• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #ifndef _VMW_VMCI_DEF_H_
17 #define _VMW_VMCI_DEF_H_
18 
19 #include <linux/atomic.h>
20 
21 /* Register offsets. */
22 #define VMCI_STATUS_ADDR      0x00
23 #define VMCI_CONTROL_ADDR     0x04
24 #define VMCI_ICR_ADDR	      0x08
25 #define VMCI_IMR_ADDR         0x0c
26 #define VMCI_DATA_OUT_ADDR    0x10
27 #define VMCI_DATA_IN_ADDR     0x14
28 #define VMCI_CAPS_ADDR        0x18
29 #define VMCI_RESULT_LOW_ADDR  0x1c
30 #define VMCI_RESULT_HIGH_ADDR 0x20
31 
32 /* Max number of devices. */
33 #define VMCI_MAX_DEVICES 1
34 
35 /* Status register bits. */
36 #define VMCI_STATUS_INT_ON     0x1
37 
38 /* Control register bits. */
39 #define VMCI_CONTROL_RESET        0x1
40 #define VMCI_CONTROL_INT_ENABLE   0x2
41 #define VMCI_CONTROL_INT_DISABLE  0x4
42 
43 /* Capabilities register bits. */
44 #define VMCI_CAPS_HYPERCALL     0x1
45 #define VMCI_CAPS_GUESTCALL     0x2
46 #define VMCI_CAPS_DATAGRAM      0x4
47 #define VMCI_CAPS_NOTIFICATIONS 0x8
48 
49 /* Interrupt Cause register bits. */
50 #define VMCI_ICR_DATAGRAM      0x1
51 #define VMCI_ICR_NOTIFICATION  0x2
52 
53 /* Interrupt Mask register bits. */
54 #define VMCI_IMR_DATAGRAM      0x1
55 #define VMCI_IMR_NOTIFICATION  0x2
56 
57 /* Interrupt type. */
58 enum {
59 	VMCI_INTR_TYPE_INTX = 0,
60 	VMCI_INTR_TYPE_MSI = 1,
61 	VMCI_INTR_TYPE_MSIX = 2,
62 };
63 
64 /* Maximum MSI/MSI-X interrupt vectors in the device. */
65 #define VMCI_MAX_INTRS 2
66 
67 /*
68  * Supported interrupt vectors.  There is one for each ICR value above,
69  * but here they indicate the position in the vector array/message ID.
70  */
71 enum {
72 	VMCI_INTR_DATAGRAM = 0,
73 	VMCI_INTR_NOTIFICATION = 1,
74 };
75 
76 /*
77  * A single VMCI device has an upper limit of 128MB on the amount of
78  * memory that can be used for queue pairs.
79  */
80 #define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
81 
82 /*
83  * Queues with pre-mapped data pages must be small, so that we don't pin
84  * too much kernel memory (especially on vmkernel).  We limit a queuepair to
85  * 32 KB, or 16 KB per queue for symmetrical pairs.
86  */
87 #define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
88 
89 /*
90  * We have a fixed set of resource IDs available in the VMX.
91  * This allows us to have a very simple implementation since we statically
92  * know how many will create datagram handles. If a new caller arrives and
93  * we have run out of slots we can manually increment the maximum size of
94  * available resource IDs.
95  *
96  * VMCI reserved hypervisor datagram resource IDs.
97  */
98 enum {
99 	VMCI_RESOURCES_QUERY = 0,
100 	VMCI_GET_CONTEXT_ID = 1,
101 	VMCI_SET_NOTIFY_BITMAP = 2,
102 	VMCI_DOORBELL_LINK = 3,
103 	VMCI_DOORBELL_UNLINK = 4,
104 	VMCI_DOORBELL_NOTIFY = 5,
105 	/*
106 	 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
107 	 * obsoleted by the removal of VM to VM communication.
