1 /*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/cell-regs.h>
38
39 #include "../platforms/cell/interrupt.h"
40 #include "cell/pr_util.h"
41
42 #define PPU_PROFILING 0
43 #define SPU_PROFILING_CYCLES 1
44 #define SPU_PROFILING_EVENTS 2
45
46 #define SPU_EVENT_NUM_START 4100
47 #define SPU_EVENT_NUM_STOP 4399
48 #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
50 #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
51
52 #define NUM_SPUS_PER_NODE 8
53 #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
54
55 #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
56 #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
57 * PPU_CYCLES event
58 */
59 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
60
61 #define NUM_THREADS 2 /* number of physical threads in
62 * physical processor
63 */
64 #define NUM_DEBUG_BUS_WORDS 4
65 #define NUM_INPUT_BUS_WORDS 2
66
67 #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
68
69 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
70 * To configure counter to send value every N cycles set counter to
71 * 2^32 - 1 - N.
72 */
73 #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
74
75 /*
76 * spu_cycle_reset is the number of cycles between samples.
77 * This variable is used for SPU profiling and should ONLY be set
78 * at the beginning of cell_reg_setup; otherwise, it's read-only.
79 */
80 static unsigned int spu_cycle_reset;
81 static unsigned int profiling_mode;
82 static int spu_evnt_phys_spu_indx;
83
84 struct pmc_cntrl_data {
85 unsigned long vcntr;
86 unsigned long evnts;
87 unsigned long masks;
88 unsigned long enabled;
89 };
90
91 /*
92 * ibm,cbe-perftools rtas parameters
93 */
94 struct pm_signal {
95 u16 cpu; /* Processor to modify */
96 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
97 short int signal_group; /* Signal Group to Enable/Disable */
98 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
99 * Bus Word(s) (bitmask)
100 */
101 u8 bit; /* Trigger/Event bit (if applicable) */
102 };
103
104 /*
105 * rtas call arguments
106 */
107 enum {
108 SUBFUNC_RESET = 1,
109 SUBFUNC_ACTIVATE = 2,
110 SUBFUNC_DEACTIVATE = 3,
111
112 PASSTHRU_IGNORE = 0,
113 PASSTHRU_ENABLE = 1,
114 PASSTHRU_DISABLE = 2,
115 };
116
117 struct pm_cntrl {
118 u16 enable;
119 u16 stop_at_max;
120 u16 trace_mode;
121 u16 freeze;
122 u16 count_mode;
123 u16 spu_addr_trace;
124 u8 trace_buf_ovflw;
125 };
126
127 static struct {
128 u32 group_control;
129 u32 debug_bus_control;
130 struct pm_cntrl pm_cntrl;
131 u32 pm07_cntrl[NR_PHYS_CTRS];
132 } pm_regs;
133
134 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
135 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
136 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
137 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
138 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
139 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
140
141 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
142 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
143 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
144
145 /*
146 * The CELL profiling code makes rtas calls to setup the debug bus to
147 * route the performance signals. Additionally, SPU profiling requires
148 * a second rtas call to setup the hardware to capture the SPU PCs.
149 * The EIO error value is returned if the token lookups or the rtas
150 * call fail. The EIO error number is the best choice of the existing
151 * error numbers. The probability of rtas related error is very low. But
152 * by returning EIO and printing additional information to dmsg the user
153 * will know that OProfile did not start and dmesg will tell them why.
154 * OProfile does not support returning errors on Stop. Not a huge issue
155 * since failure to reset the debug bus or stop the SPU PC collection is
156 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
157 * either.
158 */
159
160 /*
161 * Interpetation of hdw_thread:
162 * 0 - even virtual cpus 0, 2, 4,...
163 * 1 - odd virtual cpus 1, 3, 5, ...
164 *
165 * FIXME: this is strictly wrong, we need to clean this up in a number
166 * of places. It works for now. -arnd
167 */
168 static u32 hdw_thread;
169
170 static u32 virt_cntr_inter_mask;
171 static struct timer_list timer_virt_cntr;
172 static struct timer_list timer_spu_event_swap;
173
174 /*
175 * pm_signal needs to be global since it is initialized in
176 * cell_reg_setup at the time when the necessary information
177 * is available.
178 */
179 static struct pm_signal pm_signal[NR_PHYS_CTRS];
180 static int pm_rtas_token; /* token for debug bus setup call */
181 static int spu_rtas_token; /* token for SPU cycle profiling */
182
183 static u32 reset_value[NR_PHYS_CTRS];
184 static int num_counters;
185 static int oprofile_running;
186 static DEFINE_SPINLOCK(cntr_lock);
187
188 static u32 ctr_enabled;
189
190 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
191
192 /*
193 * Firmware interface functions
194 */
195 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)196 rtas_ibm_cbe_perftools(int subfunc, int passthru,
197 void *address, unsigned long length)
198 {
199 u64 paddr = __pa(address);
200
201 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
202 passthru, paddr >> 32, paddr & 0xffffffff, length);
203 }
204
pm_rtas_reset_signals(u32 node)205 static void pm_rtas_reset_signals(u32 node)
206 {
207 int ret;
208 struct pm_signal pm_signal_local;
209
210 /*
211 * The debug bus is being set to the passthru disable state.
212 * However, the FW still expects atleast one legal signal routing
213 * entry or it will return an error on the arguments. If we don't
214 * supply a valid entry, we must ignore all return values. Ignoring
215 * all return values means we might miss an error we should be
216 * concerned about.
217 */
218
219 /* fw expects physical cpu #. */
220 pm_signal_local.cpu = node;
221 pm_signal_local.signal_group = 21;
222 pm_signal_local.bus_word = 1;
223 pm_signal_local.sub_unit = 0;
224 pm_signal_local.bit = 0;
225
226 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
227 &pm_signal_local,
228 sizeof(struct pm_signal));
229
230 if (unlikely(ret))
231 /*
232 * Not a fatal error. For Oprofile stop, the oprofile
233 * functions do not support returning an error for
234 * failure to stop OProfile.
235 */
236 printk(KERN_WARNING "%s: rtas returned: %d\n",
237 __func__, ret);
238 }
239
pm_rtas_activate_signals(u32 node,u32 count)240 static int pm_rtas_activate_signals(u32 node, u32 count)
241 {
242 int ret;
243 int i, j;
244 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
245
246 /*
247 * There is no debug setup required for the cycles event.
248 * Note that only events in the same group can be used.
