1 #ifndef __LINUX_UHCI_HCD_H
2 #define __LINUX_UHCI_HCD_H
3
4 #include <linux/list.h>
5 #include <linux/usb.h>
6
7 #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)
8 #define PIPE_DEVEP_MASK 0x0007ff00
9
10
11 /*
12 * Universal Host Controller Interface data structures and defines
13 */
14
15 /* Command register */
16 #define USBCMD 0
17 #define USBCMD_RS 0x0001 /* Run/Stop */
18 #define USBCMD_HCRESET 0x0002 /* Host reset */
19 #define USBCMD_GRESET 0x0004 /* Global reset */
20 #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */
21 #define USBCMD_FGR 0x0010 /* Force Global Resume */
22 #define USBCMD_SWDBG 0x0020 /* SW Debug mode */
23 #define USBCMD_CF 0x0040 /* Config Flag (sw only) */
24 #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */
25
26 /* Status register */
27 #define USBSTS 2
28 #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */
29 #define USBSTS_ERROR 0x0002 /* Interrupt due to error */
30 #define USBSTS_RD 0x0004 /* Resume Detect */
31 #define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */
32 #define USBSTS_HCPE 0x0010 /* Host Controller Process Error:
33 * the schedule is buggy */
34 #define USBSTS_HCH 0x0020 /* HC Halted */
35
36 /* Interrupt enable register */
37 #define USBINTR 4
38 #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */
39 #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */
40 #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */
41 #define USBINTR_SP 0x0008 /* Short packet interrupt enable */
42
43 #define USBFRNUM 6
44 #define USBFLBASEADD 8
45 #define USBSOF 12
46 #define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */
47
48 /* USB port status and control registers */
49 #define USBPORTSC1 16
50 #define USBPORTSC2 18
51 #define USBPORTSC_CCS 0x0001 /* Current Connect Status
52 * ("device present") */
53 #define USBPORTSC_CSC 0x0002 /* Connect Status Change */
54 #define USBPORTSC_PE 0x0004 /* Port Enable */
55 #define USBPORTSC_PEC 0x0008 /* Port Enable Change */
56 #define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */
57 #define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */
58 #define USBPORTSC_RD 0x0040 /* Resume Detect */
59 #define USBPORTSC_RES1 0x0080 /* reserved, always 1 */
60 #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */
61 #define USBPORTSC_PR 0x0200 /* Port Reset */
62 /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */
63 #define USBPORTSC_OC 0x0400 /* Over Current condition */
64 #define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */
65 #define USBPORTSC_SUSP 0x1000 /* Suspend */
66 #define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */
67 #define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */
68 #define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */
69
70 /* PCI legacy support register */
71 #define USBLEGSUP 0xc0
72 #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */
73 #define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */
74 #define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */
75
76 /* PCI Intel-specific resume-enable register */
77 #define USBRES_INTEL 0xc4
78 #define USBPORT1EN 0x01
79 #define USBPORT2EN 0x02
80
81 #define UHCI_PTR_BITS(uhci) cpu_to_hc32((uhci), 0x000F)
82 #define UHCI_PTR_TERM(uhci) cpu_to_hc32((uhci), 0x0001)
83 #define UHCI_PTR_QH(uhci) cpu_to_hc32((uhci), 0x0002)
84 #define UHCI_PTR_DEPTH(uhci) cpu_to_hc32((uhci), 0x0004)
85 #define UHCI_PTR_BREADTH(uhci) cpu_to_hc32((uhci), 0x0000)
86
87 #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */
88 #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */
89 #define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames
90 * can be scheduled */
91 #define MAX_PHASE 32 /* Periodic scheduling length */
92
93 /* When no queues need Full-Speed Bandwidth Reclamation,
94 * delay this long before turning FSBR off */
95 #define FSBR_OFF_DELAY msecs_to_jiffies(10)
96
97 /* If a queue hasn't advanced after this much time, assume it is stuck */
98 #define QH_WAIT_TIMEOUT msecs_to_jiffies(200)
99
100
101 /*
102 * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
103 * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on
104 * the host controller implementation.