108 	 */
109 	VMCI_DATAGRAM_REQUEST_MAP = 6,
110 	VMCI_DATAGRAM_REMOVE_MAP = 7,
111 	VMCI_EVENT_SUBSCRIBE = 8,
112 	VMCI_EVENT_UNSUBSCRIBE = 9,
113 	VMCI_QUEUEPAIR_ALLOC = 10,
114 	VMCI_QUEUEPAIR_DETACH = 11,
115 
116 	/*
117 	 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
118 	 * WS 7.0/7.1 and ESX 4.1
119 	 */
120 	VMCI_HGFS_TRANSPORT = 13,
121 	VMCI_UNITY_PBRPC_REGISTER = 14,
122 	VMCI_RPC_PRIVILEGED = 15,
123 	VMCI_RPC_UNPRIVILEGED = 16,
124 	VMCI_RESOURCE_MAX = 17,
125 };
126 
127 /*
128  * struct vmci_handle - Ownership information structure
129  * @context:    The VMX context ID.
130  * @resource:   The resource ID (used for locating in resource hash).
131  *
132  * The vmci_handle structure is used to track resources used within
133  * vmw_vmci.
134  */
135 struct vmci_handle {
136 	u32 context;
137 	u32 resource;
138 };
139 
140 #define vmci_make_handle(_cid, _rid) \
141 	(struct vmci_handle){ .context = _cid, .resource = _rid }
142 
vmci_handle_is_equal(struct vmci_handle h1,struct vmci_handle h2)143 static inline bool vmci_handle_is_equal(struct vmci_handle h1,
144 					struct vmci_handle h2)
145 {
146 	return h1.context == h2.context && h1.resource == h2.resource;
147 }
148 
149 #define VMCI_INVALID_ID ~0
150 static const struct vmci_handle VMCI_INVALID_HANDLE = {
151 	.context = VMCI_INVALID_ID,
152 	.resource = VMCI_INVALID_ID
153 };
154 
vmci_handle_is_invalid(struct vmci_handle h)155 static inline bool vmci_handle_is_invalid(struct vmci_handle h)
156 {
157 	return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
158 }
159 
160 /*
161  * The below defines can be used to send anonymous requests.
162  * This also indicates that no response is expected.
163  */
164 #define VMCI_ANON_SRC_CONTEXT_ID   VMCI_INVALID_ID
165 #define VMCI_ANON_SRC_RESOURCE_ID  VMCI_INVALID_ID
166 static const struct vmci_handle VMCI_ANON_SRC_HANDLE = {
167 	.context = VMCI_ANON_SRC_CONTEXT_ID,
168 	.resource = VMCI_ANON_SRC_RESOURCE_ID
169 };
170 
171 /* The lowest 16 context ids are reserved for internal use. */
172 #define VMCI_RESERVED_CID_LIMIT ((u32) 16)
173 
174 /*
175  * Hypervisor context id, used for calling into hypervisor
176  * supplied services from the VM.
177  */
178 #define VMCI_HYPERVISOR_CONTEXT_ID 0
179 
180 /*
181  * Well-known context id, a logical context that contains a set of
182  * well-known services. This context ID is now obsolete.
183  */
184 #define VMCI_WELL_KNOWN_CONTEXT_ID 1
185 
186 /*
187  * Context ID used by host endpoints.
188  */
189 #define VMCI_HOST_CONTEXT_ID  2
190 
191 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) &&		\
192 				  (_cid) > VMCI_HOST_CONTEXT_ID)
193 
194 /*
195  * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
196  * handles that refer to a specific context.
197  */
198 #define VMCI_CONTEXT_RESOURCE_ID 0
199 
200 /*
201  * VMCI error codes.
