• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*  KVM paravirtual clock driver. A clocksource implementation
2     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3 
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8 
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13 
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18 
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
22 #include <asm/msr.h>
23 #include <asm/apic.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 
28 #include <asm/x86_init.h>
29 #include <asm/reboot.h>
30 
31 static int kvmclock = 1;
32 static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
33 static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34 
parse_no_kvmclock(char * arg)35 static int parse_no_kvmclock(char *arg)
36 {
37 	kvmclock = 0;
38 	return 0;
39 }
40 early_param("no-kvmclock", parse_no_kvmclock);
41 
42 /* The hypervisor will put information about time periodically here */
43 static struct pvclock_vsyscall_time_info *hv_clock;
44 static struct pvclock_wall_clock wall_clock;
45 
46 /*
47  * The wallclock is the time of day when we booted. Since then, some time may
48  * have elapsed since the hypervisor wrote the data. So we try to account for
49  * that with system time
50  */
kvm_get_wallclock(void)51 static unsigned long kvm_get_wallclock(void)
52 {
53 	struct pvclock_vcpu_time_info *vcpu_time;
54 	struct timespec ts;
55 	int low, high;
56 	int cpu;
57 
58 	low = (int)__pa_symbol(&wall_clock);
59 	high = ((u64)__pa_symbol(&wall_clock) >> 32);
60 
61 	native_write_msr(msr_kvm_wall_clock, low, high);
62 
63 	preempt_disable();
64 	cpu = smp_processor_id();
65 
66 	vcpu_time = &hv_clock[cpu].pvti;
67 	pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
68 
69 	preempt_enable();
70 
71 	return ts.tv_sec;
72 }
73 
kvm_set_wallclock(unsigned long now)74 static int kvm_set_wallclock(unsigned long now)
75 {
76 	return -1;
77 }
78 
kvm_clock_read(void)79 static cycle_t kvm_clock_read(void)
80 {
81 	struct pvclock_vcpu_time_info *src;
82 	cycle_t ret;
83 	int cpu;
84 
85 	preempt_disable_notrace();
86 	cpu = smp_processor_id();
87 	src = &hv_clock[cpu].pvti;
88 	ret = pvclock_clocksource_read(src);
89 	preempt_enable_notrace();
90 	return ret;
91 }
92 
kvm_clock_get_cycles(struct clocksource * cs)93 static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
94 {
95 	return kvm_clock_read();
96 }
97 
98 /*
99  * If we don't do that, there is the possibility that the guest
100  * will calibrate under heavy load - thus, getting a lower lpj -
101  * and execute the delays themselves without load. This is wrong,
102  * because no delay loop can finish beforehand.
103  * Any heuristics is subject to fail, because ultimately, a large
104  * poll of guests can be running and trouble each other. So we preset
105  * lpj here
106  */
kvm_get_tsc_khz(void)107 static unsigned long kvm_get_tsc_khz(void)
108 {
109 	struct pvclock_vcpu_time_info *src;
110 	int cpu;
111 	unsigned long tsc_khz;
112 
113 	preempt_disable();
114 	cpu = smp_processor_id();
115 	src = &hv_clock[cpu].pvti;
116 	tsc_khz = pvclock_tsc_khz(src);
117 	preempt_enable();
118 	return tsc_khz;
119 }
120 
kvm_get_preset_lpj(void)121 static void kvm_get_preset_lpj(void)
122 {
123 	unsigned long khz;
124 	u64 lpj;
125 
126 	khz = kvm_get_tsc_khz();
127 
128 	lpj = ((u64)khz * 1000);
129 	do_div(lpj, HZ);
130 	preset_lpj = lpj;
131 }
132 
kvm_check_and_clear_guest_paused(void)133 bool kvm_check_and_clear_guest_paused(void)
134 {
135 	bool ret = false;
136 	struct pvclock_vcpu_time_info *src;
137 	int cpu = smp_processor_id();
138 
139 	if (!hv_clock)
140 		return ret;
141 
142 	src = &hv_clock[cpu].pvti;
143 	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
144 		src->flags &= ~PVCLOCK_GUEST_STOPPED;
145 		ret = true;
146 	}
147 
148 	return ret;
149 }
150 
151 static struct clocksource kvm_clock = {
152 	.name = "kvm-clock",
153 	.read = kvm_clock_get_cycles,
154 	.rating = 400,
155 	.mask = CLOCKSOURCE_MASK(64),
156 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
157 };
158 
kvm_register_clock(char * txt)159 int kvm_register_clock(char *txt)
160 {
161 	int cpu = smp_processor_id();
162 	int low, high, ret;
163 	struct pvclock_vcpu_time_info *src;
164 
165 	if (!hv_clock)
166 		return 0;
167 
168 	src = &hv_clock[cpu].pvti;
169 	low = (int)slow_virt_to_phys(src) | 1;
170 	high = ((u64)slow_virt_to_phys(src) >> 32);
171 	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
172 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
173 	       cpu, high, low, txt);
174 
175 	return ret;
176 }
177 
kvm_save_sched_clock_state(void)178 static void kvm_save_sched_clock_state(void)
179 {
180 }
181 
kvm_restore_sched_clock_state(void)182 static void kvm_restore_sched_clock_state(void)
183 {
184 	kvm_register_clock("primary cpu clock, resume");
185 }
186 
187 #ifdef CONFIG_X86_LOCAL_APIC
kvm_setup_secondary_clock(void)188 static void __cpuinit kvm_setup_secondary_clock(void)
189 {
190 	/*
191 	 * Now that the first cpu already had this clocksource initialized,
192 	 * we shouldn't fail.