249 * Otherwise, there will be conflicts in correctly routing
250 * the signals on the debug bus. It is the responsibility
251 * of the OProfile user tool to check the events are in
252 * the same group.
253 */
254 i = 0;
255 for (j = 0; j < count; j++) {
256 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
257
258 /* fw expects physical cpu # */
259 pm_signal_local[i].cpu = node;
260 pm_signal_local[i].signal_group
261 = pm_signal[j].signal_group;
262 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
263 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
264 pm_signal_local[i].bit = pm_signal[j].bit;
265 i++;
266 }
267 }
268
269 if (i != 0) {
270 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
271 pm_signal_local,
272 i * sizeof(struct pm_signal));
273
274 if (unlikely(ret)) {
275 printk(KERN_WARNING "%s: rtas returned: %d\n",
276 __func__, ret);
277 return -EIO;
278 }
279 }
280
281 return 0;
282 }
283
284 /*
285 * PM Signal functions
286 */
set_pm_event(u32 ctr,int event,u32 unit_mask)287 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
288 {
289 struct pm_signal *p;
290 u32 signal_bit;
291 u32 bus_word, bus_type, count_cycles, polarity, input_control;
292 int j, i;
293
294 if (event == PPU_CYCLES_EVENT_NUM) {
295 /* Special Event: Count all cpu cycles */
296 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
297 p = &(pm_signal[ctr]);
298 p->signal_group = PPU_CYCLES_GRP_NUM;
299 p->bus_word = 1;
300 p->sub_unit = 0;
301 p->bit = 0;
302 goto out;
303 } else {
304 pm_regs.pm07_cntrl[ctr] = 0;
305 }
306
307 bus_word = GET_BUS_WORD(unit_mask);
308 bus_type = GET_BUS_TYPE(unit_mask);
309 count_cycles = GET_COUNT_CYCLES(unit_mask);
310 polarity = GET_POLARITY(unit_mask);
311 input_control = GET_INPUT_CONTROL(unit_mask);
312 signal_bit = (event % 100);
313
314 p = &(pm_signal[ctr]);
315
316 p->signal_group = event / 100;
317 p->bus_word = bus_word;
318 p->sub_unit = GET_SUB_UNIT(unit_mask);
319
320 pm_regs.pm07_cntrl[ctr] = 0;
321 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
322 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
323 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
324
325 /*
326 * Some of the islands signal selection is based on 64 bit words.
327 * The debug bus words are 32 bits, the input words to the performance
328 * counters are defined as 32 bits. Need to convert the 64 bit island
329 * specification to the appropriate 32 input bit and bus word for the
330 * performance counter event selection. See the CELL Performance
331 * monitoring signals manual and the Perf cntr hardware descriptions
332 * for the details.
333 */
334 if (input_control == 0) {
335 if (signal_bit > 31) {
336 signal_bit -= 32;
337 if (bus_word == 0x3)
338 bus_word = 0x2;
339 else if (bus_word == 0xc)
340 bus_word = 0x8;
341 }
342
343 if ((bus_type == 0) && p->signal_group >= 60)
344 bus_type = 2;
345 if ((bus_type == 1) && p->signal_group >= 50)
346 bus_type = 0;
347
348 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
349 } else {
350 pm_regs.pm07_cntrl[ctr] = 0;
351 p->bit = signal_bit;
352 }
353
354 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
355 if (bus_word & (1 << i)) {
356 pm_regs.debug_bus_control |=
357 (bus_type << (30 - (2 * i)));
358
359 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
360 if (input_bus[j] == 0xff) {
361 input_bus[j] = i;
362 pm_regs.group_control |=
363 (i << (30 - (2 * j)));
364
365 break;
366 }
367 }
368 }
369 }
370 out:
371 ;
372 }
373
write_pm_cntrl(int cpu)374 static void write_pm_cntrl(int cpu)
375 {
376 /*
377 * Oprofile will use 32 bit counters, set bits 7:10 to 0
378 * pmregs.pm_cntrl is a global
379 */
380
381 u32 val = 0;
382 if (pm_regs.pm_cntrl.enable == 1)
383 val |= CBE_PM_ENABLE_PERF_MON;
384
385 if (pm_regs.pm_cntrl.stop_at_max == 1)
386 val |= CBE_PM_STOP_AT_MAX;
387
388 if (pm_regs.pm_cntrl.trace_mode != 0)
389 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
390
391 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
392 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
393 if (pm_regs.pm_cntrl.freeze == 1)
394 val |= CBE_PM_FREEZE_ALL_CTRS;
395
396 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
397
398 /*
399 * Routine set_count_mode must be called previously to set
400 * the count mode based on the user selection of user and kernel.
401 */
402 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
403 cbe_write_pm(cpu, pm_control, val);
404 }
405
406 static inline void
set_count_mode(u32 kernel,u32 user)407 set_count_mode(u32 kernel, u32 user)
408 {
409 /*
410 * The user must specify user and kernel if they want them. If
411 * neither is specified, OProfile will count in hypervisor mode.
412 * pm_regs.pm_cntrl is a global
413 */
414 if (kernel) {
415 if (user)
416 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
417 else
418 pm_regs.pm_cntrl.count_mode =
419 CBE_COUNT_SUPERVISOR_MODE;
420 } else {
421 if (user)
422 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
423 else
424 pm_regs.pm_cntrl.count_mode =
425 CBE_COUNT_HYPERVISOR_MODE;
426 }
427 }
428
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)429 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
430 {
431
432 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
433 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
434 }
435
436 /*
437 * Oprofile is expected to collect data on all CPUs simultaneously.
438 * However, there is one set of performance counters per node. There are
439 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
440 * multiplex in time the performance counter collection on the two virtual
441 * CPUs. The multiplexing of the performance counters is done by this
442 * virtual counter routine.
443 *
444 * The pmc_values used below is defined as 'per-cpu' but its use is
445 * more akin to 'per-node'. We need to store two sets of counter
446 * values per node -- one for the previous run and one for the next.
447 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
448 * pair of per-cpu arrays is used for storing the previous and next
449 * pmc values for a given node.
450 * NOTE: We use the per-cpu variable to improve cache performance.
451 *
452 * This routine will alternate loading the virtual counters for
453 * virtual CPUs
454 */
cell_virtual_cntr(unsigned long data)455 static void cell_virtual_cntr(unsigned long data)
456 {
457 int i, prev_hdw_thread, next_hdw_thread;
458 u32 cpu;
459 unsigned long flags;
460
461 /*
462 * Make sure that the interrupt_hander and the virt counter are
463 * not both playing with the counters on the same node.
