• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/timer.h>
54 
55 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
56 
57 EXPORT_SYMBOL(jiffies_64);
58 
59 /*
60  * per-CPU timer vector definitions:
61  */
62 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64 #define TVN_SIZE (1 << TVN_BITS)
65 #define TVR_SIZE (1 << TVR_BITS)
66 #define TVN_MASK (TVN_SIZE - 1)
67 #define TVR_MASK (TVR_SIZE - 1)
68 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
69 
70 struct tvec {
71 	struct list_head vec[TVN_SIZE];
72 };
73 
74 struct tvec_root {
75 	struct list_head vec[TVR_SIZE];
76 };
77 
78 struct tvec_base {
79 	spinlock_t lock;
80 	struct timer_list *running_timer;
81 	unsigned long timer_jiffies;
82 	unsigned long next_timer;
83 	unsigned long active_timers;
84 	struct tvec_root tv1;
85 	struct tvec tv2;
86 	struct tvec tv3;
87 	struct tvec tv4;
88 	struct tvec tv5;
89 } ____cacheline_aligned;
90 
91 struct tvec_base boot_tvec_bases;
92 EXPORT_SYMBOL(boot_tvec_bases);
93 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
94 
95 /* Functions below help us manage 'deferrable' flag */
tbase_get_deferrable(struct tvec_base * base)96 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
97 {
98 	return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
99 }
100 
tbase_get_irqsafe(struct tvec_base * base)101 static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
102 {
103 	return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
104 }
105 
tbase_get_base(struct tvec_base * base)106 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
107 {
108 	return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
109 }
110 
111 static inline void
timer_set_base(struct timer_list * timer,struct tvec_base * new_base)112 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
113 {
114 	unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
115 
116 	timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
117 }
118 
round_jiffies_common(unsigned long j,int cpu,bool force_up)119 static unsigned long round_jiffies_common(unsigned long j, int cpu,
120 		bool force_up)
121 {
122 	int rem;
123 	unsigned long original = j;
124 
125 	/*
126 	 * We don't want all cpus firing their timers at once hitting the
127 	 * same lock or cachelines, so we skew each extra cpu with an extra
128 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
129 	 * already did this.
130 	 * The skew is done by adding 3*cpunr, then round, then subtract this
131 	 * extra offset again.
132 	 */
133 	j += cpu * 3;
134 
135 	rem = j % HZ;
136 
137 	/*
138 	 * If the target jiffie is just after a whole second (which can happen
139 	 * due to delays of the timer irq, long irq off times etc etc) then
140 	 * we should round down to the whole second, not up. Use 1/4th second
141 	 * as cutoff for this rounding as an extreme upper bound for this.
142 	 * But never round down if @force_up is set.
143 	 */
144 	if (rem < HZ/4 && !force_up) /* round down */
145 		j = j - rem;
146 	else /* round up */
147 		j = j - rem + HZ;
148 
149 	/* now that we have rounded, subtract the extra skew again */
150 	j -= cpu * 3;
151 
152 	if (j <= jiffies) /* rounding ate our timeout entirely; */
153 		return original;
154 	return j;
155 }
156 
157 /**
158  * __round_jiffies - function to round jiffies to a full second
159  * @j: the time in (absolute) jiffies that should be rounded
160  * @cpu: the processor number on which the timeout will happen
161  *
162  * __round_jiffies() rounds an absolute time in the future (in jiffies)
163  * up or down to (approximately) full seconds. This is useful for timers
164  * for which the exact time they fire does not matter too much, as long as
165  * they fire approximately every X seconds.
166  *
167  * By rounding these timers to whole seconds, all such timers will fire
168  * at the same time, rather than at various times spread out. The goal
169  * of this is to have the CPU wake up less, which saves power.
170  *
171  * The exact rounding is skewed for each processor to avoid all
172  * processors firing at the exact same time, which could lead
173  * to lock contention or spurious cache line bouncing.
174  *
175  * The return value is the rounded version of the @j parameter.
176  */
__round_jiffies(unsigned long j,int cpu)177 unsigned long __round_jiffies(unsigned long j, int cpu)
178 {
179 	return round_jiffies_common(j, cpu, false);
180 }
181 EXPORT_SYMBOL_GPL(__round_jiffies);
182 
183 /**
184  * __round_jiffies_relative - function to round jiffies to a full second
185  * @j: the time in (relative) jiffies that should be rounded
186  * @cpu: the processor number on which the timeout will happen
187  *
188  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
189  * up or down to (approximately) full seconds. This is useful for timers
190  * for which the exact time they fire does not matter too much, as long as
191  * they fire approximately every X seconds.
192  *
193  * By rounding these timers to whole seconds, all such timers will fire
194  * at the same time, rather than at various times spread out. The goal
195  * of this is to have the CPU wake up less, which saves power.
196  *
197  * The exact rounding is skewed for each processor to avoid all
198  * processors firing at the exact same time, which could lead
199  * to lock contention or spurious cache line bouncing.
200  *
201  * The return value is the rounded version of the @j parameter.
202  */
__round_jiffies_relative(unsigned long j,int cpu)203 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
204 {
205 	unsigned long j0 = jiffies;
206 
207 	/* Use j0 because jiffies might change while we run */
208 	return round_jiffies_common(j + j0, cpu, false) - j0;
209 }
210 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
211 
212 /**
213  * round_jiffies - function to round jiffies to a full second
214  * @j: the time in (absolute) jiffies that should be rounded
215  *
216  * round_jiffies() rounds an absolute time in the future (in jiffies)
217  * up or down to (approximately) full seconds. This is useful for timers
218  * for which the exact time they fire does not matter too much, as long as
219  * they fire approximately every X seconds.
220  *
221  * By rounding these timers to whole seconds, all such timers will fire
222  * at the same time, rather than at various times spread out. The goal
223  * of this is to have the CPU wake up less, which saves power.
224  *
225  * The return value is the rounded version of the @j parameter.
226  */
round_jiffies(unsigned long j)227 unsigned long round_jiffies(unsigned long j)
228 {
229 	return round_jiffies_common(j, raw_smp_processor_id(), false);
230 }
231 EXPORT_SYMBOL_GPL(round_jiffies);
232 
233 /**
234  * round_jiffies_relative - function to round jiffies to a full second
235  * @j: the time in (relative) jiffies that should be rounded
236  *
237  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
238  * up or down to (approximately) full seconds. This is useful for timers
239  * for which the exact time they fire does not matter too much, as long as
240  * they fire approximately every X seconds.
241  *
242  * By rounding these timers to whole seconds, all such timers will fire
243  * at the same time, rather than at various times spread out. The goal
244  * of this is to have the CPU wake up less, which saves power.
245  *
246  * The return value is the rounded version of the @j parameter.
247  */
round_jiffies_relative(unsigned long j)248 unsigned long round_jiffies_relative(unsigned long j)
249 {
250 	return __round_jiffies_relative(j, raw_smp_processor_id());
251 }
252 EXPORT_SYMBOL_GPL(round_jiffies_relative);
253 
254 /**
255  * __round_jiffies_up - function to round jiffies up to a full second
256  * @j: the time in (absolute) jiffies that should be rounded
257  * @cpu: the processor number on which the timeout will happen
258  *
259  * This is the same as __round_jiffies() except that it will never
260  * round down.  This is useful for timeouts for which the exact time
261  * of firing does not matter too much, as long as they don't fire too
262  * early.