193 	 */
194 	WARN_ON(kvm_register_clock("secondary cpu clock"));
195 }
196 #endif
197 
198 /*
199  * After the clock is registered, the host will keep writing to the
200  * registered memory location. If the guest happens to shutdown, this memory
201  * won't be valid. In cases like kexec, in which you install a new kernel, this
202  * means a random memory location will be kept being written. So before any
203  * kind of shutdown from our side, we unregister the clock by writting anything
204  * that does not have the 'enable' bit set in the msr
205  */
206 #ifdef CONFIG_KEXEC
kvm_crash_shutdown(struct pt_regs * regs)207 static void kvm_crash_shutdown(struct pt_regs *regs)
208 {
209 	native_write_msr(msr_kvm_system_time, 0, 0);
210 	kvm_disable_steal_time();
211 	native_machine_crash_shutdown(regs);
212 }
213 #endif
214 
kvm_shutdown(void)215 static void kvm_shutdown(void)
216 {
217 	native_write_msr(msr_kvm_system_time, 0, 0);
218 	kvm_disable_steal_time();
219 	native_machine_shutdown();
220 }
221 
kvmclock_init(void)222 void __init kvmclock_init(void)
223 {
224 	unsigned long mem;
225 	int size;
226 
227 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
228 
229 	if (!kvm_para_available())
230 		return;
231 
232 	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
233 		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
234 		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
235 	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
236 		return;
237 
238 	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
239 		msr_kvm_system_time, msr_kvm_wall_clock);
240 
241 	mem = memblock_alloc(size, PAGE_SIZE);
242 	if (!mem)
243 		return;
244 	hv_clock = __va(mem);
245 	memset(hv_clock, 0, size);
246 
247 	if (kvm_register_clock("boot clock")) {
248 		hv_clock = NULL;
249 		memblock_free(mem, size);
250 		return;
251 	}
252 	pv_time_ops.sched_clock = kvm_clock_read;
253 	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
254 	x86_platform.get_wallclock = kvm_get_wallclock;
255 	x86_platform.set_wallclock = kvm_set_wallclock;
256 #ifdef CONFIG_X86_LOCAL_APIC
257 	x86_cpuinit.early_percpu_clock_init =
258 		kvm_setup_secondary_clock;
259 #endif
260 	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
261 	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
262 	machine_ops.shutdown  = kvm_shutdown;
263 #ifdef CONFIG_KEXEC
264 	machine_ops.crash_shutdown  = kvm_crash_shutdown;
265 #endif
266 	kvm_get_preset_lpj();
267 	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
268 	pv_info.paravirt_enabled = 1;
269 	pv_info.name = "KVM";
270 
271 	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
272 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
273 }
274 
kvm_setup_vsyscall_timeinfo(void)275 int __init kvm_setup_vsyscall_timeinfo(void)
276 {
277 #ifdef CONFIG_X86_64
278 	int cpu;
279 	int ret;
280 	u8 flags;
281 	struct pvclock_vcpu_time_info *vcpu_time;
282 	unsigned int size;
283 
284 	if (!hv_clock)
285 		return 0;
286 
287 	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
288 
289 	preempt_disable();
290 	cpu = smp_processor_id();
291 
292 	vcpu_time = &hv_clock[cpu].pvti;
293 	flags = pvclock_read_flags(vcpu_time);
294 
295 	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
296 		preempt_enable();
297 		return 1;
298 	}
299 
300 	if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
301 		preempt_enable();
302 		return ret;
303 	}
304 
305 	preempt_enable();
306 
307 	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
308 #endif
309 	return 0;
310 }
311