464 */
465
466 spin_lock_irqsave(&cntr_lock, flags);
467
468 prev_hdw_thread = hdw_thread;
469
470 /* switch the cpu handling the interrupts */
471 hdw_thread = 1 ^ hdw_thread;
472 next_hdw_thread = hdw_thread;
473
474 pm_regs.group_control = 0;
475 pm_regs.debug_bus_control = 0;
476
477 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
478 input_bus[i] = 0xff;
479
480 /*
481 * There are some per thread events. Must do the
482 * set event, for the thread that is being started
483 */
484 for (i = 0; i < num_counters; i++)
485 set_pm_event(i,
486 pmc_cntrl[next_hdw_thread][i].evnts,
487 pmc_cntrl[next_hdw_thread][i].masks);
488
489 /*
490 * The following is done only once per each node, but
491 * we need cpu #, not node #, to pass to the cbe_xxx functions.
492 */
493 for_each_online_cpu(cpu) {
494 if (cbe_get_hw_thread_id(cpu))
495 continue;
496
497 /*
498 * stop counters, save counter values, restore counts
499 * for previous thread
500 */
501 cbe_disable_pm(cpu);
502 cbe_disable_pm_interrupts(cpu);
503 for (i = 0; i < num_counters; i++) {
504 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
505 = cbe_read_ctr(cpu, i);
506
507 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
508 == 0xFFFFFFFF)
509 /* If the cntr value is 0xffffffff, we must
510 * reset that to 0xfffffff0 when the current
511 * thread is restarted. This will generate a
512 * new interrupt and make sure that we never
513 * restore the counters to the max value. If
514 * the counters were restored to the max value,
515 * they do not increment and no interrupts are
516 * generated. Hence no more samples will be
517 * collected on that cpu.
518 */
519 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
520 else
521 cbe_write_ctr(cpu, i,
522 per_cpu(pmc_values,
523 cpu +
524 next_hdw_thread)[i]);
525 }
526
527 /*
528 * Switch to the other thread. Change the interrupt
529 * and control regs to be scheduled on the CPU
530 * corresponding to the thread to execute.
531 */
532 for (i = 0; i < num_counters; i++) {
533 if (pmc_cntrl[next_hdw_thread][i].enabled) {
534 /*
535 * There are some per thread events.
536 * Must do the set event, enable_cntr
537 * for each cpu.
538 */
539 enable_ctr(cpu, i,
540 pm_regs.pm07_cntrl);
541 } else {
542 cbe_write_pm07_control(cpu, i, 0);
543 }
544 }
545
546 /* Enable interrupts on the CPU thread that is starting */
547 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
548 virt_cntr_inter_mask);
549 cbe_enable_pm(cpu);
550 }
551
552 spin_unlock_irqrestore(&cntr_lock, flags);
553
554 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
555 }
556
start_virt_cntrs(void)557 static void start_virt_cntrs(void)
558 {
559 init_timer(&timer_virt_cntr);
560 timer_virt_cntr.function = cell_virtual_cntr;
561 timer_virt_cntr.data = 0UL;
562 timer_virt_cntr.expires = jiffies + HZ / 10;
563 add_timer(&timer_virt_cntr);
564 }
565
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)566 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
567 struct op_system_config *sys, int num_ctrs)
568 {
569 spu_cycle_reset = ctr[0].count;
570
571 /*
572 * Each node will need to make the rtas call to start
573 * and stop SPU profiling. Get the token once and store it.
574 */
575 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
576
577 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
578 printk(KERN_ERR
579 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
580 __func__);
581 return -EIO;
582 }
583 return 0;
584 }
585
586 /* Unfortunately, the hardware will only support event profiling
587 * on one SPU per node at a time. Therefore, we must time slice
588 * the profiling across all SPUs in the node. Note, we do this
589 * in parallel for each node. The following routine is called
590 * periodically based on kernel timer to switch which SPU is
591 * being monitored in a round robbin fashion.
592 */
spu_evnt_swap(unsigned long data)593 static void spu_evnt_swap(unsigned long data)
594 {
595 int node;
596 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
597 unsigned long flags;
598 int cpu;
599 int ret;
600 u32 interrupt_mask;
601
602
603 /* enable interrupts on cntr 0 */
604 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
605
606 hdw_thread = 0;
607
608 /* Make sure spu event interrupt handler and spu event swap
609 * don't access the counters simultaneously.
610 */
611 spin_lock_irqsave(&cntr_lock, flags);
612
613 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
614
615 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
616 spu_evnt_phys_spu_indx = 0;
617
618 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
619 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
620 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
621
622 /* switch the SPU being profiled on each node */
623 for_each_online_cpu(cpu) {
624 if (cbe_get_hw_thread_id(cpu))
625 continue;
626
627 node = cbe_cpu_to_node(cpu);
628 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
629 + cur_spu_evnt_phys_spu_indx;
630 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
631 + spu_evnt_phys_spu_indx;
632
633 /*
634 * stop counters, save counter values, restore counts
635 * for previous physical SPU
636 */
637 cbe_disable_pm(cpu);
638 cbe_disable_pm_interrupts(cpu);
639
640 spu_pm_cnt[cur_phys_spu]
641 = cbe_read_ctr(cpu, 0);
642
643 /* restore previous count for the next spu to sample */
644 /* NOTE, hardware issue, counter will not start if the
645 * counter value is at max (0xFFFFFFFF).
646 */
647 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
648 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
649 else
650 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
651
652 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
653
654 /* setup the debug bus measure the one event and
655 * the two events to route the next SPU's PC on
656 * the debug bus
657 */
658 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
659 if (ret)
660 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
661 "SPU event swap\n", __func__);
662
663 /* clear the trace buffer, don't want to take PC for
664 * previous SPU*/
665 cbe_write_pm(cpu, trace_address, 0);
666
667 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
668
669 /* Enable interrupts on the CPU thread that is starting */
670 cbe_enable_pm_interrupts(cpu, hdw_thread,
671 interrupt_mask);
672 cbe_enable_pm(cpu);
673 }
674
675 spin_unlock_irqrestore(&cntr_lock, flags);
676
677 /* swap approximately every 0.1 seconds */
678 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
679 }
680
start_spu_event_swap(void)681 static void start_spu_event_swap(void)
682 {
683 init_timer(&timer_spu_event_swap);
684 timer_spu_event_swap.function = spu_evnt_swap;
685 timer_spu_event_swap.data = 0UL;
686 timer_spu_event_swap.expires = jiffies + HZ / 25;
687 add_timer(&timer_spu_event_swap);
688 }
689
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)690 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
691 struct op_system_config *sys, int num_ctrs)
692 {
693 int i;
694
695 /* routine is called once for all nodes */
696
697 spu_evnt_phys_spu_indx = 0;
698 /*
699 * For all events except PPU CYCLEs, each node will need to make
700 * the rtas cbe-perftools call to setup and reset the debug bus.