263  */
__round_jiffies_up(unsigned long j,int cpu)264 unsigned long __round_jiffies_up(unsigned long j, int cpu)
265 {
266 	return round_jiffies_common(j, cpu, true);
267 }
268 EXPORT_SYMBOL_GPL(__round_jiffies_up);
269 
270 /**
271  * __round_jiffies_up_relative - function to round jiffies up to a full second
272  * @j: the time in (relative) jiffies that should be rounded
273  * @cpu: the processor number on which the timeout will happen
274  *
275  * This is the same as __round_jiffies_relative() except that it will never
276  * round down.  This is useful for timeouts for which the exact time
277  * of firing does not matter too much, as long as they don't fire too
278  * early.
279  */
__round_jiffies_up_relative(unsigned long j,int cpu)280 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
281 {
282 	unsigned long j0 = jiffies;
283 
284 	/* Use j0 because jiffies might change while we run */
285 	return round_jiffies_common(j + j0, cpu, true) - j0;
286 }
287 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
288 
289 /**
290  * round_jiffies_up - function to round jiffies up to a full second
291  * @j: the time in (absolute) jiffies that should be rounded
292  *
293  * This is the same as round_jiffies() except that it will never
294  * round down.  This is useful for timeouts for which the exact time
295  * of firing does not matter too much, as long as they don't fire too
296  * early.
297  */
round_jiffies_up(unsigned long j)298 unsigned long round_jiffies_up(unsigned long j)
299 {
300 	return round_jiffies_common(j, raw_smp_processor_id(), true);
301 }
302 EXPORT_SYMBOL_GPL(round_jiffies_up);
303 
304 /**
305  * round_jiffies_up_relative - function to round jiffies up to a full second
306  * @j: the time in (relative) jiffies that should be rounded
307  *
308  * This is the same as round_jiffies_relative() except that it will never
309  * round down.  This is useful for timeouts for which the exact time
310  * of firing does not matter too much, as long as they don't fire too
311  * early.
312  */
round_jiffies_up_relative(unsigned long j)313 unsigned long round_jiffies_up_relative(unsigned long j)
314 {
315 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
316 }
317 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
318 
319 /**
320  * set_timer_slack - set the allowed slack for a timer
321  * @timer: the timer to be modified
322  * @slack_hz: the amount of time (in jiffies) allowed for rounding
323  *
324  * Set the amount of time, in jiffies, that a certain timer has
325  * in terms of slack. By setting this value, the timer subsystem
326  * will schedule the actual timer somewhere between
327  * the time mod_timer() asks for, and that time plus the slack.
328  *
329  * By setting the slack to -1, a percentage of the delay is used
330  * instead.
331  */
set_timer_slack(struct timer_list * timer,int slack_hz)332 void set_timer_slack(struct timer_list *timer, int slack_hz)
333 {
334 	timer->slack = slack_hz;
335 }
336 EXPORT_SYMBOL_GPL(set_timer_slack);
337 
338 static void
__internal_add_timer(struct tvec_base * base,struct timer_list * timer)339 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
340 {
341 	unsigned long expires = timer->expires;
342 	unsigned long idx = expires - base->timer_jiffies;
343 	struct list_head *vec;
344 
345 	if (idx < TVR_SIZE) {
346 		int i = expires & TVR_MASK;
347 		vec = base->tv1.vec + i;
348 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
349 		int i = (expires >> TVR_BITS) & TVN_MASK;
350 		vec = base->tv2.vec + i;
351 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
352 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
353 		vec = base->tv3.vec + i;
354 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
355 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
356 		vec = base->tv4.vec + i;
357 	} else if ((signed long) idx < 0) {
358 		/*
359 		 * Can happen if you add a timer with expires == jiffies,
360 		 * or you set a timer to go off in the past
361 		 */
362 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
363 	} else {
364 		int i;
365 		/* If the timeout is larger than MAX_TVAL (on 64-bit
366 		 * architectures or with CONFIG_BASE_SMALL=1) then we
367 		 * use the maximum timeout.
368 		 */
369 		if (idx > MAX_TVAL) {
370 			idx = MAX_TVAL;
371 			expires = idx + base->timer_jiffies;
372 		}
373 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
374 		vec = base->tv5.vec + i;
375 	}
376 	/*
377 	 * Timers are FIFO:
378 	 */
379 	list_add_tail(&timer->entry, vec);
380 }
381 
internal_add_timer(struct tvec_base * base,struct timer_list * timer)382 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
383 {
384 	__internal_add_timer(base, timer);
385 	/*
386 	 * Update base->active_timers and base->next_timer
387 	 */
388 	if (!tbase_get_deferrable(timer->base)) {
389 		if (time_before(timer->expires, base->next_timer))
390 			base->next_timer = timer->expires;
391 		base->active_timers++;
392 	}
393 }
394 
395 #ifdef CONFIG_TIMER_STATS
__timer_stats_timer_set_start_info(struct timer_list * timer,void * addr)396 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
397 {
398 	if (timer->start_site)
399 		return;
400 
401 	timer->start_site = addr;
402 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
403 	timer->start_pid = current->pid;
404 }
405 
timer_stats_account_timer(struct timer_list * timer)406 static void timer_stats_account_timer(struct timer_list *timer)
407 {
408 	unsigned int flag = 0;
409 
410 	if (likely(!timer->start_site))
411 		return;
412 	if (unlikely(tbase_get_deferrable(timer->base)))
413 		flag |= TIMER_STATS_FLAG_DEFERRABLE;
414 
415 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
416 				 timer->function, timer->start_comm, flag);
417 }
418 
419 #else
timer_stats_account_timer(struct timer_list * timer)420 static void timer_stats_account_timer(struct timer_list *timer) {}
421 #endif
422 
423 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
424 
425 static struct debug_obj_descr timer_debug_descr;
426 
timer_debug_hint(void * addr)427 static void *timer_debug_hint(void *addr)
428 {
429 	return ((struct timer_list *) addr)->function;
430 }
431 
432 /*
433  * fixup_init is called when:
434  * - an active object is initialized
435  */
timer_fixup_init(void * addr,enum debug_obj_state state)436 static int timer_fixup_init(void *addr, enum debug_obj_state state)
437 {
438 	struct timer_list *timer = addr;
439 
440 	switch (state) {
441 	case ODEBUG_STATE_ACTIVE:
442 		del_timer_sync(timer);
443 		debug_object_init(timer, &timer_debug_descr);
444 		return 1;
445 	default:
446 		return 0;
447 	}
448 }
449 
450 /* Stub timer callback for improperly used timers. */
stub_timer(unsigned long data)451 static void stub_timer(unsigned long data)
452 {
453 	WARN_ON(1);
454 }
455 
456 /*
457  * fixup_activate is called when:
458  * - an active object is activated
459  * - an unknown object is activated (might be a statically initialized object)
460  */
timer_fixup_activate(void * addr,enum debug_obj_state state)461 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
462 {
463 	struct timer_list *timer = addr;
464 
465 	switch (state) {
466 
467 	case ODEBUG_STATE_NOTAVAILABLE:
468 		/*
469 		 * This is not really a fixup. The timer was
470 		 * statically initialized. We just make sure that it
471 		 * is tracked in the object tracker.
