1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
77 */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32 kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109 int nr;
110 u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114 struct user_return_notifier urn;
115 bool registered;
116 struct kvm_shared_msr_values {
117 u64 host;
118 u64 curr;
119 } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed) },
127 { "pf_guest", VCPU_STAT(pf_guest) },
128 { "tlb_flush", VCPU_STAT(tlb_flush) },
129 { "invlpg", VCPU_STAT(invlpg) },
130 { "exits", VCPU_STAT(exits) },
131 { "io_exits", VCPU_STAT(io_exits) },
132 { "mmio_exits", VCPU_STAT(mmio_exits) },
133 { "signal_exits", VCPU_STAT(signal_exits) },
134 { "irq_window", VCPU_STAT(irq_window_exits) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits) },
136 { "halt_exits", VCPU_STAT(halt_exits) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 { "hypercalls", VCPU_STAT(hypercalls) },
139 { "request_irq", VCPU_STAT(request_irq_exits) },
140 { "irq_exits", VCPU_STAT(irq_exits) },
141 { "host_state_reload", VCPU_STAT(host_state_reload) },
142 { "efer_reload", VCPU_STAT(efer_reload) },
143 { "fpu_reload", VCPU_STAT(fpu_reload) },
144 { "insn_emulation", VCPU_STAT(insn_emulation) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 { "irq_injections", VCPU_STAT(irq_injections) },
147 { "nmi_injections", VCPU_STAT(nmi_injections) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 { "mmu_flooded", VM_STAT(mmu_flooded) },
153 { "mmu_recycled", VM_STAT(mmu_recycled) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 { "mmu_unsync", VM_STAT(mmu_unsync) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 { "largepages", VM_STAT(lpages) },
158 { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167 int i;
168 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
kvm_on_user_return(struct user_return_notifier * urn)172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174 unsigned slot;
175 struct kvm_shared_msrs *locals
176 = container_of(urn, struct kvm_shared_msrs, urn);
177 struct kvm_shared_msr_values *values;
178
179 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 values = &locals->values[slot];
181 if (values->host != values->curr) {
182 wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 values->curr = values->host;
184 }
185 }
186 locals->registered = false;
187 user_return_notifier_unregister(urn);
188 }
189
shared_msr_update(unsigned slot,u32 msr)190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192 u64 value;
193 unsigned int cpu = smp_processor_id();
194 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196 /* only read, and nobody should modify it at this time,
197 * so don't need lock */
198 if (slot >= shared_msrs_global.nr) {
199 printk(KERN_ERR "kvm: invalid MSR slot!");
200 return;
201 }
202 rdmsrl_safe(msr, &value);
203 smsr->values[slot].host = value;
204 smsr->values[slot].curr = value;
205 }
206
kvm_define_shared_msr(unsigned slot,u32 msr)207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209 if (slot >= shared_msrs_global.nr)
210 shared_msrs_global.nr = slot + 1;
211 shared_msrs_global.msrs[slot] = msr;
212 /* we need ensured the shared_msr_global have been updated */
213 smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
kvm_shared_msr_cpu_online(void)217 static void kvm_shared_msr_cpu_online(void)
218 {
219 unsigned i;
220
221 for (i = 0; i < shared_msrs_global.nr; ++i)
222 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227 unsigned int cpu = smp_processor_id();
228 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230 if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 return;
232 smsr->values[slot].curr = value;
233 wrmsrl(shared_msrs_global.msrs[slot], value);
234 if (!smsr->registered) {
235 smsr->urn.on_user_return = kvm_on_user_return;
236 user_return_notifier_register(&smsr->urn);
237 smsr->registered = true;
238 }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
drop_user_return_notifiers(void * ignore)242 static void drop_user_return_notifiers(void *ignore)
243 {
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247 if (smsr->registered)
248 kvm_on_user_return(&smsr->urn);
249 }
250
kvm_get_apic_base(struct kvm_vcpu * vcpu)251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253 return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
kvm_set_apic_base(struct kvm_vcpu * vcpu,u64 data)257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259 /* TODO: reserve bits check */
260 kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
kvm_spurious_fault(void)264 asmlinkage void kvm_spurious_fault(void)
265 {
266 /* Fault while not rebooting. We want the trace. */
267 BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN 0
272 #define EXCPT_CONTRIBUTORY 1
273 #define EXCPT_PF 2
274
exception_class(int vector)275 static int exception_class(int vector)
276 {
277 switch (vector) {
278 case PF_VECTOR:
279 return EXCPT_PF;
280 case DE_VECTOR:
281 case TS_VECTOR:
282 case NP_VECTOR:
283 case SS_VECTOR:
284 case GP_VECTOR:
285 return EXCPT_CONTRIBUTORY;
286 default:
287 break;
288 }
289 return EXCPT_BENIGN;
290 }
291
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 unsigned nr, bool has_error, u32 error_code,
294 bool reinject)
295 {
296 u32 prev_nr;
297 int class1, class2;
298
299 kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301 if (!vcpu->arch.exception.pending) {
302 queue:
303 vcpu->arch.exception.pending = true;
304 vcpu->arch.exception.has_error_code = has_error;
305 vcpu->arch.exception.nr = nr;
306 vcpu->arch.exception.error_code = error_code;
307 vcpu->arch.exception.reinject = reinject;
308 return;
309 }
310
311 /* to check exception */
312 prev_nr = vcpu->arch.exception.nr;
313 if (prev_nr == DF_VECTOR) {
314 /* triple fault -> shutdown */
315 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 return;
317 }
318 class1 = exception_class(prev_nr);
319 class2 = exception_class(nr);
320 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 /* generate double fault per SDM Table 5-5 */
323 vcpu->arch.exception.pending = true;
324 vcpu->arch.exception.has_error_code = true;
325 vcpu->arch.exception.nr = DF_VECTOR;
326 vcpu->arch.exception.error_code = 0;
327 } else
328 /* replace previous exception with a new one in a hope
329 that instruction re-execution will regenerate lost
330 exception */
331 goto queue;
332 }
333
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336 kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342 kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348 if (err)
349 kvm_inject_gp(vcpu, 0);
350 else
351 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357 ++vcpu->stat.pf_guest;
358 vcpu->arch.cr2 = fault->address;
359 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 else
368 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
kvm_inject_nmi(struct kvm_vcpu * vcpu)371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373 atomic_inc(&vcpu->arch.nmi_queued);
374 kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380 kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386 kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
392 * a #GP and return false.
393 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 return true;
398 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404 * This function will be used to read from the physical memory of the currently
405 * running guest. The difference to kvm_read_guest_page is that this function
406 * can read from guest physical or from the guest's guest physical memory.
407 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 gfn_t ngfn, void *data, int offset, int len,
410 u32 access)
411 {
412 gfn_t real_gfn;
413 gpa_t ngpa;
414
415 ngpa = gfn_to_gpa(ngfn);
416 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 if (real_gfn == UNMAPPED_GVA)
418 return -EFAULT;
419
420 real_gfn = gpa_to_gfn(real_gfn);
421
422 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 void *data, int offset, int len, u32 access)
428 {
429 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 data, offset, len, access);
431 }
432
433 /*
434 * Load the pae pdptrs. Return true is they are all valid.
435 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 int i;
441 int ret;
442 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 offset * sizeof(u64), sizeof(pdpte),
446 PFERR_USER_MASK|PFERR_WRITE_MASK);
447 if (ret < 0) {
448 ret = 0;
449 goto out;
450 }
451 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 if (is_present_gpte(pdpte[i]) &&
453 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 ret = 0;
455 goto out;
456 }
457 }
458 ret = 1;
459
460 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 __set_bit(VCPU_EXREG_PDPTR,
462 (unsigned long *)&vcpu->arch.regs_avail);
463 __set_bit(VCPU_EXREG_PDPTR,
464 (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467 return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
pdptrs_changed(struct kvm_vcpu * vcpu)471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 bool changed = true;
475 int offset;
476 gfn_t gfn;
477 int r;
478
479 if (is_long_mode(vcpu) || !is_pae(vcpu))
480 return false;
481
482 if (!test_bit(VCPU_EXREG_PDPTR,
483 (unsigned long *)&vcpu->arch.regs_avail))
484 return true;
485
486 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 PFERR_USER_MASK | PFERR_WRITE_MASK);
490 if (r < 0)
491 goto out;
492 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495 return changed;
496 }
497
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500 unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 X86_CR0_CD | X86_CR0_NW;
503
504 cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507 if (cr0 & 0xffffffff00000000UL)
508 return 1;
509 #endif
510
511 cr0 &= ~CR0_RESERVED_BITS;
512
513 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 return 1;
515
516 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 return 1;
518
519 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 if ((vcpu->arch.efer & EFER_LME)) {
522 int cs_db, cs_l;
523
524 if (!is_pae(vcpu))
525 return 1;
526 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 if (cs_l)
528 return 1;
529 } else
530 #endif
531 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 kvm_read_cr3(vcpu)))
533 return 1;
534 }
535
536 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 return 1;
538
539 kvm_x86_ops->set_cr0(vcpu, cr0);
540
541 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 kvm_clear_async_pf_completion_queue(vcpu);
543 kvm_async_pf_hash_reset(vcpu);
544 }
545
546 if ((cr0 ^ old_cr0) & update_bits)
547 kvm_mmu_reset_context(vcpu);
548 return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 !vcpu->guest_xcr0_loaded) {
562 /* kvm_set_xcr() also depends on this */
563 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 vcpu->guest_xcr0_loaded = 1;
565 }
566 }
567
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570 if (vcpu->guest_xcr0_loaded) {
571 if (vcpu->arch.xcr0 != host_xcr0)
572 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 vcpu->guest_xcr0_loaded = 0;
574 }
575 }
576
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579 u64 xcr0;
580
581 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
582 if (index != XCR_XFEATURE_ENABLED_MASK)
583 return 1;
584 xcr0 = xcr;
585 if (!(xcr0 & XSTATE_FP))
586 return 1;
587 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588 return 1;
589 if (xcr0 & ~host_xcr0)
590 return 1;
591 kvm_put_guest_xcr0(vcpu);
592 vcpu->arch.xcr0 = xcr0;
593 return 0;
594 }
595
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599 __kvm_set_xcr(vcpu, index, xcr)) {
600 kvm_inject_gp(vcpu, 0);
601 return 1;
602 }
603 return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609 unsigned long old_cr4 = kvm_read_cr4(vcpu);
610 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611 X86_CR4_PAE | X86_CR4_SMEP;
612 if (cr4 & CR4_RESERVED_BITS)
613 return 1;
614
615 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616 return 1;
617
618 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619 return 1;
620
621 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
622 return 1;
623
624 if (is_long_mode(vcpu)) {
625 if (!(cr4 & X86_CR4_PAE))
626 return 1;
627 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628 && ((cr4 ^ old_cr4) & pdptr_bits)
629 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630 kvm_read_cr3(vcpu)))
631 return 1;
632
633 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634 if (!guest_cpuid_has_pcid(vcpu))
635 return 1;
636
637 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639 return 1;
640 }
641
642 if (kvm_x86_ops->set_cr4(vcpu, cr4))
643 return 1;
644
645 if (((cr4 ^ old_cr4) & pdptr_bits) ||
646 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647 kvm_mmu_reset_context(vcpu);
648
649 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650 kvm_update_cpuid(vcpu);
651
652 return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659 kvm_mmu_sync_roots(vcpu);
660 kvm_mmu_flush_tlb(vcpu);
661 return 0;
662 }
663
664 if (is_long_mode(vcpu)) {
665 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667 return 1;
668 } else
669 if (cr3 & CR3_L_MODE_RESERVED_BITS)
670 return 1;
671 } else {
672 if (is_pae(vcpu)) {
673 if (cr3 & CR3_PAE_RESERVED_BITS)
674 return 1;
675 if (is_paging(vcpu) &&
676 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677 return 1;
678 }
679 /*
680 * We don't check reserved bits in nonpae mode, because
681 * this isn't enforced, and VMware depends on this.
682 */
683 }
684
685 /*
686 * Does the new cr3 value map to physical memory? (Note, we
687 * catch an invalid cr3 even in real-mode, because it would
688 * cause trouble later on when we turn on paging anyway.)
689 *
690 * A real CPU would silently accept an invalid cr3 and would
691 * attempt to use it - with largely undefined (and often hard
692 * to debug) behavior on the guest side.
693 */
694 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695 return 1;
696 vcpu->arch.cr3 = cr3;
697 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698 vcpu->arch.mmu.new_cr3(vcpu);
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705 if (cr8 & CR8_RESERVED_BITS)
706 return 1;
707 if (irqchip_in_kernel(vcpu->kvm))
708 kvm_lapic_set_tpr(vcpu, cr8);
709 else
710 vcpu->arch.cr8 = cr8;
711 return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714
kvm_get_cr8(struct kvm_vcpu * vcpu)715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717 if (irqchip_in_kernel(vcpu->kvm))
718 return kvm_lapic_get_cr8(vcpu);
719 else
720 return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723
kvm_update_dr7(struct kvm_vcpu * vcpu)724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726 unsigned long dr7;
727
728 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729 dr7 = vcpu->arch.guest_debug_dr7;
730 else
731 dr7 = vcpu->arch.dr7;
732 kvm_x86_ops->set_dr7(vcpu, dr7);
733 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 switch (dr) {
739 case 0 ... 3:
740 vcpu->arch.db[dr] = val;
741 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742 vcpu->arch.eff_db[dr] = val;
743 break;
744 case 4:
745 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746 return 1; /* #UD */
747 /* fall through */
748 case 6:
749 if (val & 0xffffffff00000000ULL)
750 return -1; /* #GP */
751 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752 break;
753 case 5:
754 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755 return 1; /* #UD */
756 /* fall through */
757 default: /* 7 */
758 if (val & 0xffffffff00000000ULL)
759 return -1; /* #GP */
760 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761 kvm_update_dr7(vcpu);
762 break;
763 }
764
765 return 0;
766 }
767
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770 int res;
771
772 res = __kvm_set_dr(vcpu, dr, val);
773 if (res > 0)
774 kvm_queue_exception(vcpu, UD_VECTOR);
775 else if (res < 0)
776 kvm_inject_gp(vcpu, 0);
777
778 return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781
_kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784 switch (dr) {
785 case 0 ... 3:
786 *val = vcpu->arch.db[dr];
787 break;
788 case 4:
789 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790 return 1;
791 /* fall through */
792 case 6:
793 *val = vcpu->arch.dr6;
794 break;
795 case 5:
796 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797 return 1;
798 /* fall through */
799 default: /* 7 */
800 *val = vcpu->arch.dr7;
801 break;
802 }
803
804 return 0;
805 }
806
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809 if (_kvm_get_dr(vcpu, dr, val)) {
810 kvm_queue_exception(vcpu, UD_VECTOR);
811 return 1;
812 }
813 return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816
kvm_rdpmc(struct kvm_vcpu * vcpu)817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820 u64 data;
821 int err;
822
823 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824 if (err)
825 return err;
826 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828 return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831
832 /*
833 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835 *
836 * This list is modified at module load time to reflect the
837 * capabilities of the host cpu. This capabilities test skips MSRs that are
838 * kvm-specific. Those are put in the beginning of the list.
839 */
840
841 #define KVM_SAVE_MSRS_BEGIN 10
842 static u32 msrs_to_save[] = {
843 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847 MSR_KVM_PV_EOI_EN,
848 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849 MSR_STAR,
850 #ifdef CONFIG_X86_64
851 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
854 };
855
856 static unsigned num_msrs_to_save;
857
858 static const u32 emulated_msrs[] = {
859 MSR_IA32_TSC_ADJUST,
860 MSR_IA32_TSCDEADLINE,
861 MSR_IA32_MISC_ENABLE,
862 MSR_IA32_MCG_STATUS,
863 MSR_IA32_MCG_CTL,
864 };
865
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)866 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
867 {
868 if (efer & efer_reserved_bits)
869 return false;
870
871 if (efer & EFER_FFXSR) {
872 struct kvm_cpuid_entry2 *feat;
873
874 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
875 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
876 return false;
877 }
878
879 if (efer & EFER_SVME) {
880 struct kvm_cpuid_entry2 *feat;
881
882 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
883 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
884 return false;
885 }
886
887 return true;
888 }
889 EXPORT_SYMBOL_GPL(kvm_valid_efer);
890
set_efer(struct kvm_vcpu * vcpu,u64 efer)891 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
892 {
893 u64 old_efer = vcpu->arch.efer;
894
895 if (!kvm_valid_efer(vcpu, efer))
896 return 1;
897
898 if (is_paging(vcpu)
899 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
900 return 1;
901
902 efer &= ~EFER_LMA;
903 efer |= vcpu->arch.efer & EFER_LMA;
904
905 kvm_x86_ops->set_efer(vcpu, efer);
906
907 /* Update reserved bits */
908 if ((efer ^ old_efer) & EFER_NX)
909 kvm_mmu_reset_context(vcpu);
910
911 return 0;
912 }
913
kvm_enable_efer_bits(u64 mask)914 void kvm_enable_efer_bits(u64 mask)
915 {
916 efer_reserved_bits &= ~mask;
917 }
918 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
919
920
921 /*
922 * Writes msr value into into the appropriate "register".
923 * Returns 0 on success, non-0 otherwise.
924 * Assumes vcpu_load() was already called.
925 */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)926 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
927 {
928 return kvm_x86_ops->set_msr(vcpu, msr);
929 }
930
931 /*
932 * Adapt set_msr() to msr_io()'s calling convention
933 */
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)934 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
935 {
936 struct msr_data msr;
937
938 msr.data = *data;
939 msr.index = index;
940 msr.host_initiated = true;
941 return kvm_set_msr(vcpu, &msr);
942 }
943
944 #ifdef CONFIG_X86_64
945 struct pvclock_gtod_data {
946 seqcount_t seq;
947
948 struct { /* extract of a clocksource struct */
949 int vclock_mode;
950 cycle_t cycle_last;
951 cycle_t mask;
952 u32 mult;
953 u32 shift;
954 } clock;
955
956 /* open coded 'struct timespec' */
957 u64 monotonic_time_snsec;
958 time_t monotonic_time_sec;
959 };
960
961 static struct pvclock_gtod_data pvclock_gtod_data;
962
update_pvclock_gtod(struct timekeeper * tk)963 static void update_pvclock_gtod(struct timekeeper *tk)
964 {
965 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
966
967 write_seqcount_begin(&vdata->seq);
968
969 /* copy pvclock gtod data */
970 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
971 vdata->clock.cycle_last = tk->clock->cycle_last;
972 vdata->clock.mask = tk->clock->mask;
973 vdata->clock.mult = tk->mult;
974 vdata->clock.shift = tk->shift;
975
976 vdata->monotonic_time_sec = tk->xtime_sec
977 + tk->wall_to_monotonic.tv_sec;
978 vdata->monotonic_time_snsec = tk->xtime_nsec
979 + (tk->wall_to_monotonic.tv_nsec
980 << tk->shift);
981 while (vdata->monotonic_time_snsec >=
982 (((u64)NSEC_PER_SEC) << tk->shift)) {
983 vdata->monotonic_time_snsec -=
984 ((u64)NSEC_PER_SEC) << tk->shift;
985 vdata->monotonic_time_sec++;
986 }
987
988 write_seqcount_end(&vdata->seq);
989 }
990 #endif
991
992
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)993 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
994 {
995 int version;
996 int r;
997 struct pvclock_wall_clock wc;
998 struct timespec boot;
999
1000 if (!wall_clock)
1001 return;
1002
1003 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004 if (r)
1005 return;
1006
1007 if (version & 1)
1008 ++version; /* first time write, random junk */
1009
1010 ++version;
1011
1012 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013
1014 /*
1015 * The guest calculates current wall clock time by adding
1016 * system time (updated by kvm_guest_time_update below) to the
1017 * wall clock specified here. guest system time equals host
1018 * system time for us, thus we must fill in host boot time here.
1019 */
1020 getboottime(&boot);
1021
1022 if (kvm->arch.kvmclock_offset) {
1023 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024 boot = timespec_sub(boot, ts);
1025 }
1026 wc.sec = boot.tv_sec;
1027 wc.nsec = boot.tv_nsec;
1028 wc.version = version;
1029
1030 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031
1032 version++;
1033 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034 }
1035
div_frac(uint32_t dividend,uint32_t divisor)1036 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037 {
1038 uint32_t quotient, remainder;
1039
1040 /* Don't try to replace with do_div(), this one calculates
1041 * "(dividend << 32) / divisor" */
1042 __asm__ ( "divl %4"
1043 : "=a" (quotient), "=d" (remainder)
1044 : "0" (0), "1" (dividend), "r" (divisor) );
1045 return quotient;
1046 }
1047
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)1048 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049 s8 *pshift, u32 *pmultiplier)
1050 {
1051 uint64_t scaled64;
1052 int32_t shift = 0;
1053 uint64_t tps64;
1054 uint32_t tps32;
1055
1056 tps64 = base_khz * 1000LL;
1057 scaled64 = scaled_khz * 1000LL;
1058 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059 tps64 >>= 1;
1060 shift--;
1061 }
1062
1063 tps32 = (uint32_t)tps64;
1064 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066 scaled64 >>= 1;
1067 else
1068 tps32 <<= 1;
1069 shift++;
1070 }
1071
1072 *pshift = shift;
1073 *pmultiplier = div_frac(scaled64, tps32);
1074
1075 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077 }
1078
get_kernel_ns(void)1079 static inline u64 get_kernel_ns(void)
1080 {
1081 struct timespec ts;
1082
1083 WARN_ON(preemptible());
1084 ktime_get_ts(&ts);
1085 monotonic_to_bootbased(&ts);
1086 return timespec_to_ns(&ts);
1087 }
1088
1089 #ifdef CONFIG_X86_64
1090 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091 #endif
1092
1093 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094 unsigned long max_tsc_khz;
1095
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)1096 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097 {
1098 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099 vcpu->arch.virtual_tsc_shift);
1100 }
1101
adjust_tsc_khz(u32 khz,s32 ppm)1102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103 {
1104 u64 v = (u64)khz * (1000000 + ppm);
1105 do_div(v, 1000000);
1106 return v;
1107 }
1108
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1109 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110 {
1111 u32 thresh_lo, thresh_hi;
1112 int use_scaling = 0;
1113
1114 /* tsc_khz can be zero if TSC calibration fails */
1115 if (this_tsc_khz == 0)
1116 return;
1117
1118 /* Compute a scale to convert nanoseconds in TSC cycles */
1119 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120 &vcpu->arch.virtual_tsc_shift,
1121 &vcpu->arch.virtual_tsc_mult);
1122 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123
1124 /*
1125 * Compute the variation in TSC rate which is acceptable
1126 * within the range of tolerance and decide if the
1127 * rate being applied is within that bounds of the hardware
1128 * rate. If so, no scaling or compensation need be done.
1129 */
1130 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134 use_scaling = 1;
1135 }
1136 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137 }
1138
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140 {
1141 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142 vcpu->arch.virtual_tsc_mult,
1143 vcpu->arch.virtual_tsc_shift);
1144 tsc += vcpu->arch.this_tsc_write;
1145 return tsc;
1146 }
1147
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1148 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149 {
1150 #ifdef CONFIG_X86_64
1151 bool vcpus_matched;
1152 bool do_request = false;
1153 struct kvm_arch *ka = &vcpu->kvm->arch;
1154 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155
1156 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157 atomic_read(&vcpu->kvm->online_vcpus));
1158
1159 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160 if (!ka->use_master_clock)
1161 do_request = 1;
1162
1163 if (!vcpus_matched && ka->use_master_clock)
1164 do_request = 1;
1165
1166 if (do_request)
1167 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168
1169 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170 atomic_read(&vcpu->kvm->online_vcpus),
1171 ka->use_master_clock, gtod->clock.vclock_mode);
1172 #endif
1173 }
1174
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1175 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176 {
1177 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179 }
1180
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1181 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183 struct kvm *kvm = vcpu->kvm;
1184 u64 offset, ns, elapsed;
1185 unsigned long flags;
1186 s64 usdiff;
1187 bool matched;
1188 u64 data = msr->data;
1189
1190 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192 ns = get_kernel_ns();
1193 elapsed = ns - kvm->arch.last_tsc_nsec;
1194
1195 if (vcpu->arch.virtual_tsc_khz) {
1196 /* n.b - signed multiplication and division required */
1197 usdiff = data - kvm->arch.last_tsc_write;
1198 #ifdef CONFIG_X86_64
1199 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1200 #else
1201 /* do_div() only does unsigned */
1202 asm("idivl %2; xor %%edx, %%edx"
1203 : "=A"(usdiff)
1204 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1205 #endif
1206 do_div(elapsed, 1000);
1207 usdiff -= elapsed;
1208 if (usdiff < 0)
1209 usdiff = -usdiff;
1210 } else
1211 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1212
1213 /*
1214 * Special case: TSC write with a small delta (1 second) of virtual
1215 * cycle time against real time is interpreted as an attempt to
1216 * synchronize the CPU.