701 * Make the token lookup call once and store it in the global
702 * variable pm_rtas_token.
703 */
704 pm_rtas_token = rtas_token("ibm,cbe-perftools");
705
706 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
707 printk(KERN_ERR
708 "%s: rtas token ibm,cbe-perftools unknown\n",
709 __func__);
710 return -EIO;
711 }
712
713 /* setup the pm_control register settings,
714 * settings will be written per node by the
715 * cell_cpu_setup() function.
716 */
717 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
718
719 /* Use the occurrence trace mode to have SPU PC saved
720 * to the trace buffer. Occurrence data in trace buffer
721 * is not used. Bit 2 must be set to store SPU addresses.
722 */
723 pm_regs.pm_cntrl.trace_mode = 2;
724
725 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
726 event 2 & 3 */
727
728 /* setup the debug bus event array with the SPU PC routing events.
729 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
730 */
731 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
732 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
733 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
734 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
735
736 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
737 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
738 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
739 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
740
741 /* Set the user selected spu event to profile on,
742 * note, only one SPU profiling event is supported
743 */
744 num_counters = 1; /* Only support one SPU event at a time */
745 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
746
747 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
748
749 /* global, used by cell_cpu_setup */
750 ctr_enabled |= 1;
751
752 /* Initialize the count for each SPU to the reset value */
753 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
754 spu_pm_cnt[i] = reset_value[0];
755
756 return 0;
757 }
758
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)759 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
760 struct op_system_config *sys, int num_ctrs)
761 {
762 /* routine is called once for all nodes */
763 int i, j, cpu;
764
765 num_counters = num_ctrs;
766
767 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
768 printk(KERN_ERR
769 "%s: Oprofile, number of specified events " \
770 "exceeds number of physical counters\n",
771 __func__);
772 return -EIO;
773 }
774
775 set_count_mode(sys->enable_kernel, sys->enable_user);
776
777 /* Setup the thread 0 events */
778 for (i = 0; i < num_ctrs; ++i) {
779
780 pmc_cntrl[0][i].evnts = ctr[i].event;
781 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
782 pmc_cntrl[0][i].enabled = ctr[i].enabled;
783 pmc_cntrl[0][i].vcntr = i;
784
785 for_each_possible_cpu(j)
786 per_cpu(pmc_values, j)[i] = 0;
787 }
788
789 /*
790 * Setup the thread 1 events, map the thread 0 event to the
791 * equivalent thread 1 event.
792 */
793 for (i = 0; i < num_ctrs; ++i) {
794 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
795 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
796 else if (ctr[i].event == 2203)
797 pmc_cntrl[1][i].evnts = ctr[i].event;
798 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
799 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
800 else
801 pmc_cntrl[1][i].evnts = ctr[i].event;
802
803 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
804 pmc_cntrl[1][i].enabled = ctr[i].enabled;
805 pmc_cntrl[1][i].vcntr = i;
806 }
807
808 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
809 input_bus[i] = 0xff;
810
811 /*
812 * Our counters count up, and "count" refers to
813 * how much before the next interrupt, and we interrupt
814 * on overflow. So we calculate the starting value
815 * which will give us "count" until overflow.
816 * Then we set the events on the enabled counters.
817 */
818 for (i = 0; i < num_counters; ++i) {
819 /* start with virtual counter set 0 */
820 if (pmc_cntrl[0][i].enabled) {
821 /* Using 32bit counters, reset max - count */
822 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
823 set_pm_event(i,
824 pmc_cntrl[0][i].evnts,
825 pmc_cntrl[0][i].masks);
826
827 /* global, used by cell_cpu_setup */
828 ctr_enabled |= (1 << i);
829 }
830 }
831
832 /* initialize the previous counts for the virtual cntrs */
833 for_each_online_cpu(cpu)
834 for (i = 0; i < num_counters; ++i) {
835 per_cpu(pmc_values, cpu)[i] = reset_value[i];
836 }
837
838 return 0;
839 }
840
841
842 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)843 static int cell_reg_setup(struct op_counter_config *ctr,
844 struct op_system_config *sys, int num_ctrs)
845 {
846 int ret=0;
847 spu_cycle_reset = 0;
848
849 /* initialize the spu_arr_trace value, will be reset if
850 * doing spu event profiling.
851 */
852 pm_regs.group_control = 0;
853 pm_regs.debug_bus_control = 0;
854 pm_regs.pm_cntrl.stop_at_max = 1;
855 pm_regs.pm_cntrl.trace_mode = 0;
856 pm_regs.pm_cntrl.freeze = 1;
857 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
858 pm_regs.pm_cntrl.spu_addr_trace = 0;
859
860 /*
861 * For all events except PPU CYCLEs, each node will need to make
862 * the rtas cbe-perftools call to setup and reset the debug bus.
863 * Make the token lookup call once and store it in the global
864 * variable pm_rtas_token.
865 */
866 pm_rtas_token = rtas_token("ibm,cbe-perftools");
867
868 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
869 printk(KERN_ERR
870 "%s: rtas token ibm,cbe-perftools unknown\n",
871 __func__);
872 return -EIO;
873 }
874
875 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
876 profiling_mode = SPU_PROFILING_CYCLES;
877 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
878 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
879 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
880 profiling_mode = SPU_PROFILING_EVENTS;
881 spu_cycle_reset = ctr[0].count;
882
883 /* for SPU event profiling, need to setup the
884 * pm_signal array with the events to route the
885 * SPU PC before making the FW call. Note, only
886 * one SPU event for profiling can be specified
887 * at a time.
888 */
889 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
890 } else {
891 profiling_mode = PPU_PROFILING;
892 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
893 }
894
895 return ret;
896 }
897
898
899
900 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)901 static int cell_cpu_setup(struct op_counter_config *cntr)
902 {
903 u32 cpu = smp_processor_id();
904 u32 num_enabled = 0;
905 int i;
906 int ret;
907
908 /* Cycle based SPU profiling does not use the performance
909 * counters. The trace array is configured to collect
910 * the data.