105 *
106 * To facilitate the strongest possible byte-order checking from "sparse"
107 * and so on, we use __leXX unless that's not practical.
108 */
109 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
110 typedef __u32 __bitwise __hc32;
111 typedef __u16 __bitwise __hc16;
112 #else
113 #define __hc32 __le32
114 #define __hc16 __le16
115 #endif
116
117 /*
118 * Queue Headers
119 */
120
121 /*
122 * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes
123 * with each endpoint, and qh->element (updated by the HC) is either:
124 * - the next unprocessed TD in the endpoint's queue, or
125 * - UHCI_PTR_TERM (when there's no more traffic for this endpoint).
126 *
127 * The other role of a QH is to serve as a "skeleton" framelist entry, so we
128 * can easily splice a QH for some endpoint into the schedule at the right
129 * place. Then qh->element is UHCI_PTR_TERM.
130 *
131 * In the schedule, qh->link maintains a list of QHs seen by the HC:
132 * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ...
133 *
134 * qh->node is the software equivalent of qh->link. The differences
135 * are that the software list is doubly-linked and QHs in the UNLINKING
136 * state are on the software list but not the hardware schedule.
137 *
138 * For bookkeeping purposes we maintain QHs even for Isochronous endpoints,
139 * but they never get added to the hardware schedule.
140 */
141 #define QH_STATE_IDLE 1 /* QH is not being used */
142 #define QH_STATE_UNLINKING 2 /* QH has been removed from the
143 * schedule but the hardware may
144 * still be using it */
145 #define QH_STATE_ACTIVE 3 /* QH is on the schedule */
146
147 struct uhci_qh {
148 /* Hardware fields */
149 __hc32 link; /* Next QH in the schedule */
150 __hc32 element; /* Queue element (TD) pointer */
151
152 /* Software fields */
153 dma_addr_t dma_handle;
154
155 struct list_head node; /* Node in the list of QHs */
156 struct usb_host_endpoint *hep; /* Endpoint information */
157 struct usb_device *udev;
158 struct list_head queue; /* Queue of urbps for this QH */
159 struct uhci_td *dummy_td; /* Dummy TD to end the queue */
160 struct uhci_td *post_td; /* Last TD completed */
161
162 struct usb_iso_packet_descriptor *iso_packet_desc;
163 /* Next urb->iso_frame_desc entry */
164 unsigned long advance_jiffies; /* Time of last queue advance */
165 unsigned int unlink_frame; /* When the QH was unlinked */
166 unsigned int period; /* For Interrupt and Isochronous QHs */
167 short phase; /* Between 0 and period-1 */
168 short load; /* Periodic time requirement, in us */
169 unsigned int iso_frame; /* Frame # for iso_packet_desc */
170
171 int state; /* QH_STATE_xxx; see above */
172 int type; /* Queue type (control, bulk, etc) */
173 int skel; /* Skeleton queue number */
174
175 unsigned int initial_toggle:1; /* Endpoint's current toggle value */
176 unsigned int needs_fixup:1; /* Must fix the TD toggle values */
177 unsigned int is_stopped:1; /* Queue was stopped by error/unlink */
178 unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */
179 unsigned int bandwidth_reserved:1; /* Periodic bandwidth has
180 * been allocated */
181 } __attribute__((aligned(16)));
182
183 /*
184 * We need a special accessor for the element pointer because it is
185 * subject to asynchronous updates by the controller.