202  */
203 enum {
204 	VMCI_SUCCESS_QUEUEPAIR_ATTACH	= 5,
205 	VMCI_SUCCESS_QUEUEPAIR_CREATE	= 4,
206 	VMCI_SUCCESS_LAST_DETACH	= 3,
207 	VMCI_SUCCESS_ACCESS_GRANTED	= 2,
208 	VMCI_SUCCESS_ENTRY_DEAD		= 1,
209 	VMCI_SUCCESS			 = 0,
210 	VMCI_ERROR_INVALID_RESOURCE	 = (-1),
211 	VMCI_ERROR_INVALID_ARGS		 = (-2),
212 	VMCI_ERROR_NO_MEM		 = (-3),
213 	VMCI_ERROR_DATAGRAM_FAILED	 = (-4),
214 	VMCI_ERROR_MORE_DATA		 = (-5),
215 	VMCI_ERROR_NO_MORE_DATAGRAMS	 = (-6),
216 	VMCI_ERROR_NO_ACCESS		 = (-7),
217 	VMCI_ERROR_NO_HANDLE		 = (-8),
218 	VMCI_ERROR_DUPLICATE_ENTRY	 = (-9),
219 	VMCI_ERROR_DST_UNREACHABLE	 = (-10),
220 	VMCI_ERROR_PAYLOAD_TOO_LARGE	 = (-11),
221 	VMCI_ERROR_INVALID_PRIV		 = (-12),
222 	VMCI_ERROR_GENERIC		 = (-13),
223 	VMCI_ERROR_PAGE_ALREADY_SHARED	 = (-14),
224 	VMCI_ERROR_CANNOT_SHARE_PAGE	 = (-15),
225 	VMCI_ERROR_CANNOT_UNSHARE_PAGE	 = (-16),
226 	VMCI_ERROR_NO_PROCESS		 = (-17),
227 	VMCI_ERROR_NO_DATAGRAM		 = (-18),
228 	VMCI_ERROR_NO_RESOURCES		 = (-19),
229 	VMCI_ERROR_UNAVAILABLE		 = (-20),
230 	VMCI_ERROR_NOT_FOUND		 = (-21),
231 	VMCI_ERROR_ALREADY_EXISTS	 = (-22),
232 	VMCI_ERROR_NOT_PAGE_ALIGNED	 = (-23),
233 	VMCI_ERROR_INVALID_SIZE		 = (-24),
234 	VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
235 	VMCI_ERROR_TIMEOUT		 = (-26),
236 	VMCI_ERROR_DATAGRAM_INCOMPLETE	 = (-27),
237 	VMCI_ERROR_INCORRECT_IRQL	 = (-28),
238 	VMCI_ERROR_EVENT_UNKNOWN	 = (-29),
239 	VMCI_ERROR_OBSOLETE		 = (-30),
240 	VMCI_ERROR_QUEUEPAIR_MISMATCH	 = (-31),
241 	VMCI_ERROR_QUEUEPAIR_NOTSET	 = (-32),
242 	VMCI_ERROR_QUEUEPAIR_NOTOWNER	 = (-33),
243 	VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
244 	VMCI_ERROR_QUEUEPAIR_NOSPACE	 = (-35),
245 	VMCI_ERROR_QUEUEPAIR_NODATA	 = (-36),
246 	VMCI_ERROR_BUSMEM_INVALIDATION	 = (-37),
247 	VMCI_ERROR_MODULE_NOT_LOADED	 = (-38),
248 	VMCI_ERROR_DEVICE_NOT_FOUND	 = (-39),
249 	VMCI_ERROR_QUEUEPAIR_NOT_READY	 = (-40),
250 	VMCI_ERROR_WOULD_BLOCK		 = (-41),
251 
252 	/* VMCI clients should return error code within this range */
253 	VMCI_ERROR_CLIENT_MIN		 = (-500),
254 	VMCI_ERROR_CLIENT_MAX		 = (-550),
255 
256 	/* Internal error codes. */
257 	VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
258 };
259 
260 /* VMCI reserved events. */
261 enum {
262 	/* Only applicable to guest endpoints */
263 	VMCI_EVENT_CTX_ID_UPDATE  = 0,
264 
265 	/* Applicable to guest and host */
266 	VMCI_EVENT_CTX_REMOVED	  = 1,
267 
268 	/* Only applicable to guest endpoints */
269 	VMCI_EVENT_QP_RESUMED	  = 2,
270 
271 	/* Applicable to guest and host */
272 	VMCI_EVENT_QP_PEER_ATTACH = 3,
273 
274 	/* Applicable to guest and host */
275 	VMCI_EVENT_QP_PEER_DETACH = 4,
276 
277 	/*
278 	 * Applicable to VMX and vmk.  On vmk,
279 	 * this event has the Context payload type.
280 	 */
281 	VMCI_EVENT_MEM_ACCESS_ON  = 5,
282 
283 	/*
284 	 * Applicable to VMX and vmk.  Same as
285 	 * above for the payload type.