1217 *
1218 * For a reliable TSC, we can match TSC offsets, and for an unstable
1219 * TSC, we add elapsed time in this computation. We could let the
1220 * compensation code attempt to catch up if we fall behind, but
1221 * it's better to try to match offsets from the beginning.
1222 */
1223 if (usdiff < USEC_PER_SEC &&
1224 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1225 if (!check_tsc_unstable()) {
1226 offset = kvm->arch.cur_tsc_offset;
1227 pr_debug("kvm: matched tsc offset for %llu\n", data);
1228 } else {
1229 u64 delta = nsec_to_cycles(vcpu, elapsed);
1230 data += delta;
1231 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1232 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1233 }
1234 matched = true;
1235 } else {
1236 /*
1237 * We split periods of matched TSC writes into generations.
1238 * For each generation, we track the original measured
1239 * nanosecond time, offset, and write, so if TSCs are in
1240 * sync, we can match exact offset, and if not, we can match
1241 * exact software computation in compute_guest_tsc()
1242 *
1243 * These values are tracked in kvm->arch.cur_xxx variables.
1244 */
1245 kvm->arch.cur_tsc_generation++;
1246 kvm->arch.cur_tsc_nsec = ns;
1247 kvm->arch.cur_tsc_write = data;
1248 kvm->arch.cur_tsc_offset = offset;
1249 matched = false;
1250 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1251 kvm->arch.cur_tsc_generation, data);
1252 }
1253
1254 /*
1255 * We also track th most recent recorded KHZ, write and time to
1256 * allow the matching interval to be extended at each write.
1257 */
1258 kvm->arch.last_tsc_nsec = ns;
1259 kvm->arch.last_tsc_write = data;
1260 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1261
1262 /* Reset of TSC must disable overshoot protection below */
1263 vcpu->arch.hv_clock.tsc_timestamp = 0;
1264 vcpu->arch.last_guest_tsc = data;
1265
1266 /* Keep track of which generation this VCPU has synchronized to */
1267 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1268 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1269 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1270
1271 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1272 update_ia32_tsc_adjust_msr(vcpu, offset);
1273 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1274 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1275
1276 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1277 if (matched)
1278 kvm->arch.nr_vcpus_matched_tsc++;
1279 else
1280 kvm->arch.nr_vcpus_matched_tsc = 0;
1281
1282 kvm_track_tsc_matching(vcpu);
1283 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1284 }
1285
1286 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1287
1288 #ifdef CONFIG_X86_64
1289
read_tsc(void)1290 static cycle_t read_tsc(void)
1291 {
1292 cycle_t ret;
1293 u64 last;
1294
1295 /*
1296 * Empirically, a fence (of type that depends on the CPU)
1297 * before rdtsc is enough to ensure that rdtsc is ordered
1298 * with respect to loads. The various CPU manuals are unclear
1299 * as to whether rdtsc can be reordered with later loads,
1300 * but no one has ever seen it happen.
1301 */
1302 rdtsc_barrier();
1303 ret = (cycle_t)vget_cycles();
1304
1305 last = pvclock_gtod_data.clock.cycle_last;
1306
1307 if (likely(ret >= last))
1308 return ret;
1309
1310 /*
1311 * GCC likes to generate cmov here, but this branch is extremely
1312 * predictable (it's just a funciton of time and the likely is
1313 * very likely) and there's a data dependence, so force GCC
1314 * to generate a branch instead. I don't barrier() because
1315 * we don't actually need a barrier, and if this function
1316 * ever gets inlined it will generate worse code.
1317 */
1318 asm volatile ("");
1319 return last;
1320 }
1321
vgettsc(cycle_t * cycle_now)1322 static inline u64 vgettsc(cycle_t *cycle_now)
1323 {
1324 long v;
1325 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1326
1327 *cycle_now = read_tsc();
1328
1329 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1330 return v * gtod->clock.mult;
1331 }
1332
do_monotonic(struct timespec * ts,cycle_t * cycle_now)1333 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1334 {
1335 unsigned long seq;
1336 u64 ns;
1337 int mode;
1338 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1339
1340 ts->tv_nsec = 0;
1341 do {
1342 seq = read_seqcount_begin(>od->seq);
1343 mode = gtod->clock.vclock_mode;
1344 ts->tv_sec = gtod->monotonic_time_sec;
1345 ns = gtod->monotonic_time_snsec;
1346 ns += vgettsc(cycle_now);
1347 ns >>= gtod->clock.shift;
1348 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1349 timespec_add_ns(ts, ns);
1350
1351 return mode;
1352 }
1353
1354 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1355 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1356 {
1357 struct timespec ts;
1358
1359 /* checked again under seqlock below */
1360 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1361 return false;
1362
1363 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1364 return false;
1365
1366 monotonic_to_bootbased(&ts);
1367 *kernel_ns = timespec_to_ns(&ts);
1368
1369 return true;
1370 }
1371 #endif
1372
1373 /*
1374 *
1375 * Assuming a stable TSC across physical CPUS, and a stable TSC
1376 * across virtual CPUs, the following condition is possible.
1377 * Each numbered line represents an event visible to both
1378 * CPUs at the next numbered event.
1379 *
1380 * "timespecX" represents host monotonic time. "tscX" represents
1381 * RDTSC value.
1382 *
1383 * VCPU0 on CPU0 | VCPU1 on CPU1
1384 *
1385 * 1. read timespec0,tsc0
1386 * 2. | timespec1 = timespec0 + N
1387 * | tsc1 = tsc0 + M
1388 * 3. transition to guest | transition to guest
1389 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1390 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1391 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1392 *
1393 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1394 *
1395 * - ret0 < ret1
1396 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1397 * ...
1398 * - 0 < N - M => M < N
1399 *
1400 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1401 * always the case (the difference between two distinct xtime instances
1402 * might be smaller then the difference between corresponding TSC reads,
1403 * when updating guest vcpus pvclock areas).
1404 *
1405 * To avoid that problem, do not allow visibility of distinct
1406 * system_timestamp/tsc_timestamp values simultaneously: use a master
1407 * copy of host monotonic time values. Update that master copy
1408 * in lockstep.
1409 *
1410 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1411 *
1412 */
1413
pvclock_update_vm_gtod_copy(struct kvm * kvm)1414 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1415 {
1416 #ifdef CONFIG_X86_64
1417 struct kvm_arch *ka = &kvm->arch;
1418 int vclock_mode;
1419 bool host_tsc_clocksource, vcpus_matched;
1420
1421 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1422 atomic_read(&kvm->online_vcpus));
1423
1424 /*
1425 * If the host uses TSC clock, then passthrough TSC as stable
1426 * to the guest.
1427 */
1428 host_tsc_clocksource = kvm_get_time_and_clockread(
1429 &ka->master_kernel_ns,
1430 &ka->master_cycle_now);
1431
1432 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1433
1434 if (ka->use_master_clock)
1435 atomic_set(&kvm_guest_has_master_clock, 1);
1436
1437 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1438 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1439 vcpus_matched);
1440 #endif
1441 }
1442
kvm_guest_time_update(struct kvm_vcpu * v)1443 static int kvm_guest_time_update(struct kvm_vcpu *v)
1444 {
1445 unsigned long flags, this_tsc_khz;
1446 struct kvm_vcpu_arch *vcpu = &v->arch;
1447 struct kvm_arch *ka = &v->kvm->arch;
1448 s64 kernel_ns, max_kernel_ns;
1449 u64 tsc_timestamp, host_tsc;
1450 struct pvclock_vcpu_time_info guest_hv_clock;
1451 u8 pvclock_flags;
1452 bool use_master_clock;
1453
1454 kernel_ns = 0;
1455 host_tsc = 0;
1456
1457 /*
1458 * If the host uses TSC clock, then passthrough TSC as stable
1459 * to the guest.
1460 */
1461 spin_lock(&ka->pvclock_gtod_sync_lock);
1462 use_master_clock = ka->use_master_clock;
1463 if (use_master_clock) {
1464 host_tsc = ka->master_cycle_now;
1465 kernel_ns = ka->master_kernel_ns;
1466 }
1467 spin_unlock(&ka->pvclock_gtod_sync_lock);
1468
1469 /* Keep irq disabled to prevent changes to the clock */
1470 local_irq_save(flags);
1471 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1472 if (unlikely(this_tsc_khz == 0)) {
1473 local_irq_restore(flags);
1474 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1475 return 1;
1476 }
1477 if (!use_master_clock) {
1478 host_tsc = native_read_tsc();
1479 kernel_ns = get_kernel_ns();
1480 }
1481
1482 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1483
1484 /*
1485 * We may have to catch up the TSC to match elapsed wall clock
1486 * time for two reasons, even if kvmclock is used.
1487 * 1) CPU could have been running below the maximum TSC rate
1488 * 2) Broken TSC compensation resets the base at each VCPU
1489 * entry to avoid unknown leaps of TSC even when running
1490 * again on the same CPU. This may cause apparent elapsed
1491 * time to disappear, and the guest to stand still or run
1492 * very slowly.
1493 */
1494 if (vcpu->tsc_catchup) {
1495 u64 tsc = compute_guest_tsc(v, kernel_ns);
1496 if (tsc > tsc_timestamp) {
1497 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1498 tsc_timestamp = tsc;
1499 }
1500 }
1501
1502 local_irq_restore(flags);
1503
1504 if (!vcpu->pv_time_enabled)
1505 return 0;
1506
1507 /*
1508 * Time as measured by the TSC may go backwards when resetting the base
1509 * tsc_timestamp. The reason for this is that the TSC resolution is
1510 * higher than the resolution of the other clock scales. Thus, many
1511 * possible measurments of the TSC correspond to one measurement of any
1512 * other clock, and so a spread of values is possible. This is not a
1513 * problem for the computation of the nanosecond clock; with TSC rates
1514 * around 1GHZ, there can only be a few cycles which correspond to one
1515 * nanosecond value, and any path through this code will inevitably
1516 * take longer than that. However, with the kernel_ns value itself,
1517 * the precision may be much lower, down to HZ granularity. If the
1518 * first sampling of TSC against kernel_ns ends in the low part of the
1519 * range, and the second in the high end of the range, we can get:
1520 *
1521 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1522 *
1523 * As the sampling errors potentially range in the thousands of cycles,
1524 * it is possible such a time value has already been observed by the
1525 * guest. To protect against this, we must compute the system time as
1526 * observed by the guest and ensure the new system time is greater.
1527 */
1528 max_kernel_ns = 0;
1529 if (vcpu->hv_clock.tsc_timestamp) {
1530 max_kernel_ns = vcpu->last_guest_tsc -
1531 vcpu->hv_clock.tsc_timestamp;
1532 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1533 vcpu->hv_clock.tsc_to_system_mul,
1534 vcpu->hv_clock.tsc_shift);
1535 max_kernel_ns += vcpu->last_kernel_ns;
1536 }
1537
1538 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1539 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1540 &vcpu->hv_clock.tsc_shift,
1541 &vcpu->hv_clock.tsc_to_system_mul);
1542 vcpu->hw_tsc_khz = this_tsc_khz;
1543 }
1544
1545 /* with a master <monotonic time, tsc value> tuple,
1546 * pvclock clock reads always increase at the (scaled) rate
1547 * of guest TSC - no need to deal with sampling errors.
1548 */
1549 if (!use_master_clock) {
1550 if (max_kernel_ns > kernel_ns)
1551 kernel_ns = max_kernel_ns;
1552 }
1553 /* With all the info we got, fill in the values */
1554 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1555 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1556 vcpu->last_kernel_ns = kernel_ns;
1557 vcpu->last_guest_tsc = tsc_timestamp;
1558
1559 /*
1560 * The interface expects us to write an even number signaling that the
1561 * update is finished. Since the guest won't see the intermediate
1562 * state, we just increase by 2 at the end.
1563 */
1564 vcpu->hv_clock.version += 2;
1565
1566 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1567 &guest_hv_clock, sizeof(guest_hv_clock))))
1568 return 0;
1569
1570 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1571 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1572
1573 if (vcpu->pvclock_set_guest_stopped_request) {
1574 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1575 vcpu->pvclock_set_guest_stopped_request = false;
1576 }
1577
1578 /* If the host uses TSC clocksource, then it is stable */
1579 if (use_master_clock)
1580 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1581
1582 vcpu->hv_clock.flags = pvclock_flags;
1583
1584 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1585 &vcpu->hv_clock,
1586 sizeof(vcpu->hv_clock));
1587 return 0;
1588 }
1589
msr_mtrr_valid(unsigned msr)1590 static bool msr_mtrr_valid(unsigned msr)
1591 {
1592 switch (msr) {
1593 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1594 case MSR_MTRRfix64K_00000:
1595 case MSR_MTRRfix16K_80000:
1596 case MSR_MTRRfix16K_A0000:
1597 case MSR_MTRRfix4K_C0000:
1598 case MSR_MTRRfix4K_C8000:
1599 case MSR_MTRRfix4K_D0000:
1600 case MSR_MTRRfix4K_D8000:
1601 case MSR_MTRRfix4K_E0000:
1602 case MSR_MTRRfix4K_E8000:
1603 case MSR_MTRRfix4K_F0000:
1604 case MSR_MTRRfix4K_F8000:
1605 case MSR_MTRRdefType:
1606 case MSR_IA32_CR_PAT:
1607 return true;
1608 case 0x2f8:
1609 return true;
1610 }
1611 return false;
1612 }
1613
valid_pat_type(unsigned t)1614 static bool valid_pat_type(unsigned t)
1615 {
1616 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1617 }
1618
valid_mtrr_type(unsigned t)1619 static bool valid_mtrr_type(unsigned t)
1620 {
1621 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1622 }
1623
mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)1624 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1625 {
1626 int i;
1627
1628 if (!msr_mtrr_valid(msr))
1629 return false;
1630
1631 if (msr == MSR_IA32_CR_PAT) {
1632 for (i = 0; i < 8; i++)
1633 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1634 return false;
1635 return true;
1636 } else if (msr == MSR_MTRRdefType) {
1637 if (data & ~0xcff)
1638 return false;
1639 return valid_mtrr_type(data & 0xff);
1640 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1641 for (i = 0; i < 8 ; i++)
1642 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1643 return false;
1644 return true;
1645 }
1646
1647 /* variable MTRRs */
1648 return valid_mtrr_type(data & 0xff);
1649 }
1650
set_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 data)1651 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1654
1655 if (!mtrr_valid(vcpu, msr, data))
1656 return 1;
1657
1658 if (msr == MSR_MTRRdefType) {
1659 vcpu->arch.mtrr_state.def_type = data;
1660 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1661 } else if (msr == MSR_MTRRfix64K_00000)
1662 p[0] = data;
1663 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1664 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1665 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1666 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1667 else if (msr == MSR_IA32_CR_PAT)
1668 vcpu->arch.pat = data;
1669 else { /* Variable MTRRs */
1670 int idx, is_mtrr_mask;
1671 u64 *pt;
1672
1673 idx = (msr - 0x200) / 2;
1674 is_mtrr_mask = msr - 0x200 - 2 * idx;
1675 if (!is_mtrr_mask)
1676 pt =
1677 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1678 else
1679 pt =
1680 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1681 *pt = data;
1682 }
1683
1684 kvm_mmu_reset_context(vcpu);
1685 return 0;
1686 }
1687
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1688 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1689 {
1690 u64 mcg_cap = vcpu->arch.mcg_cap;
1691 unsigned bank_num = mcg_cap & 0xff;
1692
1693 switch (msr) {
1694 case MSR_IA32_MCG_STATUS:
1695 vcpu->arch.mcg_status = data;
1696 break;
1697 case MSR_IA32_MCG_CTL:
1698 if (!(mcg_cap & MCG_CTL_P))
1699 return 1;
1700 if (data != 0 && data != ~(u64)0)
1701 return -1;
1702 vcpu->arch.mcg_ctl = data;
1703 break;
1704 default:
1705 if (msr >= MSR_IA32_MC0_CTL &&
1706 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1707 u32 offset = msr - MSR_IA32_MC0_CTL;
1708 /* only 0 or all 1s can be written to IA32_MCi_CTL
1709 * some Linux kernels though clear bit 10 in bank 4 to
1710 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1711 * this to avoid an uncatched #GP in the guest
1712 */
1713 if ((offset & 0x3) == 0 &&
1714 data != 0 && (data | (1 << 10)) != ~(u64)0)
1715 return -1;
1716 vcpu->arch.mce_banks[offset] = data;
1717 break;
1718 }
1719 return 1;
1720 }
1721 return 0;
1722 }
1723
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)1724 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1725 {
1726 struct kvm *kvm = vcpu->kvm;
1727 int lm = is_long_mode(vcpu);
1728 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1729 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1730 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1731 : kvm->arch.xen_hvm_config.blob_size_32;
1732 u32 page_num = data & ~PAGE_MASK;
1733 u64 page_addr = data & PAGE_MASK;
1734 u8 *page;
1735 int r;
1736
1737 r = -E2BIG;
1738 if (page_num >= blob_size)
1739 goto out;
1740 r = -ENOMEM;
1741 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1742 if (IS_ERR(page)) {
1743 r = PTR_ERR(page);
1744 goto out;
1745 }
1746 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1747 goto out_free;
1748 r = 0;
1749 out_free:
1750 kfree(page);
1751 out:
1752 return r;
1753 }
1754
kvm_hv_hypercall_enabled(struct kvm * kvm)1755 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1756 {
1757 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1758 }
1759
kvm_hv_msr_partition_wide(u32 msr)1760 static bool kvm_hv_msr_partition_wide(u32 msr)
1761 {
1762 bool r = false;
1763 switch (msr) {
1764 case HV_X64_MSR_GUEST_OS_ID:
1765 case HV_X64_MSR_HYPERCALL:
1766 r = true;
1767 break;
1768 }
1769
1770 return r;
1771 }
1772
set_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data)1773 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1774 {
1775 struct kvm *kvm = vcpu->kvm;
1776
1777 switch (msr) {
1778 case HV_X64_MSR_GUEST_OS_ID:
1779 kvm->arch.hv_guest_os_id = data;
1780 /* setting guest os id to zero disables hypercall page */
1781 if (!kvm->arch.hv_guest_os_id)
1782 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1783 break;
1784 case HV_X64_MSR_HYPERCALL: {
1785 u64 gfn;
1786 unsigned long addr;
1787 u8 instructions[4];
1788
1789 /* if guest os id is not set hypercall should remain disabled */
1790 if (!kvm->arch.hv_guest_os_id)
1791 break;
1792 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1793 kvm->arch.hv_hypercall = data;
1794 break;
1795 }
1796 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1797 addr = gfn_to_hva(kvm, gfn);
1798 if (kvm_is_error_hva(addr))
1799 return 1;
1800 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1801 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1802 if (__copy_to_user((void __user *)addr, instructions, 4))
1803 return 1;
1804 kvm->arch.hv_hypercall = data;
1805 break;
1806 }
1807 default:
1808 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809 "data 0x%llx\n", msr, data);
1810 return 1;
1811 }
1812 return 0;
1813 }
1814
set_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 data)1815 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1816 {
1817 switch (msr) {
1818 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1819 unsigned long addr;
1820
1821 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1822 vcpu->arch.hv_vapic = data;
1823 break;
1824 }
1825 addr = gfn_to_hva(vcpu->kvm, data >>
1826 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1827 if (kvm_is_error_hva(addr))
1828 return 1;
1829 if (__clear_user((void __user *)addr, PAGE_SIZE))
1830 return 1;
1831 vcpu->arch.hv_vapic = data;
1832 break;
1833 }
1834 case HV_X64_MSR_EOI:
1835 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1836 case HV_X64_MSR_ICR:
1837 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1838 case HV_X64_MSR_TPR:
1839 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1840 default:
1841 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1842 "data 0x%llx\n", msr, data);
1843 return 1;
1844 }
1845
1846 return 0;
1847 }
1848
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)1849 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1850 {
1851 gpa_t gpa = data & ~0x3f;
1852
1853 /* Bits 2:5 are reserved, Should be zero */
1854 if (data & 0x3c)
1855 return 1;
1856
1857 vcpu->arch.apf.msr_val = data;
1858
1859 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1860 kvm_clear_async_pf_completion_queue(vcpu);
1861 kvm_async_pf_hash_reset(vcpu);
1862 return 0;
1863 }
1864
1865 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1866 sizeof(u32)))
1867 return 1;
1868
1869 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1870 kvm_async_pf_wakeup_all(vcpu);
1871 return 0;
1872 }
1873
kvmclock_reset(struct kvm_vcpu * vcpu)1874 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1875 {
1876 vcpu->arch.pv_time_enabled = false;
1877 }
1878
accumulate_steal_time(struct kvm_vcpu * vcpu)1879 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1880 {
1881 u64 delta;
1882
1883 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1884 return;
1885
1886 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1887 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1888 vcpu->arch.st.accum_steal = delta;
1889 }
1890
record_steal_time(struct kvm_vcpu * vcpu)1891 static void record_steal_time(struct kvm_vcpu *vcpu)
1892 {
1893 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1894 return;
1895
1896 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1897 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1898 return;
1899
1900 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1901 vcpu->arch.st.steal.version += 2;
1902 vcpu->arch.st.accum_steal = 0;
1903
1904 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1905 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1906 }
1907
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1908 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1909 {
1910 bool pr = false;
1911 u32 msr = msr_info->index;
1912 u64 data = msr_info->data;
1913
1914 switch (msr) {
1915 case MSR_AMD64_NB_CFG:
1916 case MSR_IA32_UCODE_REV:
1917 case MSR_IA32_UCODE_WRITE:
1918 case MSR_VM_HSAVE_PA:
1919 case MSR_AMD64_PATCH_LOADER:
1920 case MSR_AMD64_BU_CFG2:
1921 break;
1922
1923 case MSR_EFER:
1924 return set_efer(vcpu, data);
1925 case MSR_K7_HWCR:
1926 data &= ~(u64)0x40; /* ignore flush filter disable */
1927 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1928 data &= ~(u64)0x8; /* ignore TLB cache disable */
1929 if (data != 0) {
1930 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1931 data);
1932 return 1;
1933 }
1934 break;
1935 case MSR_FAM10H_MMIO_CONF_BASE:
1936 if (data != 0) {
1937 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1938 "0x%llx\n", data);
1939 return 1;
1940 }
1941 break;
1942 case MSR_IA32_DEBUGCTLMSR:
1943 if (!data) {
1944 /* We support the non-activated case already */
1945 break;
1946 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1947 /* Values other than LBR and BTF are vendor-specific,
1948 thus reserved and should throw a #GP */
1949 return 1;
1950 }
1951 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1952 __func__, data);
1953 break;
1954 case 0x200 ... 0x2ff:
1955 return set_msr_mtrr(vcpu, msr, data);
1956 case MSR_IA32_APICBASE:
1957 kvm_set_apic_base(vcpu, data);
1958 break;
1959 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1960 return kvm_x2apic_msr_write(vcpu, msr, data);
1961 case MSR_IA32_TSCDEADLINE:
1962 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1963 break;
1964 case MSR_IA32_TSC_ADJUST:
1965 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1966 if (!msr_info->host_initiated) {
1967 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1968 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1969 }
1970 vcpu->arch.ia32_tsc_adjust_msr = data;
1971 }
1972 break;
1973 case MSR_IA32_MISC_ENABLE:
1974 vcpu->arch.ia32_misc_enable_msr = data;
1975 break;
1976 case MSR_KVM_WALL_CLOCK_NEW:
1977 case MSR_KVM_WALL_CLOCK:
1978 vcpu->kvm->arch.wall_clock = data;
1979 kvm_write_wall_clock(vcpu->kvm, data);
1980 break;
1981 case MSR_KVM_SYSTEM_TIME_NEW:
1982 case MSR_KVM_SYSTEM_TIME: {
1983 u64 gpa_offset;
1984 kvmclock_reset(vcpu);
1985
1986 vcpu->arch.time = data;
1987 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988
1989 /* we verify if the enable bit is set... */
1990 if (!(data & 1))
1991 break;
1992
1993 gpa_offset = data & ~(PAGE_MASK | 1);
1994
1995 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1996 &vcpu->arch.pv_time, data & ~1ULL,
1997 sizeof(struct pvclock_vcpu_time_info)))
1998 vcpu->arch.pv_time_enabled = false;
1999 else
2000 vcpu->arch.pv_time_enabled = true;
2001
2002 break;
2003 }
2004 case MSR_KVM_ASYNC_PF_EN:
2005 if (kvm_pv_enable_async_pf(vcpu, data))
2006 return 1;
2007 break;
2008 case MSR_KVM_STEAL_TIME:
2009
2010 if (unlikely(!sched_info_on()))
2011 return 1;
2012
2013 if (data & KVM_STEAL_RESERVED_MASK)
2014 return 1;
2015
2016 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2017 data & KVM_STEAL_VALID_BITS,
2018 sizeof(struct kvm_steal_time)))
2019 return 1;
2020
2021 vcpu->arch.st.msr_val = data;
2022
2023 if (!(data & KVM_MSR_ENABLED))
2024 break;
2025
2026 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2027
2028 preempt_disable();
2029 accumulate_steal_time(vcpu);
2030 preempt_enable();
2031
2032 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2033
2034 break;
2035 case MSR_KVM_PV_EOI_EN:
2036 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2037 return 1;
2038 break;
2039
2040 case MSR_IA32_MCG_CTL:
2041 case MSR_IA32_MCG_STATUS:
2042 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2043 return set_msr_mce(vcpu, msr, data);
2044
2045 /* Performance counters are not protected by a CPUID bit,
2046 * so we should check all of them in the generic path for the sake of
2047 * cross vendor migration.