186 */
187 #define qh_element(qh) ACCESS_ONCE((qh)->element)
188
189 #define LINK_TO_QH(uhci, qh) (UHCI_PTR_QH((uhci)) | \
190 cpu_to_hc32((uhci), (qh)->dma_handle))
191
192
193 /*
194 * Transfer Descriptors
195 */
196
197 /*
198 * for TD <status>:
199 */
200 #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */
201 #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */
202 #define TD_CTRL_C_ERR_SHIFT 27
203 #define TD_CTRL_LS (1 << 26) /* Low Speed Device */
204 #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */
205 #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */
206 #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */
207 #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */
208 #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */
209 #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */
210 #define TD_CTRL_NAK (1 << 19) /* NAK Received */
211 #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */
212 #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */
213 #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */
214
215 #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT)
216 #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000)
217 #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \
218 TD_CTRL_ACTLEN_MASK) /* 1-based */
219
220 /*
221 * for TD <info>: (a.k.a. Token)
222 */
223 #define td_token(uhci, td) hc32_to_cpu((uhci), (td)->token)
224 #define TD_TOKEN_DEVADDR_SHIFT 8
225 #define TD_TOKEN_TOGGLE_SHIFT 19
226 #define TD_TOKEN_TOGGLE (1 << 19)
227 #define TD_TOKEN_EXPLEN_SHIFT 21
228 #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */
229 #define TD_TOKEN_PID_MASK 0xFF
230
231 #define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \
232 TD_TOKEN_EXPLEN_SHIFT)
233
234 #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \
235 1) & TD_TOKEN_EXPLEN_MASK)
236 #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)
237 #define uhci_endpoint(token) (((token) >> 15) & 0xf)
238 #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)
239 #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)
240 #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK)
241 #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN)
242 #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN)
243
244 /*
245 * The documentation says "4 words for hardware, 4 words for software".
246 *
247 * That's silly, the hardware doesn't care. The hardware only cares that
248 * the hardware words are 16-byte aligned, and we can have any amount of
249 * sw space after the TD entry.
250 *
251 * td->link points to either another TD (not necessarily for the same urb or
252 * even the same endpoint), or nothing (PTR_TERM), or a QH.
253 */
254 struct uhci_td {
255 /* Hardware fields */
256 __hc32 link;
257 __hc32 status;
258 __hc32 token;
259 __hc32 buffer;
260
261 /* Software fields */
262 dma_addr_t dma_handle;
263
264 struct list_head list;
265
266 int frame; /* for iso: what frame? */
267 struct list_head fl_list;
268 } __attribute__((aligned(16)));
269
270 /*
271 * We need a special accessor for the control/status word because it is
272 * subject to asynchronous updates by the controller.
273 */
274 #define td_status(uhci, td) hc32_to_cpu((uhci), \
275 ACCESS_ONCE((td)->status))
276
277 #define LINK_TO_TD(uhci, td) (cpu_to_hc32((uhci), (td)->dma_handle))
278
279
280 /*
281 * Skeleton Queue Headers
282 */
283
284 /*
285 * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for
286 * automatic queuing. To make it easy to insert entries into the schedule,
287 * we have a skeleton of QHs for each predefined Interrupt latency.
288 * Asynchronous QHs (low-speed control, full-speed control, and bulk)
289 * go onto the period-1 interrupt list, since they all get accessed on
290 * every frame.
291 *
292 * When we want to add a new QH, we add it to the list starting from the
293 * appropriate skeleton QH. For instance, the schedule can look like this:
294 *
295 * skel int128 QH
296 * dev 1 interrupt QH
297 * dev 5 interrupt QH
298 * skel int64 QH
299 * skel int32 QH
300 * ...
301 * skel int1 + async QH
302 * dev 5 low-speed control QH
303 * dev 1 bulk QH
304 * dev 2 bulk QH
305 *
306 * There is a special terminating QH used to keep full-speed bandwidth
307 * reclamation active when no full-speed control or bulk QHs are linked
308 * into the schedule. It has an inactive TD (to work around a PIIX bug,
309 * see the Intel errata) and it points back to itself.
310 *
311 * There's a special skeleton QH for Isochronous QHs which never appears
312 * on the schedule. Isochronous TDs go on the schedule before the
313 * the skeleton QHs. The hardware accesses them directly rather than
314 * through their QH, which is used only for bookkeeping purposes.
315 * While the UHCI spec doesn't forbid the use of QHs for Isochronous,
316 * it doesn't use them either. And the spec says that queues never
317 * advance on an error completion status, which makes them totally
318 * unsuitable for Isochronous transfers.