286 	 */
287 	VMCI_EVENT_MEM_ACCESS_OFF = 6,
288 	VMCI_EVENT_MAX		  = 7,
289 };
290 
291 /*
292  * Of the above events, a few are reserved for use in the VMX, and
293  * other endpoints (guest and host kernel) should not use them. For
294  * the rest of the events, we allow both host and guest endpoints to
295  * subscribe to them, to maintain the same API for host and guest
296  * endpoints.
297  */
298 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
299 				      (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
300 
301 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX &&		\
302 				  !VMCI_EVENT_VALID_VMX(_event))
303 
304 /* Reserved guest datagram resource ids. */
305 #define VMCI_EVENT_HANDLER 0
306 
307 /*
308  * VMCI coarse-grained privileges (per context or host
309  * process/endpoint. An entity with the restricted flag is only
310  * allowed to interact with the hypervisor and trusted entities.
311  */
312 enum {
313 	VMCI_NO_PRIVILEGE_FLAGS = 0,
314 	VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
315 	VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
316 	VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
317 				    VMCI_PRIVILEGE_FLAG_TRUSTED),
318 	VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
319 	VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
320 	VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
321 };
322 
323 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
324 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023
325 
326 /*
327  * Driver version.
328  *
329  * Increment major version when you make an incompatible change.
330  * Compatibility goes both ways (old driver with new executable
331  * as well as new driver with old executable).
332  */
333 
334 /* Never change VMCI_VERSION_SHIFT_WIDTH */
335 #define VMCI_VERSION_SHIFT_WIDTH 16
336 #define VMCI_MAKE_VERSION(_major, _minor)			\
337 	((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
338 
339 #define VMCI_VERSION_MAJOR(v)  ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
340 #define VMCI_VERSION_MINOR(v)  ((u16) (v))
341 
342 /*
343  * VMCI_VERSION is always the current version.  Subsequently listed
344  * versions are ways of detecting previous versions of the connecting
345  * application (i.e., VMX).
346  *
347  * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
348  * communication.
349  *
350  * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
351  * support.
352  *
353  * VMCI_VERSION_HOSTQP: This version introduced host end point support
354  * for hosted products.
355  *
356  * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
357  * support for host end-points.
358  *
359  * VMCI_VERSION_PREVERS2: This fictional version number is intended to
360  * represent the version of a VMX which doesn't call into the driver
361  * with ioctl VERSION2 and thus doesn't establish its version with the
362  * driver.
363  */
364 
365 #define VMCI_VERSION                VMCI_VERSION_NOVMVM
366 #define VMCI_VERSION_NOVMVM         VMCI_MAKE_VERSION(11, 0)
367 #define VMCI_VERSION_NOTIFY         VMCI_MAKE_VERSION(10, 0)
368 #define VMCI_VERSION_HOSTQP         VMCI_MAKE_VERSION(9, 0)
369 #define VMCI_VERSION_PREHOSTQP      VMCI_MAKE_VERSION(8, 0)
370 #define VMCI_VERSION_PREVERS2       VMCI_MAKE_VERSION(1, 0)
371 
372 #define VMCI_SOCKETS_MAKE_VERSION(_p)					\
373 	((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
374 
375 /*
376  * The VMCI IOCTLs.  We use identity code 7, as noted in ioctl-number.h, and
377  * we start at sequence 9f.  This gives us the same values that our shipping
378  * products use, starting at 1951, provided we leave out the direction and
379  * structure size.  Note that VMMon occupies the block following us, starting
380  * at 2001.