472 		 */
473 		if (timer->entry.next == NULL &&
474 		    timer->entry.prev == TIMER_ENTRY_STATIC) {
475 			debug_object_init(timer, &timer_debug_descr);
476 			debug_object_activate(timer, &timer_debug_descr);
477 			return 0;
478 		} else {
479 			setup_timer(timer, stub_timer, 0);
480 			return 1;
481 		}
482 		return 0;
483 
484 	case ODEBUG_STATE_ACTIVE:
485 		WARN_ON(1);
486 
487 	default:
488 		return 0;
489 	}
490 }
491 
492 /*
493  * fixup_free is called when:
494  * - an active object is freed
495  */
timer_fixup_free(void * addr,enum debug_obj_state state)496 static int timer_fixup_free(void *addr, enum debug_obj_state state)
497 {
498 	struct timer_list *timer = addr;
499 
500 	switch (state) {
501 	case ODEBUG_STATE_ACTIVE:
502 		del_timer_sync(timer);
503 		debug_object_free(timer, &timer_debug_descr);
504 		return 1;
505 	default:
506 		return 0;
507 	}
508 }
509 
510 /*
511  * fixup_assert_init is called when:
512  * - an untracked/uninit-ed object is found
513  */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)514 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
515 {
516 	struct timer_list *timer = addr;
517 
518 	switch (state) {
519 	case ODEBUG_STATE_NOTAVAILABLE:
520 		if (timer->entry.prev == TIMER_ENTRY_STATIC) {
521 			/*
522 			 * This is not really a fixup. The timer was
523 			 * statically initialized. We just make sure that it
524 			 * is tracked in the object tracker.
525 			 */
526 			debug_object_init(timer, &timer_debug_descr);
527 			return 0;
528 		} else {
529 			setup_timer(timer, stub_timer, 0);
530 			return 1;
531 		}
532 	default:
533 		return 0;
534 	}
535 }
536 
537 static struct debug_obj_descr timer_debug_descr = {
538 	.name			= "timer_list",
539 	.debug_hint		= timer_debug_hint,
540 	.fixup_init		= timer_fixup_init,
541 	.fixup_activate		= timer_fixup_activate,
542 	.fixup_free		= timer_fixup_free,
543 	.fixup_assert_init	= timer_fixup_assert_init,
544 };
545 
debug_timer_init(struct timer_list * timer)546 static inline void debug_timer_init(struct timer_list *timer)
547 {
548 	debug_object_init(timer, &timer_debug_descr);
549 }
550 
debug_timer_activate(struct timer_list * timer)551 static inline void debug_timer_activate(struct timer_list *timer)
552 {
553 	debug_object_activate(timer, &timer_debug_descr);
554 }
555 
debug_timer_deactivate(struct timer_list * timer)556 static inline void debug_timer_deactivate(struct timer_list *timer)
557 {
558 	debug_object_deactivate(timer, &timer_debug_descr);
559 }
560 
debug_timer_free(struct timer_list * timer)561 static inline void debug_timer_free(struct timer_list *timer)
562 {
563 	debug_object_free(timer, &timer_debug_descr);
564 }
565 
debug_timer_assert_init(struct timer_list * timer)566 static inline void debug_timer_assert_init(struct timer_list *timer)
567 {
568 	debug_object_assert_init(timer, &timer_debug_descr);
569 }
570 
571 static void do_init_timer(struct timer_list *timer, unsigned int flags,
572 			  const char *name, struct lock_class_key *key);
573 
init_timer_on_stack_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)574 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
575 			     const char *name, struct lock_class_key *key)
576 {
577 	debug_object_init_on_stack(timer, &timer_debug_descr);
578 	do_init_timer(timer, flags, name, key);
579 }
580 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
581 
destroy_timer_on_stack(struct timer_list * timer)582 void destroy_timer_on_stack(struct timer_list *timer)
583 {
584 	debug_object_free(timer, &timer_debug_descr);
585 }
586 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
587 
588 #else
debug_timer_init(struct timer_list * timer)589 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)590 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)591 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)592 static inline void debug_timer_assert_init(struct timer_list *timer) { }
593 #endif
594 
debug_init(struct timer_list * timer)595 static inline void debug_init(struct timer_list *timer)
596 {
597 	debug_timer_init(timer);
598 	trace_timer_init(timer);
599 }
600 
601 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)602 debug_activate(struct timer_list *timer, unsigned long expires)
603 {
604 	debug_timer_activate(timer);
605 	trace_timer_start(timer, expires);
606 }
607 
debug_deactivate(struct timer_list * timer)608 static inline void debug_deactivate(struct timer_list *timer)
609 {
610 	debug_timer_deactivate(timer);
611 	trace_timer_cancel(timer);
612 }
613 
debug_assert_init(struct timer_list * timer)614 static inline void debug_assert_init(struct timer_list *timer)
615 {
616 	debug_timer_assert_init(timer);
617 }
618 
do_init_timer(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)619 static void do_init_timer(struct timer_list *timer, unsigned int flags,
620 			  const char *name, struct lock_class_key *key)
621 {
622 	struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
623 
624 	timer->entry.next = NULL;
625 	timer->base = (void *)((unsigned long)base | flags);
626 	timer->slack = -1;
627 #ifdef CONFIG_TIMER_STATS
628 	timer->start_site = NULL;
629 	timer->start_pid = -1;
630 	memset(timer->start_comm, 0, TASK_COMM_LEN);
631 #endif
632 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
633 }
634 
635 /**
636  * init_timer_key - initialize a timer
637  * @timer: the timer to be initialized
638  * @flags: timer flags
639  * @name: name of the timer
640  * @key: lockdep class key of the fake lock used for tracking timer
641  *       sync lock dependencies
642  *
643  * init_timer_key() must be done to a timer prior calling *any* of the
644  * other timer functions.
645  */
init_timer_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)646 void init_timer_key(struct timer_list *timer, unsigned int flags,
647 		    const char *name, struct lock_class_key *key)
648 {
649 	debug_init(timer);
650 	do_init_timer(timer, flags, name, key);
651 }
652 EXPORT_SYMBOL(init_timer_key);
653 
detach_timer(struct timer_list * timer,bool clear_pending)654 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
655 {
656 	struct list_head *entry = &timer->entry;
657 
658 	debug_deactivate(timer);
659 
660 	__list_del(entry->prev, entry->next);
661 	if (clear_pending)
662 		entry->next = NULL;
663 	entry->prev = LIST_POISON2;
664 }
665 
666 static inline void
detach_expired_timer(struct timer_list * timer,struct tvec_base * base)667 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
668 {
669 	detach_timer(timer, true);
670 	if (!tbase_get_deferrable(timer->base))
671 		base->active_timers--;
672 }
673 
detach_if_pending(struct timer_list * timer,struct tvec_base * base,bool clear_pending)674 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
675 			     bool clear_pending)
676 {
677 	if (!timer_pending(timer))
678 		return 0;
679 
680 	detach_timer(timer, clear_pending);
681 	if (!tbase_get_deferrable(timer->base)) {
682 		base->active_timers--;
683 		if (timer->expires == base->next_timer)
684 			base->next_timer = base->timer_jiffies;
685 	}
686 	return 1;
687 }
688 
689 /*
690  * We are using hashed locking: holding per_cpu(tvec_bases).lock
691  * means that all timers which are tied to this base via timer->base are
692  * locked, and the base itself is locked too.