2048 * Writing a zero into the event select MSRs disables them,
2049 * which we perfectly emulate ;-). Any other value should be at least
2050 * reported, some guests depend on them.
2051 */
2052 case MSR_K7_EVNTSEL0:
2053 case MSR_K7_EVNTSEL1:
2054 case MSR_K7_EVNTSEL2:
2055 case MSR_K7_EVNTSEL3:
2056 if (data != 0)
2057 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2058 "0x%x data 0x%llx\n", msr, data);
2059 break;
2060 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2061 * so we ignore writes to make it happy.
2062 */
2063 case MSR_K7_PERFCTR0:
2064 case MSR_K7_PERFCTR1:
2065 case MSR_K7_PERFCTR2:
2066 case MSR_K7_PERFCTR3:
2067 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2068 "0x%x data 0x%llx\n", msr, data);
2069 break;
2070 case MSR_P6_PERFCTR0:
2071 case MSR_P6_PERFCTR1:
2072 pr = true;
2073 case MSR_P6_EVNTSEL0:
2074 case MSR_P6_EVNTSEL1:
2075 if (kvm_pmu_msr(vcpu, msr))
2076 return kvm_pmu_set_msr(vcpu, msr_info);
2077
2078 if (pr || data != 0)
2079 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2080 "0x%x data 0x%llx\n", msr, data);
2081 break;
2082 case MSR_K7_CLK_CTL:
2083 /*
2084 * Ignore all writes to this no longer documented MSR.
2085 * Writes are only relevant for old K7 processors,
2086 * all pre-dating SVM, but a recommended workaround from
2087 * AMD for these chips. It is possible to specify the
2088 * affected processor models on the command line, hence
2089 * the need to ignore the workaround.
2090 */
2091 break;
2092 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2093 if (kvm_hv_msr_partition_wide(msr)) {
2094 int r;
2095 mutex_lock(&vcpu->kvm->lock);
2096 r = set_msr_hyperv_pw(vcpu, msr, data);
2097 mutex_unlock(&vcpu->kvm->lock);
2098 return r;
2099 } else
2100 return set_msr_hyperv(vcpu, msr, data);
2101 break;
2102 case MSR_IA32_BBL_CR_CTL3:
2103 /* Drop writes to this legacy MSR -- see rdmsr
2104 * counterpart for further detail.
2105 */
2106 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2107 break;
2108 case MSR_AMD64_OSVW_ID_LENGTH:
2109 if (!guest_cpuid_has_osvw(vcpu))
2110 return 1;
2111 vcpu->arch.osvw.length = data;
2112 break;
2113 case MSR_AMD64_OSVW_STATUS:
2114 if (!guest_cpuid_has_osvw(vcpu))
2115 return 1;
2116 vcpu->arch.osvw.status = data;
2117 break;
2118 default:
2119 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2120 return xen_hvm_config(vcpu, data);
2121 if (kvm_pmu_msr(vcpu, msr))
2122 return kvm_pmu_set_msr(vcpu, msr_info);
2123 if (!ignore_msrs) {
2124 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2125 msr, data);
2126 return 1;
2127 } else {
2128 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2129 msr, data);
2130 break;
2131 }
2132 }
2133 return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2136
2137
2138 /*
2139 * Reads an msr value (of 'msr_index') into 'pdata'.
2140 * Returns 0 on success, non-0 otherwise.
2141 * Assumes vcpu_load() was already called.
2142 */
kvm_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2143 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2144 {
2145 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2146 }
2147
get_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2148 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2149 {
2150 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2151
2152 if (!msr_mtrr_valid(msr))
2153 return 1;
2154
2155 if (msr == MSR_MTRRdefType)
2156 *pdata = vcpu->arch.mtrr_state.def_type +
2157 (vcpu->arch.mtrr_state.enabled << 10);
2158 else if (msr == MSR_MTRRfix64K_00000)
2159 *pdata = p[0];
2160 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2161 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2162 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2163 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2164 else if (msr == MSR_IA32_CR_PAT)
2165 *pdata = vcpu->arch.pat;
2166 else { /* Variable MTRRs */
2167 int idx, is_mtrr_mask;
2168 u64 *pt;
2169
2170 idx = (msr - 0x200) / 2;
2171 is_mtrr_mask = msr - 0x200 - 2 * idx;
2172 if (!is_mtrr_mask)
2173 pt =
2174 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2175 else
2176 pt =
2177 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2178 *pdata = *pt;
2179 }
2180
2181 return 0;
2182 }
2183
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2184 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2185 {
2186 u64 data;
2187 u64 mcg_cap = vcpu->arch.mcg_cap;
2188 unsigned bank_num = mcg_cap & 0xff;
2189
2190 switch (msr) {
2191 case MSR_IA32_P5_MC_ADDR:
2192 case MSR_IA32_P5_MC_TYPE:
2193 data = 0;
2194 break;
2195 case MSR_IA32_MCG_CAP:
2196 data = vcpu->arch.mcg_cap;
2197 break;
2198 case MSR_IA32_MCG_CTL:
2199 if (!(mcg_cap & MCG_CTL_P))
2200 return 1;
2201 data = vcpu->arch.mcg_ctl;
2202 break;
2203 case MSR_IA32_MCG_STATUS:
2204 data = vcpu->arch.mcg_status;
2205 break;
2206 default:
2207 if (msr >= MSR_IA32_MC0_CTL &&
2208 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2209 u32 offset = msr - MSR_IA32_MC0_CTL;
2210 data = vcpu->arch.mce_banks[offset];
2211 break;
2212 }
2213 return 1;
2214 }
2215 *pdata = data;
2216 return 0;
2217 }
2218
get_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2219 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2220 {
2221 u64 data = 0;
2222 struct kvm *kvm = vcpu->kvm;
2223
2224 switch (msr) {
2225 case HV_X64_MSR_GUEST_OS_ID:
2226 data = kvm->arch.hv_guest_os_id;
2227 break;
2228 case HV_X64_MSR_HYPERCALL:
2229 data = kvm->arch.hv_hypercall;
2230 break;
2231 default:
2232 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2233 return 1;
2234 }
2235
2236 *pdata = data;
2237 return 0;
2238 }
2239
get_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2240 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2241 {
2242 u64 data = 0;
2243
2244 switch (msr) {
2245 case HV_X64_MSR_VP_INDEX: {
2246 int r;
2247 struct kvm_vcpu *v;
2248 kvm_for_each_vcpu(r, v, vcpu->kvm)
2249 if (v == vcpu)
2250 data = r;
2251 break;
2252 }
2253 case HV_X64_MSR_EOI:
2254 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2255 case HV_X64_MSR_ICR:
2256 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2257 case HV_X64_MSR_TPR:
2258 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2259 case HV_X64_MSR_APIC_ASSIST_PAGE:
2260 data = vcpu->arch.hv_vapic;
2261 break;
2262 default:
2263 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2264 return 1;
2265 }
2266 *pdata = data;
2267 return 0;
2268 }
2269
kvm_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2270 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2271 {
2272 u64 data;
2273
2274 switch (msr) {
2275 case MSR_IA32_PLATFORM_ID:
2276 case MSR_IA32_EBL_CR_POWERON:
2277 case MSR_IA32_DEBUGCTLMSR:
2278 case MSR_IA32_LASTBRANCHFROMIP:
2279 case MSR_IA32_LASTBRANCHTOIP:
2280 case MSR_IA32_LASTINTFROMIP:
2281 case MSR_IA32_LASTINTTOIP:
2282 case MSR_K8_SYSCFG:
2283 case MSR_K7_HWCR:
2284 case MSR_VM_HSAVE_PA:
2285 case MSR_K7_EVNTSEL0:
2286 case MSR_K7_PERFCTR0:
2287 case MSR_K8_INT_PENDING_MSG:
2288 case MSR_AMD64_NB_CFG:
2289 case MSR_FAM10H_MMIO_CONF_BASE:
2290 case MSR_AMD64_BU_CFG2:
2291 data = 0;
2292 break;
2293 case MSR_P6_PERFCTR0:
2294 case MSR_P6_PERFCTR1:
2295 case MSR_P6_EVNTSEL0:
2296 case MSR_P6_EVNTSEL1:
2297 if (kvm_pmu_msr(vcpu, msr))
2298 return kvm_pmu_get_msr(vcpu, msr, pdata);
2299 data = 0;
2300 break;
2301 case MSR_IA32_UCODE_REV:
2302 data = 0x100000000ULL;
2303 break;
2304 case MSR_MTRRcap:
2305 data = 0x500 | KVM_NR_VAR_MTRR;
2306 break;
2307 case 0x200 ... 0x2ff:
2308 return get_msr_mtrr(vcpu, msr, pdata);
2309 case 0xcd: /* fsb frequency */
2310 data = 3;
2311 break;
2312 /*
2313 * MSR_EBC_FREQUENCY_ID
2314 * Conservative value valid for even the basic CPU models.
2315 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2316 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2317 * and 266MHz for model 3, or 4. Set Core Clock
2318 * Frequency to System Bus Frequency Ratio to 1 (bits
2319 * 31:24) even though these are only valid for CPU
2320 * models > 2, however guests may end up dividing or
2321 * multiplying by zero otherwise.
2322 */
2323 case MSR_EBC_FREQUENCY_ID:
2324 data = 1 << 24;
2325 break;
2326 case MSR_IA32_APICBASE:
2327 data = kvm_get_apic_base(vcpu);
2328 break;
2329 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2330 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2331 break;
2332 case MSR_IA32_TSCDEADLINE:
2333 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2334 break;
2335 case MSR_IA32_TSC_ADJUST:
2336 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2337 break;
2338 case MSR_IA32_MISC_ENABLE:
2339 data = vcpu->arch.ia32_misc_enable_msr;
2340 break;
2341 case MSR_IA32_PERF_STATUS:
2342 /* TSC increment by tick */
2343 data = 1000ULL;
2344 /* CPU multiplier */
2345 data |= (((uint64_t)4ULL) << 40);
2346 break;
2347 case MSR_EFER:
2348 data = vcpu->arch.efer;
2349 break;
2350 case MSR_KVM_WALL_CLOCK:
2351 case MSR_KVM_WALL_CLOCK_NEW:
2352 data = vcpu->kvm->arch.wall_clock;
2353 break;
2354 case MSR_KVM_SYSTEM_TIME:
2355 case MSR_KVM_SYSTEM_TIME_NEW:
2356 data = vcpu->arch.time;
2357 break;
2358 case MSR_KVM_ASYNC_PF_EN:
2359 data = vcpu->arch.apf.msr_val;
2360 break;
2361 case MSR_KVM_STEAL_TIME:
2362 data = vcpu->arch.st.msr_val;
2363 break;
2364 case MSR_KVM_PV_EOI_EN:
2365 data = vcpu->arch.pv_eoi.msr_val;
2366 break;
2367 case MSR_IA32_P5_MC_ADDR:
2368 case MSR_IA32_P5_MC_TYPE:
2369 case MSR_IA32_MCG_CAP:
2370 case MSR_IA32_MCG_CTL:
2371 case MSR_IA32_MCG_STATUS:
2372 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2373 return get_msr_mce(vcpu, msr, pdata);
2374 case MSR_K7_CLK_CTL:
2375 /*
2376 * Provide expected ramp-up count for K7. All other
2377 * are set to zero, indicating minimum divisors for
2378 * every field.
2379 *
2380 * This prevents guest kernels on AMD host with CPU
2381 * type 6, model 8 and higher from exploding due to
2382 * the rdmsr failing.
2383 */
2384 data = 0x20000000;
2385 break;
2386 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2387 if (kvm_hv_msr_partition_wide(msr)) {
2388 int r;
2389 mutex_lock(&vcpu->kvm->lock);
2390 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2391 mutex_unlock(&vcpu->kvm->lock);
2392 return r;
2393 } else
2394 return get_msr_hyperv(vcpu, msr, pdata);
2395 break;
2396 case MSR_IA32_BBL_CR_CTL3:
2397 /* This legacy MSR exists but isn't fully documented in current
2398 * silicon. It is however accessed by winxp in very narrow
2399 * scenarios where it sets bit #19, itself documented as
2400 * a "reserved" bit. Best effort attempt to source coherent
2401 * read data here should the balance of the register be
2402 * interpreted by the guest:
2403 *
2404 * L2 cache control register 3: 64GB range, 256KB size,
2405 * enabled, latency 0x1, configured
2406 */
2407 data = 0xbe702111;
2408 break;
2409 case MSR_AMD64_OSVW_ID_LENGTH:
2410 if (!guest_cpuid_has_osvw(vcpu))
2411 return 1;
2412 data = vcpu->arch.osvw.length;
2413 break;
2414 case MSR_AMD64_OSVW_STATUS:
2415 if (!guest_cpuid_has_osvw(vcpu))
2416 return 1;
2417 data = vcpu->arch.osvw.status;
2418 break;
2419 default:
2420 if (kvm_pmu_msr(vcpu, msr))
2421 return kvm_pmu_get_msr(vcpu, msr, pdata);
2422 if (!ignore_msrs) {
2423 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2424 return 1;
2425 } else {
2426 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2427 data = 0;
2428 }
2429 break;
2430 }
2431 *pdata = data;
2432 return 0;
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2435
2436 /*
2437 * Read or write a bunch of msrs. All parameters are kernel addresses.
2438 *
2439 * @return number of msrs set successfully.
2440 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2441 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2442 struct kvm_msr_entry *entries,
2443 int (*do_msr)(struct kvm_vcpu *vcpu,
2444 unsigned index, u64 *data))
2445 {
2446 int i, idx;
2447
2448 idx = srcu_read_lock(&vcpu->kvm->srcu);
2449 for (i = 0; i < msrs->nmsrs; ++i)
2450 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2451 break;
2452 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2453
2454 return i;
2455 }
2456
2457 /*
2458 * Read or write a bunch of msrs. Parameters are user addresses.
2459 *
2460 * @return number of msrs set successfully.
2461 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2462 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2463 int (*do_msr)(struct kvm_vcpu *vcpu,
2464 unsigned index, u64 *data),
2465 int writeback)
2466 {
2467 struct kvm_msrs msrs;
2468 struct kvm_msr_entry *entries;
2469 int r, n;
2470 unsigned size;
2471
2472 r = -EFAULT;
2473 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2474 goto out;
2475
2476 r = -E2BIG;
2477 if (msrs.nmsrs >= MAX_IO_MSRS)
2478 goto out;
2479
2480 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2481 entries = memdup_user(user_msrs->entries, size);
2482 if (IS_ERR(entries)) {
2483 r = PTR_ERR(entries);
2484 goto out;
2485 }
2486
2487 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2488 if (r < 0)
2489 goto out_free;
2490
2491 r = -EFAULT;
2492 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2493 goto out_free;
2494
2495 r = n;
2496
2497 out_free:
2498 kfree(entries);
2499 out:
2500 return r;
2501 }
2502
kvm_dev_ioctl_check_extension(long ext)2503 int kvm_dev_ioctl_check_extension(long ext)
2504 {
2505 int r;
2506
2507 switch (ext) {
2508 case KVM_CAP_IRQCHIP:
2509 case KVM_CAP_HLT:
2510 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2511 case KVM_CAP_SET_TSS_ADDR:
2512 case KVM_CAP_EXT_CPUID:
2513 case KVM_CAP_CLOCKSOURCE:
2514 case KVM_CAP_PIT:
2515 case KVM_CAP_NOP_IO_DELAY:
2516 case KVM_CAP_MP_STATE:
2517 case KVM_CAP_SYNC_MMU:
2518 case KVM_CAP_USER_NMI:
2519 case KVM_CAP_REINJECT_CONTROL:
2520 case KVM_CAP_IRQ_INJECT_STATUS:
2521 case KVM_CAP_IRQFD:
2522 case KVM_CAP_IOEVENTFD:
2523 case KVM_CAP_PIT2:
2524 case KVM_CAP_PIT_STATE2:
2525 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2526 case KVM_CAP_XEN_HVM:
2527 case KVM_CAP_ADJUST_CLOCK:
2528 case KVM_CAP_VCPU_EVENTS:
2529 case KVM_CAP_HYPERV:
2530 case KVM_CAP_HYPERV_VAPIC:
2531 case KVM_CAP_HYPERV_SPIN:
2532 case KVM_CAP_PCI_SEGMENT:
2533 case KVM_CAP_DEBUGREGS:
2534 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2535 case KVM_CAP_XSAVE:
2536 case KVM_CAP_ASYNC_PF:
2537 case KVM_CAP_GET_TSC_KHZ:
2538 case KVM_CAP_KVMCLOCK_CTRL:
2539 case KVM_CAP_READONLY_MEM:
2540 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2541 case KVM_CAP_ASSIGN_DEV_IRQ:
2542 case KVM_CAP_PCI_2_3:
2543 #endif
2544 r = 1;
2545 break;
2546 case KVM_CAP_COALESCED_MMIO:
2547 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2548 break;
2549 case KVM_CAP_VAPIC:
2550 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2551 break;
2552 case KVM_CAP_NR_VCPUS:
2553 r = KVM_SOFT_MAX_VCPUS;
2554 break;
2555 case KVM_CAP_MAX_VCPUS:
2556 r = KVM_MAX_VCPUS;
2557 break;
2558 case KVM_CAP_NR_MEMSLOTS:
2559 r = KVM_USER_MEM_SLOTS;
2560 break;
2561 case KVM_CAP_PV_MMU: /* obsolete */
2562 r = 0;
2563 break;
2564 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2565 case KVM_CAP_IOMMU:
2566 r = iommu_present(&pci_bus_type);
2567 break;
2568 #endif
2569 case KVM_CAP_MCE:
2570 r = KVM_MAX_MCE_BANKS;
2571 break;
2572 case KVM_CAP_XCRS:
2573 r = cpu_has_xsave;
2574 break;
2575 case KVM_CAP_TSC_CONTROL:
2576 r = kvm_has_tsc_control;
2577 break;
2578 case KVM_CAP_TSC_DEADLINE_TIMER:
2579 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2580 break;
2581 default:
2582 r = 0;
2583 break;
2584 }
2585 return r;
2586
2587 }
2588
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2589 long kvm_arch_dev_ioctl(struct file *filp,
2590 unsigned int ioctl, unsigned long arg)
2591 {
2592 void __user *argp = (void __user *)arg;
2593 long r;
2594
2595 switch (ioctl) {
2596 case KVM_GET_MSR_INDEX_LIST: {
2597 struct kvm_msr_list __user *user_msr_list = argp;
2598 struct kvm_msr_list msr_list;
2599 unsigned n;
2600
2601 r = -EFAULT;
2602 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2603 goto out;
2604 n = msr_list.nmsrs;
2605 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2606 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2607 goto out;
2608 r = -E2BIG;
2609 if (n < msr_list.nmsrs)
2610 goto out;
2611 r = -EFAULT;
2612 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2613 num_msrs_to_save * sizeof(u32)))
2614 goto out;
2615 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2616 &emulated_msrs,
2617 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2618 goto out;
2619 r = 0;
2620 break;
2621 }
2622 case KVM_GET_SUPPORTED_CPUID: {
2623 struct kvm_cpuid2 __user *cpuid_arg = argp;
2624 struct kvm_cpuid2 cpuid;
2625
2626 r = -EFAULT;
2627 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2628 goto out;
2629 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2630 cpuid_arg->entries);
2631 if (r)
2632 goto out;
2633
2634 r = -EFAULT;
2635 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2636 goto out;
2637 r = 0;
2638 break;
2639 }
2640 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2641 u64 mce_cap;
2642
2643 mce_cap = KVM_MCE_CAP_SUPPORTED;
2644 r = -EFAULT;
2645 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2646 goto out;
2647 r = 0;
2648 break;
2649 }
2650 default:
2651 r = -EINVAL;
2652 }
2653 out:
2654 return r;
2655 }
2656
wbinvd_ipi(void * garbage)2657 static void wbinvd_ipi(void *garbage)
2658 {
2659 wbinvd();
2660 }
2661
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2662 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2663 {
2664 return vcpu->kvm->arch.iommu_domain &&
2665 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2666 }
2667
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2668 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2669 {
2670 /* Address WBINVD may be executed by guest */
2671 if (need_emulate_wbinvd(vcpu)) {
2672 if (kvm_x86_ops->has_wbinvd_exit())
2673 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2674 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2675 smp_call_function_single(vcpu->cpu,
2676 wbinvd_ipi, NULL, 1);
2677 }
2678
2679 kvm_x86_ops->vcpu_load(vcpu, cpu);
2680
2681 /* Apply any externally detected TSC adjustments (due to suspend) */
2682 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2683 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2684 vcpu->arch.tsc_offset_adjustment = 0;
2685 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2686 }
2687
2688 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2689 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2690 native_read_tsc() - vcpu->arch.last_host_tsc;
2691 if (tsc_delta < 0)
2692 mark_tsc_unstable("KVM discovered backwards TSC");
2693 if (check_tsc_unstable()) {
2694 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2695 vcpu->arch.last_guest_tsc);
2696 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2697 vcpu->arch.tsc_catchup = 1;
2698 }
2699 /*
2700 * On a host with synchronized TSC, there is no need to update
2701 * kvmclock on vcpu->cpu migration
2702 */
2703 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2704 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2705 if (vcpu->cpu != cpu)
2706 kvm_migrate_timers(vcpu);
2707 vcpu->cpu = cpu;
2708 }
2709
2710 accumulate_steal_time(vcpu);
2711 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2712 }
2713
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2714 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2715 {
2716 kvm_x86_ops->vcpu_put(vcpu);
2717 kvm_put_guest_fpu(vcpu);
2718 vcpu->arch.last_host_tsc = native_read_tsc();
2719 }
2720
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2721 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2722 struct kvm_lapic_state *s)
2723 {
2724 kvm_x86_ops->sync_pir_to_irr(vcpu);
2725 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2726
2727 return 0;
2728 }
2729
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2730 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2731 struct kvm_lapic_state *s)
2732 {
2733 kvm_apic_post_state_restore(vcpu, s);
2734 update_cr8_intercept(vcpu);
2735
2736 return 0;
2737 }
2738
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2739 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2740 struct kvm_interrupt *irq)
2741 {
2742 if (irq->irq >= KVM_NR_INTERRUPTS)
2743 return -EINVAL;
2744 if (irqchip_in_kernel(vcpu->kvm))
2745 return -ENXIO;
2746
2747 kvm_queue_interrupt(vcpu, irq->irq, false);
2748 kvm_make_request(KVM_REQ_EVENT, vcpu);
2749
2750 return 0;
2751 }
2752
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2753 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2754 {
2755 kvm_inject_nmi(vcpu);
2756
2757 return 0;
2758 }
2759
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2760 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2761 struct kvm_tpr_access_ctl *tac)
2762 {
2763 if (tac->flags)
2764 return -EINVAL;
2765 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2766 return 0;
2767 }
2768
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2769 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2770 u64 mcg_cap)
2771 {
2772 int r;
2773 unsigned bank_num = mcg_cap & 0xff, bank;
2774
2775 r = -EINVAL;
2776 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2777 goto out;
2778 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2779 goto out;
2780 r = 0;
2781 vcpu->arch.mcg_cap = mcg_cap;
2782 /* Init IA32_MCG_CTL to all 1s */
2783 if (mcg_cap & MCG_CTL_P)
2784 vcpu->arch.mcg_ctl = ~(u64)0;
2785 /* Init IA32_MCi_CTL to all 1s */
2786 for (bank = 0; bank < bank_num; bank++)
2787 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2788 out:
2789 return r;
2790 }
2791
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2792 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2793 struct kvm_x86_mce *mce)
2794 {
2795 u64 mcg_cap = vcpu->arch.mcg_cap;
2796 unsigned bank_num = mcg_cap & 0xff;
2797 u64 *banks = vcpu->arch.mce_banks;
2798
2799 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2800 return -EINVAL;
2801 /*
2802 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2803 * reporting is disabled
2804 */
2805 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2806 vcpu->arch.mcg_ctl != ~(u64)0)
2807 return 0;
2808 banks += 4 * mce->bank;
2809 /*
2810 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2811 * reporting is disabled for the bank
2812 */
2813 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2814 return 0;
2815 if (mce->status & MCI_STATUS_UC) {
2816 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2817 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2818 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2819 return 0;
2820 }
2821 if (banks[1] & MCI_STATUS_VAL)
2822 mce->status |= MCI_STATUS_OVER;
2823 banks[2] = mce->addr;
2824 banks[3] = mce->misc;
2825 vcpu->arch.mcg_status = mce->mcg_status;
2826 banks[1] = mce->status;
2827 kvm_queue_exception(vcpu, MC_VECTOR);
2828 } else if (!(banks[1] & MCI_STATUS_VAL)
2829 || !(banks[1] & MCI_STATUS_UC)) {
2830 if (banks[1] & MCI_STATUS_VAL)
2831 mce->status |= MCI_STATUS_OVER;
2832 banks[2] = mce->addr;
2833 banks[3] = mce->misc;
2834 banks[1] = mce->status;
2835 } else
2836 banks[1] |= MCI_STATUS_OVER;
2837 return 0;
2838 }
2839
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2840 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2841 struct kvm_vcpu_events *events)
2842 {
2843 process_nmi(vcpu);
2844 events->exception.injected =
2845 vcpu->arch.exception.pending &&
2846 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2847 events->exception.nr = vcpu->arch.exception.nr;
2848 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2849 events->exception.pad = 0;
2850 events->exception.error_code = vcpu->arch.exception.error_code;
2851
2852 events->interrupt.injected =
2853 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2854 events->interrupt.nr = vcpu->arch.interrupt.nr;
2855 events->interrupt.soft = 0;
2856 events->interrupt.shadow =
2857 kvm_x86_ops->get_interrupt_shadow(vcpu,
2858 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2859
2860 events->nmi.injected = vcpu->arch.nmi_injected;
2861 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2862 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2863 events->nmi.pad = 0;
2864
2865 events->sipi_vector = 0; /* never valid when reporting to user space */
2866
2867 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2868 | KVM_VCPUEVENT_VALID_SHADOW);
2869 memset(&events->reserved, 0, sizeof(events->reserved));
2870 }
2871
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2872 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2873 struct kvm_vcpu_events *events)
2874 {
2875 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2876 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877 | KVM_VCPUEVENT_VALID_SHADOW))
2878 return -EINVAL;
2879
2880 process_nmi(vcpu);
2881 vcpu->arch.exception.pending = events->exception.injected;
2882 vcpu->arch.exception.nr = events->exception.nr;
2883 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2884 vcpu->arch.exception.error_code = events->exception.error_code;
2885
2886 vcpu->arch.interrupt.pending = events->interrupt.injected;
2887 vcpu->arch.interrupt.nr = events->interrupt.nr;
2888 vcpu->arch.interrupt.soft = events->interrupt.soft;
2889 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2890 kvm_x86_ops->set_interrupt_shadow(vcpu,
2891 events->interrupt.shadow);
2892
2893 vcpu->arch.nmi_injected = events->nmi.injected;
2894 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2895 vcpu->arch.nmi_pending = events->nmi.pending;
2896 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2897
2898 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2899 kvm_vcpu_has_lapic(vcpu))
2900 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2901
2902 kvm_make_request(KVM_REQ_EVENT, vcpu);
2903
2904 return 0;
2905 }
2906
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2907 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2908 struct kvm_debugregs *dbgregs)
2909 {
2910 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2911 dbgregs->dr6 = vcpu->arch.dr6;
2912 dbgregs->dr7 = vcpu->arch.dr7;
2913 dbgregs->flags = 0;
2914 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2915 }
2916
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2917 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2918 struct kvm_debugregs *dbgregs)
2919 {
2920 if (dbgregs->flags)
2921 return -EINVAL;
2922
2923 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2924 vcpu->arch.dr6 = dbgregs->dr6;
2925 vcpu->arch.dr7 = dbgregs->dr7;
2926
2927 return 0;
2928 }
2929
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)2930 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2931 struct kvm_xsave *guest_xsave)
2932 {
2933 if (cpu_has_xsave)
2934 memcpy(guest_xsave->region,
2935 &vcpu->arch.guest_fpu.state->xsave,
2936 xstate_size);
2937 else {
2938 memcpy(guest_xsave->region,
2939 &vcpu->arch.guest_fpu.state->fxsave,
2940 sizeof(struct i387_fxsave_struct));
2941 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2942 XSTATE_FPSSE;
2943 }
2944 }
2945
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)2946 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2947 struct kvm_xsave *guest_xsave)
2948 {
2949 u64 xstate_bv =
2950 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2951
2952 if (cpu_has_xsave)
2953 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2954 guest_xsave->region, xstate_size);
2955 else {
2956 if (xstate_bv & ~XSTATE_FPSSE)
2957 return -EINVAL;
2958 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2959 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2960 }
2961 return 0;
2962 }
2963
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)2964 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2965 struct kvm_xcrs *guest_xcrs)
2966 {
2967 if (!cpu_has_xsave) {
2968 guest_xcrs->nr_xcrs = 0;
2969 return;
2970 }
2971
2972 guest_xcrs->nr_xcrs = 1;
2973 guest_xcrs->flags = 0;
2974 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2975 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2976 }
2977
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)2978 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2979 struct kvm_xcrs *guest_xcrs)
2980 {
2981 int i, r = 0;
2982
2983 if (!cpu_has_xsave)
2984 return -EINVAL;
2985
2986 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2987 return -EINVAL;
2988
2989 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2990 /* Only support XCR0 currently */
2991 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2992 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2993 guest_xcrs->xcrs[0].value);
2994 break;
2995 }
2996 if (r)
2997 r = -EINVAL;
2998 return r;
2999 }
3000
3001 /*
3002 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3003 * stopped by the hypervisor. This function will be called from the host only.