381  */
382 #define IOCTL_VMCI_VERSION			_IO(7, 0x9f)	/* 1951 */
383 #define IOCTL_VMCI_INIT_CONTEXT			_IO(7, 0xa0)
384 #define IOCTL_VMCI_QUEUEPAIR_SETVA		_IO(7, 0xa4)
385 #define IOCTL_VMCI_NOTIFY_RESOURCE		_IO(7, 0xa5)
386 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE	_IO(7, 0xa6)
387 #define IOCTL_VMCI_VERSION2			_IO(7, 0xa7)
388 #define IOCTL_VMCI_QUEUEPAIR_ALLOC		_IO(7, 0xa8)
389 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE	_IO(7, 0xa9)
390 #define IOCTL_VMCI_QUEUEPAIR_DETACH		_IO(7, 0xaa)
391 #define IOCTL_VMCI_DATAGRAM_SEND		_IO(7, 0xab)
392 #define IOCTL_VMCI_DATAGRAM_RECEIVE		_IO(7, 0xac)
393 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION		_IO(7, 0xaf)
394 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION	_IO(7, 0xb0)
395 #define IOCTL_VMCI_CTX_GET_CPT_STATE		_IO(7, 0xb1)
396 #define IOCTL_VMCI_CTX_SET_CPT_STATE		_IO(7, 0xb2)
397 #define IOCTL_VMCI_GET_CONTEXT_ID		_IO(7, 0xb3)
398 #define IOCTL_VMCI_SOCKETS_VERSION		_IO(7, 0xb4)
399 #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE		_IO(7, 0xb8)
400 #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID	_IO(7, 0xb9)
401 #define IOCTL_VMCI_SET_NOTIFY			_IO(7, 0xcb)	/* 1995 */
402 /*IOCTL_VMMON_START				_IO(7, 0xd1)*/	/* 2001 */
403 
404 /*
405  * struct vmci_queue_header - VMCI Queue Header information.
406  *
407  * A Queue cannot stand by itself as designed.  Each Queue's header
408  * contains a pointer into itself (the producer_tail) and into its peer
409  * (consumer_head).  The reason for the separation is one of
410  * accessibility: Each end-point can modify two things: where the next
411  * location to enqueue is within its produce_q (producer_tail); and
412  * where the next dequeue location is in its consume_q (consumer_head).
413  *
414  * An end-point cannot modify the pointers of its peer (guest to
415  * guest; NOTE that in the host both queue headers are mapped r/w).
416  * But, each end-point needs read access to both Queue header
417  * structures in order to determine how much space is used (or left)
418  * in the Queue.  This is because for an end-point to know how full
419  * its produce_q is, it needs to use the consumer_head that points into
420  * the produce_q but -that- consumer_head is in the Queue header for
421  * that end-points consume_q.
422  *
423  * Thoroughly confused?  Sorry.
424  *
425  * producer_tail: the point to enqueue new entrants.  When you approach
426  * a line in a store, for example, you walk up to the tail.
427  *
428  * consumer_head: the point in the queue from which the next element is
429  * dequeued.  In other words, who is next in line is he who is at the
430  * head of the line.
431  *
432  * Also, producer_tail points to an empty byte in the Queue, whereas
433  * consumer_head points to a valid byte of data (unless producer_tail ==
434  * consumer_head in which case consumer_head does not point to a valid
435  * byte of data).
436  *
437  * For a queue of buffer 'size' bytes, the tail and head pointers will be in
438  * the range [0, size-1].
439  *
440  * If produce_q_header->producer_tail == consume_q_header->consumer_head
441  * then the produce_q is empty.
442  */
443 struct vmci_queue_header {
444 	/* All fields are 64bit and aligned. */
445 	struct vmci_handle handle;	/* Identifier. */
446 	atomic64_t producer_tail;	/* Offset in this queue. */
447 	atomic64_t consumer_head;	/* Offset in peer queue. */
448 };
449 
450 /*
451  * struct vmci_datagram - Base struct for vmci datagrams.
452  * @dst:        A vmci_handle that tracks the destination of the datagram.
453  * @src:        A vmci_handle that tracks the source of the datagram.
454  * @payload_size:       The size of the payload.
455  *
456  * vmci_datagram structs are used when sending vmci datagrams.  They include
457  * the necessary source and destination information to properly route
458  * the information along with the size of the package.
459  */
460 struct vmci_datagram {
461 	struct vmci_handle dst;
462 	struct vmci_handle src;
463 	u64 payload_size;
464 };
465 
466 /*
467  * Second flag is for creating a well-known handle instead of a per context
468  * handle.  Next flag is for deferring datagram delivery, so that the
469  * datagram callback is invoked in a delayed context (not interrupt context).
470  */
471 #define VMCI_FLAG_DG_NONE          0
472 #define VMCI_FLAG_WELLKNOWN_DG_HND 0x1
473 #define VMCI_FLAG_ANYCID_DG_HND    0x2
474 #define VMCI_FLAG_DG_DELAYED_CB    0x4
475 
476 /*
477  * Maximum supported size of a VMCI datagram for routable datagrams.
478  * Datagrams going to the hypervisor are allowed to be larger.