319 *
320 * There's also a special skeleton QH used for QHs which are in the process
321 * of unlinking and so may still be in use by the hardware. It too never
322 * appears on the schedule.
323 */
324
325 #define UHCI_NUM_SKELQH 11
326 #define SKEL_UNLINK 0
327 #define skel_unlink_qh skelqh[SKEL_UNLINK]
328 #define SKEL_ISO 1
329 #define skel_iso_qh skelqh[SKEL_ISO]
330 /* int128, int64, ..., int1 = 2, 3, ..., 9 */
331 #define SKEL_INDEX(exponent) (9 - exponent)
332 #define SKEL_ASYNC 9
333 #define skel_async_qh skelqh[SKEL_ASYNC]
334 #define SKEL_TERM 10
335 #define skel_term_qh skelqh[SKEL_TERM]
336
337 /* The following entries refer to sublists of skel_async_qh */
338 #define SKEL_LS_CONTROL 20
339 #define SKEL_FS_CONTROL 21
340 #define SKEL_FSBR SKEL_FS_CONTROL
341 #define SKEL_BULK 22
342
343 /*
344 * The UHCI controller and root hub
345 */
346
347 /*
348 * States for the root hub:
349 *
350 * To prevent "bouncing" in the presence of electrical noise,
351 * when there are no devices attached we delay for 1 second in the
352 * RUNNING_NODEVS state before switching to the AUTO_STOPPED state.
353 *
354 * (Note that the AUTO_STOPPED state won't be necessary once the hub
355 * driver learns to autosuspend.)
356 */
357 enum uhci_rh_state {
358 /* In the following states the HC must be halted.
359 * These two must come first. */
360 UHCI_RH_RESET,
361 UHCI_RH_SUSPENDED,
362
363 UHCI_RH_AUTO_STOPPED,
364 UHCI_RH_RESUMING,
365
366 /* In this state the HC changes from running to halted,
367 * so it can legally appear either way. */
368 UHCI_RH_SUSPENDING,
369
370 /* In the following states it's an error if the HC is halted.
371 * These two must come last. */
372 UHCI_RH_RUNNING, /* The normal state */
373 UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */
374 };
375
376 /*
377 * The full UHCI controller information:
378 */
379 struct uhci_hcd {
380
381 /* debugfs */
382 struct dentry *dentry;
383
384 /* Grabbed from PCI */
385 unsigned long io_addr;
386
387 /* Used when registers are memory mapped */
388 void __iomem *regs;
389
390 struct dma_pool *qh_pool;
391 struct dma_pool *td_pool;
392
393 struct uhci_td *term_td; /* Terminating TD, see UHCI bug */
394 struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */
395 struct uhci_qh *next_qh; /* Next QH to scan */
396
397 spinlock_t lock;
398
399 dma_addr_t frame_dma_handle; /* Hardware frame list */
400 __hc32 *frame;
401 void **frame_cpu; /* CPU's frame list */
402
403 enum uhci_rh_state rh_state;
404 unsigned long auto_stop_time; /* When to AUTO_STOP */
405
406 unsigned int frame_number; /* As of last check */
407 unsigned int is_stopped;
408 #define UHCI_IS_STOPPED 9999 /* Larger than a frame # */
409 unsigned int last_iso_frame; /* Frame of last scan */
410 unsigned int cur_iso_frame; /* Frame for current scan */
411
412 unsigned int scan_in_progress:1; /* Schedule scan is running */
413 unsigned int need_rescan:1; /* Redo the schedule scan */
414 unsigned int dead:1; /* Controller has died */
415 unsigned int RD_enable:1; /* Suspended root hub with
416 Resume-Detect interrupts
417 enabled */
418 unsigned int is_initialized:1; /* Data structure is usable */
419 unsigned int fsbr_is_on:1; /* FSBR is turned on */
420 unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */
421 unsigned int fsbr_expiring:1; /* FSBR is timing out */
422
423 struct timer_list fsbr_timer; /* For turning off FBSR */
424
425 /* Silicon quirks */
426 unsigned int oc_low:1; /* OverCurrent bit active low */
427 unsigned int wait_for_hp:1; /* Wait for HP port reset */
428 unsigned int big_endian_mmio:1; /* Big endian registers */
429 unsigned int big_endian_desc:1; /* Big endian descriptors */
430
431 /* Support for port suspend/resume/reset */