3004 * EINVAL is returned when the host attempts to set the flag for a guest that
3005 * does not support pv clocks.
3006 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3007 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3008 {
3009 if (!vcpu->arch.pv_time_enabled)
3010 return -EINVAL;
3011 vcpu->arch.pvclock_set_guest_stopped_request = true;
3012 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3013 return 0;
3014 }
3015
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3016 long kvm_arch_vcpu_ioctl(struct file *filp,
3017 unsigned int ioctl, unsigned long arg)
3018 {
3019 struct kvm_vcpu *vcpu = filp->private_data;
3020 void __user *argp = (void __user *)arg;
3021 int r;
3022 union {
3023 struct kvm_lapic_state *lapic;
3024 struct kvm_xsave *xsave;
3025 struct kvm_xcrs *xcrs;
3026 void *buffer;
3027 } u;
3028
3029 u.buffer = NULL;
3030 switch (ioctl) {
3031 case KVM_GET_LAPIC: {
3032 r = -EINVAL;
3033 if (!vcpu->arch.apic)
3034 goto out;
3035 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3036
3037 r = -ENOMEM;
3038 if (!u.lapic)
3039 goto out;
3040 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3041 if (r)
3042 goto out;
3043 r = -EFAULT;
3044 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3045 goto out;
3046 r = 0;
3047 break;
3048 }
3049 case KVM_SET_LAPIC: {
3050 r = -EINVAL;
3051 if (!vcpu->arch.apic)
3052 goto out;
3053 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3054 if (IS_ERR(u.lapic))
3055 return PTR_ERR(u.lapic);
3056
3057 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3058 break;
3059 }
3060 case KVM_INTERRUPT: {
3061 struct kvm_interrupt irq;
3062
3063 r = -EFAULT;
3064 if (copy_from_user(&irq, argp, sizeof irq))
3065 goto out;
3066 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3067 break;
3068 }
3069 case KVM_NMI: {
3070 r = kvm_vcpu_ioctl_nmi(vcpu);
3071 break;
3072 }
3073 case KVM_SET_CPUID: {
3074 struct kvm_cpuid __user *cpuid_arg = argp;
3075 struct kvm_cpuid cpuid;
3076
3077 r = -EFAULT;
3078 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3079 goto out;
3080 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3081 break;
3082 }
3083 case KVM_SET_CPUID2: {
3084 struct kvm_cpuid2 __user *cpuid_arg = argp;
3085 struct kvm_cpuid2 cpuid;
3086
3087 r = -EFAULT;
3088 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3089 goto out;
3090 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3091 cpuid_arg->entries);
3092 break;
3093 }
3094 case KVM_GET_CPUID2: {
3095 struct kvm_cpuid2 __user *cpuid_arg = argp;
3096 struct kvm_cpuid2 cpuid;
3097
3098 r = -EFAULT;
3099 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3100 goto out;
3101 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3102 cpuid_arg->entries);
3103 if (r)
3104 goto out;
3105 r = -EFAULT;
3106 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3107 goto out;
3108 r = 0;
3109 break;
3110 }
3111 case KVM_GET_MSRS:
3112 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3113 break;
3114 case KVM_SET_MSRS:
3115 r = msr_io(vcpu, argp, do_set_msr, 0);
3116 break;
3117 case KVM_TPR_ACCESS_REPORTING: {
3118 struct kvm_tpr_access_ctl tac;
3119
3120 r = -EFAULT;
3121 if (copy_from_user(&tac, argp, sizeof tac))
3122 goto out;
3123 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3124 if (r)
3125 goto out;
3126 r = -EFAULT;
3127 if (copy_to_user(argp, &tac, sizeof tac))
3128 goto out;
3129 r = 0;
3130 break;
3131 };
3132 case KVM_SET_VAPIC_ADDR: {
3133 struct kvm_vapic_addr va;
3134
3135 r = -EINVAL;
3136 if (!irqchip_in_kernel(vcpu->kvm))
3137 goto out;
3138 r = -EFAULT;
3139 if (copy_from_user(&va, argp, sizeof va))
3140 goto out;
3141 r = 0;
3142 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3143 break;
3144 }
3145 case KVM_X86_SETUP_MCE: {
3146 u64 mcg_cap;
3147
3148 r = -EFAULT;
3149 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3150 goto out;
3151 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3152 break;
3153 }
3154 case KVM_X86_SET_MCE: {
3155 struct kvm_x86_mce mce;
3156
3157 r = -EFAULT;
3158 if (copy_from_user(&mce, argp, sizeof mce))
3159 goto out;
3160 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3161 break;
3162 }
3163 case KVM_GET_VCPU_EVENTS: {
3164 struct kvm_vcpu_events events;
3165
3166 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3167
3168 r = -EFAULT;
3169 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3170 break;
3171 r = 0;
3172 break;
3173 }
3174 case KVM_SET_VCPU_EVENTS: {
3175 struct kvm_vcpu_events events;
3176
3177 r = -EFAULT;
3178 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3179 break;
3180
3181 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3182 break;
3183 }
3184 case KVM_GET_DEBUGREGS: {
3185 struct kvm_debugregs dbgregs;
3186
3187 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3188
3189 r = -EFAULT;
3190 if (copy_to_user(argp, &dbgregs,
3191 sizeof(struct kvm_debugregs)))
3192 break;
3193 r = 0;
3194 break;
3195 }
3196 case KVM_SET_DEBUGREGS: {
3197 struct kvm_debugregs dbgregs;
3198
3199 r = -EFAULT;
3200 if (copy_from_user(&dbgregs, argp,
3201 sizeof(struct kvm_debugregs)))
3202 break;
3203
3204 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3205 break;
3206 }
3207 case KVM_GET_XSAVE: {
3208 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3209 r = -ENOMEM;
3210 if (!u.xsave)
3211 break;
3212
3213 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3214
3215 r = -EFAULT;
3216 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3217 break;
3218 r = 0;
3219 break;
3220 }
3221 case KVM_SET_XSAVE: {
3222 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3223 if (IS_ERR(u.xsave))
3224 return PTR_ERR(u.xsave);
3225
3226 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3227 break;
3228 }
3229 case KVM_GET_XCRS: {
3230 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3231 r = -ENOMEM;
3232 if (!u.xcrs)
3233 break;
3234
3235 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3236
3237 r = -EFAULT;
3238 if (copy_to_user(argp, u.xcrs,
3239 sizeof(struct kvm_xcrs)))
3240 break;
3241 r = 0;
3242 break;
3243 }
3244 case KVM_SET_XCRS: {
3245 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3246 if (IS_ERR(u.xcrs))
3247 return PTR_ERR(u.xcrs);
3248
3249 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3250 break;
3251 }
3252 case KVM_SET_TSC_KHZ: {
3253 u32 user_tsc_khz;
3254
3255 r = -EINVAL;
3256 user_tsc_khz = (u32)arg;
3257
3258 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3259 goto out;
3260
3261 if (user_tsc_khz == 0)
3262 user_tsc_khz = tsc_khz;
3263
3264 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3265
3266 r = 0;
3267 goto out;
3268 }
3269 case KVM_GET_TSC_KHZ: {
3270 r = vcpu->arch.virtual_tsc_khz;
3271 goto out;
3272 }
3273 case KVM_KVMCLOCK_CTRL: {
3274 r = kvm_set_guest_paused(vcpu);
3275 goto out;
3276 }
3277 default:
3278 r = -EINVAL;
3279 }
3280 out:
3281 kfree(u.buffer);
3282 return r;
3283 }
3284
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3285 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3286 {
3287 return VM_FAULT_SIGBUS;
3288 }
3289
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3290 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3291 {
3292 int ret;
3293
3294 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3295 return -EINVAL;
3296 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3297 return ret;
3298 }
3299
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3300 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3301 u64 ident_addr)
3302 {
3303 kvm->arch.ept_identity_map_addr = ident_addr;
3304 return 0;
3305 }
3306
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3307 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3308 u32 kvm_nr_mmu_pages)
3309 {
3310 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3311 return -EINVAL;
3312
3313 mutex_lock(&kvm->slots_lock);
3314
3315 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3316 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3317
3318 mutex_unlock(&kvm->slots_lock);
3319 return 0;
3320 }
3321
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3322 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3323 {
3324 return kvm->arch.n_max_mmu_pages;
3325 }
3326
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3327 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3328 {
3329 int r;
3330
3331 r = 0;
3332 switch (chip->chip_id) {
3333 case KVM_IRQCHIP_PIC_MASTER:
3334 memcpy(&chip->chip.pic,
3335 &pic_irqchip(kvm)->pics[0],
3336 sizeof(struct kvm_pic_state));
3337 break;
3338 case KVM_IRQCHIP_PIC_SLAVE:
3339 memcpy(&chip->chip.pic,
3340 &pic_irqchip(kvm)->pics[1],
3341 sizeof(struct kvm_pic_state));
3342 break;
3343 case KVM_IRQCHIP_IOAPIC:
3344 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3345 break;
3346 default:
3347 r = -EINVAL;
3348 break;
3349 }
3350 return r;
3351 }
3352
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3353 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3354 {
3355 int r;
3356
3357 r = 0;
3358 switch (chip->chip_id) {
3359 case KVM_IRQCHIP_PIC_MASTER:
3360 spin_lock(&pic_irqchip(kvm)->lock);
3361 memcpy(&pic_irqchip(kvm)->pics[0],
3362 &chip->chip.pic,
3363 sizeof(struct kvm_pic_state));
3364 spin_unlock(&pic_irqchip(kvm)->lock);
3365 break;
3366 case KVM_IRQCHIP_PIC_SLAVE:
3367 spin_lock(&pic_irqchip(kvm)->lock);
3368 memcpy(&pic_irqchip(kvm)->pics[1],
3369 &chip->chip.pic,
3370 sizeof(struct kvm_pic_state));
3371 spin_unlock(&pic_irqchip(kvm)->lock);
3372 break;
3373 case KVM_IRQCHIP_IOAPIC:
3374 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3375 break;
3376 default:
3377 r = -EINVAL;
3378 break;
3379 }
3380 kvm_pic_update_irq(pic_irqchip(kvm));
3381 return r;
3382 }
3383
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3384 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3385 {
3386 int r = 0;
3387
3388 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3389 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3390 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3391 return r;
3392 }
3393
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3394 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3395 {
3396 int r = 0;
3397
3398 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3399 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3400 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3401 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3402 return r;
3403 }
3404
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3405 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3406 {
3407 int r = 0;
3408
3409 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3410 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3411 sizeof(ps->channels));
3412 ps->flags = kvm->arch.vpit->pit_state.flags;
3413 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3414 memset(&ps->reserved, 0, sizeof(ps->reserved));
3415 return r;
3416 }
3417
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3418 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3419 {
3420 int r = 0, start = 0;
3421 u32 prev_legacy, cur_legacy;
3422 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3423 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3424 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3425 if (!prev_legacy && cur_legacy)
3426 start = 1;
3427 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3428 sizeof(kvm->arch.vpit->pit_state.channels));
3429 kvm->arch.vpit->pit_state.flags = ps->flags;
3430 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3431 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432 return r;
3433 }
3434
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3435 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3436 struct kvm_reinject_control *control)
3437 {
3438 if (!kvm->arch.vpit)
3439 return -ENXIO;
3440 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3442 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443 return 0;
3444 }
3445
3446 /**
3447 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3448 * @kvm: kvm instance
3449 * @log: slot id and address to which we copy the log
3450 *
3451 * We need to keep it in mind that VCPU threads can write to the bitmap
3452 * concurrently. So, to avoid losing data, we keep the following order for
3453 * each bit:
3454 *
3455 * 1. Take a snapshot of the bit and clear it if needed.
3456 * 2. Write protect the corresponding page.
3457 * 3. Flush TLB's if needed.
3458 * 4. Copy the snapshot to the userspace.
3459 *
3460 * Between 2 and 3, the guest may write to the page using the remaining TLB
3461 * entry. This is not a problem because the page will be reported dirty at
3462 * step 4 using the snapshot taken before and step 3 ensures that successive
3463 * writes will be logged for the next call.
3464 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3465 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3466 {
3467 int r;
3468 struct kvm_memory_slot *memslot;
3469 unsigned long n, i;
3470 unsigned long *dirty_bitmap;
3471 unsigned long *dirty_bitmap_buffer;
3472 bool is_dirty = false;
3473
3474 mutex_lock(&kvm->slots_lock);
3475
3476 r = -EINVAL;
3477 if (log->slot >= KVM_USER_MEM_SLOTS)
3478 goto out;
3479
3480 memslot = id_to_memslot(kvm->memslots, log->slot);
3481
3482 dirty_bitmap = memslot->dirty_bitmap;
3483 r = -ENOENT;
3484 if (!dirty_bitmap)
3485 goto out;
3486
3487 n = kvm_dirty_bitmap_bytes(memslot);
3488
3489 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3490 memset(dirty_bitmap_buffer, 0, n);
3491
3492 spin_lock(&kvm->mmu_lock);
3493
3494 for (i = 0; i < n / sizeof(long); i++) {
3495 unsigned long mask;
3496 gfn_t offset;
3497
3498 if (!dirty_bitmap[i])
3499 continue;
3500
3501 is_dirty = true;
3502
3503 mask = xchg(&dirty_bitmap[i], 0);
3504 dirty_bitmap_buffer[i] = mask;
3505
3506 offset = i * BITS_PER_LONG;
3507 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3508 }
3509 if (is_dirty)
3510 kvm_flush_remote_tlbs(kvm);
3511
3512 spin_unlock(&kvm->mmu_lock);
3513
3514 r = -EFAULT;
3515 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3516 goto out;
3517
3518 r = 0;
3519 out:
3520 mutex_unlock(&kvm->slots_lock);
3521 return r;
3522 }
3523
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3524 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3525 bool line_status)
3526 {
3527 if (!irqchip_in_kernel(kvm))
3528 return -ENXIO;
3529
3530 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3531 irq_event->irq, irq_event->level,
3532 line_status);
3533 return 0;
3534 }
3535
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3536 long kvm_arch_vm_ioctl(struct file *filp,
3537 unsigned int ioctl, unsigned long arg)
3538 {
3539 struct kvm *kvm = filp->private_data;
3540 void __user *argp = (void __user *)arg;
3541 int r = -ENOTTY;
3542 /*
3543 * This union makes it completely explicit to gcc-3.x
3544 * that these two variables' stack usage should be
3545 * combined, not added together.