479  */
480 #define VMCI_MAX_DG_SIZE (17 * 4096)
481 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
482 				  sizeof(struct vmci_datagram))
483 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) +			\
484 				      sizeof(struct vmci_datagram))
485 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
486 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
487 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
488 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
489 
490 struct vmci_event_payload_qp {
491 	struct vmci_handle handle;  /* queue_pair handle. */
492 	u32 peer_id;		    /* Context id of attaching/detaching VM. */
493 	u32 _pad;
494 };
495 
496 /* Flags for VMCI queue_pair API. */
497 enum {
498 	/* Fail alloc if QP not created by peer. */
499 	VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
500 
501 	/* Only allow attaches from local context. */
502 	VMCI_QPFLAG_LOCAL = 1 << 1,
503 
504 	/* Host won't block when guest is quiesced. */
505 	VMCI_QPFLAG_NONBLOCK = 1 << 2,
506 
507 	/* Pin data pages in ESX.  Used with NONBLOCK */
508 	VMCI_QPFLAG_PINNED = 1 << 3,
509 
510 	/* Update the following flag when adding new flags. */
511 	VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
512 			     VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
513 
514 	/* Convenience flags */
515 	VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
516 	VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
517 };
518 
519 /*
520  * We allow at least 1024 more event datagrams from the hypervisor past the
521  * normally allowed datagrams pending for a given context.  We define this
522  * limit on event datagrams from the hypervisor to guard against DoS attack
523  * from a malicious VM which could repeatedly attach to and detach from a queue
524  * pair, causing events to be queued at the destination VM.  However, the rate
525  * at which such events can be generated is small since it requires a VM exit
526  * and handling of queue pair attach/detach call at the hypervisor.  Event
527  * datagrams may be queued up at the destination VM if it has interrupts
528  * disabled or if it is not draining events for some other reason.  1024
529  * datagrams is a grossly conservative estimate of the time for which
530  * interrupts may be disabled in the destination VM, but at the same time does
531  * not exacerbate the memory pressure problem on the host by much (size of each
532  * event datagram is small).
533  */
534 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE				\
535 	(VMCI_MAX_DATAGRAM_QUEUE_SIZE +					\
536 	 1024 * (sizeof(struct vmci_datagram) +				\
537 		 sizeof(struct vmci_event_data_max)))
538 
539 /*
540  * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
541  * hypervisor resources.  Struct size is 16 bytes. All fields in struct are
542  * aligned to their natural alignment.
543  */
544 struct vmci_resource_query_hdr {
545 	struct vmci_datagram hdr;
546 	u32 num_resources;
547 	u32 _padding;
548 };
549 
550 /*
551  * Convenience struct for negotiating vectors. Must match layout of
552  * VMCIResourceQueryHdr minus the struct vmci_datagram header.
553  */
554 struct vmci_resource_query_msg {
555 	u32 num_resources;
556 	u32 _padding;
557 	u32 resources[1];
558 };
559 
560 /*
561  * The maximum number of resources that can be queried using
562  * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
563  * bits of a positive return value. Negative values are reserved for
564  * errors.
565  */
566 #define VMCI_RESOURCE_QUERY_MAX_NUM 31
567 
568 /* Maximum size for the VMCI_RESOURCE_QUERY request. */
569 #define VMCI_RESOURCE_QUERY_MAX_SIZE				\
570 	(sizeof(struct vmci_resource_query_hdr) +		\
571 	 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
572 
573 /*
574  * Struct used for setting the notification bitmap.  All fields in
575  * struct are aligned to their natural alignment.
576  */
577 struct vmci_notify_bm_set_msg {
578 	struct vmci_datagram hdr;
579 	u32 bitmap_ppn;
580 	u32 _pad;
581 };
582 
583 /*
584  * Struct used for linking a doorbell handle with an index in the
585  * notify bitmap. All fields in struct are aligned to their natural
586  * alignment.
587  */
588 struct vmci_doorbell_link_msg {
589 	struct vmci_datagram hdr;
590 	struct vmci_handle handle;
591 	u64 notify_idx;
592 };
593 
594 /*
595  * Struct used for unlinking a doorbell handle from an index in the
596  * notify bitmap. All fields in struct are aligned to their natural
597  * alignment.