432 unsigned long port_c_suspend; /* Bit-arrays of ports */
433 unsigned long resuming_ports;
434 unsigned long ports_timeout; /* Time to stop signalling */
435
436 struct list_head idle_qh_list; /* Where the idle QHs live */
437
438 int rh_numports; /* Number of root-hub ports */
439
440 wait_queue_head_t waitqh; /* endpoint_disable waiters */
441 int num_waiting; /* Number of waiters */
442
443 int total_load; /* Sum of array values */
444 short load[MAX_PHASE]; /* Periodic allocations */
445
446 /* Reset host controller */
447 void (*reset_hc) (struct uhci_hcd *uhci);
448 int (*check_and_reset_hc) (struct uhci_hcd *uhci);
449 /* configure_hc should perform arch specific settings, if needed */
450 void (*configure_hc) (struct uhci_hcd *uhci);
451 /* Check for broken resume detect interrupts */
452 int (*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci);
453 /* Check for broken global suspend */
454 int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci);
455 };
456
457 /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */
hcd_to_uhci(struct usb_hcd * hcd)458 static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd)
459 {
460 return (struct uhci_hcd *) (hcd->hcd_priv);
461 }
uhci_to_hcd(struct uhci_hcd * uhci)462 static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci)
463 {
464 return container_of((void *) uhci, struct usb_hcd, hcd_priv);
465 }
466
467 #define uhci_dev(u) (uhci_to_hcd(u)->self.controller)
468
469 /* Utility macro for comparing frame numbers */
470 #define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1)))
471
472
473 /*
474 * Private per-URB data
475 */
476 struct urb_priv {
477 struct list_head node; /* Node in the QH's urbp list */
478
479 struct urb *urb;
480
481 struct uhci_qh *qh; /* QH for this URB */
482 struct list_head td_list;
483
484 unsigned fsbr:1; /* URB wants FSBR */
485 };
486
487
488 /* Some special IDs */
489
490 #define PCI_VENDOR_ID_GENESYS 0x17a0
491 #define PCI_DEVICE_ID_GL880S_UHCI 0x8083
492
493 /*
494 * Functions used to access controller registers. The UCHI spec says that host
495 * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts
496 * we use memory mapped registers.
497 */
498
499 #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC
500 /* Support PCI only */
uhci_readl(const struct uhci_hcd * uhci,int reg)501 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
502 {
503 return inl(uhci->io_addr + reg);
504 }
505
uhci_writel(const struct uhci_hcd * uhci,u32 val,int reg)506 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
507 {
508 outl(val, uhci->io_addr + reg);
509 }
510
uhci_readw(const struct uhci_hcd * uhci,int reg)511 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
512 {
513 return inw(uhci->io_addr + reg);
514 }
515
uhci_writew(const struct uhci_hcd * uhci,u16 val,int reg)516 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
517 {
518 outw(val, uhci->io_addr + reg);
519 }
520
uhci_readb(const struct uhci_hcd * uhci,int reg)521 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
522 {
523 return inb(uhci->io_addr + reg);
524 }
525
uhci_writeb(const struct uhci_hcd * uhci,u8 val,int reg)526 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
527 {
528 outb(val, uhci->io_addr + reg);
529 }
530
531 #else
532 /* Support non-PCI host controllers */
533 #ifdef CONFIG_PCI
534 /* Support PCI and non-PCI host controllers */
535 #define uhci_has_pci_registers(u) ((u)->io_addr != 0)
536 #else
537 /* Support non-PCI host controllers only */
538 #define uhci_has_pci_registers(u) 0
539 #endif
540
541 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
542 /* Support (non-PCI) big endian host controllers */
543 #define uhci_big_endian_mmio(u) ((u)->big_endian_mmio)
544 #else
