• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
3 #ifdef __KERNEL__
4 
5 #ifndef __ASSEMBLY__
6 #include <asm/processor.h>		/* For TASK_SIZE */
7 #include <asm/mmu.h>
8 #include <asm/page.h>
9 
10 struct mm_struct;
11 
12 #endif /* !__ASSEMBLY__ */
13 
14 #if defined(CONFIG_PPC64)
15 #  include <asm/pgtable-ppc64.h>
16 #else
17 #  include <asm/pgtable-ppc32.h>
18 #endif
19 
20 /*
21  * We save the slot number & secondary bit in the second half of the
22  * PTE page. We use the 8 bytes per each pte entry.
23  */
24 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
25 
26 #ifndef __ASSEMBLY__
27 
28 #include <asm/tlbflush.h>
29 
30 /* Generic accessors to PTE bits */
pte_write(pte_t pte)31 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
pte_dirty(pte_t pte)32 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)33 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
pte_file(pte_t pte)34 static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
pte_special(pte_t pte)35 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
pte_present(pte_t pte)36 static inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_PRESENT; }
pte_none(pte_t pte)37 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
pte_pgprot(pte_t pte)38 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
39 
40 /* Conversion functions: convert a page and protection to a page entry,
41  * and a page entry and page directory to the page they refer to.
42  *
43  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
44  * long for now.
45  */
pfn_pte(unsigned long pfn,pgprot_t pgprot)46 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
47 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
48 		     pgprot_val(pgprot)); }
pte_pfn(pte_t pte)49 static inline unsigned long pte_pfn(pte_t pte)	{
50 	return pte_val(pte) >> PTE_RPN_SHIFT; }
51 
52 /* Keep these as a macros to avoid include dependency mess */
53 #define pte_page(x)		pfn_to_page(pte_pfn(x))
54 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
55 
56 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)57 static inline pte_t pte_wrprotect(pte_t pte) {
58 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
pte_mkclean(pte_t pte)59 static inline pte_t pte_mkclean(pte_t pte) {
60 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
pte_mkold(pte_t pte)61 static inline pte_t pte_mkold(pte_t pte) {
62 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)63 static inline pte_t pte_mkwrite(pte_t pte) {
64 	pte_val(pte) |= _PAGE_RW; return pte; }
pte_mkdirty(pte_t pte)65 static inline pte_t pte_mkdirty(pte_t pte) {
66 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)67 static inline pte_t pte_mkyoung(pte_t pte) {
68 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkspecial(pte_t pte)69 static inline pte_t pte_mkspecial(pte_t pte) {
70 	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
pte_mkhuge(pte_t pte)71 static inline pte_t pte_mkhuge(pte_t pte) {
72 	return pte; }
pte_modify(pte_t pte,pgprot_t newprot)73 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
74 {
75 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
76 	return pte;
77 }
78 
79 
80 /* Insert a PTE, top-level function is out of line. It uses an inline
81  * low level function in the respective pgtable-* files
82  */
83 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
84 		       pte_t pte);
85 
86 /* This low level function performs the actual PTE insertion
87  * Setting the PTE depends on the MMU type and other factors. It's
88  * an horrible mess that I'm not going to try to clean up now but
89  * I'm keeping it in one place rather than spread around
90  */
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)91 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
92 				pte_t *ptep, pte_t pte, int percpu)
93 {
94 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
95 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
96 	 * helper pte_update() which does an atomic update. We need to do that
97 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
98 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
99 	 * the hash bits instead (ie, same as the non-SMP case)
100 	 */
101 	if (percpu)
102 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
103 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
104 	else
105 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
106 
107 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
108 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
109 	 * can just store as long as we do the two halves in the right order
110 	 * with a barrier in between. This is possible because we take care,
111 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
112 	 * which synchronizes us with any concurrent invalidation.
113 	 * In the percpu case, we also fallback to the simple update preserving
114 	 * the hash bits
115 	 */
116 	if (percpu) {
117 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
118 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
119 		return;
120 	}
121 #if _PAGE_HASHPTE != 0
122 	if (pte_val(*ptep) & _PAGE_HASHPTE)
123 		flush_hash_entry(mm, ptep, addr);
124 #endif
125 	__asm__ __volatile__("\
126 		stw%U0%X0 %2,%0\n\
127 		eieio\n\
128 		stw%U0%X0 %L2,%1"
129 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
130 	: "r" (pte) : "memory");
131 
132 #elif defined(CONFIG_PPC_STD_MMU_32)
133 	/* Third case is 32-bit hash table in UP mode, we need to preserve
134 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
135 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
136 	 * and see we need to keep track that this PTE needs invalidating
137 	 */
138 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
139 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
140 
141 #else
142 	/* Anything else just stores the PTE normally. That covers all 64-bit
143 	 * cases, and 32-bit non-hash with 32-bit PTEs.
144 	 */
145 	*ptep = pte;
146 #endif
147 }
148 
149 
150 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
151 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
152 				 pte_t *ptep, pte_t entry, int dirty);
153 
154 /*
155  * Macro to mark a page protection value as "uncacheable".
156  */
157 
158 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
159 			 _PAGE_WRITETHRU)
160 
161 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
162 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
163 
164 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
165 				            _PAGE_NO_CACHE))
166 
167 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
168 				            _PAGE_COHERENT))
169 
170 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
171 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
172 
173 #define pgprot_cached_noncoherent(prot) \
174 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
175 
176 #define pgprot_writecombine pgprot_noncached_wc
177 
178 struct file;
179 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
180 				     unsigned long size, pgprot_t vma_prot);
181 #define __HAVE_PHYS_MEM_ACCESS_PROT
182 
183 /*
184  * ZERO_PAGE is a global shared page that is always zero: used
185  * for zero-mapped memory areas etc..
186  */
187 extern unsigned long empty_zero_page[];
188 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
189 
190 extern pgd_t swapper_pg_dir[];
191 
192 extern void paging_init(void);
193 
194 /*
195  * kern_addr_valid is intended to indicate whether an address is a valid
196  * kernel address.  Most 32-bit archs define it as always true (like this)
197  * but most 64-bit archs actually perform a test.  What should we do here?
198  */
199 #define kern_addr_valid(addr)	(1)
200 
201 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
202 		remap_pfn_range(vma, vaddr, pfn, size, prot)
203 
204 #include <asm-generic/pgtable.h>
205 
206 
207 /*
208  * This gets called at the end of handling a page fault, when
209  * the kernel has put a new PTE into the page table for the process.
210  * We use it to ensure coherency between the i-cache and d-cache
211  * for the page which has just been mapped in.
212  * On machines which use an MMU hash table, we use this to put a
213  * corresponding HPTE into the hash table ahead of time, instead of
214  * waiting for the inevitable extra hash-table miss exception.
215  */
216 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
217 
218 extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr,
219 		      unsigned long end, int write, struct page **pages, int *nr);
220 
221 extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
222 		       unsigned long end, int write, struct page **pages, int *nr);
223 #endif /* __ASSEMBLY__ */
224 
225 #endif /* __KERNEL__ */
226 #endif /* _ASM_POWERPC_PGTABLE_H */
227