598  */
599 struct vmci_doorbell_unlink_msg {
600 	struct vmci_datagram hdr;
601 	struct vmci_handle handle;
602 };
603 
604 /*
605  * Struct used for generating a notification on a doorbell handle. All
606  * fields in struct are aligned to their natural alignment.
607  */
608 struct vmci_doorbell_notify_msg {
609 	struct vmci_datagram hdr;
610 	struct vmci_handle handle;
611 };
612 
613 /*
614  * This struct is used to contain data for events.  Size of this struct is a
615  * multiple of 8 bytes, and all fields are aligned to their natural alignment.
616  */
617 struct vmci_event_data {
618 	u32 event;		/* 4 bytes. */
619 	u32 _pad;
620 	/* Event payload is put here. */
621 };
622 
623 /*
624  * Define the different VMCI_EVENT payload data types here.  All structs must
625  * be a multiple of 8 bytes, and fields must be aligned to their natural
626  * alignment.
627  */
628 struct vmci_event_payld_ctx {
629 	u32 context_id;	/* 4 bytes. */
630 	u32 _pad;
631 };
632 
633 struct vmci_event_payld_qp {
634 	struct vmci_handle handle;  /* queue_pair handle. */
635 	u32 peer_id;	    /* Context id of attaching/detaching VM. */
636 	u32 _pad;
637 };
638 
639 /*
640  * We define the following struct to get the size of the maximum event
641  * data the hypervisor may send to the guest.  If adding a new event
642  * payload type above, add it to the following struct too (inside the
643  * union).
644  */
645 struct vmci_event_data_max {
646 	struct vmci_event_data event_data;
647 	union {
648 		struct vmci_event_payld_ctx context_payload;
649 		struct vmci_event_payld_qp qp_payload;
650 	} ev_data_payload;
651 };
652 
653 /*
654  * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
655  * VMCI_EVENT_HANDLER messages.  Struct size is 32 bytes.  All fields
656  * in struct are aligned to their natural alignment.
657  */
658 struct vmci_event_msg {
659 	struct vmci_datagram hdr;
660 
661 	/* Has event type and payload. */
662 	struct vmci_event_data event_data;
663 
664 	/* Payload gets put here. */
665 };
666 
667 /* Event with context payload. */
668 struct vmci_event_ctx {
669 	struct vmci_event_msg msg;
670 	struct vmci_event_payld_ctx payload;
671 };
672 
673 /* Event with QP payload. */
674 struct vmci_event_qp {
675 	struct vmci_event_msg msg;
676 	struct vmci_event_payld_qp payload;
677 };
678 
679 /*
680  * Structs used for queue_pair alloc and detach messages.  We align fields of
681  * these structs to 64bit boundaries.
682  */
683 struct vmci_qp_alloc_msg {
684 	struct vmci_datagram hdr;
685 	struct vmci_handle handle;
686 	u32 peer;
687 	u32 flags;
688 	u64 produce_size;
689 	u64 consume_size;
690 	u64 num_ppns;
691 
692 	/* List of PPNs placed here. */
693 };
694 
695 struct vmci_qp_detach_msg {
696 	struct vmci_datagram hdr;
697 	struct vmci_handle handle;
698 };
699 
700 /* VMCI Doorbell API. */
701 #define VMCI_FLAG_DELAYED_CB 0x01
702 
703 typedef void (*vmci_callback) (void *client_data);
704 
705 /*
706  * struct vmci_qp - A vmw_vmci queue pair handle.
707  *
708  * This structure is used as a handle to a queue pair created by
709  * VMCI.  It is intentionally left opaque to clients.
710  */
711 struct vmci_qp;
712 
713 /* Callback needed for correctly waiting on events. */
714 typedef int (*vmci_datagram_recv_cb) (void *client_data,
715 				      struct vmci_datagram *msg);
716 
717 /* VMCI Event API. */
718 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
719 			       void *client_data);
720 
721 /*
722  * We use the following inline function to access the payload data
723  * associated with an event data.
724  */
725 static inline const void *
vmci_event_data_const_payload(const struct vmci_event_data * ev_data)726 vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
727 {
728 	return (const char *)ev_data + sizeof(*ev_data);
729 }
730 
vmci_event_data_payload(struct vmci_event_data * ev_data)731 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
732 {
733 	return (void *)vmci_event_data_const_payload(ev_data);
734 }
735 
736 /*
737  * Helper to add a given offset to a head or tail pointer. Wraps the
738  * value of the pointer around the max size of the queue.