693  *
694  * So __run_timers/migrate_timers can safely modify all timers which could
695  * be found on ->tvX lists.
696  *
697  * When the timer's base is locked, and the timer removed from list, it is
698  * possible to set timer->base = NULL and drop the lock: the timer remains
699  * locked.
700  */
lock_timer_base(struct timer_list * timer,unsigned long * flags)701 static struct tvec_base *lock_timer_base(struct timer_list *timer,
702 					unsigned long *flags)
703 	__acquires(timer->base->lock)
704 {
705 	struct tvec_base *base;
706 
707 	for (;;) {
708 		struct tvec_base *prelock_base = timer->base;
709 		base = tbase_get_base(prelock_base);
710 		if (likely(base != NULL)) {
711 			spin_lock_irqsave(&base->lock, *flags);
712 			if (likely(prelock_base == timer->base))
713 				return base;
714 			/* The timer has migrated to another CPU */
715 			spin_unlock_irqrestore(&base->lock, *flags);
716 		}
717 		cpu_relax();
718 	}
719 }
720 
721 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only,int pinned)722 __mod_timer(struct timer_list *timer, unsigned long expires,
723 						bool pending_only, int pinned)
724 {
725 	struct tvec_base *base, *new_base;
726 	unsigned long flags;
727 	int ret = 0 , cpu;
728 
729 	timer_stats_timer_set_start_info(timer);
730 	BUG_ON(!timer->function);
731 
732 	base = lock_timer_base(timer, &flags);
733 
734 	ret = detach_if_pending(timer, base, false);
735 	if (!ret && pending_only)
736 		goto out_unlock;
737 
738 	debug_activate(timer, expires);
739 
740 	cpu = smp_processor_id();
741 
742 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
743 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
744 		cpu = get_nohz_timer_target();
745 #endif
746 	new_base = per_cpu(tvec_bases, cpu);
747 
748 	if (base != new_base) {
749 		/*
750 		 * We are trying to schedule the timer on the local CPU.
751 		 * However we can't change timer's base while it is running,
752 		 * otherwise del_timer_sync() can't detect that the timer's
753 		 * handler yet has not finished. This also guarantees that
754 		 * the timer is serialized wrt itself.
755 		 */
756 		if (likely(base->running_timer != timer)) {
757 			/* See the comment in lock_timer_base() */
758 			timer_set_base(timer, NULL);
759 			spin_unlock(&base->lock);
760 			base = new_base;
761 			spin_lock(&base->lock);
762 			timer_set_base(timer, base);
763 		}
764 	}
765 
766 	timer->expires = expires;
767 	internal_add_timer(base, timer);
768 
769 out_unlock:
770 	spin_unlock_irqrestore(&base->lock, flags);
771 
772 	return ret;
773 }
774 
775 /**
776  * mod_timer_pending - modify a pending timer's timeout
777  * @timer: the pending timer to be modified
778  * @expires: new timeout in jiffies
779  *
780  * mod_timer_pending() is the same for pending timers as mod_timer(),
781  * but will not re-activate and modify already deleted timers.
782  *
783  * It is useful for unserialized use of timers.
784  */
mod_timer_pending(struct timer_list * timer,unsigned long expires)785 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
786 {
787 	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
788 }
789 EXPORT_SYMBOL(mod_timer_pending);
790 
791 /*
792  * Decide where to put the timer while taking the slack into account
793  *
794  * Algorithm:
795  *   1) calculate the maximum (absolute) time
796  *   2) calculate the highest bit where the expires and new max are different
797  *   3) use this bit to make a mask
798  *   4) use the bitmask to round down the maximum time, so that all last
799  *      bits are zeros
800  */
801 static inline
apply_slack(struct timer_list * timer,unsigned long expires)802 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
803 {
804 	unsigned long expires_limit, mask;
805 	int bit;
806 
807 	if (timer->slack >= 0) {
808 		expires_limit = expires + timer->slack;
809 	} else {
810 		long delta = expires - jiffies;
811 
812 		if (delta < 256)
813 			return expires;
814 
815 		expires_limit = expires + delta / 256;
816 	}
817 	mask = expires ^ expires_limit;
818 	if (mask == 0)
819 		return expires;
820 
821 	bit = find_last_bit(&mask, BITS_PER_LONG);
822 
823 	mask = (1 << bit) - 1;
824 
825 	expires_limit = expires_limit & ~(mask);
826 
827 	return expires_limit;
828 }
829 
830 /**
831  * mod_timer - modify a timer's timeout
832  * @timer: the timer to be modified
833  * @expires: new timeout in jiffies
834  *
835  * mod_timer() is a more efficient way to update the expire field of an
836  * active timer (if the timer is inactive it will be activated)
837  *
838  * mod_timer(timer, expires) is equivalent to:
839  *
840  *     del_timer(timer); timer->expires = expires; add_timer(timer);
841  *
842  * Note that if there are multiple unserialized concurrent users of the
843  * same timer, then mod_timer() is the only safe way to modify the timeout,
844  * since add_timer() cannot modify an already running timer.
845  *
846  * The function returns whether it has modified a pending timer or not.
847  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
848  * active timer returns 1.)
849  */
mod_timer(struct timer_list * timer,unsigned long expires)850 int mod_timer(struct timer_list *timer, unsigned long expires)
851 {
852 	expires = apply_slack(timer, expires);
853 
854 	/*
855 	 * This is a common optimization triggered by the
856 	 * networking code - if the timer is re-modified
857 	 * to be the same thing then just return:
858 	 */
859 	if (timer_pending(timer) && timer->expires == expires)
860 		return 1;
861 
862 	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
863 }
864 EXPORT_SYMBOL(mod_timer);
865 
866 /**
867  * mod_timer_pinned - modify a timer's timeout
868  * @timer: the timer to be modified
869  * @expires: new timeout in jiffies
870  *
871  * mod_timer_pinned() is a way to update the expire field of an
872  * active timer (if the timer is inactive it will be activated)
873  * and to ensure that the timer is scheduled on the current CPU.
874  *
875  * Note that this does not prevent the timer from being migrated
876  * when the current CPU goes offline.  If this is a problem for
877  * you, use CPU-hotplug notifiers to handle it correctly, for
878  * example, cancelling the timer when the corresponding CPU goes
879  * offline.
880  *
881  * mod_timer_pinned(timer, expires) is equivalent to:
882  *
883  *     del_timer(timer); timer->expires = expires; add_timer(timer);
884  */
mod_timer_pinned(struct timer_list * timer,unsigned long expires)885 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
886 {
887 	if (timer->expires == expires && timer_pending(timer))
888 		return 1;
889 
890 	return __mod_timer(timer, expires, false, TIMER_PINNED);
891 }
892 EXPORT_SYMBOL(mod_timer_pinned);
893 
894 /**
895  * add_timer - start a timer
896  * @timer: the timer to be added
897  *
898  * The kernel will do a ->function(->data) callback from the
899  * timer interrupt at the ->expires point in the future. The
900  * current time is 'jiffies'.