911 */
912 if (profiling_mode == SPU_PROFILING_CYCLES)
913 return 0;
914
915 /* There is one performance monitor per processor chip (i.e. node),
916 * so we only need to perform this function once per node.
917 */
918 if (cbe_get_hw_thread_id(cpu))
919 return 0;
920
921 /* Stop all counters */
922 cbe_disable_pm(cpu);
923 cbe_disable_pm_interrupts(cpu);
924
925 cbe_write_pm(cpu, pm_start_stop, 0);
926 cbe_write_pm(cpu, group_control, pm_regs.group_control);
927 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
928 write_pm_cntrl(cpu);
929
930 for (i = 0; i < num_counters; ++i) {
931 if (ctr_enabled & (1 << i)) {
932 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
933 num_enabled++;
934 }
935 }
936
937 /*
938 * The pm_rtas_activate_signals will return -EIO if the FW
939 * call failed.
940 */
941 if (profiling_mode == SPU_PROFILING_EVENTS) {
942 /* For SPU event profiling also need to setup the
943 * pm interval timer
944 */
945 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
946 num_enabled+2);
947 /* store PC from debug bus to Trace buffer as often
948 * as possible (every 10 cycles)
949 */
950 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
951 return ret;
952 } else
953 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
954 num_enabled);
955 }
956
957 #define ENTRIES 303
958 #define MAXLFSR 0xFFFFFF
959
960 /* precomputed table of 24 bit LFSR values */
961 static int initial_lfsr[] = {
962 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
963 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
964 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
965 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
966 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
967 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
968 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
969 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
970 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
971 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
972 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
973 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
974 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
975 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
976 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
977 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
978 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
979 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
980 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
981 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
982 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
983 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
984 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
985 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
986 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
987 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
988 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
989 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
990 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
991 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
992 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
993 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
994 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
995 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
996 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
997 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
998 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
999 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1000 };
1001
1002 /*
1003 * The hardware uses an LFSR counting sequence to determine when to capture
1004 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1005 * where each number occurs once in the sequence but the sequence is not in
1006 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1007 * the last value in the sequence. Hence the user specified value N
1008 * corresponds to the LFSR number that is N from the end of the sequence.
1009 *
1010 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1011 * LFSR sequence is broken into four ranges. The spacing of the precomputed
1012 * values is adjusted in each range so the error between the user specifed
1013 * number (N) of events between samples and the actual number of events based
1014 * on the precomputed value will be les then about 6.2%. Note, if the user
1015 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1016 * This is to prevent the loss of samples because the trace buffer is full.
1017 *
1018 * User specified N Step between Index in
1019 * precomputed values precomputed
1020 * table
1021 * 0 to 2^16-1 ---- 0
1022 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1023 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1024 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1025 *
1026 *
1027 * For example, the LFSR values in the second range are computed for 2^16,
1028 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1029 * 1, 2,..., 127, 128.
1030 *
1031 * The 24 bit LFSR value for the nth number in the sequence can be
1032 * calculated using the following code:
1033 *
1034 * #define size 24
1035 * int calculate_lfsr(int n)
1036 * {
1037 * int i;
1038 * unsigned int newlfsr0;
1039 * unsigned int lfsr = 0xFFFFFF;
1040 * unsigned int howmany = n;
1041 *
1042 * for (i = 2; i < howmany + 2; i++) {
1043 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1044 * ((lfsr >> (size - 1 - 1)) & 1) ^
1045 * (((lfsr >> (size - 1 - 6)) & 1) ^
1046 * ((lfsr >> (size - 1 - 23)) & 1)));
1047 *
1048 * lfsr >>= 1;
1049 * lfsr = lfsr | (newlfsr0 << (size - 1));
1050 * }
1051 * return lfsr;
1052 * }
1053 */
1054
1055 #define V2_16 (0x1 << 16)
1056 #define V2_19 (0x1 << 19)
1057 #define V2_22 (0x1 << 22)
1058
calculate_lfsr(int n)1059 static int calculate_lfsr(int n)
1060 {
1061 /*
1062 * The ranges and steps are in powers of 2 so the calculations
1063 * can be done using shifts rather then divide.
1064 */
1065 int index;
1066
1067 if ((n >> 16) == 0)
1068 index = 0;
1069 else if (((n - V2_16) >> 19) == 0)
1070 index = ((n - V2_16) >> 12) + 1;
1071 else if (((n - V2_16 - V2_19) >> 22) == 0)
1072 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1073 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1074 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1075 else
1076 index = ENTRIES-1;
1077
1078 /* make sure index is valid */
1079 if ((index >= ENTRIES) || (index < 0))
1080 index = ENTRIES-1;
1081
1082 return initial_lfsr[index];
1083 }
1084
pm_rtas_activate_spu_profiling(u32 node)1085 static int pm_rtas_activate_spu_profiling(u32 node)
1086 {
1087 int ret, i;
1088 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1089
1090 /*
1091 * Set up the rtas call to configure the debug bus to
1092 * route the SPU PCs. Setup the pm_signal for each SPU
1093 */
1094 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1095 pm_signal_local[i].cpu = node;
1096 pm_signal_local[i].signal_group = 41;
1097 /* spu i on word (i/2) */
1098 pm_signal_local[i].bus_word = 1 << i / 2;
1099 /* spu i */
1100 pm_signal_local[i].sub_unit = i;
1101 pm_signal_local[i].bit = 63;
1102 }
1103
1104 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1105 PASSTHRU_ENABLE, pm_signal_local,
1106 (ARRAY_SIZE(pm_signal_local)
1107 * sizeof(struct pm_signal)));
1108
1109 if (unlikely(ret)) {
1110 printk(KERN_WARNING "%s: rtas returned: %d\n",
1111 __func__, ret);
1112 return -EIO;
1113 }
1114
1115 return 0;
1116 }
1117
1118 #ifdef CONFIG_CPU_FREQ
1119 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1120 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1121 {
1122 int ret = 0;
1123 struct cpufreq_freqs *frq = data;
1124 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1125 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1126 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1127 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1128 return ret;
1129 }
1130
1131 static struct notifier_block cpu_freq_notifier_block = {
1132 .notifier_call = oprof_cpufreq_notify
1133 };
1134 #endif
1135
1136 /*
1137 * Note the generic OProfile stop calls do not support returning
1138 * an error on stop. Hence, will not return an error if the FW
1139 * calls fail on stop. Failure to reset the debug bus is not an issue.