3546 */
3547 union {
3548 struct kvm_pit_state ps;
3549 struct kvm_pit_state2 ps2;
3550 struct kvm_pit_config pit_config;
3551 } u;
3552
3553 switch (ioctl) {
3554 case KVM_SET_TSS_ADDR:
3555 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3556 break;
3557 case KVM_SET_IDENTITY_MAP_ADDR: {
3558 u64 ident_addr;
3559
3560 r = -EFAULT;
3561 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3562 goto out;
3563 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3564 break;
3565 }
3566 case KVM_SET_NR_MMU_PAGES:
3567 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3568 break;
3569 case KVM_GET_NR_MMU_PAGES:
3570 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3571 break;
3572 case KVM_CREATE_IRQCHIP: {
3573 struct kvm_pic *vpic;
3574
3575 mutex_lock(&kvm->lock);
3576 r = -EEXIST;
3577 if (kvm->arch.vpic)
3578 goto create_irqchip_unlock;
3579 r = -EINVAL;
3580 if (atomic_read(&kvm->online_vcpus))
3581 goto create_irqchip_unlock;
3582 r = -ENOMEM;
3583 vpic = kvm_create_pic(kvm);
3584 if (vpic) {
3585 r = kvm_ioapic_init(kvm);
3586 if (r) {
3587 mutex_lock(&kvm->slots_lock);
3588 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3589 &vpic->dev_master);
3590 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3591 &vpic->dev_slave);
3592 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3593 &vpic->dev_eclr);
3594 mutex_unlock(&kvm->slots_lock);
3595 kfree(vpic);
3596 goto create_irqchip_unlock;
3597 }
3598 } else
3599 goto create_irqchip_unlock;
3600 smp_wmb();
3601 kvm->arch.vpic = vpic;
3602 smp_wmb();
3603 r = kvm_setup_default_irq_routing(kvm);
3604 if (r) {
3605 mutex_lock(&kvm->slots_lock);
3606 mutex_lock(&kvm->irq_lock);
3607 kvm_ioapic_destroy(kvm);
3608 kvm_destroy_pic(kvm);
3609 mutex_unlock(&kvm->irq_lock);
3610 mutex_unlock(&kvm->slots_lock);
3611 }
3612 create_irqchip_unlock:
3613 mutex_unlock(&kvm->lock);
3614 break;
3615 }
3616 case KVM_CREATE_PIT:
3617 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3618 goto create_pit;
3619 case KVM_CREATE_PIT2:
3620 r = -EFAULT;
3621 if (copy_from_user(&u.pit_config, argp,
3622 sizeof(struct kvm_pit_config)))
3623 goto out;
3624 create_pit:
3625 mutex_lock(&kvm->slots_lock);
3626 r = -EEXIST;
3627 if (kvm->arch.vpit)
3628 goto create_pit_unlock;
3629 r = -ENOMEM;
3630 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3631 if (kvm->arch.vpit)
3632 r = 0;
3633 create_pit_unlock:
3634 mutex_unlock(&kvm->slots_lock);
3635 break;
3636 case KVM_GET_IRQCHIP: {
3637 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3638 struct kvm_irqchip *chip;
3639
3640 chip = memdup_user(argp, sizeof(*chip));
3641 if (IS_ERR(chip)) {
3642 r = PTR_ERR(chip);
3643 goto out;
3644 }
3645
3646 r = -ENXIO;
3647 if (!irqchip_in_kernel(kvm))
3648 goto get_irqchip_out;
3649 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3650 if (r)
3651 goto get_irqchip_out;
3652 r = -EFAULT;
3653 if (copy_to_user(argp, chip, sizeof *chip))
3654 goto get_irqchip_out;
3655 r = 0;
3656 get_irqchip_out:
3657 kfree(chip);
3658 break;
3659 }
3660 case KVM_SET_IRQCHIP: {
3661 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662 struct kvm_irqchip *chip;
3663
3664 chip = memdup_user(argp, sizeof(*chip));
3665 if (IS_ERR(chip)) {
3666 r = PTR_ERR(chip);
3667 goto out;
3668 }
3669
3670 r = -ENXIO;
3671 if (!irqchip_in_kernel(kvm))
3672 goto set_irqchip_out;
3673 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3674 if (r)
3675 goto set_irqchip_out;
3676 r = 0;
3677 set_irqchip_out:
3678 kfree(chip);
3679 break;
3680 }
3681 case KVM_GET_PIT: {
3682 r = -EFAULT;
3683 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3684 goto out;
3685 r = -ENXIO;
3686 if (!kvm->arch.vpit)
3687 goto out;
3688 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3689 if (r)
3690 goto out;
3691 r = -EFAULT;
3692 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3693 goto out;
3694 r = 0;
3695 break;
3696 }
3697 case KVM_SET_PIT: {
3698 r = -EFAULT;
3699 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3700 goto out;
3701 r = -ENXIO;
3702 if (!kvm->arch.vpit)
3703 goto out;
3704 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3705 break;
3706 }
3707 case KVM_GET_PIT2: {
3708 r = -ENXIO;
3709 if (!kvm->arch.vpit)
3710 goto out;
3711 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3712 if (r)
3713 goto out;
3714 r = -EFAULT;
3715 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3716 goto out;
3717 r = 0;
3718 break;
3719 }
3720 case KVM_SET_PIT2: {
3721 r = -EFAULT;
3722 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3723 goto out;
3724 r = -ENXIO;
3725 if (!kvm->arch.vpit)
3726 goto out;
3727 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3728 break;
3729 }
3730 case KVM_REINJECT_CONTROL: {
3731 struct kvm_reinject_control control;
3732 r = -EFAULT;
3733 if (copy_from_user(&control, argp, sizeof(control)))
3734 goto out;
3735 r = kvm_vm_ioctl_reinject(kvm, &control);
3736 break;
3737 }
3738 case KVM_XEN_HVM_CONFIG: {
3739 r = -EFAULT;
3740 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3741 sizeof(struct kvm_xen_hvm_config)))
3742 goto out;
3743 r = -EINVAL;
3744 if (kvm->arch.xen_hvm_config.flags)
3745 goto out;
3746 r = 0;
3747 break;
3748 }
3749 case KVM_SET_CLOCK: {
3750 struct kvm_clock_data user_ns;
3751 u64 now_ns;
3752 s64 delta;
3753
3754 r = -EFAULT;
3755 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3756 goto out;
3757
3758 r = -EINVAL;
3759 if (user_ns.flags)
3760 goto out;
3761
3762 r = 0;
3763 local_irq_disable();
3764 now_ns = get_kernel_ns();
3765 delta = user_ns.clock - now_ns;
3766 local_irq_enable();
3767 kvm->arch.kvmclock_offset = delta;
3768 break;
3769 }
3770 case KVM_GET_CLOCK: {
3771 struct kvm_clock_data user_ns;
3772 u64 now_ns;
3773
3774 local_irq_disable();
3775 now_ns = get_kernel_ns();
3776 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3777 local_irq_enable();
3778 user_ns.flags = 0;
3779 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3780
3781 r = -EFAULT;
3782 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3783 goto out;
3784 r = 0;
3785 break;
3786 }
3787
3788 default:
3789 ;
3790 }
3791 out:
3792 return r;
3793 }
3794
kvm_init_msr_list(void)3795 static void kvm_init_msr_list(void)
3796 {
3797 u32 dummy[2];
3798 unsigned i, j;
3799
3800 /* skip the first msrs in the list. KVM-specific */
3801 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3802 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3803 continue;
3804 if (j < i)
3805 msrs_to_save[j] = msrs_to_save[i];
3806 j++;
3807 }
3808 num_msrs_to_save = j;
3809 }
3810
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)3811 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3812 const void *v)
3813 {
3814 int handled = 0;
3815 int n;
3816
3817 do {
3818 n = min(len, 8);
3819 if (!(vcpu->arch.apic &&
3820 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3821 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3822 break;
3823 handled += n;
3824 addr += n;
3825 len -= n;
3826 v += n;
3827 } while (len);
3828
3829 return handled;
3830 }
3831
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)3832 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3833 {
3834 int handled = 0;
3835 int n;
3836
3837 do {
3838 n = min(len, 8);
3839 if (!(vcpu->arch.apic &&
3840 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3841 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3842 break;
3843 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3844 handled += n;
3845 addr += n;
3846 len -= n;
3847 v += n;
3848 } while (len);
3849
3850 return handled;
3851 }
3852
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3853 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3854 struct kvm_segment *var, int seg)
3855 {
3856 kvm_x86_ops->set_segment(vcpu, var, seg);
3857 }
3858
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3859 void kvm_get_segment(struct kvm_vcpu *vcpu,
3860 struct kvm_segment *var, int seg)
3861 {
3862 kvm_x86_ops->get_segment(vcpu, var, seg);
3863 }
3864
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access)3865 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3866 {
3867 gpa_t t_gpa;
3868 struct x86_exception exception;
3869
3870 BUG_ON(!mmu_is_nested(vcpu));
3871
3872 /* NPT walks are always user-walks */
3873 access |= PFERR_USER_MASK;
3874 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3875
3876 return t_gpa;
3877 }
3878
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3879 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3880 struct x86_exception *exception)
3881 {
3882 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3883 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3884 }
3885
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3886 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3887 struct x86_exception *exception)
3888 {
3889 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3890 access |= PFERR_FETCH_MASK;
3891 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3892 }
3893
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3894 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3895 struct x86_exception *exception)
3896 {
3897 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3898 access |= PFERR_WRITE_MASK;
3899 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3900 }
3901
3902 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3903 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3904 struct x86_exception *exception)
3905 {
3906 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3907 }
3908
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)3909 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3910 struct kvm_vcpu *vcpu, u32 access,
3911 struct x86_exception *exception)
3912 {
3913 void *data = val;
3914 int r = X86EMUL_CONTINUE;
3915
3916 while (bytes) {
3917 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3918 exception);
3919 unsigned offset = addr & (PAGE_SIZE-1);
3920 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3921 int ret;
3922
3923 if (gpa == UNMAPPED_GVA)
3924 return X86EMUL_PROPAGATE_FAULT;
3925 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3926 if (ret < 0) {
3927 r = X86EMUL_IO_NEEDED;
3928 goto out;
3929 }
3930
3931 bytes -= toread;
3932 data += toread;
3933 addr += toread;
3934 }
3935 out:
3936 return r;
3937 }
3938
3939 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3940 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3941 gva_t addr, void *val, unsigned int bytes,
3942 struct x86_exception *exception)
3943 {
3944 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3945 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3946
3947 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3948 access | PFERR_FETCH_MASK,
3949 exception);
3950 }
3951
kvm_read_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3952 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3953 gva_t addr, void *val, unsigned int bytes,
3954 struct x86_exception *exception)
3955 {
3956 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3957 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3958
3959 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3960 exception);
3961 }
3962 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3963
kvm_read_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3964 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3965 gva_t addr, void *val, unsigned int bytes,
3966 struct x86_exception *exception)
3967 {
3968 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3969 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3970 }
3971
kvm_write_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3972 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3973 gva_t addr, void *val,
3974 unsigned int bytes,
3975 struct x86_exception *exception)
3976 {
3977 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3978 void *data = val;
3979 int r = X86EMUL_CONTINUE;
3980
3981 while (bytes) {
3982 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3983 PFERR_WRITE_MASK,
3984 exception);
3985 unsigned offset = addr & (PAGE_SIZE-1);
3986 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3987 int ret;
3988
3989 if (gpa == UNMAPPED_GVA)
3990 return X86EMUL_PROPAGATE_FAULT;
3991 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3992 if (ret < 0) {
3993 r = X86EMUL_IO_NEEDED;
3994 goto out;
3995 }
3996
3997 bytes -= towrite;
3998 data += towrite;
3999 addr += towrite;
4000 }
4001 out:
4002 return r;
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4005
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4006 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4007 gpa_t *gpa, struct x86_exception *exception,
4008 bool write)
4009 {
4010 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4011 | (write ? PFERR_WRITE_MASK : 0);
4012
4013 if (vcpu_match_mmio_gva(vcpu, gva)
4014 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4015 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4016 (gva & (PAGE_SIZE - 1));
4017 trace_vcpu_match_mmio(gva, *gpa, write, false);
4018 return 1;
4019 }
4020
4021 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4022
4023 if (*gpa == UNMAPPED_GVA)
4024 return -1;
4025
4026 /* For APIC access vmexit */
4027 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4028 return 1;
4029
4030 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4031 trace_vcpu_match_mmio(gva, *gpa, write, true);
4032 return 1;
4033 }
4034
4035 return 0;
4036 }
4037
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4038 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4039 const void *val, int bytes)
4040 {
4041 int ret;
4042
4043 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4044 if (ret < 0)
4045 return 0;
4046 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4047 return 1;
4048 }
4049
4050 struct read_write_emulator_ops {
4051 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4052 int bytes);
4053 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4054 void *val, int bytes);
4055 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4056 int bytes, void *val);
4057 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4058 void *val, int bytes);
4059 bool write;
4060 };
4061
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4062 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4063 {
4064 if (vcpu->mmio_read_completed) {
4065 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4066 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4067 vcpu->mmio_read_completed = 0;
4068 return 1;
4069 }
4070
4071 return 0;
4072 }
4073
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4074 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4075 void *val, int bytes)
4076 {
4077 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4078 }
4079
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4080 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4081 void *val, int bytes)
4082 {
4083 return emulator_write_phys(vcpu, gpa, val, bytes);
4084 }
4085
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4086 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4087 {
4088 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4089 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4090 }
4091
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4092 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4093 void *val, int bytes)
4094 {
4095 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4096 return X86EMUL_IO_NEEDED;
4097 }
4098
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4099 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4100 void *val, int bytes)
4101 {
4102 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4103
4104 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4105 return X86EMUL_CONTINUE;
4106 }
4107
4108 static const struct read_write_emulator_ops read_emultor = {
4109 .read_write_prepare = read_prepare,
4110 .read_write_emulate = read_emulate,
4111 .read_write_mmio = vcpu_mmio_read,
4112 .read_write_exit_mmio = read_exit_mmio,
4113 };
4114
4115 static const struct read_write_emulator_ops write_emultor = {
4116 .read_write_emulate = write_emulate,
4117 .read_write_mmio = write_mmio,
4118 .read_write_exit_mmio = write_exit_mmio,
4119 .write = true,
4120 };
4121
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4122 static int emulator_read_write_onepage(unsigned long addr, void *val,
4123 unsigned int bytes,
4124 struct x86_exception *exception,
4125 struct kvm_vcpu *vcpu,
4126 const struct read_write_emulator_ops *ops)
4127 {
4128 gpa_t gpa;
4129 int handled, ret;
4130 bool write = ops->write;
4131 struct kvm_mmio_fragment *frag;
4132
4133 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4134
4135 if (ret < 0)
4136 return X86EMUL_PROPAGATE_FAULT;
4137
4138 /* For APIC access vmexit */
4139 if (ret)
4140 goto mmio;
4141
4142 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4143 return X86EMUL_CONTINUE;
4144
4145 mmio:
4146 /*
4147 * Is this MMIO handled locally?
4148 */
4149 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4150 if (handled == bytes)
4151 return X86EMUL_CONTINUE;
4152
4153 gpa += handled;
4154 bytes -= handled;
4155 val += handled;
4156
4157 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4158 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4159 frag->gpa = gpa;
4160 frag->data = val;
4161 frag->len = bytes;
4162 return X86EMUL_CONTINUE;
4163 }
4164
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4165 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4166 void *val, unsigned int bytes,
4167 struct x86_exception *exception,
4168 const struct read_write_emulator_ops *ops)
4169 {
4170 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4171 gpa_t gpa;
4172 int rc;
4173
4174 if (ops->read_write_prepare &&
4175 ops->read_write_prepare(vcpu, val, bytes))
4176 return X86EMUL_CONTINUE;
4177
4178 vcpu->mmio_nr_fragments = 0;
4179
4180 /* Crossing a page boundary? */
4181 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4182 int now;
4183
4184 now = -addr & ~PAGE_MASK;
4185 rc = emulator_read_write_onepage(addr, val, now, exception,
4186 vcpu, ops);
4187
4188 if (rc != X86EMUL_CONTINUE)
4189 return rc;
4190 addr += now;
4191 val += now;
4192 bytes -= now;
4193 }
4194
4195 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4196 vcpu, ops);
4197 if (rc != X86EMUL_CONTINUE)
4198 return rc;
4199
4200 if (!vcpu->mmio_nr_fragments)
4201 return rc;
4202
4203 gpa = vcpu->mmio_fragments[0].gpa;
4204
4205 vcpu->mmio_needed = 1;
4206 vcpu->mmio_cur_fragment = 0;
4207
4208 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4209 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4210 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4211 vcpu->run->mmio.phys_addr = gpa;
4212
4213 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4214 }
4215
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4216 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4217 unsigned long addr,
4218 void *val,
4219 unsigned int bytes,
4220 struct x86_exception *exception)
4221 {
4222 return emulator_read_write(ctxt, addr, val, bytes,
4223 exception, &read_emultor);
4224 }
4225
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4226 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4227 unsigned long addr,
4228 const void *val,
4229 unsigned int bytes,
4230 struct x86_exception *exception)
4231 {
4232 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4233 exception, &write_emultor);
4234 }
4235
4236 #define CMPXCHG_TYPE(t, ptr, old, new) \
4237 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4238
4239 #ifdef CONFIG_X86_64
4240 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4241 #else
4242 # define CMPXCHG64(ptr, old, new) \
4243 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4244 #endif
4245
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4246 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4247 unsigned long addr,
4248 const void *old,
4249 const void *new,
4250 unsigned int bytes,
4251 struct x86_exception *exception)
4252 {
4253 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4254 gpa_t gpa;
4255 struct page *page;
4256 char *kaddr;
4257 bool exchanged;
4258
4259 /* guests cmpxchg8b have to be emulated atomically */
4260 if (bytes > 8 || (bytes & (bytes - 1)))
4261 goto emul_write;
4262
4263 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4264
4265 if (gpa == UNMAPPED_GVA ||
4266 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4267 goto emul_write;
4268
4269 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4270 goto emul_write;
4271
4272 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4273 if (is_error_page(page))
4274 goto emul_write;
4275
4276 kaddr = kmap_atomic(page);
4277 kaddr += offset_in_page(gpa);
4278 switch (bytes) {
4279 case 1:
4280 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4281 break;
4282 case 2:
4283 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4284 break;
4285 case 4:
4286 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4287 break;
4288 case 8:
4289 exchanged = CMPXCHG64(kaddr, old, new);
4290 break;
4291 default:
4292 BUG();
4293 }
4294 kunmap_atomic(kaddr);
4295 kvm_release_page_dirty(page);
4296
4297 if (!exchanged)
4298 return X86EMUL_CMPXCHG_FAILED;
4299
4300 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4301
4302 return X86EMUL_CONTINUE;
4303
4304 emul_write:
4305 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4306
4307 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4308 }
4309
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4310 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4311 {
4312 /* TODO: String I/O for in kernel device */
4313 int r;
4314
4315 if (vcpu->arch.pio.in)
4316 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4317 vcpu->arch.pio.size, pd);
4318 else
4319 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4320 vcpu->arch.pio.port, vcpu->arch.pio.size,
4321 pd);
4322 return r;
4323 }
4324
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4325 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4326 unsigned short port, void *val,
4327 unsigned int count, bool in)
4328 {
4329 trace_kvm_pio(!in, port, size, count);
4330
4331 vcpu->arch.pio.port = port;
4332 vcpu->arch.pio.in = in;
4333 vcpu->arch.pio.count = count;
4334 vcpu->arch.pio.size = size;
4335
4336 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4337 vcpu->arch.pio.count = 0;
4338 return 1;
4339 }
4340
4341 vcpu->run->exit_reason = KVM_EXIT_IO;
4342 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4343 vcpu->run->io.size = size;
4344 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4345 vcpu->run->io.count = count;
4346 vcpu->run->io.port = port;
4347
4348 return 0;
4349 }
4350
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4351 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4352 int size, unsigned short port, void *val,
4353 unsigned int count)
4354 {
4355 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356 int ret;
4357
4358 if (vcpu->arch.pio.count)
4359 goto data_avail;
4360
4361 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4362 if (ret) {
4363 data_avail:
4364 memcpy(val, vcpu->arch.pio_data, size * count);
4365 vcpu->arch.pio.count = 0;
4366 return 1;
4367 }
4368
4369 return 0;
4370 }
4371
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4372 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4373 int size, unsigned short port,
4374 const void *val, unsigned int count)
4375 {
4376 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4377
4378 memcpy(vcpu->arch.pio_data, val, size * count);
4379 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4380 }
4381
get_segment_base(struct kvm_vcpu * vcpu,int seg)4382 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4383 {
4384 return kvm_x86_ops->get_segment_base(vcpu, seg);
4385 }
4386
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4387 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4388 {
4389 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4390 }
4391
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4392 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4393 {
4394 if (!need_emulate_wbinvd(vcpu))
4395 return X86EMUL_CONTINUE;
4396
4397 if (kvm_x86_ops->has_wbinvd_exit()) {
4398 int cpu = get_cpu();
4399
4400 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4401 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4402 wbinvd_ipi, NULL, 1);
4403 put_cpu();
4404 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4405 } else
4406 wbinvd();
4407 return X86EMUL_CONTINUE;
4408 }
4409 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4410
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4411 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4412 {
4413 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4414 }
4415
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4416 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4417 {
4418 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4419 }
4420
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4421 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4422 {
4423
4424 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4425 }
4426
mk_cr_64(u64 curr_cr,u32 new_val)4427 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4428 {
4429 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4430 }
4431
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4432 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4433 {
4434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4435 unsigned long value;
4436
4437 switch (cr) {
4438 case 0:
4439 value = kvm_read_cr0(vcpu);
4440 break;
4441 case 2:
4442 value = vcpu->arch.cr2;
4443 break;
4444 case 3:
4445 value = kvm_read_cr3(vcpu);
4446 break;
4447 case 4:
4448 value = kvm_read_cr4(vcpu);
4449 break;
4450 case 8:
4451 value = kvm_get_cr8(vcpu);
4452 break;
4453 default:
4454 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4455 return 0;
4456 }
4457
4458 return value;
4459 }
4460
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4461 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4462 {
4463 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4464 int res = 0;
4465
4466 switch (cr) {
4467 case 0:
4468 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4469 break;
4470 case 2:
4471 vcpu->arch.cr2 = val;
4472 break;
4473 case 3:
4474 res = kvm_set_cr3(vcpu, val);
4475 break;
4476 case 4:
4477 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4478 break;
4479 case 8:
4480 res = kvm_set_cr8(vcpu, val);
4481 break;
4482 default:
4483 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4484 res = -1;
4485 }
4486
4487 return res;
4488 }
4489
emulator_set_rflags(struct x86_emulate_ctxt * ctxt,ulong val)4490 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4491 {
4492 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4493 }
4494
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4495 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4496 {
4497 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4498 }
4499
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4500 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4501 {
4502 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4503 }
4504
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4505 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4506 {
4507 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4508 }
4509
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4510 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4511 {
4512 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4513 }
4514
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4515 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4516 {
4517 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4518 }
4519
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4520 static unsigned long emulator_get_cached_segment_base(
4521 struct x86_emulate_ctxt *ctxt, int seg)
4522 {
4523 return get_segment_base(emul_to_vcpu(ctxt), seg);
4524 }
4525
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4526 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4527 struct desc_struct *desc, u32 *base3,
4528 int seg)
4529 {
4530 struct kvm_segment var;
4531
4532 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4533 *selector = var.selector;
4534
4535 if (var.unusable) {
4536 memset(desc, 0, sizeof(*desc));
4537 return false;
4538 }
4539
4540 if (var.g)
4541 var.limit >>= 12;
4542 set_desc_limit(desc, var.limit);
4543 set_desc_base(desc, (unsigned long)var.base);
4544 #ifdef CONFIG_X86_64
4545 if (base3)
4546 *base3 = var.base >> 32;
4547 #endif
4548 desc->type = var.type;
4549 desc->s = var.s;
4550 desc->dpl = var.dpl;
4551 desc->p = var.present;
4552 desc->avl = var.avl;
4553 desc->l = var.l;
4554 desc->d = var.db;
4555 desc->g = var.g;
4556
4557 return true;
4558 }
4559
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)4560 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4561 struct desc_struct *desc, u32 base3,
4562 int seg)
4563 {
4564 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4565 struct kvm_segment var;
4566
4567 var.selector = selector;
4568 var.base = get_desc_base(desc);
4569 #ifdef CONFIG_X86_64
4570 var.base |= ((u64)base3) << 32;
4571 #endif
4572 var.limit = get_desc_limit(desc);
4573 if (desc->g)
4574 var.limit = (var.limit << 12) | 0xfff;
4575 var.type = desc->type;
4576 var.present = desc->p;
4577 var.dpl = desc->dpl;
4578 var.db = desc->d;
4579 var.s = desc->s;
4580 var.l = desc->l;
4581 var.g = desc->g;
4582 var.avl = desc->avl;
4583 var.present = desc->p;
4584 var.unusable = !var.present;
4585 var.padding = 0;
4586
4587 kvm_set_segment(vcpu, &var, seg);
4588 return;
4589 }
4590
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)4591 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4592 u32 msr_index, u64 *pdata)
4593 {
4594 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4595 }
4596
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)4597 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4598 u32 msr_index, u64 data)
4599 {
4600 struct msr_data msr;
4601
4602 msr.data = data;
4603 msr.index = msr_index;
4604 msr.host_initiated = false;
4605 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4606 }
4607
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)4608 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4609 u32 pmc, u64 *pdata)
4610 {
4611 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4612 }
4613
emulator_halt(struct x86_emulate_ctxt * ctxt)4614 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4615 {
4616 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4617 }
4618
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)4619 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4620 {
4621 preempt_disable();
4622 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4623 /*
4624 * CR0.TS may reference the host fpu state, not the guest fpu state,
4625 * so it may be clear at this point.