901  *
902  * The timer's ->expires, ->function (and if the handler uses it, ->data)
903  * fields must be set prior calling this function.
904  *
905  * Timers with an ->expires field in the past will be executed in the next
906  * timer tick.
907  */
add_timer(struct timer_list * timer)908 void add_timer(struct timer_list *timer)
909 {
910 	BUG_ON(timer_pending(timer));
911 	mod_timer(timer, timer->expires);
912 }
913 EXPORT_SYMBOL(add_timer);
914 
915 /**
916  * add_timer_on - start a timer on a particular CPU
917  * @timer: the timer to be added
918  * @cpu: the CPU to start it on
919  *
920  * This is not very scalable on SMP. Double adds are not possible.
921  */
add_timer_on(struct timer_list * timer,int cpu)922 void add_timer_on(struct timer_list *timer, int cpu)
923 {
924 	struct tvec_base *base = per_cpu(tvec_bases, cpu);
925 	unsigned long flags;
926 
927 	timer_stats_timer_set_start_info(timer);
928 	BUG_ON(timer_pending(timer) || !timer->function);
929 	spin_lock_irqsave(&base->lock, flags);
930 	timer_set_base(timer, base);
931 	debug_activate(timer, timer->expires);
932 	internal_add_timer(base, timer);
933 	/*
934 	 * Check whether the other CPU is in dynticks mode and needs
935 	 * to be triggered to reevaluate the timer wheel.
936 	 * We are protected against the other CPU fiddling
937 	 * with the timer by holding the timer base lock. This also
938 	 * makes sure that a CPU on the way to stop its tick can not
939 	 * evaluate the timer wheel.
940 	 */
941 	wake_up_nohz_cpu(cpu);
942 	spin_unlock_irqrestore(&base->lock, flags);
943 }
944 EXPORT_SYMBOL_GPL(add_timer_on);
945 
946 /**
947  * del_timer - deactive a timer.
948  * @timer: the timer to be deactivated
949  *
950  * del_timer() deactivates a timer - this works on both active and inactive
951  * timers.
952  *
953  * The function returns whether it has deactivated a pending timer or not.
954  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
955  * active timer returns 1.)
956  */
del_timer(struct timer_list * timer)957 int del_timer(struct timer_list *timer)
958 {
959 	struct tvec_base *base;
960 	unsigned long flags;
961 	int ret = 0;
962 
963 	debug_assert_init(timer);
964 
965 	timer_stats_timer_clear_start_info(timer);
966 	if (timer_pending(timer)) {
967 		base = lock_timer_base(timer, &flags);
968 		ret = detach_if_pending(timer, base, true);
969 		spin_unlock_irqrestore(&base->lock, flags);
970 	}
971 
972 	return ret;
973 }
974 EXPORT_SYMBOL(del_timer);
975 
976 /**
977  * try_to_del_timer_sync - Try to deactivate a timer
978  * @timer: timer do del
979  *
980  * This function tries to deactivate a timer. Upon successful (ret >= 0)
981  * exit the timer is not queued and the handler is not running on any CPU.
982  */
try_to_del_timer_sync(struct timer_list * timer)983 int try_to_del_timer_sync(struct timer_list *timer)
984 {
985 	struct tvec_base *base;
986 	unsigned long flags;
987 	int ret = -1;
988 
989 	debug_assert_init(timer);
990 
991 	base = lock_timer_base(timer, &flags);
992 
993 	if (base->running_timer != timer) {
994 		timer_stats_timer_clear_start_info(timer);
995 		ret = detach_if_pending(timer, base, true);
996 	}
997 	spin_unlock_irqrestore(&base->lock, flags);
998 
999 	return ret;
1000 }
1001 EXPORT_SYMBOL(try_to_del_timer_sync);
1002 
1003 #ifdef CONFIG_SMP
1004 /**
1005  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1006  * @timer: the timer to be deactivated
1007  *
1008  * This function only differs from del_timer() on SMP: besides deactivating
1009  * the timer it also makes sure the handler has finished executing on other
1010  * CPUs.
1011  *
1012  * Synchronization rules: Callers must prevent restarting of the timer,
1013  * otherwise this function is meaningless. It must not be called from
1014  * interrupt contexts unless the timer is an irqsafe one. The caller must
1015  * not hold locks which would prevent completion of the timer's
1016  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1017  * timer is not queued and the handler is not running on any CPU.
1018  *
1019  * Note: For !irqsafe timers, you must not hold locks that are held in
1020  *   interrupt context while calling this function. Even if the lock has
1021  *   nothing to do with the timer in question.  Here's why:
1022  *
1023  *    CPU0                             CPU1
1024  *    ----                             ----
1025  *                                   <SOFTIRQ>
1026  *                                   call_timer_fn();
1027  *                                     base->running_timer = mytimer;
1028  *  spin_lock_irq(somelock);
1029  *                                     <IRQ>
1030  *                                        spin_lock(somelock);
1031  *  del_timer_sync(mytimer);
1032  *   while (base->running_timer == mytimer);
1033  *
1034  * Now del_timer_sync() will never return and never release somelock.
1035  * The interrupt on the other CPU is waiting to grab somelock but
1036  * it has interrupted the softirq that CPU0 is waiting to finish.
1037  *
1038  * The function returns whether it has deactivated a pending timer or not.
1039  */
del_timer_sync(struct timer_list * timer)1040 int del_timer_sync(struct timer_list *timer)
1041 {
1042 #ifdef CONFIG_LOCKDEP
1043 	unsigned long flags;
1044 
1045 	/*
1046 	 * If lockdep gives a backtrace here, please reference
1047 	 * the synchronization rules above.
1048 	 */
1049 	local_irq_save(flags);
1050 	lock_map_acquire(&timer->lockdep_map);
1051 	lock_map_release(&timer->lockdep_map);
1052 	local_irq_restore(flags);
1053 #endif
1054 	/*
1055 	 * don't use it in hardirq context, because it
1056 	 * could lead to deadlock.
1057 	 */
1058 	WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1059 	for (;;) {
1060 		int ret = try_to_del_timer_sync(timer);
1061 		if (ret >= 0)
1062 			return ret;
1063 		cpu_relax();
1064 	}
1065 }
1066 EXPORT_SYMBOL(del_timer_sync);
1067 #endif
1068 
cascade(struct tvec_base * base,struct tvec * tv,int index)1069 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1070 {
1071 	/* cascade all the timers from tv up one level */
1072 	struct timer_list *timer, *tmp;
1073 	struct list_head tv_list;
1074 
1075 	list_replace_init(tv->vec + index, &tv_list);
1076 
1077 	/*
1078 	 * We are removing _all_ timers from the list, so we
1079 	 * don't have to detach them individually.
1080 	 */
1081 	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1082 		BUG_ON(tbase_get_base(timer->base) != base);
1083 		/* No accounting, while moving them */
1084 		__internal_add_timer(base, timer);
1085 	}
1086 
1087 	return index;
1088 }
1089 
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1090 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1091 			  unsigned long data)
1092 {
1093 	int preempt_count = preempt_count();
1094 
1095 #ifdef CONFIG_LOCKDEP
1096 	/*
1097 	 * It is permissible to free the timer from inside the
1098 	 * function that is called from it, this we need to take into
1099 	 * account for lockdep too. To avoid bogus "held lock freed"
1100 	 * warnings as well as problems when looking into
1101 	 * timer->lockdep_map, make a copy and use that here.