1140 * Failure to disable the SPU profiling is not an issue. The FW calls
1141 * to enable the performance counters and debug bus will work even if
1142 * the hardware was not cleanly reset.
1143 */
cell_global_stop_spu_cycles(void)1144 static void cell_global_stop_spu_cycles(void)
1145 {
1146 int subfunc, rtn_value;
1147 unsigned int lfsr_value;
1148 int cpu;
1149
1150 oprofile_running = 0;
1151 smp_wmb();
1152
1153 #ifdef CONFIG_CPU_FREQ
1154 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1155 CPUFREQ_TRANSITION_NOTIFIER);
1156 #endif
1157
1158 for_each_online_cpu(cpu) {
1159 if (cbe_get_hw_thread_id(cpu))
1160 continue;
1161
1162 subfunc = 3; /*
1163 * 2 - activate SPU tracing,
1164 * 3 - deactivate
1165 */
1166 lfsr_value = 0x8f100000;
1167
1168 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1169 subfunc, cbe_cpu_to_node(cpu),
1170 lfsr_value);
1171
1172 if (unlikely(rtn_value != 0)) {
1173 printk(KERN_ERR
1174 "%s: rtas call ibm,cbe-spu-perftools " \
1175 "failed, return = %d\n",
1176 __func__, rtn_value);
1177 }
1178
1179 /* Deactivate the signals */
1180 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1181 }
1182
1183 stop_spu_profiling_cycles();
1184 }
1185
cell_global_stop_spu_events(void)1186 static void cell_global_stop_spu_events(void)
1187 {
1188 int cpu;
1189 oprofile_running = 0;
1190
1191 stop_spu_profiling_events();
1192 smp_wmb();
1193
1194 for_each_online_cpu(cpu) {
1195 if (cbe_get_hw_thread_id(cpu))
1196 continue;
1197
1198 cbe_sync_irq(cbe_cpu_to_node(cpu));
1199 /* Stop the counters */
1200 cbe_disable_pm(cpu);
1201 cbe_write_pm07_control(cpu, 0, 0);
1202
1203 /* Deactivate the signals */
1204 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1205
1206 /* Deactivate interrupts */
1207 cbe_disable_pm_interrupts(cpu);
1208 }
1209 del_timer_sync(&timer_spu_event_swap);
1210 }
1211
cell_global_stop_ppu(void)1212 static void cell_global_stop_ppu(void)
1213 {
1214 int cpu;
1215
1216 /*
1217 * This routine will be called once for the system.
1218 * There is one performance monitor per node, so we
1219 * only need to perform this function once per node.
1220 */
1221 del_timer_sync(&timer_virt_cntr);
1222 oprofile_running = 0;
1223 smp_wmb();
1224
1225 for_each_online_cpu(cpu) {
1226 if (cbe_get_hw_thread_id(cpu))
1227 continue;
1228
1229 cbe_sync_irq(cbe_cpu_to_node(cpu));
1230 /* Stop the counters */
1231 cbe_disable_pm(cpu);
1232
1233 /* Deactivate the signals */
1234 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1235
1236 /* Deactivate interrupts */
1237 cbe_disable_pm_interrupts(cpu);
1238 }
1239 }
1240
cell_global_stop(void)1241 static void cell_global_stop(void)
1242 {
1243 if (profiling_mode == PPU_PROFILING)
1244 cell_global_stop_ppu();
1245 else if (profiling_mode == SPU_PROFILING_EVENTS)
1246 cell_global_stop_spu_events();
1247 else
1248 cell_global_stop_spu_cycles();
1249 }
1250
cell_global_start_spu_cycles(struct op_counter_config * ctr)1251 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1252 {
1253 int subfunc;
1254 unsigned int lfsr_value;
1255 int cpu;
1256 int ret;
1257 int rtas_error;
1258 unsigned int cpu_khzfreq = 0;
1259
1260 /* The SPU profiling uses time-based profiling based on
1261 * cpu frequency, so if configured with the CPU_FREQ
1262 * option, we should detect frequency changes and react
1263 * accordingly.
1264 */
1265 #ifdef CONFIG_CPU_FREQ
1266 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1267 CPUFREQ_TRANSITION_NOTIFIER);
1268 if (ret < 0)
1269 /* this is not a fatal error */
1270 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1271 ret);
1272
1273 else
1274 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1275 #endif
1276
1277 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1278
1279 for_each_online_cpu(cpu) {
1280 if (cbe_get_hw_thread_id(cpu))
1281 continue;
1282
1283 /*
1284 * Setup SPU cycle-based profiling.
1285 * Set perf_mon_control bit 0 to a zero before
1286 * enabling spu collection hardware.
1287 */
1288 cbe_write_pm(cpu, pm_control, 0);
1289
1290 if (spu_cycle_reset > MAX_SPU_COUNT)
1291 /* use largest possible value */
1292 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1293 else
1294 lfsr_value = calculate_lfsr(spu_cycle_reset);
1295
1296 /* must use a non zero value. Zero disables data collection. */
1297 if (lfsr_value == 0)
1298 lfsr_value = calculate_lfsr(1);
1299
1300 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1301 * register location
1302 */
1303
1304 /* debug bus setup */
1305 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1306
1307 if (unlikely(ret)) {
1308 rtas_error = ret;
1309 goto out;
1310 }
1311
1312
1313 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1314
1315 /* start profiling */
1316 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1317 cbe_cpu_to_node(cpu), lfsr_value);
1318
1319 if (unlikely(ret != 0)) {
1320 printk(KERN_ERR
1321 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1322 "return = %d\n", __func__, ret);
1323 rtas_error = -EIO;
1324 goto out;
1325 }
1326 }
1327
1328 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1329 if (rtas_error)
1330 goto out_stop;
1331
1332 oprofile_running = 1;
1333 return 0;
1334
1335 out_stop:
1336 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
1337 out:
1338 return rtas_error;
1339 }
1340
cell_global_start_spu_events(struct op_counter_config * ctr)1341 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1342 {
1343 int cpu;
1344 u32 interrupt_mask = 0;
1345 int rtn = 0;
1346
1347 hdw_thread = 0;
1348
1349 /* spu event profiling, uses the performance counters to generate
1350 * an interrupt. The hardware is setup to store the SPU program
1351 * counter into the trace array. The occurrence mode is used to
1352 * enable storing data to the trace buffer. The bits are set
1353 * to send/store the SPU address in the trace buffer. The debug
1354 * bus must be setup to route the SPU program counter onto the
1355 * debug bus. The occurrence data in the trace buffer is not used.