545 #define uhci_big_endian_mmio(u) 0
546 #endif
547
uhci_readl(const struct uhci_hcd * uhci,int reg)548 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
549 {
550 if (uhci_has_pci_registers(uhci))
551 return inl(uhci->io_addr + reg);
552 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
553 else if (uhci_big_endian_mmio(uhci))
554 return readl_be(uhci->regs + reg);
555 #endif
556 else
557 return readl(uhci->regs + reg);
558 }
559
uhci_writel(const struct uhci_hcd * uhci,u32 val,int reg)560 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
561 {
562 if (uhci_has_pci_registers(uhci))
563 outl(val, uhci->io_addr + reg);
564 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
565 else if (uhci_big_endian_mmio(uhci))
566 writel_be(val, uhci->regs + reg);
567 #endif
568 else
569 writel(val, uhci->regs + reg);
570 }
571
uhci_readw(const struct uhci_hcd * uhci,int reg)572 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
573 {
574 if (uhci_has_pci_registers(uhci))
575 return inw(uhci->io_addr + reg);
576 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
577 else if (uhci_big_endian_mmio(uhci))
578 return readw_be(uhci->regs + reg);
579 #endif
580 else
581 return readw(uhci->regs + reg);
582 }
583
uhci_writew(const struct uhci_hcd * uhci,u16 val,int reg)584 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
585 {
586 if (uhci_has_pci_registers(uhci))
587 outw(val, uhci->io_addr + reg);
588 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
589 else if (uhci_big_endian_mmio(uhci))
590 writew_be(val, uhci->regs + reg);
591 #endif
592 else
593 writew(val, uhci->regs + reg);
594 }
595
uhci_readb(const struct uhci_hcd * uhci,int reg)596 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
597 {
598 if (uhci_has_pci_registers(uhci))
599 return inb(uhci->io_addr + reg);
600 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
601 else if (uhci_big_endian_mmio(uhci))
602 return readb_be(uhci->regs + reg);
603 #endif
604 else
605 return readb(uhci->regs + reg);
606 }
607
uhci_writeb(const struct uhci_hcd * uhci,u8 val,int reg)608 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
609 {
610 if (uhci_has_pci_registers(uhci))
611 outb(val, uhci->io_addr + reg);
612 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
613 else if (uhci_big_endian_mmio(uhci))
614 writeb_be(val, uhci->regs + reg);
615 #endif
616 else
617 writeb(val, uhci->regs + reg);
618 }
619 #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
620
621 /*
622 * The GRLIB GRUSBHC controller can use big endian format for its descriptors.
623 *
624 * UHCI controllers accessed through PCI work normally (little-endian
625 * everywhere), so we don't bother supporting a BE-only mode.
626 */
627 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
628 #define uhci_big_endian_desc(u) ((u)->big_endian_desc)
629
630 /* cpu to uhci */
cpu_to_hc32(const struct uhci_hcd * uhci,const u32 x)631 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
632 {
633 return uhci_big_endian_desc(uhci)
634 ? (__force __hc32)cpu_to_be32(x)
635 : (__force __hc32)cpu_to_le32(x);
636 }
637
638 /* uhci to cpu */
hc32_to_cpu(const struct uhci_hcd * uhci,const __hc32 x)639 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
640 {
641 return uhci_big_endian_desc(uhci)
642 ? be32_to_cpu((__force __be32)x)
643 : le32_to_cpu((__force __le32)x);
644 }
645
646 #else
647 /* cpu to uhci */
cpu_to_hc32(const struct uhci_hcd * uhci,const u32 x)648 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
649 {
650 return cpu_to_le32(x);
651 }
652
653 /* uhci to cpu */
hc32_to_cpu(const struct uhci_hcd * uhci,const __hc32 x)654 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
655 {
656 return le32_to_cpu(x);
657 }
658 #endif
659
660 #endif
661