1102 	 */
1103 	struct lockdep_map lockdep_map;
1104 
1105 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1106 #endif
1107 	/*
1108 	 * Couple the lock chain with the lock chain at
1109 	 * del_timer_sync() by acquiring the lock_map around the fn()
1110 	 * call here and in del_timer_sync().
1111 	 */
1112 	lock_map_acquire(&lockdep_map);
1113 
1114 	trace_timer_expire_entry(timer);
1115 	fn(data);
1116 	trace_timer_expire_exit(timer);
1117 
1118 	lock_map_release(&lockdep_map);
1119 
1120 	if (preempt_count != preempt_count()) {
1121 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1122 			  fn, preempt_count, preempt_count());
1123 		/*
1124 		 * Restore the preempt count. That gives us a decent
1125 		 * chance to survive and extract information. If the
1126 		 * callback kept a lock held, bad luck, but not worse
1127 		 * than the BUG() we had.
1128 		 */
1129 		preempt_count() = preempt_count;
1130 	}
1131 }
1132 
1133 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1134 
1135 /**
1136  * __run_timers - run all expired timers (if any) on this CPU.
1137  * @base: the timer vector to be processed.
1138  *
1139  * This function cascades all vectors and executes all expired timer
1140  * vectors.
1141  */
__run_timers(struct tvec_base * base)1142 static inline void __run_timers(struct tvec_base *base)
1143 {
1144 	struct timer_list *timer;
1145 
1146 	spin_lock_irq(&base->lock);
1147 	while (time_after_eq(jiffies, base->timer_jiffies)) {
1148 		struct list_head work_list;
1149 		struct list_head *head = &work_list;
1150 		int index = base->timer_jiffies & TVR_MASK;
1151 
1152 		/*
1153 		 * Cascade timers:
1154 		 */
1155 		if (!index &&
1156 			(!cascade(base, &base->tv2, INDEX(0))) &&
1157 				(!cascade(base, &base->tv3, INDEX(1))) &&
1158 					!cascade(base, &base->tv4, INDEX(2)))
1159 			cascade(base, &base->tv5, INDEX(3));
1160 		++base->timer_jiffies;
1161 		list_replace_init(base->tv1.vec + index, &work_list);
1162 		while (!list_empty(head)) {
1163 			void (*fn)(unsigned long);
1164 			unsigned long data;
1165 			bool irqsafe;
1166 
1167 			timer = list_first_entry(head, struct timer_list,entry);
1168 			fn = timer->function;
1169 			data = timer->data;
1170 			irqsafe = tbase_get_irqsafe(timer->base);
1171 
1172 			timer_stats_account_timer(timer);
1173 
1174 			base->running_timer = timer;
1175 			detach_expired_timer(timer, base);
1176 
1177 			if (irqsafe) {
1178 				spin_unlock(&base->lock);
1179 				call_timer_fn(timer, fn, data);
1180 				spin_lock(&base->lock);
1181 			} else {
1182 				spin_unlock_irq(&base->lock);
1183 				call_timer_fn(timer, fn, data);
1184 				spin_lock_irq(&base->lock);
1185 			}
1186 		}
1187 	}
1188 	base->running_timer = NULL;
1189 	spin_unlock_irq(&base->lock);
1190 }
1191 
1192 #ifdef CONFIG_NO_HZ_COMMON
1193 /*
1194  * Find out when the next timer event is due to happen. This
1195  * is used on S/390 to stop all activity when a CPU is idle.
1196  * This function needs to be called with interrupts disabled.
1197  */
__next_timer_interrupt(struct tvec_base * base)1198 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1199 {
1200 	unsigned long timer_jiffies = base->timer_jiffies;
1201 	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1202 	int index, slot, array, found = 0;
1203 	struct timer_list *nte;
1204 	struct tvec *varray[4];
1205 
1206 	/* Look for timer events in tv1. */
1207 	index = slot = timer_jiffies & TVR_MASK;
1208 	do {
1209 		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1210 			if (tbase_get_deferrable(nte->base))
1211 				continue;
1212 
1213 			found = 1;
1214 			expires = nte->expires;
1215 			/* Look at the cascade bucket(s)? */
1216 			if (!index || slot < index)
1217 				goto cascade;
1218 			return expires;
1219 		}
1220 		slot = (slot + 1) & TVR_MASK;
1221 	} while (slot != index);
1222 
1223 cascade:
1224 	/* Calculate the next cascade event */
1225 	if (index)
1226 		timer_jiffies += TVR_SIZE - index;
1227 	timer_jiffies >>= TVR_BITS;
1228 
1229 	/* Check tv2-tv5. */
1230 	varray[0] = &base->tv2;
1231 	varray[1] = &base->tv3;
1232 	varray[2] = &base->tv4;
1233 	varray[3] = &base->tv5;
1234 
1235 	for (array = 0; array < 4; array++) {
1236 		struct tvec *varp = varray[array];
1237 
1238 		index = slot = timer_jiffies & TVN_MASK;
1239 		do {
1240 			list_for_each_entry(nte, varp->vec + slot, entry) {
1241 				if (tbase_get_deferrable(nte->base))
1242 					continue;
1243 
1244 				found = 1;
1245 				if (time_before(nte->expires, expires))
1246 					expires = nte->expires;
1247 			}
1248 			/*
1249 			 * Do we still search for the first timer or are
1250 			 * we looking up the cascade buckets ?
1251 			 */
1252 			if (found) {
1253 				/* Look at the cascade bucket(s)? */
1254 				if (!index || slot < index)
1255 					break;
1256 				return expires;
1257 			}
1258 			slot = (slot + 1) & TVN_MASK;
1259 		} while (slot != index);
1260 
1261 		if (index)
1262 			timer_jiffies += TVN_SIZE - index;
1263 		timer_jiffies >>= TVN_BITS;
1264 	}
1265 	return expires;
1266 }
1267 
1268 /*
1269  * Check, if the next hrtimer event is before the next timer wheel
1270  * event:
1271  */
cmp_next_hrtimer_event(unsigned long now,unsigned long expires)1272 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1273 					    unsigned long expires)
1274 {
1275 	ktime_t hr_delta = hrtimer_get_next_event();
1276 	struct timespec tsdelta;
1277 	unsigned long delta;
1278 
1279 	if (hr_delta.tv64 == KTIME_MAX)
1280 		return expires;
1281 
1282 	/*
1283 	 * Expired timer available, let it expire in the next tick
1284 	 */
1285 	if (hr_delta.tv64 <= 0)
1286 		return now + 1;
1287 
1288 	tsdelta = ktime_to_timespec(hr_delta);
1289 	delta = timespec_to_jiffies(&tsdelta);
1290 
1291 	/*
1292 	 * Limit the delta to the max value, which is checked in
1293 	 * tick_nohz_stop_sched_tick():
1294 	 */
1295 	if (delta > NEXT_TIMER_MAX_DELTA)
1296 		delta = NEXT_TIMER_MAX_DELTA;
1297 
1298 	/*
1299 	 * Take rounding errors in to account and make sure, that it
1300 	 * expires in the next tick. Otherwise we go into an endless
1301 	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1302 	 * the timer softirq
1303 	 */
1304 	if (delta < 1)
1305 		delta = 1;
1306 	now += delta;
1307 	if (time_before(now, expires))
1308 		return now;
1309 	return expires;
1310 }
1311 
1312 /**
1313  * get_next_timer_interrupt - return the jiffy of the next pending timer
1314  * @now: current time (in jiffies)
1315  */
get_next_timer_interrupt(unsigned long now)1316 unsigned long get_next_timer_interrupt(unsigned long now)
1317 {
1318 	struct tvec_base *base = __this_cpu_read(tvec_bases);
1319 	unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1320 
1321 	/*
1322 	 * Pretend that there is no timer pending if the cpu is offline.