1356 */
1357
1358 /* This routine gets called once for the system.
1359 * There is one performance monitor per node, so we
1360 * only need to perform this function once per node.
1361 */
1362
1363 for_each_online_cpu(cpu) {
1364 if (cbe_get_hw_thread_id(cpu))
1365 continue;
1366
1367 /*
1368 * Setup SPU event-based profiling.
1369 * Set perf_mon_control bit 0 to a zero before
1370 * enabling spu collection hardware.
1371 *
1372 * Only support one SPU event on one SPU per node.
1373 */
1374 if (ctr_enabled & 1) {
1375 cbe_write_ctr(cpu, 0, reset_value[0]);
1376 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1377 interrupt_mask |=
1378 CBE_PM_CTR_OVERFLOW_INTR(0);
1379 } else {
1380 /* Disable counter */
1381 cbe_write_pm07_control(cpu, 0, 0);
1382 }
1383
1384 cbe_get_and_clear_pm_interrupts(cpu);
1385 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1386 cbe_enable_pm(cpu);
1387
1388 /* clear the trace buffer */
1389 cbe_write_pm(cpu, trace_address, 0);
1390 }
1391
1392 /* Start the timer to time slice collecting the event profile
1393 * on each of the SPUs. Note, can collect profile on one SPU
1394 * per node at a time.
1395 */
1396 start_spu_event_swap();
1397 start_spu_profiling_events();
1398 oprofile_running = 1;
1399 smp_wmb();
1400
1401 return rtn;
1402 }
1403
cell_global_start_ppu(struct op_counter_config * ctr)1404 static int cell_global_start_ppu(struct op_counter_config *ctr)
1405 {
1406 u32 cpu, i;
1407 u32 interrupt_mask = 0;
1408
1409 /* This routine gets called once for the system.
1410 * There is one performance monitor per node, so we
1411 * only need to perform this function once per node.
1412 */
1413 for_each_online_cpu(cpu) {
1414 if (cbe_get_hw_thread_id(cpu))
1415 continue;
1416
1417 interrupt_mask = 0;
1418
1419 for (i = 0; i < num_counters; ++i) {
1420 if (ctr_enabled & (1 << i)) {
1421 cbe_write_ctr(cpu, i, reset_value[i]);
1422 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1423 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1424 } else {
1425 /* Disable counter */
1426 cbe_write_pm07_control(cpu, i, 0);
1427 }
1428 }
1429
1430 cbe_get_and_clear_pm_interrupts(cpu);
1431 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1432 cbe_enable_pm(cpu);
1433 }
1434
1435 virt_cntr_inter_mask = interrupt_mask;
1436 oprofile_running = 1;
1437 smp_wmb();
1438
1439 /*
1440 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1441 * executed which manipulates the PMU. We start the "virtual counter"
1442 * here so that we do not need to synchronize access to the PMU in
1443 * the above for-loop.
1444 */
1445 start_virt_cntrs();
1446
1447 return 0;
1448 }
1449
cell_global_start(struct op_counter_config * ctr)1450 static int cell_global_start(struct op_counter_config *ctr)
1451 {
1452 if (profiling_mode == SPU_PROFILING_CYCLES)
1453 return cell_global_start_spu_cycles(ctr);
1454 else if (profiling_mode == SPU_PROFILING_EVENTS)
1455 return cell_global_start_spu_events(ctr);
1456 else
1457 return cell_global_start_ppu(ctr);
1458 }
1459
1460
1461 /* The SPU interrupt handler
1462 *
1463 * SPU event profiling works as follows:
1464 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1465 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1466 * pm_signal[2] contain the necessary events to route the SPU program
1467 * counter for the selected SPU onto the debug bus using words 2 and 3.
1468 * The pm_interval register is setup to write the SPU PC value into the
1469 * trace buffer at the maximum rate possible. The trace buffer is configured
1470 * to store the PCs, wrapping when it is full. The performance counter is
1471 * initialized to the max hardware count minus the number of events, N, between
1472 * samples. Once the N events have occurred, a HW counter overflow occurs
1473 * causing the generation of a HW counter interrupt which also stops the
1474 * writing of the SPU PC values to the trace buffer. Hence the last PC
1475 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1476 * we have to read from the beginning of the trace buffer to get to the
1477 * last value written. We just hope the PPU has nothing better to do then
1478 * service this interrupt. The PC for the specific SPU being profiled is
1479 * extracted from the trace buffer processed and stored. The trace buffer
1480 * is cleared, interrupts are cleared, the counter is reset to max - N.
1481 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1482 * to switch to the next physical SPU in the node to profile in round robbin
1483 * order. This way data is collected for all SPUs on the node. It does mean
1484 * that we need to use a relatively small value of N to ensure enough samples
1485 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1486 * It may also be necessary to use a longer sample collection period.
1487 */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1488 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1489 struct op_counter_config *ctr)
1490 {
1491 u32 cpu, cpu_tmp;
1492 u64 trace_entry;
1493 u32 interrupt_mask;
1494 u64 trace_buffer[2];
1495 u64 last_trace_buffer;
1496 u32 sample;
1497 u32 trace_addr;
1498 unsigned long sample_array_lock_flags;
1499 int spu_num;
1500 unsigned long flags;
1501
1502 /* Make sure spu event interrupt handler and spu event swap
1503 * don't access the counters simultaneously.
1504 */
1505 cpu = smp_processor_id();
1506 spin_lock_irqsave(&cntr_lock, flags);
1507
1508 cpu_tmp = cpu;
1509 cbe_disable_pm(cpu);
1510
1511 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1512
1513 sample = 0xABCDEF;
1514 trace_entry = 0xfedcba;
1515 last_trace_buffer = 0xdeadbeaf;
1516
1517 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1518 /* disable writes to trace buff */
1519 cbe_write_pm(cpu, pm_interval, 0);
1520
1521 /* only have one perf cntr being used, cntr 0 */
1522 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1523 && ctr[0].enabled)
1524 /* The SPU PC values will be read
1525 * from the trace buffer, reset counter
1526 */
1527
1528 cbe_write_ctr(cpu, 0, reset_value[0]);
1529
1530 trace_addr = cbe_read_pm(cpu, trace_address);
1531
1532 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1533 /* There is data in the trace buffer to process
1534 * Read the buffer until you get to the last
1535 * entry. This is the value we want.
