 }
160 
161 /**
162  * write_seqcount_barrier - invalidate in-progress read-side seq operations
163  * @s: pointer to seqcount_t
164  *
165  * After write_seqcount_barrier, no read-side seq operations will complete
166  * successfully and see data older than this.
167  */
write_seqcount_barrier(seqcount_t * s)168 static inline void write_seqcount_barrier(seqcount_t *s)
169 {
170 	smp_wmb();
171 	s->sequence+=2;
172 }
173 
174 typedef struct {
175 	struct seqcount seqcount;
176 	spinlock_t lock;
177 } seqlock_t;
178 
179 /*
180  * These macros triggered gcc-3.x compile-time problems.  We think these are
181  * OK now.  Be cautious.
182  */
183 #define __SEQLOCK_UNLOCKED(lockname)			\
184 	{						\
185 		.seqcount = SEQCNT_ZERO,		\
186 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
187 	}
188 
189 #define seqlock_init(x)					\
190 	do {						\
191 		seqcount_init(&(x)->seqcount);		\
192 		spin_lock_init(&(x)->lock);		\
193 	} while (0)
194 
195 #define DEFINE_SEQLOCK(x) \
196 		seqlock_t x = __SEQLOCK_UNLOCKED(x)
197 
198 /*
199  * Read side functions for starting and finalizing a read side section.
200  */
read_seqbegin(const seqlock_t * sl)201 static inline unsigned read_seqbegin(const seqlock_t *sl)
202 {
203 	return read_seqcount_begin(&sl->seqcount);
204 }
205 
read_seqretry(const seqlock_t * sl,unsigned start)206 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
207 {
208 	return read_seqcount_retry(&sl->seqcount, start);
209 }
210 
211 /*
212  * Lock out other writers and update the count.
213  * Acts like a normal spin_lock/unlock.
214  * Don't need preempt_disable() because that is in the spin_lock already.
215  */
write_seqlock(seqlock_t * sl)216 static inline void write_seqlock(seqlock_t *sl)
217 {
218 	spin_lock(&sl->lock);
219 	write_seqcount_begin(&sl->seqcount);
220 }
221 
write_sequnlock(seqlock_t * sl)222 static inline void write_sequnlock(seqlock_t *sl)
223 {
224 	write_seqcount_end(&sl->seqcount);
225 	spin_unlock(&sl->lock);
226 }
227 
write_seqlock_bh(seqlock_t * sl)228 static inline void write_seqlock_bh(seqlock_t *sl)
229 {
230 	spin_lock_bh(&sl->lock);
231 	write_seqcount_begin(&sl->seqcount);
232 }
233 
write_sequnlock_bh(seqlock_t * sl)234 static inline void write_sequnlock_bh(seqlock_t *sl)
235 {
236 	write_seqcount_end(&sl->seqcount);
237 	spin_unlock_bh(&sl->lock);
238 }
239 
write_seqlock_irq(seqlock_t * sl)240 static inline void write_seqlock_irq(seqlock_t *sl)
241 {
242 	spin_lock_irq(&sl->lock);
243 	write_seqcount_begin(&sl->seqcount);
244 }
245 
write_sequnlock_irq(seqlock_t * sl)246 static inline void write_sequnlock_irq(seqlock_t *sl)
247 {
248 	write_seqcount_end(&sl->seqcount);
249 	spin_unlock_irq(&sl->lock);
250 }
251 
__write_seqlock_irqsave(seqlock_t * sl)252 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
253 {
254 	unsigned long flags;
255 
256 	spin_lock_irqsave(&sl->lock, flags);
257 	write_seqcount_begin(&sl->seqcount);
258 	return flags;
259 }
260 
261 #define write_seqlock_irqsave(lock, flags)				\
262 	do { flags = __write_seqlock_irqsave(lock); } while (0)
263 
264 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)265 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
266 {
267 	write_seqcount_end(&sl->seqcount);
268 	spin_unlock_irqrestore(&sl->lock, flags);
269 }
270 
271 #endif /* __LINUX_SEQLOCK_H */
272