1323 	 * Possible pending timers will be migrated later to an active cpu.
1324 	 */
1325 	if (cpu_is_offline(smp_processor_id()))
1326 		return expires;
1327 
1328 	spin_lock(&base->lock);
1329 	if (base->active_timers) {
1330 		if (time_before_eq(base->next_timer, base->timer_jiffies))
1331 			base->next_timer = __next_timer_interrupt(base);
1332 		expires = base->next_timer;
1333 	}
1334 	spin_unlock(&base->lock);
1335 
1336 	if (time_before_eq(expires, now))
1337 		return now;
1338 
1339 	return cmp_next_hrtimer_event(now, expires);
1340 }
1341 #endif
1342 
1343 /*
1344  * Called from the timer interrupt handler to charge one tick to the current
1345  * process.  user_tick is 1 if the tick is user time, 0 for system.
1346  */
update_process_times(int user_tick)1347 void update_process_times(int user_tick)
1348 {
1349 	struct task_struct *p = current;
1350 	int cpu = smp_processor_id();
1351 
1352 	/* Note: this timer irq context must be accounted for as well. */
1353 	account_process_tick(p, user_tick);
1354 	run_local_timers();
1355 	rcu_check_callbacks(cpu, user_tick);
1356 #ifdef CONFIG_IRQ_WORK
1357 	if (in_irq())
1358 		irq_work_run();
1359 #endif
1360 	scheduler_tick();
1361 	run_posix_cpu_timers(p);
1362 }
1363 
1364 /*
1365  * This function runs timers and the timer-tq in bottom half context.
1366  */
run_timer_softirq(struct softirq_action * h)1367 static void run_timer_softirq(struct softirq_action *h)
1368 {
1369 	struct tvec_base *base = __this_cpu_read(tvec_bases);
1370 
1371 	hrtimer_run_pending();
1372 
1373 	if (time_after_eq(jiffies, base->timer_jiffies))
1374 		__run_timers(base);
1375 }
1376 
1377 /*
1378  * Called by the local, per-CPU timer interrupt on SMP.
1379  */
run_local_timers(void)1380 void run_local_timers(void)
1381 {
1382 	hrtimer_run_queues();
1383 	raise_softirq(TIMER_SOFTIRQ);
1384 }
1385 
1386 #ifdef __ARCH_WANT_SYS_ALARM
1387 
1388 /*
1389  * For backwards compatibility?  This can be done in libc so Alpha
1390  * and all newer ports shouldn't need it.
1391  */
SYSCALL_DEFINE1(alarm,unsigned int,seconds)1392 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1393 {
1394 	return alarm_setitimer(seconds);
1395 }
1396 
1397 #endif
1398 
process_timeout(unsigned long __data)1399 static void process_timeout(unsigned long __data)
1400 {
1401 	wake_up_process((struct task_struct *)__data);
1402 }
1403 
1404 /**
1405  * schedule_timeout - sleep until timeout
1406  * @timeout: timeout value in jiffies
1407  *
1408  * Make the current task sleep until @timeout jiffies have
1409  * elapsed. The routine will return immediately unless
1410  * the current task state has been set (see set_current_state()).
1411  *
1412  * You can set the task state as follows -
1413  *
1414  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1415  * pass before the routine returns. The routine will return 0
1416  *
1417  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1418  * delivered to the current task. In this case the remaining time
1419  * in jiffies will be returned, or 0 if the timer expired in time
1420  *
1421  * The current task state is guaranteed to be TASK_RUNNING when this
1422  * routine returns.
1423  *
1424  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1425  * the CPU away without a bound on the timeout. In this case the return
1426  * value will be %MAX_SCHEDULE_TIMEOUT.
1427  *
1428  * In all cases the return value is guaranteed to be non-negative.
1429  */
schedule_timeout(signed long timeout)1430 signed long __sched schedule_timeout(signed long timeout)
1431 {
1432 	struct timer_list timer;
1433 	unsigned long expire;
1434 
1435 	switch (timeout)
1436 	{
1437 	case MAX_SCHEDULE_TIMEOUT:
1438 		/*
1439 		 * These two special cases are useful to be comfortable
1440 		 * in the caller. Nothing more. We could take
1441 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1442 		 * but I' d like to return a valid offset (>=0) to allow
1443 		 * the caller to do everything it want with the retval.
1444 		 */
1445 		schedule();
1446 		goto out;
1447 	default:
1448 		/*
1449 		 * Another bit of PARANOID. Note that the retval will be
1450 		 * 0 since no piece of kernel is supposed to do a check
1451 		 * for a negative retval of schedule_timeout() (since it
1452 		 * should never happens anyway). You just have the printk()
1453 		 * that will tell you if something is gone wrong and where.
1454 		 */
1455 		if (timeout < 0) {
1456 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1457 				"value %lx\n", timeout);
1458 			dump_stack();
1459 			current->state = TASK_RUNNING;
1460 			goto out;
1461 		}
1462 	}
1463 
1464 	expire = timeout + jiffies;
1465 
1466 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1467 	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1468 	schedule();
1469 	del_singleshot_timer_sync(&timer);
1470 
1471 	/* Remove the timer from the object tracker */
1472 	destroy_timer_on_stack(&timer);
1473 
1474 	timeout = expire - jiffies;
1475 
1476  out:
1477 	return timeout < 0 ? 0 : timeout;
1478 }
1479 EXPORT_SYMBOL(schedule_timeout);
1480 
1481 /*
1482  * We can use __set_current_state() here because schedule_timeout() calls
1483  * schedule() unconditionally.