4626 */
4627 clts();
4628 }
4629
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)4630 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4631 {
4632 preempt_enable();
4633 }
4634
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)4635 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4636 struct x86_instruction_info *info,
4637 enum x86_intercept_stage stage)
4638 {
4639 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4640 }
4641
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)4642 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4643 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4644 {
4645 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4646 }
4647
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)4648 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4649 {
4650 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4651 }
4652
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)4653 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4654 {
4655 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4656 }
4657
4658 static const struct x86_emulate_ops emulate_ops = {
4659 .read_gpr = emulator_read_gpr,
4660 .write_gpr = emulator_write_gpr,
4661 .read_std = kvm_read_guest_virt_system,
4662 .write_std = kvm_write_guest_virt_system,
4663 .fetch = kvm_fetch_guest_virt,
4664 .read_emulated = emulator_read_emulated,
4665 .write_emulated = emulator_write_emulated,
4666 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4667 .invlpg = emulator_invlpg,
4668 .pio_in_emulated = emulator_pio_in_emulated,
4669 .pio_out_emulated = emulator_pio_out_emulated,
4670 .get_segment = emulator_get_segment,
4671 .set_segment = emulator_set_segment,
4672 .get_cached_segment_base = emulator_get_cached_segment_base,
4673 .get_gdt = emulator_get_gdt,
4674 .get_idt = emulator_get_idt,
4675 .set_gdt = emulator_set_gdt,
4676 .set_idt = emulator_set_idt,
4677 .get_cr = emulator_get_cr,
4678 .set_cr = emulator_set_cr,
4679 .set_rflags = emulator_set_rflags,
4680 .cpl = emulator_get_cpl,
4681 .get_dr = emulator_get_dr,
4682 .set_dr = emulator_set_dr,
4683 .set_msr = emulator_set_msr,
4684 .get_msr = emulator_get_msr,
4685 .read_pmc = emulator_read_pmc,
4686 .halt = emulator_halt,
4687 .wbinvd = emulator_wbinvd,
4688 .fix_hypercall = emulator_fix_hypercall,
4689 .get_fpu = emulator_get_fpu,
4690 .put_fpu = emulator_put_fpu,
4691 .intercept = emulator_intercept,
4692 .get_cpuid = emulator_get_cpuid,
4693 };
4694
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)4695 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4696 {
4697 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4698 /*
4699 * an sti; sti; sequence only disable interrupts for the first
4700 * instruction. So, if the last instruction, be it emulated or
4701 * not, left the system with the INT_STI flag enabled, it
4702 * means that the last instruction is an sti. We should not
4703 * leave the flag on in this case. The same goes for mov ss
4704 */
4705 if (!(int_shadow & mask))
4706 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4707 }
4708
inject_emulated_exception(struct kvm_vcpu * vcpu)4709 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4710 {
4711 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4712 if (ctxt->exception.vector == PF_VECTOR)
4713 kvm_propagate_fault(vcpu, &ctxt->exception);
4714 else if (ctxt->exception.error_code_valid)
4715 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4716 ctxt->exception.error_code);
4717 else
4718 kvm_queue_exception(vcpu, ctxt->exception.vector);
4719 }
4720
init_decode_cache(struct x86_emulate_ctxt * ctxt)4721 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4722 {
4723 memset(&ctxt->twobyte, 0,
4724 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4725
4726 ctxt->fetch.start = 0;
4727 ctxt->fetch.end = 0;
4728 ctxt->io_read.pos = 0;
4729 ctxt->io_read.end = 0;
4730 ctxt->mem_read.pos = 0;
4731 ctxt->mem_read.end = 0;
4732 }
4733
init_emulate_ctxt(struct kvm_vcpu * vcpu)4734 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4735 {
4736 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4737 int cs_db, cs_l;
4738
4739 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4740
4741 ctxt->eflags = kvm_get_rflags(vcpu);
4742 ctxt->eip = kvm_rip_read(vcpu);
4743 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4744 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4745 cs_l ? X86EMUL_MODE_PROT64 :
4746 cs_db ? X86EMUL_MODE_PROT32 :
4747 X86EMUL_MODE_PROT16;
4748 ctxt->guest_mode = is_guest_mode(vcpu);
4749
4750 init_decode_cache(ctxt);
4751 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4752 }
4753
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)4754 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4755 {
4756 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4757 int ret;
4758
4759 init_emulate_ctxt(vcpu);
4760
4761 ctxt->op_bytes = 2;
4762 ctxt->ad_bytes = 2;
4763 ctxt->_eip = ctxt->eip + inc_eip;
4764 ret = emulate_int_real(ctxt, irq);
4765
4766 if (ret != X86EMUL_CONTINUE)
4767 return EMULATE_FAIL;
4768
4769 ctxt->eip = ctxt->_eip;
4770 kvm_rip_write(vcpu, ctxt->eip);
4771 kvm_set_rflags(vcpu, ctxt->eflags);
4772
4773 if (irq == NMI_VECTOR)
4774 vcpu->arch.nmi_pending = 0;
4775 else
4776 vcpu->arch.interrupt.pending = false;
4777
4778 return EMULATE_DONE;
4779 }
4780 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4781
handle_emulation_failure(struct kvm_vcpu * vcpu)4782 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4783 {
4784 int r = EMULATE_DONE;
4785
4786 ++vcpu->stat.insn_emulation_fail;
4787 trace_kvm_emulate_insn_failed(vcpu);
4788 if (!is_guest_mode(vcpu)) {
4789 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4790 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4791 vcpu->run->internal.ndata = 0;
4792 r = EMULATE_FAIL;
4793 }
4794 kvm_queue_exception(vcpu, UD_VECTOR);
4795
4796 return r;
4797 }
4798
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)4799 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4800 bool write_fault_to_shadow_pgtable,
4801 int emulation_type)
4802 {
4803 gpa_t gpa = cr2;
4804 pfn_t pfn;
4805
4806 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4807 return false;
4808
4809 if (!vcpu->arch.mmu.direct_map) {
4810 /*
4811 * Write permission should be allowed since only
4812 * write access need to be emulated.
4813 */
4814 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4815
4816 /*
4817 * If the mapping is invalid in guest, let cpu retry
4818 * it to generate fault.
4819 */
4820 if (gpa == UNMAPPED_GVA)
4821 return true;
4822 }
4823
4824 /*
4825 * Do not retry the unhandleable instruction if it faults on the
4826 * readonly host memory, otherwise it will goto a infinite loop:
4827 * retry instruction -> write #PF -> emulation fail -> retry
4828 * instruction -> ...
4829 */
4830 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4831
4832 /*
4833 * If the instruction failed on the error pfn, it can not be fixed,
4834 * report the error to userspace.
4835 */
4836 if (is_error_noslot_pfn(pfn))
4837 return false;
4838
4839 kvm_release_pfn_clean(pfn);
4840
4841 /* The instructions are well-emulated on direct mmu. */
4842 if (vcpu->arch.mmu.direct_map) {
4843 unsigned int indirect_shadow_pages;
4844
4845 spin_lock(&vcpu->kvm->mmu_lock);
4846 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4847 spin_unlock(&vcpu->kvm->mmu_lock);
4848
4849 if (indirect_shadow_pages)
4850 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4851
4852 return true;
4853 }
4854
4855 /*
4856 * if emulation was due to access to shadowed page table
4857 * and it failed try to unshadow page and re-enter the
4858 * guest to let CPU execute the instruction.
4859 */
4860 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4861
4862 /*
4863 * If the access faults on its page table, it can not
4864 * be fixed by unprotecting shadow page and it should
4865 * be reported to userspace.
4866 */
4867 return !write_fault_to_shadow_pgtable;
4868 }
4869
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)4870 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4871 unsigned long cr2, int emulation_type)
4872 {
4873 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4874 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4875
4876 last_retry_eip = vcpu->arch.last_retry_eip;
4877 last_retry_addr = vcpu->arch.last_retry_addr;
4878
4879 /*
4880 * If the emulation is caused by #PF and it is non-page_table
4881 * writing instruction, it means the VM-EXIT is caused by shadow
4882 * page protected, we can zap the shadow page and retry this
4883 * instruction directly.
4884 *
4885 * Note: if the guest uses a non-page-table modifying instruction
4886 * on the PDE that points to the instruction, then we will unmap
4887 * the instruction and go to an infinite loop. So, we cache the
4888 * last retried eip and the last fault address, if we meet the eip
4889 * and the address again, we can break out of the potential infinite
4890 * loop.
4891 */
4892 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4893
4894 if (!(emulation_type & EMULTYPE_RETRY))
4895 return false;
4896
4897 if (x86_page_table_writing_insn(ctxt))
4898 return false;
4899
4900 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4901 return false;
4902
4903 vcpu->arch.last_retry_eip = ctxt->eip;
4904 vcpu->arch.last_retry_addr = cr2;
4905
4906 if (!vcpu->arch.mmu.direct_map)
4907 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4908
4909 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4910
4911 return true;
4912 }
4913
4914 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4915 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4916
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)4917 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4918 unsigned long cr2,
4919 int emulation_type,
4920 void *insn,
4921 int insn_len)
4922 {
4923 int r;
4924 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4925 bool writeback = true;
4926 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4927
4928 /*
4929 * Clear write_fault_to_shadow_pgtable here to ensure it is
4930 * never reused.
4931 */
4932 vcpu->arch.write_fault_to_shadow_pgtable = false;
4933 kvm_clear_exception_queue(vcpu);
4934
4935 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4936 init_emulate_ctxt(vcpu);
4937 ctxt->interruptibility = 0;
4938 ctxt->have_exception = false;
4939 ctxt->perm_ok = false;
4940
4941 ctxt->only_vendor_specific_insn
4942 = emulation_type & EMULTYPE_TRAP_UD;
4943
4944 r = x86_decode_insn(ctxt, insn, insn_len);
4945
4946 trace_kvm_emulate_insn_start(vcpu);
4947 ++vcpu->stat.insn_emulation;
4948 if (r != EMULATION_OK) {
4949 if (emulation_type & EMULTYPE_TRAP_UD)
4950 return EMULATE_FAIL;
4951 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4952 emulation_type))
4953 return EMULATE_DONE;
4954 if (emulation_type & EMULTYPE_SKIP)
4955 return EMULATE_FAIL;
4956 return handle_emulation_failure(vcpu);
4957 }
4958 }
4959
4960 if (emulation_type & EMULTYPE_SKIP) {
4961 kvm_rip_write(vcpu, ctxt->_eip);
4962 return EMULATE_DONE;
4963 }
4964
4965 if (retry_instruction(ctxt, cr2, emulation_type))
4966 return EMULATE_DONE;
4967
4968 /* this is needed for vmware backdoor interface to work since it
4969 changes registers values during IO operation */
4970 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4971 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4972 emulator_invalidate_register_cache(ctxt);
4973 }
4974
4975 restart:
4976 r = x86_emulate_insn(ctxt);
4977
4978 if (r == EMULATION_INTERCEPTED)
4979 return EMULATE_DONE;
4980
4981 if (r == EMULATION_FAILED) {
4982 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4983 emulation_type))
4984 return EMULATE_DONE;
4985
4986 return handle_emulation_failure(vcpu);
4987 }
4988
4989 if (ctxt->have_exception) {
4990 inject_emulated_exception(vcpu);
4991 r = EMULATE_DONE;
4992 } else if (vcpu->arch.pio.count) {
4993 if (!vcpu->arch.pio.in)
4994 vcpu->arch.pio.count = 0;
4995 else {
4996 writeback = false;
4997 vcpu->arch.complete_userspace_io = complete_emulated_pio;
4998 }
4999 r = EMULATE_DO_MMIO;
5000 } else if (vcpu->mmio_needed) {
5001 if (!vcpu->mmio_is_write)
5002 writeback = false;
5003 r = EMULATE_DO_MMIO;
5004 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5005 } else if (r == EMULATION_RESTART)
5006 goto restart;
5007 else
5008 r = EMULATE_DONE;
5009
5010 if (writeback) {
5011 toggle_interruptibility(vcpu, ctxt->interruptibility);
5012 kvm_set_rflags(vcpu, ctxt->eflags);
5013 kvm_make_request(KVM_REQ_EVENT, vcpu);
5014 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5015 kvm_rip_write(vcpu, ctxt->eip);
5016 } else
5017 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5018
5019 return r;
5020 }
5021 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5022
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5023 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5024 {
5025 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5026 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5027 size, port, &val, 1);
5028 /* do not return to emulator after return from userspace */
5029 vcpu->arch.pio.count = 0;
5030 return ret;
5031 }
5032 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5033
tsc_bad(void * info)5034 static void tsc_bad(void *info)
5035 {
5036 __this_cpu_write(cpu_tsc_khz, 0);
5037 }
5038
tsc_khz_changed(void * data)5039 static void tsc_khz_changed(void *data)
5040 {
5041 struct cpufreq_freqs *freq = data;
5042 unsigned long khz = 0;
5043
5044 if (data)
5045 khz = freq->new;
5046 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5047 khz = cpufreq_quick_get(raw_smp_processor_id());
5048 if (!khz)
5049 khz = tsc_khz;
5050 __this_cpu_write(cpu_tsc_khz, khz);
5051 }
5052
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5053 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5054 void *data)
5055 {
5056 struct cpufreq_freqs *freq = data;
5057 struct kvm *kvm;
5058 struct kvm_vcpu *vcpu;
5059 int i, send_ipi = 0;
5060
5061 /*
5062 * We allow guests to temporarily run on slowing clocks,
5063 * provided we notify them after, or to run on accelerating
5064 * clocks, provided we notify them before. Thus time never
5065 * goes backwards.
5066 *
5067 * However, we have a problem. We can't atomically update
5068 * the frequency of a given CPU from this function; it is
5069 * merely a notifier, which can be called from any CPU.
5070 * Changing the TSC frequency at arbitrary points in time
5071 * requires a recomputation of local variables related to
5072 * the TSC for each VCPU. We must flag these local variables
5073 * to be updated and be sure the update takes place with the
5074 * new frequency before any guests proceed.
5075 *
5076 * Unfortunately, the combination of hotplug CPU and frequency
5077 * change creates an intractable locking scenario; the order
5078 * of when these callouts happen is undefined with respect to
5079 * CPU hotplug, and they can race with each other. As such,
5080 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5081 * undefined; you can actually have a CPU frequency change take
5082 * place in between the computation of X and the setting of the
5083 * variable. To protect against this problem, all updates of
5084 * the per_cpu tsc_khz variable are done in an interrupt
5085 * protected IPI, and all callers wishing to update the value
5086 * must wait for a synchronous IPI to complete (which is trivial
5087 * if the caller is on the CPU already). This establishes the
5088 * necessary total order on variable updates.
5089 *
5090 * Note that because a guest time update may take place
5091 * anytime after the setting of the VCPU's request bit, the
5092 * correct TSC value must be set before the request. However,
5093 * to ensure the update actually makes it to any guest which
5094 * starts running in hardware virtualization between the set
5095 * and the acquisition of the spinlock, we must also ping the
5096 * CPU after setting the request bit.
5097 *
5098 */
5099
5100 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5101 return 0;
5102 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5103 return 0;
5104
5105 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5106
5107 raw_spin_lock(&kvm_lock);
5108 list_for_each_entry(kvm, &vm_list, vm_list) {
5109 kvm_for_each_vcpu(i, vcpu, kvm) {
5110 if (vcpu->cpu != freq->cpu)
5111 continue;
5112 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5113 if (vcpu->cpu != smp_processor_id())
5114 send_ipi = 1;
5115 }
5116 }
5117 raw_spin_unlock(&kvm_lock);
5118
5119 if (freq->old < freq->new && send_ipi) {
5120 /*
5121 * We upscale the frequency. Must make the guest
5122 * doesn't see old kvmclock values while running with
5123 * the new frequency, otherwise we risk the guest sees
5124 * time go backwards.
5125 *
5126 * In case we update the frequency for another cpu
5127 * (which might be in guest context) send an interrupt
5128 * to kick the cpu out of guest context. Next time
5129 * guest context is entered kvmclock will be updated,
5130 * so the guest will not see stale values.
5131 */
5132 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5133 }
5134 return 0;
5135 }
5136
5137 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5138 .notifier_call = kvmclock_cpufreq_notifier
5139 };
5140
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5141 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5142 unsigned long action, void *hcpu)
5143 {
5144 unsigned int cpu = (unsigned long)hcpu;
5145
5146 switch (action) {
5147 case CPU_ONLINE:
5148 case CPU_DOWN_FAILED:
5149 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5150 break;
5151 case CPU_DOWN_PREPARE:
5152 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5153 break;
5154 }
5155 return NOTIFY_OK;
5156 }
5157
5158 static struct notifier_block kvmclock_cpu_notifier_block = {
5159 .notifier_call = kvmclock_cpu_notifier,
5160 .priority = -INT_MAX
5161 };
5162
kvm_timer_init(void)5163 static void kvm_timer_init(void)
5164 {
5165 int cpu;
5166
5167 max_tsc_khz = tsc_khz;
5168 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5169 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5170 #ifdef CONFIG_CPU_FREQ
5171 struct cpufreq_policy policy;
5172 memset(&policy, 0, sizeof(policy));
5173 cpu = get_cpu();
5174 cpufreq_get_policy(&policy, cpu);
5175 if (policy.cpuinfo.max_freq)
5176 max_tsc_khz = policy.cpuinfo.max_freq;
5177 put_cpu();
5178 #endif
5179 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5180 CPUFREQ_TRANSITION_NOTIFIER);
5181 }
5182 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5183 for_each_online_cpu(cpu)
5184 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5185 }
5186
5187 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5188
kvm_is_in_guest(void)5189 int kvm_is_in_guest(void)
5190 {
5191 return __this_cpu_read(current_vcpu) != NULL;
5192 }
5193
kvm_is_user_mode(void)5194 static int kvm_is_user_mode(void)
5195 {
5196 int user_mode = 3;
5197
5198 if (__this_cpu_read(current_vcpu))
5199 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5200
5201 return user_mode != 0;
5202 }
5203
kvm_get_guest_ip(void)5204 static unsigned long kvm_get_guest_ip(void)
5205 {
5206 unsigned long ip = 0;
5207
5208 if (__this_cpu_read(current_vcpu))
5209 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5210
5211 return ip;
5212 }
5213
5214 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5215 .is_in_guest = kvm_is_in_guest,
5216 .is_user_mode = kvm_is_user_mode,
5217 .get_guest_ip = kvm_get_guest_ip,
5218 };
5219
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5220 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5221 {
5222 __this_cpu_write(current_vcpu, vcpu);
5223 }
5224 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5225
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5226 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5227 {
5228 __this_cpu_write(current_vcpu, NULL);
5229 }
5230 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5231
kvm_set_mmio_spte_mask(void)5232 static void kvm_set_mmio_spte_mask(void)
5233 {
5234 u64 mask;
5235 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5236
5237 /*
5238 * Set the reserved bits and the present bit of an paging-structure
5239 * entry to generate page fault with PFER.RSV = 1.
5240 */
5241 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5242 mask |= 1ull;
5243
5244 #ifdef CONFIG_X86_64
5245 /*
5246 * If reserved bit is not supported, clear the present bit to disable
5247 * mmio page fault.
5248 */
5249 if (maxphyaddr == 52)
5250 mask &= ~1ull;
5251 #endif
5252
5253 kvm_mmu_set_mmio_spte_mask(mask);
5254 }
5255
5256 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5257 static void pvclock_gtod_update_fn(struct work_struct *work)
5258 {
5259 struct kvm *kvm;
5260
5261 struct kvm_vcpu *vcpu;
5262 int i;
5263
5264 raw_spin_lock(&kvm_lock);
5265 list_for_each_entry(kvm, &vm_list, vm_list)
5266 kvm_for_each_vcpu(i, vcpu, kvm)
5267 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5268 atomic_set(&kvm_guest_has_master_clock, 0);
5269 raw_spin_unlock(&kvm_lock);
5270 }
5271
5272 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5273
5274 /*
5275 * Notification about pvclock gtod data update.
5276 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5277 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5278 void *priv)
5279 {
5280 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5281 struct timekeeper *tk = priv;
5282
5283 update_pvclock_gtod(tk);
5284
5285 /* disable master clock if host does not trust, or does not
5286 * use, TSC clocksource
5287 */
5288 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5289 atomic_read(&kvm_guest_has_master_clock) != 0)
5290 queue_work(system_long_wq, &pvclock_gtod_work);
5291
5292 return 0;
5293 }
5294
5295 static struct notifier_block pvclock_gtod_notifier = {
5296 .notifier_call = pvclock_gtod_notify,
5297 };
5298 #endif
5299
kvm_arch_init(void * opaque)5300 int kvm_arch_init(void *opaque)
5301 {
5302 int r;
5303 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5304
5305 if (kvm_x86_ops) {
5306 printk(KERN_ERR "kvm: already loaded the other module\n");
5307 r = -EEXIST;
5308 goto out;
5309 }
5310
5311 if (!ops->cpu_has_kvm_support()) {
5312 printk(KERN_ERR "kvm: no hardware support\n");
5313 r = -EOPNOTSUPP;
5314 goto out;
5315 }
5316 if (ops->disabled_by_bios()) {
5317 printk(KERN_ERR "kvm: disabled by bios\n");
5318 r = -EOPNOTSUPP;
5319 goto out;
5320 }
5321
5322 r = -ENOMEM;
5323 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5324 if (!shared_msrs) {
5325 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5326 goto out;
5327 }
5328
5329 r = kvm_mmu_module_init();
5330 if (r)
5331 goto out_free_percpu;
5332
5333 kvm_set_mmio_spte_mask();
5334 kvm_init_msr_list();
5335
5336 kvm_x86_ops = ops;
5337 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5338 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5339
5340 kvm_timer_init();
5341
5342 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5343
5344 if (cpu_has_xsave)
5345 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5346
5347 kvm_lapic_init();
5348 #ifdef CONFIG_X86_64
5349 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5350 #endif
5351
5352 return 0;
5353
5354 out_free_percpu:
5355 free_percpu(shared_msrs);
5356 out:
5357 return r;
5358 }
5359
kvm_arch_exit(void)5360 void kvm_arch_exit(void)
5361 {
5362 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5363
5364 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5365 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5366 CPUFREQ_TRANSITION_NOTIFIER);
5367 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5368 #ifdef CONFIG_X86_64
5369 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5370 #endif
5371 kvm_x86_ops = NULL;
5372 kvm_mmu_module_exit();
5373 free_percpu(shared_msrs);
5374 }
5375
kvm_emulate_halt(struct kvm_vcpu * vcpu)5376 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5377 {
5378 ++vcpu->stat.halt_exits;
5379 if (irqchip_in_kernel(vcpu->kvm)) {
5380 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5381 return 1;
5382 } else {
5383 vcpu->run->exit_reason = KVM_EXIT_HLT;
5384 return 0;
5385 }
5386 }
5387 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5388
kvm_hv_hypercall(struct kvm_vcpu * vcpu)5389 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5390 {
5391 u64 param, ingpa, outgpa, ret;
5392 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5393 bool fast, longmode;
5394 int cs_db, cs_l;
5395
5396 /*
5397 * hypercall generates UD from non zero cpl and real mode
5398 * per HYPER-V spec
5399 */
5400 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5401 kvm_queue_exception(vcpu, UD_VECTOR);
5402 return 0;
5403 }
5404
5405 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5406 longmode = is_long_mode(vcpu) && cs_l == 1;
5407
5408 if (!longmode) {
5409 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5410 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5411 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5412 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5413 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5414 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5415 }
5416 #ifdef CONFIG_X86_64
5417 else {
5418 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5419 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5420 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5421 }
5422 #endif
5423
5424 code = param & 0xffff;
5425 fast = (param >> 16) & 0x1;
5426 rep_cnt = (param >> 32) & 0xfff;
5427 rep_idx = (param >> 48) & 0xfff;
5428
5429 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5430
5431 switch (code) {
5432 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5433 kvm_vcpu_on_spin(vcpu);
5434 break;
5435 default:
5436 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5437 break;
5438 }
5439
5440 ret = res | (((u64)rep_done & 0xfff) << 32);
5441 if (longmode) {
5442 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5443 } else {
5444 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5445 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5446 }
5447
5448 return 1;
5449 }
5450
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)5451 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5452 {
5453 unsigned long nr, a0, a1, a2, a3, ret;
5454 int r = 1;
5455
5456 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5457 return kvm_hv_hypercall(vcpu);
5458
5459 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5460 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5461 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5462 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5463 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5464
5465 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5466
5467 if (!is_long_mode(vcpu)) {
5468 nr &= 0xFFFFFFFF;
5469 a0 &= 0xFFFFFFFF;
5470 a1 &= 0xFFFFFFFF;
5471 a2 &= 0xFFFFFFFF;
5472 a3 &= 0xFFFFFFFF;
5473 }
5474
5475 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5476 ret = -KVM_EPERM;
5477 goto out;
5478 }
5479
5480 switch (nr) {
5481 case KVM_HC_VAPIC_POLL_IRQ:
5482 ret = 0;
5483 break;
5484 default:
5485 ret = -KVM_ENOSYS;
5486 break;
5487 }
5488 out:
5489 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5490 ++vcpu->stat.hypercalls;
5491 return r;
5492 }
5493 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5494
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)5495 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5496 {
5497 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5498 char instruction[3];
5499 unsigned long rip = kvm_rip_read(vcpu);
5500
5501 /*
5502 * Blow out the MMU to ensure that no other VCPU has an active mapping
5503 * to ensure that the updated hypercall appears atomically across all
5504 * VCPUs.
5505 */
5506 kvm_mmu_zap_all(vcpu->kvm);
5507
5508 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5509
5510 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5511 }
5512
5513 /*
5514 * Check if userspace requested an interrupt window, and that the
5515 * interrupt window is open.
5516 *
5517 * No need to exit to userspace if we already have an interrupt queued.