1536 */
1537
1538 cbe_read_trace_buffer(cpu, trace_buffer);
1539 trace_addr = cbe_read_pm(cpu, trace_address);
1540 }
1541
1542 /* SPU Address 16 bit count format for 128 bit
1543 * HW trace buffer is used for the SPU PC storage
1544 * HDR bits 0:15
1545 * SPU Addr 0 bits 16:31
1546 * SPU Addr 1 bits 32:47
1547 * unused bits 48:127
1548 *
1549 * HDR: bit4 = 1 SPU Address 0 valid
1550 * HDR: bit5 = 1 SPU Address 1 valid
1551 * - unfortunately, the valid bits don't seem to work
1552 *
1553 * Note trace_buffer[0] holds bits 0:63 of the HW
1554 * trace buffer, trace_buffer[1] holds bits 64:127
1555 */
1556
1557 trace_entry = trace_buffer[0]
1558 & 0x00000000FFFF0000;
1559
1560 /* only top 16 of the 18 bit SPU PC address
1561 * is stored in trace buffer, hence shift right
1562 * by 16 -2 bits */
1563 sample = trace_entry >> 14;
1564 last_trace_buffer = trace_buffer[0];
1565
1566 spu_num = spu_evnt_phys_spu_indx
1567 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1568
1569 /* make sure only one process at a time is calling
1570 * spu_sync_buffer()
1571 */
1572 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1573 sample_array_lock_flags);
1574 spu_sync_buffer(spu_num, &sample, 1);
1575 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1576 sample_array_lock_flags);
1577
1578 smp_wmb(); /* insure spu event buffer updates are written
1579 * don't want events intermingled... */
1580
1581 /* The counters were frozen by the interrupt.
1582 * Reenable the interrupt and restart the counters.
1583 */
1584 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585 cbe_enable_pm_interrupts(cpu, hdw_thread,
1586 virt_cntr_inter_mask);
1587
1588 /* clear the trace buffer, re-enable writes to trace buff */
1589 cbe_write_pm(cpu, trace_address, 0);
1590 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1591
1592 /* The writes to the various performance counters only writes
1593 * to a latch. The new values (interrupt setting bits, reset
1594 * counter value etc.) are not copied to the actual registers
1595 * until the performance monitor is enabled. In order to get
1596 * this to work as desired, the performance monitor needs to
1597 * be disabled while writing to the latches. This is a
1598 * HW design issue.
1599 */
1600 write_pm_cntrl(cpu);
1601 cbe_enable_pm(cpu);
1602 }
1603 spin_unlock_irqrestore(&cntr_lock, flags);
1604 }
1605
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1606 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1607 struct op_counter_config *ctr)
1608 {
1609 u32 cpu;
1610 u64 pc;
1611 int is_kernel;
1612 unsigned long flags = 0;
1613 u32 interrupt_mask;
1614 int i;
1615
1616 cpu = smp_processor_id();
1617
1618 /*
1619 * Need to make sure the interrupt handler and the virt counter
1620 * routine are not running at the same time. See the
1621 * cell_virtual_cntr() routine for additional comments.
1622 */
1623 spin_lock_irqsave(&cntr_lock, flags);
1624
1625 /*
1626 * Need to disable and reenable the performance counters
1627 * to get the desired behavior from the hardware. This
1628 * is hardware specific.
1629 */
1630
1631 cbe_disable_pm(cpu);
1632
1633 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1634
1635 /*
1636 * If the interrupt mask has been cleared, then the virt cntr
1637 * has cleared the interrupt. When the thread that generated
1638 * the interrupt is restored, the data count will be restored to
1639 * 0xffffff0 to cause the interrupt to be regenerated.
1640 */
1641
1642 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1643 pc = regs->nip;
1644 is_kernel = is_kernel_addr(pc);
1645
1646 for (i = 0; i < num_counters; ++i) {
1647 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1648 && ctr[i].enabled) {
1649 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1650 cbe_write_ctr(cpu, i, reset_value[i]);
1651 }
1652 }
1653
1654 /*
1655 * The counters were frozen by the interrupt.
1656 * Reenable the interrupt and restart the counters.
1657 * If there was a race between the interrupt handler and
1658 * the virtual counter routine. The virtual counter
1659 * routine may have cleared the interrupts. Hence must
1660 * use the virt_cntr_inter_mask to re-enable the interrupts.
1661 */
1662 cbe_enable_pm_interrupts(cpu, hdw_thread,
1663 virt_cntr_inter_mask);
1664
1665 /*
1666 * The writes to the various performance counters only writes
1667 * to a latch. The new values (interrupt setting bits, reset
1668 * counter value etc.) are not copied to the actual registers
1669 * until the performance monitor is enabled. In order to get
1670 * this to work as desired, the performance monitor needs to
1671 * be disabled while writing to the latches. This is a
1672 * HW design issue.
1673 */
1674 cbe_enable_pm(cpu);
1675 }
1676 spin_unlock_irqrestore(&cntr_lock, flags);
1677 }
1678
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1679 static void cell_handle_interrupt(struct pt_regs *regs,
1680 struct op_counter_config *ctr)
1681 {
1682 if (profiling_mode == PPU_PROFILING)
1683 cell_handle_interrupt_ppu(regs, ctr);
1684 else
1685 cell_handle_interrupt_spu(regs, ctr);
1686 }
1687
1688 /*
1689 * This function is called from the generic OProfile
1690 * driver. When profiling PPUs, we need to do the
1691 * generic sync start; otherwise, do spu_sync_start.
1692 */
cell_sync_start(void)1693 static int cell_sync_start(void)
1694 {
1695 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1696 (profiling_mode == SPU_PROFILING_EVENTS))
1697 return spu_sync_start();
1698 else
1699 return DO_GENERIC_SYNC;
1700 }
1701
cell_sync_stop(void)1702 static int cell_sync_stop(void)
1703 {
1704 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1705 (profiling_mode == SPU_PROFILING_EVENTS))
1706 return spu_sync_stop();
1707 else
1708 return 1;
1709 }
1710
1711 struct op_powerpc_model op_model_cell = {
1712 .reg_setup = cell_reg_setup,
1713 .cpu_setup = cell_cpu_setup,
1714 .global_start = cell_global_start,
1715 .global_stop = cell_global_stop,
1716 .sync_start = cell_sync_start,
1717 .sync_stop = cell_sync_stop,
1718 .handle_interrupt = cell_handle_interrupt,
1719 };
1720