1484  */
schedule_timeout_interruptible(signed long timeout)1485 signed long __sched schedule_timeout_interruptible(signed long timeout)
1486 {
1487 	__set_current_state(TASK_INTERRUPTIBLE);
1488 	return schedule_timeout(timeout);
1489 }
1490 EXPORT_SYMBOL(schedule_timeout_interruptible);
1491 
schedule_timeout_killable(signed long timeout)1492 signed long __sched schedule_timeout_killable(signed long timeout)
1493 {
1494 	__set_current_state(TASK_KILLABLE);
1495 	return schedule_timeout(timeout);
1496 }
1497 EXPORT_SYMBOL(schedule_timeout_killable);
1498 
schedule_timeout_uninterruptible(signed long timeout)1499 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1500 {
1501 	__set_current_state(TASK_UNINTERRUPTIBLE);
1502 	return schedule_timeout(timeout);
1503 }
1504 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1505 
init_timers_cpu(int cpu)1506 static int __cpuinit init_timers_cpu(int cpu)
1507 {
1508 	int j;
1509 	struct tvec_base *base;
1510 	static char __cpuinitdata tvec_base_done[NR_CPUS];
1511 
1512 	if (!tvec_base_done[cpu]) {
1513 		static char boot_done;
1514 
1515 		if (boot_done) {
1516 			/*
1517 			 * The APs use this path later in boot
1518 			 */
1519 			base = kmalloc_node(sizeof(*base),
1520 						GFP_KERNEL | __GFP_ZERO,
1521 						cpu_to_node(cpu));
1522 			if (!base)
1523 				return -ENOMEM;
1524 
1525 			/* Make sure that tvec_base is 2 byte aligned */
1526 			if (tbase_get_deferrable(base)) {
1527 				WARN_ON(1);
1528 				kfree(base);
1529 				return -ENOMEM;
1530 			}
1531 			per_cpu(tvec_bases, cpu) = base;
1532 		} else {
1533 			/*
1534 			 * This is for the boot CPU - we use compile-time
1535 			 * static initialisation because per-cpu memory isn't
1536 			 * ready yet and because the memory allocators are not
1537 			 * initialised either.
1538 			 */
1539 			boot_done = 1;
1540 			base = &boot_tvec_bases;
1541 		}
1542 		spin_lock_init(&base->lock);
1543 		tvec_base_done[cpu] = 1;
1544 	} else {
1545 		base = per_cpu(tvec_bases, cpu);
1546 	}
1547 
1548 
1549 	for (j = 0; j < TVN_SIZE; j++) {
1550 		INIT_LIST_HEAD(base->tv5.vec + j);
1551 		INIT_LIST_HEAD(base->tv4.vec + j);
1552 		INIT_LIST_HEAD(base->tv3.vec + j);
1553 		INIT_LIST_HEAD(base->tv2.vec + j);
1554 	}
1555 	for (j = 0; j < TVR_SIZE; j++)
1556 		INIT_LIST_HEAD(base->tv1.vec + j);
1557 
1558 	base->timer_jiffies = jiffies;
1559 	base->next_timer = base->timer_jiffies;
1560 	base->active_timers = 0;
1561 	return 0;
1562 }
1563 
1564 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct tvec_base * new_base,struct list_head * head)1565 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1566 {
1567 	struct timer_list *timer;
1568 
1569 	while (!list_empty(head)) {
1570 		timer = list_first_entry(head, struct timer_list, entry);
1571 		/* We ignore the accounting on the dying cpu */
1572 		detach_timer(timer, false);
1573 		timer_set_base(timer, new_base);
1574 		internal_add_timer(new_base, timer);
1575 	}
1576 }
1577 
migrate_timers(int cpu)1578 static void __cpuinit migrate_timers(int cpu)
1579 {
1580 	struct tvec_base *old_base;
1581 	struct tvec_base *new_base;
1582 	int i;
1583 
1584 	BUG_ON(cpu_online(cpu));
1585 	old_base = per_cpu(tvec_bases, cpu);
1586 	new_base = get_cpu_var(tvec_bases);
1587 	/*
1588 	 * The caller is globally serialized and nobody else
1589 	 * takes two locks at once, deadlock is not possible.
1590 	 */
1591 	spin_lock_irq(&new_base->lock);
1592 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1593 
1594 	BUG_ON(old_base->running_timer);
1595 
1596 	for (i = 0; i < TVR_SIZE; i++)
1597 		migrate_timer_list(new_base, old_base->tv1.vec + i);
1598 	for (i = 0; i < TVN_SIZE; i++) {
1599 		migrate_timer_list(new_base, old_base->tv2.vec + i);
1600 		migrate_timer_list(new_base, old_base->tv3.vec + i);
1601 		migrate_timer_list(new_base, old_base->tv4.vec + i);
1602 		migrate_timer_list(new_base, old_base->tv5.vec + i);
1603 	}
1604 
1605 	spin_unlock(&old_base->lock);
1606 	spin_unlock_irq(&new_base->lock);
1607 	put_cpu_var(tvec_bases);
1608 }
1609 #endif /* CONFIG_HOTPLUG_CPU */
1610 
timer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1611 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1612 				unsigned long action, void *hcpu)
1613 {
1614 	long cpu = (long)hcpu;
1615 	int err;
1616 
1617 	switch(action) {
1618 	case CPU_UP_PREPARE:
1619 	case CPU_UP_PREPARE_FROZEN:
1620 		err = init_timers_cpu(cpu);
1621 		if (err < 0)
1622 			return notifier_from_errno(err);
1623 		break;
1624 #ifdef CONFIG_HOTPLUG_CPU
1625 	case CPU_DEAD:
1626 	case CPU_DEAD_FROZEN:
1627 		migrate_timers(cpu);
1628 		break;
1629 #endif
1630 	default:
1631 		break;
1632 	}
1633 	return NOTIFY_OK;
1634 }
1635 
1636 static struct notifier_block __cpuinitdata timers_nb = {
1637 	.notifier_call	= timer_cpu_notify,
1638 };
1639 
1640 
init_timers(void)1641 void __init init_timers(void)
1642 {
1643 	int err;
1644 
1645 	/* ensure there are enough low bits for flags in timer->base pointer */
1646 	BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1647 
1648 	err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1649 			       (void *)(long)smp_processor_id());
1650 	init_timer_stats();
1651 
1652 	BUG_ON(err != NOTIFY_OK);
1653 	register_cpu_notifier(&timers_nb);
1654 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1655 }
1656 
1657 /**
1658  * msleep - sleep safely even with waitqueue interruptions
1659  * @msecs: Time in milliseconds to sleep for
1660  */
msleep(unsigned int msecs)1661 void msleep(unsigned int msecs)
1662 {
1663 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1664 
1665 	while (timeout)
1666 		timeout = schedule_timeout_uninterruptible(timeout);
1667 }
1668 
1669 EXPORT_SYMBOL(msleep);
1670 
1671 /**
1672  * msleep_interruptible - sleep waiting for signals
1673  * @msecs: Time in milliseconds to sleep for
1674  */
msleep_interruptible(unsigned int msecs)1675 unsigned long msleep_interruptible(unsigned int msecs)
1676 {
1677 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1678 
1679 	while (timeout && !signal_pending(current))
1680 		timeout = schedule_timeout_interruptible(timeout);
1681 	return jiffies_to_msecs(timeout);
1682 }
1683 
1684 EXPORT_SYMBOL(msleep_interruptible);
1685 
do_usleep_range(unsigned long min,unsigned long max)1686 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1687 {
1688 	ktime_t kmin;
1689 	unsigned long delta;
1690 
1691 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1692 	delta = (max - min) * NSEC_PER_USEC;
1693 	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1694 }
1695 
1696 /**
1697  * usleep_range - Drop in replacement for udelay where wakeup is flexible
1698  * @min: Minimum time in usecs to sleep
1699  * @max: Maximum time in usecs to sleep
1700  */
usleep_range(unsigned long min,unsigned long max)1701 void usleep_range(unsigned long min, unsigned long max)
1702 {
1703 	__set_current_state(TASK_UNINTERRUPTIBLE);
1704 	do_usleep_range(min, max);
1705 }
1706 EXPORT_SYMBOL(usleep_range);
1707