5518 */
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)5519 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5520 {
5521 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5522 vcpu->run->request_interrupt_window &&
5523 kvm_arch_interrupt_allowed(vcpu));
5524 }
5525
post_kvm_run_save(struct kvm_vcpu * vcpu)5526 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5527 {
5528 struct kvm_run *kvm_run = vcpu->run;
5529
5530 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5531 kvm_run->cr8 = kvm_get_cr8(vcpu);
5532 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5533 if (irqchip_in_kernel(vcpu->kvm))
5534 kvm_run->ready_for_interrupt_injection = 1;
5535 else
5536 kvm_run->ready_for_interrupt_injection =
5537 kvm_arch_interrupt_allowed(vcpu) &&
5538 !kvm_cpu_has_interrupt(vcpu) &&
5539 !kvm_event_needs_reinjection(vcpu);
5540 }
5541
vapic_enter(struct kvm_vcpu * vcpu)5542 static int vapic_enter(struct kvm_vcpu *vcpu)
5543 {
5544 struct kvm_lapic *apic = vcpu->arch.apic;
5545 struct page *page;
5546
5547 if (!apic || !apic->vapic_addr)
5548 return 0;
5549
5550 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5551 if (is_error_page(page))
5552 return -EFAULT;
5553
5554 vcpu->arch.apic->vapic_page = page;
5555 return 0;
5556 }
5557
vapic_exit(struct kvm_vcpu * vcpu)5558 static void vapic_exit(struct kvm_vcpu *vcpu)
5559 {
5560 struct kvm_lapic *apic = vcpu->arch.apic;
5561 int idx;
5562
5563 if (!apic || !apic->vapic_addr)
5564 return;
5565
5566 idx = srcu_read_lock(&vcpu->kvm->srcu);
5567 kvm_release_page_dirty(apic->vapic_page);
5568 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5569 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5570 }
5571
update_cr8_intercept(struct kvm_vcpu * vcpu)5572 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5573 {
5574 int max_irr, tpr;
5575
5576 if (!kvm_x86_ops->update_cr8_intercept)
5577 return;
5578
5579 if (!vcpu->arch.apic)
5580 return;
5581
5582 if (!vcpu->arch.apic->vapic_addr)
5583 max_irr = kvm_lapic_find_highest_irr(vcpu);
5584 else
5585 max_irr = -1;
5586
5587 if (max_irr != -1)
5588 max_irr >>= 4;
5589
5590 tpr = kvm_lapic_get_cr8(vcpu);
5591
5592 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5593 }
5594
inject_pending_event(struct kvm_vcpu * vcpu)5595 static void inject_pending_event(struct kvm_vcpu *vcpu)
5596 {
5597 /* try to reinject previous events if any */
5598 if (vcpu->arch.exception.pending) {
5599 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5600 vcpu->arch.exception.has_error_code,
5601 vcpu->arch.exception.error_code);
5602 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5603 vcpu->arch.exception.has_error_code,
5604 vcpu->arch.exception.error_code,
5605 vcpu->arch.exception.reinject);
5606 return;
5607 }
5608
5609 if (vcpu->arch.nmi_injected) {
5610 kvm_x86_ops->set_nmi(vcpu);
5611 return;
5612 }
5613
5614 if (vcpu->arch.interrupt.pending) {
5615 kvm_x86_ops->set_irq(vcpu);
5616 return;
5617 }
5618
5619 /* try to inject new event if pending */
5620 if (vcpu->arch.nmi_pending) {
5621 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5622 --vcpu->arch.nmi_pending;
5623 vcpu->arch.nmi_injected = true;
5624 kvm_x86_ops->set_nmi(vcpu);
5625 }
5626 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5627 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5628 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5629 false);
5630 kvm_x86_ops->set_irq(vcpu);
5631 }
5632 }
5633 }
5634
process_nmi(struct kvm_vcpu * vcpu)5635 static void process_nmi(struct kvm_vcpu *vcpu)
5636 {
5637 unsigned limit = 2;
5638
5639 /*
5640 * x86 is limited to one NMI running, and one NMI pending after it.
5641 * If an NMI is already in progress, limit further NMIs to just one.
5642 * Otherwise, allow two (and we'll inject the first one immediately).
5643 */
5644 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5645 limit = 1;
5646
5647 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5648 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5649 kvm_make_request(KVM_REQ_EVENT, vcpu);
5650 }
5651
kvm_gen_update_masterclock(struct kvm * kvm)5652 static void kvm_gen_update_masterclock(struct kvm *kvm)
5653 {
5654 #ifdef CONFIG_X86_64
5655 int i;
5656 struct kvm_vcpu *vcpu;
5657 struct kvm_arch *ka = &kvm->arch;
5658
5659 spin_lock(&ka->pvclock_gtod_sync_lock);
5660 kvm_make_mclock_inprogress_request(kvm);
5661 /* no guest entries from this point */
5662 pvclock_update_vm_gtod_copy(kvm);
5663
5664 kvm_for_each_vcpu(i, vcpu, kvm)
5665 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5666
5667 /* guest entries allowed */
5668 kvm_for_each_vcpu(i, vcpu, kvm)
5669 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5670
5671 spin_unlock(&ka->pvclock_gtod_sync_lock);
5672 #endif
5673 }
5674
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)5675 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5676 {
5677 u64 eoi_exit_bitmap[4];
5678 u32 tmr[8];
5679
5680 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5681 return;
5682
5683 memset(eoi_exit_bitmap, 0, 32);
5684 memset(tmr, 0, 32);
5685
5686 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5687 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5688 kvm_apic_update_tmr(vcpu, tmr);
5689 }
5690
vcpu_enter_guest(struct kvm_vcpu * vcpu)5691 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5692 {
5693 int r;
5694 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5695 vcpu->run->request_interrupt_window;
5696 bool req_immediate_exit = false;
5697
5698 if (vcpu->requests) {
5699 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5700 kvm_mmu_unload(vcpu);
5701 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5702 __kvm_migrate_timers(vcpu);
5703 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5704 kvm_gen_update_masterclock(vcpu->kvm);
5705 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5706 r = kvm_guest_time_update(vcpu);
5707 if (unlikely(r))
5708 goto out;
5709 }
5710 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5711 kvm_mmu_sync_roots(vcpu);
5712 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5713 kvm_x86_ops->tlb_flush(vcpu);
5714 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5715 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5716 r = 0;
5717 goto out;
5718 }
5719 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5720 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5721 r = 0;
5722 goto out;
5723 }
5724 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5725 vcpu->fpu_active = 0;
5726 kvm_x86_ops->fpu_deactivate(vcpu);
5727 }
5728 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5729 /* Page is swapped out. Do synthetic halt */
5730 vcpu->arch.apf.halted = true;
5731 r = 1;
5732 goto out;
5733 }
5734 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5735 record_steal_time(vcpu);
5736 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5737 process_nmi(vcpu);
5738 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5739 kvm_handle_pmu_event(vcpu);
5740 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5741 kvm_deliver_pmi(vcpu);
5742 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5743 vcpu_scan_ioapic(vcpu);
5744 }
5745
5746 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5747 kvm_apic_accept_events(vcpu);
5748 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5749 r = 1;
5750 goto out;
5751 }
5752
5753 inject_pending_event(vcpu);
5754
5755 /* enable NMI/IRQ window open exits if needed */
5756 if (vcpu->arch.nmi_pending)
5757 req_immediate_exit =
5758 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5759 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5760 req_immediate_exit =
5761 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5762
5763 if (kvm_lapic_enabled(vcpu)) {
5764 /*
5765 * Update architecture specific hints for APIC
5766 * virtual interrupt delivery.
5767 */
5768 if (kvm_x86_ops->hwapic_irr_update)
5769 kvm_x86_ops->hwapic_irr_update(vcpu,
5770 kvm_lapic_find_highest_irr(vcpu));
5771 update_cr8_intercept(vcpu);
5772 kvm_lapic_sync_to_vapic(vcpu);
5773 }
5774 }
5775
5776 r = kvm_mmu_reload(vcpu);
5777 if (unlikely(r)) {
5778 goto cancel_injection;
5779 }
5780
5781 preempt_disable();
5782
5783 kvm_x86_ops->prepare_guest_switch(vcpu);
5784 if (vcpu->fpu_active)
5785 kvm_load_guest_fpu(vcpu);
5786 kvm_load_guest_xcr0(vcpu);
5787
5788 vcpu->mode = IN_GUEST_MODE;
5789
5790 /* We should set ->mode before check ->requests,
5791 * see the comment in make_all_cpus_request.
5792 */
5793 smp_mb();
5794
5795 local_irq_disable();
5796
5797 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5798 || need_resched() || signal_pending(current)) {
5799 vcpu->mode = OUTSIDE_GUEST_MODE;
5800 smp_wmb();
5801 local_irq_enable();
5802 preempt_enable();
5803 r = 1;
5804 goto cancel_injection;
5805 }
5806
5807 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5808
5809 if (req_immediate_exit)
5810 smp_send_reschedule(vcpu->cpu);
5811
5812 kvm_guest_enter();
5813
5814 if (unlikely(vcpu->arch.switch_db_regs)) {
5815 set_debugreg(0, 7);
5816 set_debugreg(vcpu->arch.eff_db[0], 0);
5817 set_debugreg(vcpu->arch.eff_db[1], 1);
5818 set_debugreg(vcpu->arch.eff_db[2], 2);
5819 set_debugreg(vcpu->arch.eff_db[3], 3);
5820 }
5821
5822 trace_kvm_entry(vcpu->vcpu_id);
5823 kvm_x86_ops->run(vcpu);
5824
5825 /*
5826 * If the guest has used debug registers, at least dr7
5827 * will be disabled while returning to the host.
5828 * If we don't have active breakpoints in the host, we don't
5829 * care about the messed up debug address registers. But if
5830 * we have some of them active, restore the old state.
5831 */
5832 if (hw_breakpoint_active())
5833 hw_breakpoint_restore();
5834
5835 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5836 native_read_tsc());
5837
5838 vcpu->mode = OUTSIDE_GUEST_MODE;
5839 smp_wmb();
5840
5841 /* Interrupt is enabled by handle_external_intr() */
5842 kvm_x86_ops->handle_external_intr(vcpu);
5843
5844 ++vcpu->stat.exits;
5845
5846 /*
5847 * We must have an instruction between local_irq_enable() and
5848 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5849 * the interrupt shadow. The stat.exits increment will do nicely.
5850 * But we need to prevent reordering, hence this barrier():
5851 */
5852 barrier();
5853
5854 kvm_guest_exit();
5855
5856 preempt_enable();
5857
5858 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5859
5860 /*
5861 * Profile KVM exit RIPs:
5862 */
5863 if (unlikely(prof_on == KVM_PROFILING)) {
5864 unsigned long rip = kvm_rip_read(vcpu);
5865 profile_hit(KVM_PROFILING, (void *)rip);
5866 }
5867
5868 if (unlikely(vcpu->arch.tsc_always_catchup))
5869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5870
5871 if (vcpu->arch.apic_attention)
5872 kvm_lapic_sync_from_vapic(vcpu);
5873
5874 r = kvm_x86_ops->handle_exit(vcpu);
5875 return r;
5876
5877 cancel_injection:
5878 kvm_x86_ops->cancel_injection(vcpu);
5879 if (unlikely(vcpu->arch.apic_attention))
5880 kvm_lapic_sync_from_vapic(vcpu);
5881 out:
5882 return r;
5883 }
5884
5885
__vcpu_run(struct kvm_vcpu * vcpu)5886 static int __vcpu_run(struct kvm_vcpu *vcpu)
5887 {
5888 int r;
5889 struct kvm *kvm = vcpu->kvm;
5890
5891 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5892 r = vapic_enter(vcpu);
5893 if (r) {
5894 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5895 return r;
5896 }
5897
5898 r = 1;
5899 while (r > 0) {
5900 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5901 !vcpu->arch.apf.halted)
5902 r = vcpu_enter_guest(vcpu);
5903 else {
5904 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5905 kvm_vcpu_block(vcpu);
5906 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5907 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5908 kvm_apic_accept_events(vcpu);
5909 switch(vcpu->arch.mp_state) {
5910 case KVM_MP_STATE_HALTED:
5911 vcpu->arch.mp_state =
5912 KVM_MP_STATE_RUNNABLE;
5913 case KVM_MP_STATE_RUNNABLE:
5914 vcpu->arch.apf.halted = false;
5915 break;
5916 case KVM_MP_STATE_INIT_RECEIVED:
5917 break;
5918 default:
5919 r = -EINTR;
5920 break;
5921 }
5922 }
5923 }
5924
5925 if (r <= 0)
5926 break;
5927
5928 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5929 if (kvm_cpu_has_pending_timer(vcpu))
5930 kvm_inject_pending_timer_irqs(vcpu);
5931
5932 if (dm_request_for_irq_injection(vcpu)) {
5933 r = -EINTR;
5934 vcpu->run->exit_reason = KVM_EXIT_INTR;
5935 ++vcpu->stat.request_irq_exits;
5936 }
5937
5938 kvm_check_async_pf_completion(vcpu);
5939
5940 if (signal_pending(current)) {
5941 r = -EINTR;
5942 vcpu->run->exit_reason = KVM_EXIT_INTR;
5943 ++vcpu->stat.signal_exits;
5944 }
5945 if (need_resched()) {
5946 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5947 kvm_resched(vcpu);
5948 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5949 }
5950 }
5951
5952 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5953
5954 vapic_exit(vcpu);
5955
5956 return r;
5957 }
5958
complete_emulated_io(struct kvm_vcpu * vcpu)5959 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5960 {
5961 int r;
5962 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5963 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5964 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5965 if (r != EMULATE_DONE)
5966 return 0;
5967 return 1;
5968 }
5969
complete_emulated_pio(struct kvm_vcpu * vcpu)5970 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5971 {
5972 BUG_ON(!vcpu->arch.pio.count);
5973
5974 return complete_emulated_io(vcpu);
5975 }
5976
5977 /*
5978 * Implements the following, as a state machine:
5979 *
5980 * read:
5981 * for each fragment
5982 * for each mmio piece in the fragment
5983 * write gpa, len
5984 * exit
5985 * copy data
5986 * execute insn
5987 *
5988 * write:
5989 * for each fragment
5990 * for each mmio piece in the fragment
5991 * write gpa, len
5992 * copy data
5993 * exit
5994 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)5995 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5996 {
5997 struct kvm_run *run = vcpu->run;
5998 struct kvm_mmio_fragment *frag;
5999 unsigned len;
6000
6001 BUG_ON(!vcpu->mmio_needed);
6002
6003 /* Complete previous fragment */
6004 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6005 len = min(8u, frag->len);
6006 if (!vcpu->mmio_is_write)
6007 memcpy(frag->data, run->mmio.data, len);
6008
6009 if (frag->len <= 8) {
6010 /* Switch to the next fragment. */
6011 frag++;
6012 vcpu->mmio_cur_fragment++;
6013 } else {
6014 /* Go forward to the next mmio piece. */
6015 frag->data += len;
6016 frag->gpa += len;
6017 frag->len -= len;
6018 }
6019
6020 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6021 vcpu->mmio_needed = 0;
6022 if (vcpu->mmio_is_write)
6023 return 1;
6024 vcpu->mmio_read_completed = 1;
6025 return complete_emulated_io(vcpu);
6026 }
6027
6028 run->exit_reason = KVM_EXIT_MMIO;
6029 run->mmio.phys_addr = frag->gpa;
6030 if (vcpu->mmio_is_write)
6031 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6032 run->mmio.len = min(8u, frag->len);
6033 run->mmio.is_write = vcpu->mmio_is_write;
6034 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6035 return 0;
6036 }
6037
6038
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)6039 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6040 {
6041 int r;
6042 sigset_t sigsaved;
6043
6044 if (!tsk_used_math(current) && init_fpu(current))
6045 return -ENOMEM;
6046
6047 if (vcpu->sigset_active)
6048 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6049
6050 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6051 kvm_vcpu_block(vcpu);
6052 kvm_apic_accept_events(vcpu);
6053 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6054 r = -EAGAIN;
6055 goto out;
6056 }
6057
6058 /* re-sync apic's tpr */
6059 if (!irqchip_in_kernel(vcpu->kvm)) {
6060 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6061 r = -EINVAL;
6062 goto out;
6063 }
6064 }
6065
6066 if (unlikely(vcpu->arch.complete_userspace_io)) {
6067 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6068 vcpu->arch.complete_userspace_io = NULL;
6069 r = cui(vcpu);
6070 if (r <= 0)
6071 goto out;
6072 } else
6073 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6074
6075 r = __vcpu_run(vcpu);
6076
6077 out:
6078 post_kvm_run_save(vcpu);
6079 if (vcpu->sigset_active)
6080 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6081
6082 return r;
6083 }
6084
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6085 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6086 {
6087 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6088 /*
6089 * We are here if userspace calls get_regs() in the middle of
6090 * instruction emulation. Registers state needs to be copied
6091 * back from emulation context to vcpu. Userspace shouldn't do
6092 * that usually, but some bad designed PV devices (vmware
6093 * backdoor interface) need this to work
6094 */
6095 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6096 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6097 }
6098 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6099 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6100 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6101 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6102 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6103 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6104 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6105 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6106 #ifdef CONFIG_X86_64
6107 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6108 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6109 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6110 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6111 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6112 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6113 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6114 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6115 #endif
6116
6117 regs->rip = kvm_rip_read(vcpu);
6118 regs->rflags = kvm_get_rflags(vcpu);
6119
6120 return 0;
6121 }
6122
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6123 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6124 {
6125 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6126 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6127
6128 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6129 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6130 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6131 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6132 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6133 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6134 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6135 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6136 #ifdef CONFIG_X86_64
6137 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6138 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6139 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6140 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6141 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6142 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6143 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6144 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6145 #endif
6146
6147 kvm_rip_write(vcpu, regs->rip);
6148 kvm_set_rflags(vcpu, regs->rflags);
6149
6150 vcpu->arch.exception.pending = false;
6151
6152 kvm_make_request(KVM_REQ_EVENT, vcpu);
6153
6154 return 0;
6155 }
6156
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)6157 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6158 {
6159 struct kvm_segment cs;
6160
6161 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6162 *db = cs.db;
6163 *l = cs.l;
6164 }
6165 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6166
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6167 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6168 struct kvm_sregs *sregs)
6169 {
6170 struct desc_ptr dt;
6171
6172 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6173 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6174 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6175 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6176 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6177 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6178
6179 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6180 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6181
6182 kvm_x86_ops->get_idt(vcpu, &dt);
6183 sregs->idt.limit = dt.size;
6184 sregs->idt.base = dt.address;
6185 kvm_x86_ops->get_gdt(vcpu, &dt);
6186 sregs->gdt.limit = dt.size;
6187 sregs->gdt.base = dt.address;
6188
6189 sregs->cr0 = kvm_read_cr0(vcpu);
6190 sregs->cr2 = vcpu->arch.cr2;
6191 sregs->cr3 = kvm_read_cr3(vcpu);
6192 sregs->cr4 = kvm_read_cr4(vcpu);
6193 sregs->cr8 = kvm_get_cr8(vcpu);
6194 sregs->efer = vcpu->arch.efer;
6195 sregs->apic_base = kvm_get_apic_base(vcpu);
6196
6197 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6198
6199 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6200 set_bit(vcpu->arch.interrupt.nr,
6201 (unsigned long *)sregs->interrupt_bitmap);
6202
6203 return 0;
6204 }
6205
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6206 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6207 struct kvm_mp_state *mp_state)
6208 {
6209 kvm_apic_accept_events(vcpu);
6210 mp_state->mp_state = vcpu->arch.mp_state;
6211 return 0;
6212 }
6213
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6214 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6215 struct kvm_mp_state *mp_state)
6216 {
6217 if (!kvm_vcpu_has_lapic(vcpu) &&
6218 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6219 return -EINVAL;
6220
6221 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6222 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6223 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6224 } else
6225 vcpu->arch.mp_state = mp_state->mp_state;
6226 kvm_make_request(KVM_REQ_EVENT, vcpu);
6227 return 0;
6228 }
6229
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)6230 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6231 int reason, bool has_error_code, u32 error_code)
6232 {
6233 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6234 int ret;
6235
6236 init_emulate_ctxt(vcpu);
6237
6238 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6239 has_error_code, error_code);
6240
6241 if (ret)
6242 return EMULATE_FAIL;
6243
6244 kvm_rip_write(vcpu, ctxt->eip);
6245 kvm_set_rflags(vcpu, ctxt->eflags);
6246 kvm_make_request(KVM_REQ_EVENT, vcpu);
6247 return EMULATE_DONE;
6248 }
6249 EXPORT_SYMBOL_GPL(kvm_task_switch);
6250
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6251 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6252 struct kvm_sregs *sregs)
6253 {
6254 int mmu_reset_needed = 0;
6255 int pending_vec, max_bits, idx;
6256 struct desc_ptr dt;
6257
6258 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6259 return -EINVAL;
6260
6261 dt.size = sregs->idt.limit;
6262 dt.address = sregs->idt.base;
6263 kvm_x86_ops->set_idt(vcpu, &dt);
6264 dt.size = sregs->gdt.limit;
6265 dt.address = sregs->gdt.base;
6266 kvm_x86_ops->set_gdt(vcpu, &dt);
6267
6268 vcpu->arch.cr2 = sregs->cr2;
6269 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6270 vcpu->arch.cr3 = sregs->cr3;
6271 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6272
6273 kvm_set_cr8(vcpu, sregs->cr8);
6274
6275 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6276 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6277 kvm_set_apic_base(vcpu, sregs->apic_base);
6278
6279 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6280 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6281 vcpu->arch.cr0 = sregs->cr0;
6282
6283 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6284 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6285 if (sregs->cr4 & X86_CR4_OSXSAVE)
6286 kvm_update_cpuid(vcpu);
6287
6288 idx = srcu_read_lock(&vcpu->kvm->srcu);
6289 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6290 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6291 mmu_reset_needed = 1;
6292 }
6293 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6294
6295 if (mmu_reset_needed)
6296 kvm_mmu_reset_context(vcpu);
6297
6298 max_bits = KVM_NR_INTERRUPTS;
6299 pending_vec = find_first_bit(
6300 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6301 if (pending_vec < max_bits) {
6302 kvm_queue_interrupt(vcpu, pending_vec, false);
6303 pr_debug("Set back pending irq %d\n", pending_vec);
6304 }
6305
6306 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6307 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6308 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6309 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6310 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6311 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6312
6313 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6314 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6315
6316 update_cr8_intercept(vcpu);
6317
6318 /* Older userspace won't unhalt the vcpu on reset. */
6319 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6320 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6321 !is_protmode(vcpu))
6322 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6323
6324 kvm_make_request(KVM_REQ_EVENT, vcpu);
6325
6326 return 0;
6327 }
6328
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)6329 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6330 struct kvm_guest_debug *dbg)
6331 {
6332 unsigned long rflags;
6333 int i, r;
6334
6335 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6336 r = -EBUSY;
6337 if (vcpu->arch.exception.pending)
6338 goto out;
6339 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6340 kvm_queue_exception(vcpu, DB_VECTOR);
6341 else
6342 kvm_queue_exception(vcpu, BP_VECTOR);
6343 }
6344
6345 /*
6346 * Read rflags as long as potentially injected trace flags are still
6347 * filtered out.
6348 */
6349 rflags = kvm_get_rflags(vcpu);
6350
6351 vcpu->guest_debug = dbg->control;
6352 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6353 vcpu->guest_debug = 0;
6354
6355 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6356 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6357 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6358 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6359 } else {
6360 for (i = 0; i < KVM_NR_DB_REGS; i++)
6361 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6362 }
6363 kvm_update_dr7(vcpu);
6364
6365 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6366 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6367 get_segment_base(vcpu, VCPU_SREG_CS);
6368
6369 /*
6370 * Trigger an rflags update that will inject or remove the trace
6371 * flags.
6372 */
6373 kvm_set_rflags(vcpu, rflags);
6374
6375 kvm_x86_ops->update_db_bp_intercept(vcpu);
6376
6377 r = 0;
6378
6379 out:
6380
6381 return r;
6382 }
6383
6384 /*
6385 * Translate a guest virtual address to a guest physical address.
6386 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)6387 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6388 struct kvm_translation *tr)
6389 {
6390 unsigned long vaddr = tr->linear_address;
6391 gpa_t gpa;
6392 int idx;
6393
6394 idx = srcu_read_lock(&vcpu->kvm->srcu);
6395 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6396 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6397 tr->physical_address = gpa;
6398 tr->valid = gpa != UNMAPPED_GVA;
6399 tr->writeable = 1;
6400 tr->usermode = 0;
6401
6402 return 0;
6403 }
6404
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)6405 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6406 {
6407 struct i387_fxsave_struct *fxsave =
6408 &vcpu->arch.guest_fpu.state->fxsave;
6409
6410 memcpy(fpu->fpr, fxsave->st_space, 128);
6411 fpu->fcw = fxsave->cwd;
6412 fpu->fsw = fxsave->swd;
6413 fpu->ftwx = fxsave->twd;
6414 fpu->last_opcode = fxsave->fop;
6415 fpu->last_ip = fxsave->rip;
6416 fpu->last_dp = fxsave->rdp;
6417 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6418
6419 return 0;
6420 }
6421
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)6422 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6423 {
6424 struct i387_fxsave_struct *fxsave =
6425 &vcpu->arch.guest_fpu.state->fxsave;
6426
6427 memcpy(fxsave->st_space, fpu->fpr, 128);
6428 fxsave->cwd = fpu->fcw;
6429 fxsave->swd = fpu->fsw;
6430 fxsave->twd = fpu->ftwx;
6431 fxsave->fop = fpu->last_opcode;
6432 fxsave->rip = fpu->last_ip;
6433 fxsave->rdp = fpu->last_dp;
6434 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6435
6436 return 0;
6437 }
6438
fx_init(struct kvm_vcpu * vcpu)6439 int fx_init(struct kvm_vcpu *vcpu)
6440 {
6441 int err;
6442
6443 err = fpu_alloc(&vcpu->arch.guest_fpu);
6444 if (err)
6445 return err;
6446
6447 fpu_finit(&vcpu->arch.guest_fpu);
6448
6449 /*
6450 * Ensure guest xcr0 is valid for loading
6451 */
6452 vcpu->arch.xcr0 = XSTATE_FP;
6453
6454 vcpu->arch.cr0 |= X86_CR0_ET;
6455
6456 return 0;
6457 }
6458 EXPORT_SYMBOL_GPL(fx_init);
6459
fx_free(struct kvm_vcpu * vcpu)6460 static void fx_free(struct kvm_vcpu *vcpu)
6461 {
6462 fpu_free(&vcpu->arch.guest_fpu);
6463 }
6464
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)6465 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6466 {
6467 if (vcpu->guest_fpu_loaded)
6468 return;
6469
6470 /*
6471 * Restore all possible states in the guest,
6472 * and assume host would use all available bits.
6473 * Guest xcr0 would be loaded later.
6474 */
6475 kvm_put_guest_xcr0(vcpu);
6476 vcpu->guest_fpu_loaded = 1;
6477 __kernel_fpu_begin();
6478 fpu_restore_checking(&vcpu->arch.guest_fpu);
6479 trace_kvm_fpu(1);
6480 }
6481
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)6482 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6483 {
6484 kvm_put_guest_xcr0(vcpu);
6485
6486 if (!vcpu->guest_fpu_loaded)
6487 return;
6488
6489 vcpu->guest_fpu_loaded = 0;
6490 fpu_save_init(&vcpu->arch.guest_fpu);
6491 __kernel_fpu_end();
6492 ++vcpu->stat.fpu_reload;
6493 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6494 trace_kvm_fpu(0);
6495 }
6496
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)6497 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6498 {
6499 kvmclock_reset(vcpu);
6500
6501 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6502 fx_free(vcpu);
6503 kvm_x86_ops->vcpu_free(vcpu);
6504 }
6505
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)6506 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6507 unsigned int id)
6508 {
6509 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6510 printk_once(KERN_WARNING
6511 "kvm: SMP vm created on host with unstable TSC; "
6512 "guest TSC will not be reliable\n");
6513 return kvm_x86_ops->vcpu_create(kvm, id);
6514 }
6515
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)6516 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6517 {
6518 int r;
6519
6520 vcpu->arch.mtrr_state.have_fixed = 1;
6521 r = vcpu_load(vcpu);
6522 if (r)
6523 return r;
6524 kvm_vcpu_reset(vcpu);
6525 r = kvm_mmu_setup(vcpu);
6526 vcpu_put(vcpu);
6527
6528 return r;
6529 }
6530
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)6531 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6532 {
6533 int r;
6534 struct msr_data msr;
6535
6536 r = vcpu_load(vcpu);
6537 if (r)
6538 return r;
6539 msr.data = 0x0;
6540 msr.index = MSR_IA32_TSC;
6541 msr.host_initiated = true;
6542 kvm_write_tsc(vcpu, &msr);
6543 vcpu_put(vcpu);
6544
6545 return r;
6546 }
6547
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)6548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6549 {
6550 int r;
6551 vcpu->arch.apf.msr_val = 0;
6552
6553 r = vcpu_load(vcpu);
6554 BUG_ON(r);
6555 kvm_mmu_unload(vcpu);
6556 vcpu_put(vcpu);
6557
6558 fx_free(vcpu);
6559 kvm_x86_ops->vcpu_free(vcpu);
6560 }
6561
kvm_vcpu_reset(struct kvm_vcpu * vcpu)6562 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6563 {
6564 atomic_set(&vcpu->arch.nmi_queued, 0);
6565 vcpu->arch.nmi_pending = 0;
6566 vcpu->arch.nmi_injected = false;
6567
6568 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6569 vcpu->arch.dr6 = DR6_FIXED_1;
6570 vcpu->arch.dr7 = DR7_FIXED_1;
6571 kvm_update_dr7(vcpu);
6572
6573 kvm_make_request(KVM_REQ_EVENT, vcpu);
6574 vcpu->arch.apf.msr_val = 0;
6575 vcpu->arch.st.msr_val = 0;
6576
6577 kvmclock_reset(vcpu);
6578
6579 kvm_clear_async_pf_completion_queue(vcpu);
6580 kvm_async_pf_hash_reset(vcpu);
6581 vcpu->arch.apf.halted = false;
6582
6583 kvm_pmu_reset(vcpu);
6584
6585 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6586 vcpu->arch.regs_avail = ~0;
6587 vcpu->arch.regs_dirty = ~0;
6588
6589 kvm_x86_ops->vcpu_reset(vcpu);
6590 }
6591
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,unsigned int vector)6592 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6593 {
6594 struct kvm_segment cs;
6595
6596 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6597 cs.selector = vector << 8;
6598 cs.base = vector << 12;
6599 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6600 kvm_rip_write(vcpu, 0);
6601 }
6602
kvm_arch_hardware_enable(void * garbage)6603 int kvm_arch_hardware_enable(void *garbage)
6604 {
6605 struct kvm *kvm;
6606 struct kvm_vcpu *vcpu;
6607 int i;
6608 int ret;
6609 u64 local_tsc;
6610 u64 max_tsc = 0;
6611 bool stable, backwards_tsc = false;
6612
6613 kvm_shared_msr_cpu_online();
6614 ret = kvm_x86_ops->hardware_enable(garbage);
6615 if (ret != 0)
6616 return ret;
6617
6618 local_tsc = native_read_tsc();
6619 stable = !check_tsc_unstable();
6620 list_for_each_entry(kvm, &vm_list, vm_list) {
6621 kvm_for_each_vcpu(i, vcpu, kvm) {
6622 if (!stable && vcpu->cpu == smp_processor_id())
6623 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6624 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6625 backwards_tsc = true;
6626 if (vcpu->arch.last_host_tsc > max_tsc)
6627 max_tsc = vcpu->arch.last_host_tsc;
6628 }
6629 }
6630 }
6631
6632 /*
6633 * Sometimes, even reliable TSCs go backwards. This happens on
6634 * platforms that reset TSC during suspend or hibernate actions, but
6635 * maintain synchronization. We must compensate. Fortunately, we can
6636 * detect that condition here, which happens early in CPU bringup,
6637 * before any KVM threads can be running. Unfortunately, we can't
6638 * bring the TSCs fully up to date with real time, as we aren't yet far
6639 * enough into CPU bringup that we know how much real time has actually
6640 * elapsed; our helper function, get_kernel_ns() will be using boot
6641 * variables that haven't been updated yet.
6642 *
6643 * So we simply find the maximum observed TSC above, then record the
6644 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6645 * the adjustment will be applied. Note that we accumulate
6646 * adjustments, in case multiple suspend cycles happen before some VCPU
6647 * gets a chance to run again. In the event that no KVM threads get a
6648 * chance to run, we will miss the entire elapsed period, as we'll have
6649 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6650 * loose cycle time. This isn't too big a deal, since the loss will be
6651 * uniform across all VCPUs (not to mention the scenario is extremely
6652 * unlikely). It is possible that a second hibernate recovery happens
6653 * much faster than a first, causing the observed TSC here to be
6654 * smaller; this would require additional padding adjustment, which is
6655 * why we set last_host_tsc to the local tsc observed here.
6656 *
6657 * N.B. - this code below runs only on platforms with reliable TSC,
6658 * as that is the only way backwards_tsc is set above. Also note
6659 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6660 * have the same delta_cyc adjustment applied if backwards_tsc
6661 * is detected. Note further, this adjustment is only done once,
6662 * as we reset last_host_tsc on all VCPUs to stop this from being
6663 * called multiple times (one for each physical CPU bringup).
6664 *
6665 * Platforms with unreliable TSCs don't have to deal with this, they
6666 * will be compensated by the logic in vcpu_load, which sets the TSC to
6667 * catchup mode. This will catchup all VCPUs to real time, but cannot
6668 * guarantee that they stay in perfect synchronization.
6669 */
6670 if (backwards_tsc) {
6671 u64 delta_cyc = max_tsc - local_tsc;
6672 list_for_each_entry(kvm, &vm_list, vm_list) {
6673 kvm_for_each_vcpu(i, vcpu, kvm) {
6674 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6675 vcpu->arch.last_host_tsc = local_tsc;
6676 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6677 &vcpu->requests);
6678 }
6679
6680 /*
6681 * We have to disable TSC offset matching.. if you were
6682 * booting a VM while issuing an S4 host suspend....
6683 * you may have some problem. Solving this issue is
6684 * left as an exercise to the reader.
6685 */
6686 kvm->arch.last_tsc_nsec = 0;
6687 kvm->arch.last_tsc_write = 0;
6688 }
6689
6690 }
6691 return 0;
6692 }
6693
kvm_arch_hardware_disable(void * garbage)6694 void kvm_arch_hardware_disable(void *garbage)
6695 {
6696 kvm_x86_ops->hardware_disable(garbage);
6697 drop_user_return_notifiers(garbage);
6698 }
6699
kvm_arch_hardware_setup(void)6700 int kvm_arch_hardware_setup(void)
6701 {
6702 return kvm_x86_ops->hardware_setup();
6703 }
6704
kvm_arch_hardware_unsetup(void)6705 void kvm_arch_hardware_unsetup(void)
6706 {
6707 kvm_x86_ops->hardware_unsetup();
6708 }
6709
kvm_arch_check_processor_compat(void * rtn)6710 void kvm_arch_check_processor_compat(void *rtn)
6711 {
6712 kvm_x86_ops->check_processor_compatibility(rtn);
6713 }
6714
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)6715 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6716 {
6717 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6718 }
6719
6720 struct static_key kvm_no_apic_vcpu __read_mostly;
6721
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)6722 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6723 {
6724 struct page *page;
6725 struct kvm *kvm;
6726 int r;
6727
6728 BUG_ON(vcpu->kvm == NULL);
6729 kvm = vcpu->kvm;
6730
6731 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6732 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6733 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6734 else
6735 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6736
6737 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6738 if (!page) {
6739 r = -ENOMEM;
6740 goto fail;
6741 }
6742 vcpu->arch.pio_data = page_address(page);
6743
6744 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6745
6746 r = kvm_mmu_create(vcpu);
6747 if (r < 0)
6748 goto fail_free_pio_data;
6749
6750 if (irqchip_in_kernel(kvm)) {
6751 r = kvm_create_lapic(vcpu);
6752 if (r < 0)
6753 goto fail_mmu_destroy;
6754 } else
6755 static_key_slow_inc(&kvm_no_apic_vcpu);
6756
6757 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6758 GFP_KERNEL);
6759 if (!vcpu->arch.mce_banks) {
6760 r = -ENOMEM;
6761 goto fail_free_lapic;
6762 }
6763 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6764
6765 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6766 r = -ENOMEM;
6767 goto fail_free_mce_banks;
6768 }
6769
6770 r = fx_init(vcpu);
6771 if (r)
6772 goto fail_free_wbinvd_dirty_mask;
6773
6774 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6775 vcpu->arch.pv_time_enabled = false;
6776 kvm_async_pf_hash_reset(vcpu);
6777 kvm_pmu_init(vcpu);
6778
6779 return 0;
6780 fail_free_wbinvd_dirty_mask:
6781 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6782 fail_free_mce_banks:
6783 kfree(vcpu->arch.mce_banks);
6784 fail_free_lapic:
6785 kvm_free_lapic(vcpu);
6786 fail_mmu_destroy:
6787 kvm_mmu_destroy(vcpu);
6788 fail_free_pio_data:
6789 free_page((unsigned long)vcpu->arch.pio_data);
6790 fail:
6791 return r;
6792 }
6793
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)6794 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6795 {
6796 int idx;
6797
6798 kvm_pmu_destroy(vcpu);
6799 kfree(vcpu->arch.mce_banks);
6800 kvm_free_lapic(vcpu);
6801 idx = srcu_read_lock(&vcpu->kvm->srcu);
6802 kvm_mmu_destroy(vcpu);
6803 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6804 free_page((unsigned long)vcpu->arch.pio_data);
6805 if (!irqchip_in_kernel(vcpu->kvm))
6806 static_key_slow_dec(&kvm_no_apic_vcpu);
6807 }
6808
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)6809 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6810 {
6811 if (type)
6812 return -EINVAL;
6813
6814 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6815 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6816
6817 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6818 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6819 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6820 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6821 &kvm->arch.irq_sources_bitmap);
6822
6823 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6824 mutex_init(&kvm->arch.apic_map_lock);
6825 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6826
6827 pvclock_update_vm_gtod_copy(kvm);
6828
6829 return 0;
6830 }
6831
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)6832 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6833 {
6834 int r;
6835 r = vcpu_load(vcpu);
6836 BUG_ON(r);
6837 kvm_mmu_unload(vcpu);
6838 vcpu_put(vcpu);
6839 }
6840
kvm_free_vcpus(struct kvm * kvm)6841 static void kvm_free_vcpus(struct kvm *kvm)
6842 {
6843 unsigned int i;
6844 struct kvm_vcpu *vcpu;
6845
6846 /*
6847 * Unpin any mmu pages first.
6848 */
6849 kvm_for_each_vcpu(i, vcpu, kvm) {
6850 kvm_clear_async_pf_completion_queue(vcpu);
6851 kvm_unload_vcpu_mmu(vcpu);
6852 }
6853 kvm_for_each_vcpu(i, vcpu, kvm)
6854 kvm_arch_vcpu_free(vcpu);
6855
6856 mutex_lock(&kvm->lock);
6857 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6858 kvm->vcpus[i] = NULL;
6859
6860 atomic_set(&kvm->online_vcpus, 0);
6861 mutex_unlock(&kvm->lock);
6862 }
6863
kvm_arch_sync_events(struct kvm * kvm)6864 void kvm_arch_sync_events(struct kvm *kvm)
6865 {
6866 kvm_free_all_assigned_devices(kvm);
6867 kvm_free_pit(kvm);
6868 }
6869
kvm_arch_destroy_vm(struct kvm * kvm)6870 void kvm_arch_destroy_vm(struct kvm *kvm)
6871 {
6872 if (current->mm == kvm->mm) {
6873 /*
6874 * Free memory regions allocated on behalf of userspace,
6875 * unless the the memory map has changed due to process exit
6876 * or fd copying.
6877 */
6878 struct kvm_userspace_memory_region mem;
6879 memset(&mem, 0, sizeof(mem));
6880 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6881 kvm_set_memory_region(kvm, &mem);
6882
6883 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6884 kvm_set_memory_region(kvm, &mem);
6885
6886 mem.slot = TSS_PRIVATE_MEMSLOT;
6887 kvm_set_memory_region(kvm, &mem);
6888 }
6889 kvm_iommu_unmap_guest(kvm);
6890 kfree(kvm->arch.vpic);
6891 kfree(kvm->arch.vioapic);
6892 kvm_free_vcpus(kvm);
6893 if (kvm->arch.apic_access_page)
6894 put_page(kvm->arch.apic_access_page);
6895 if (kvm->arch.ept_identity_pagetable)
6896 put_page(kvm->arch.ept_identity_pagetable);
6897 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6898 }
6899
kvm_arch_free_memslot(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)6900 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6901 struct kvm_memory_slot *dont)
6902 {
6903 int i;
6904
6905 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6906 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6907 kvm_kvfree(free->arch.rmap[i]);
6908 free->arch.rmap[i] = NULL;
6909 }
6910 if (i == 0)
6911 continue;
6912
6913 if (!dont || free->arch.lpage_info[i - 1] !=
6914 dont->arch.lpage_info[i - 1]) {
6915 kvm_kvfree(free->arch.lpage_info[i - 1]);
6916 free->arch.lpage_info[i - 1] = NULL;
6917 }
6918 }
6919 }
6920
kvm_arch_create_memslot(struct kvm_memory_slot * slot,unsigned long npages)6921 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6922 {
6923 int i;
6924
6925 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6926 unsigned long ugfn;
6927 int lpages;
6928 int level = i + 1;
6929
6930 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6931 slot->base_gfn, level) + 1;
6932
6933 slot->arch.rmap[i] =
6934 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6935 if (!slot->arch.rmap[i])
6936 goto out_free;
6937 if (i == 0)
6938 continue;
6939
6940 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6941 sizeof(*slot->arch.lpage_info[i - 1]));
6942 if (!slot->arch.lpage_info[i - 1])
6943 goto out_free;
6944
6945 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6946 slot->arch.lpage_info[i - 1][0].write_count = 1;
6947 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6948 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6949 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6950 /*
6951 * If the gfn and userspace address are not aligned wrt each
6952 * other, or if explicitly asked to, disable large page
6953 * support for this slot
6954 */
6955 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6956 !kvm_largepages_enabled()) {
6957 unsigned long j;
6958
6959 for (j = 0; j < lpages; ++j)
6960 slot->arch.lpage_info[i - 1][j].write_count = 1;
6961 }
6962 }
6963
6964 return 0;
6965
6966 out_free:
6967 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6968 kvm_kvfree(slot->arch.rmap[i]);
6969 slot->arch.rmap[i] = NULL;
6970 if (i == 0)
6971 continue;
6972
6973 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6974 slot->arch.lpage_info[i - 1] = NULL;
6975 }
6976 return -ENOMEM;
6977 }
6978
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)6979 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6980 struct kvm_memory_slot *memslot,
6981 struct kvm_userspace_memory_region *mem,
6982 enum kvm_mr_change change)
6983 {
6984 /*
6985 * Only private memory slots need to be mapped here since
6986 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6987 */
6988 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6989 unsigned long userspace_addr;
6990
6991 /*
6992 * MAP_SHARED to prevent internal slot pages from being moved
6993 * by fork()/COW.
6994 */
6995 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
6996 PROT_READ | PROT_WRITE,
6997 MAP_SHARED | MAP_ANONYMOUS, 0);
6998
6999 if (IS_ERR((void *)userspace_addr))
7000 return PTR_ERR((void *)userspace_addr);
7001
7002 memslot->userspace_addr = userspace_addr;
7003 }
7004
7005 return 0;
7006 }
7007
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,enum kvm_mr_change change)7008 void kvm_arch_commit_memory_region(struct kvm *kvm,
7009 struct kvm_userspace_memory_region *mem,
7010 const struct kvm_memory_slot *old,
7011 enum kvm_mr_change change)
7012 {
7013
7014 int nr_mmu_pages = 0;
7015
7016 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7017 int ret;
7018
7019 ret = vm_munmap(old->userspace_addr,
7020 old->npages * PAGE_SIZE);
7021 if (ret < 0)
7022 printk(KERN_WARNING
7023 "kvm_vm_ioctl_set_memory_region: "
7024 "failed to munmap memory\n");
7025 }
7026
7027 if (!kvm->arch.n_requested_mmu_pages)
7028 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7029
7030 if (nr_mmu_pages)
7031 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7032 /*
7033 * Write protect all pages for dirty logging.
7034 * Existing largepage mappings are destroyed here and new ones will
7035 * not be created until the end of the logging.
7036 */
7037 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7038 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7039 /*
7040 * If memory slot is created, or moved, we need to clear all
7041 * mmio sptes.
7042 */
7043 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7044 kvm_mmu_zap_mmio_sptes(kvm);
7045 kvm_reload_remote_mmus(kvm);
7046 }
7047 }
7048
kvm_arch_flush_shadow_all(struct kvm * kvm)7049 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7050 {
7051 kvm_mmu_zap_all(kvm);
7052 kvm_reload_remote_mmus(kvm);
7053 }
7054
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7055 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7056 struct kvm_memory_slot *slot)
7057 {
7058 kvm_arch_flush_shadow_all(kvm);
7059 }
7060
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)7061 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7062 {
7063 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7064 !vcpu->arch.apf.halted)
7065 || !list_empty_careful(&vcpu->async_pf.done)
7066 || kvm_apic_has_events(vcpu)
7067 || atomic_read(&vcpu->arch.nmi_queued) ||
7068 (kvm_arch_interrupt_allowed(vcpu) &&
7069 kvm_cpu_has_interrupt(vcpu));
7070 }
7071
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)7072 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7073 {
7074 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7075 }
7076
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)7077 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7078 {
7079 return kvm_x86_ops->interrupt_allowed(vcpu);
7080 }
7081
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)7082 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7083 {
7084 unsigned long current_rip = kvm_rip_read(vcpu) +
7085 get_segment_base(vcpu, VCPU_SREG_CS);
7086
7087 return current_rip == linear_rip;
7088 }
7089 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7090
kvm_get_rflags(struct kvm_vcpu * vcpu)7091 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7092 {
7093 unsigned long rflags;
7094
7095 rflags = kvm_x86_ops->get_rflags(vcpu);
7096 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7097 rflags &= ~X86_EFLAGS_TF;
7098 return rflags;
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7101
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)7102 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7103 {
7104 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7105 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7106 rflags |= X86_EFLAGS_TF;
7107 kvm_x86_ops->set_rflags(vcpu, rflags);
7108 kvm_make_request(KVM_REQ_EVENT, vcpu);
7109 }
7110 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7111
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7112 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7113 {
7114 int r;
7115
7116 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7117 is_error_page(work->page))
7118 return;
7119
7120 r = kvm_mmu_reload(vcpu);
7121 if (unlikely(r))
7122 return;
7123
7124 if (!vcpu->arch.mmu.direct_map &&
7125 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7126 return;
7127
7128 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7129 }
7130
kvm_async_pf_hash_fn(gfn_t gfn)7131 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7132 {
7133 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7134 }
7135
kvm_async_pf_next_probe(u32 key)7136 static inline u32 kvm_async_pf_next_probe(u32 key)
7137 {
7138 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7139 }
7140
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7141 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7142 {
7143 u32 key = kvm_async_pf_hash_fn(gfn);
7144
7145 while (vcpu->arch.apf.gfns[key] != ~0)
7146 key = kvm_async_pf_next_probe(key);
7147
7148 vcpu->arch.apf.gfns[key] = gfn;
7149 }
7150
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)7151 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7152 {
7153 int i;
7154 u32 key = kvm_async_pf_hash_fn(gfn);
7155
7156 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7157 (vcpu->arch.apf.gfns[key] != gfn &&
7158 vcpu->arch.apf.gfns[key] != ~0); i++)
7159 key = kvm_async_pf_next_probe(key);
7160
7161 return key;
7162 }
7163
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7164 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7165 {
7166 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7167 }
7168
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7169 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7170 {
7171 u32 i, j, k;
7172
7173 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7174 while (true) {
7175 vcpu->arch.apf.gfns[i] = ~0;
7176 do {
7177 j = kvm_async_pf_next_probe(j);
7178 if (vcpu->arch.apf.gfns[j] == ~0)
7179 return;
7180 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7181 /*
7182 * k lies cyclically in ]i,j]
7183 * | i.k.j |
7184 * |....j i.k.| or |.k..j i...|
7185 */
7186 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7187 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7188 i = j;
7189 }
7190 }
7191
apf_put_user(struct kvm_vcpu * vcpu,u32 val)7192 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7193 {
7194
7195 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7196 sizeof(val));
7197 }
7198
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7199 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7200 struct kvm_async_pf *work)
7201 {
7202 struct x86_exception fault;
7203
7204 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7205 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7206
7207 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7208 (vcpu->arch.apf.send_user_only &&
7209 kvm_x86_ops->get_cpl(vcpu) == 0))
7210 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7211 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7212 fault.vector = PF_VECTOR;
7213 fault.error_code_valid = true;
7214 fault.error_code = 0;
7215 fault.nested_page_fault = false;
7216 fault.address = work->arch.token;
7217 kvm_inject_page_fault(vcpu, &fault);
7218 }
7219 }
7220
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7221 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7222 struct kvm_async_pf *work)
7223 {
7224 struct x86_exception fault;
7225
7226 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7227 if (is_error_page(work->page))
7228 work->arch.token = ~0; /* broadcast wakeup */
7229 else
7230 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7231
7232 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7233 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7234 fault.vector = PF_VECTOR;
7235 fault.error_code_valid = true;
7236 fault.error_code = 0;
7237 fault.nested_page_fault = false;
7238 fault.address = work->arch.token;
7239 kvm_inject_page_fault(vcpu, &fault);
7240 }
7241 vcpu->arch.apf.halted = false;
7242 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7243 }
7244
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)7245 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7246 {
7247 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7248 return true;
7249 else
7250 return !kvm_event_needs_reinjection(vcpu) &&
7251 kvm_x86_ops->interrupt_allowed(vcpu);
7252 }
7253
7254 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7266