739  */
vmci_qp_add_pointer(atomic64_t * var,size_t add,u64 size)740 static inline void vmci_qp_add_pointer(atomic64_t *var,
741 				       size_t add,
742 				       u64 size)
743 {
744 	u64 new_val = atomic64_read(var);
745 
746 	if (new_val >= size - add)
747 		new_val -= size;
748 
749 	new_val += add;
750 
751 	atomic64_set(var, new_val);
752 }
753 
754 /*
755  * Helper routine to get the Producer Tail from the supplied queue.
756  */
757 static inline u64
vmci_q_header_producer_tail(const struct vmci_queue_header * q_header)758 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
759 {
760 	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
761 	return atomic64_read(&qh->producer_tail);
762 }
763 
764 /*
765  * Helper routine to get the Consumer Head from the supplied queue.
766  */
767 static inline u64
vmci_q_header_consumer_head(const struct vmci_queue_header * q_header)768 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
769 {
770 	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
771 	return atomic64_read(&qh->consumer_head);
772 }
773 
774 /*
775  * Helper routine to increment the Producer Tail.  Fundamentally,
776  * vmci_qp_add_pointer() is used to manipulate the tail itself.
777  */
778 static inline void
vmci_q_header_add_producer_tail(struct vmci_queue_header * q_header,size_t add,u64 queue_size)779 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
780 				size_t add,
781 				u64 queue_size)
782 {
783 	vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
784 }
785 
786 /*
787  * Helper routine to increment the Consumer Head.  Fundamentally,
788  * vmci_qp_add_pointer() is used to manipulate the head itself.
789  */
790 static inline void
vmci_q_header_add_consumer_head(struct vmci_queue_header * q_header,size_t add,u64 queue_size)791 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
792 				size_t add,
793 				u64 queue_size)
794 {
795 	vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
796 }
797 
798 /*
799  * Helper routine for getting the head and the tail pointer for a queue.
800  * Both the VMCIQueues are needed to get both the pointers for one queue.
801  */
802 static inline void
vmci_q_header_get_pointers(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,u64 * producer_tail,u64 * consumer_head)803 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
804 			   const struct vmci_queue_header *consume_q_header,
805 			   u64 *producer_tail,
806 			   u64 *consumer_head)
807 {
808 	if (producer_tail)
809 		*producer_tail = vmci_q_header_producer_tail(produce_q_header);
810 
811 	if (consumer_head)
812 		*consumer_head = vmci_q_header_consumer_head(consume_q_header);
813 }
814 
vmci_q_header_init(struct vmci_queue_header * q_header,const struct vmci_handle handle)815 static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
816 				      const struct vmci_handle handle)
817 {
818 	q_header->handle = handle;
819 	atomic64_set(&q_header->producer_tail, 0);
820 	atomic64_set(&q_header->consumer_head, 0);
821 }
822 
823 /*
824  * Finds available free space in a produce queue to enqueue more
825  * data or reports an error if queue pair corruption is detected.
826  */
827 static s64
vmci_q_header_free_space(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,const u64 produce_q_size)828 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
829 			 const struct vmci_queue_header *consume_q_header,
830 			 const u64 produce_q_size)
831 {
832 	u64 tail;
833 	u64 head;
834 	u64 free_space;
835 
836 	tail = vmci_q_header_producer_tail(produce_q_header);
837 	head = vmci_q_header_consumer_head(consume_q_header);
838 
839 	if (tail >= produce_q_size || head >= produce_q_size)
840 		return VMCI_ERROR_INVALID_SIZE;
841 
842 	/*
843 	 * Deduct 1 to avoid tail becoming equal to head which causes
844 	 * ambiguity. If head and tail are equal it means that the
845 	 * queue is empty.
846 	 */
847 	if (tail >= head)
848 		free_space = produce_q_size - (tail - head) - 1;
849 	else
850 		free_space = head - tail - 1;
851 
852 	return free_space;
853 }
854 
855 /*
856  * vmci_q_header_free_space() does all the heavy lifting of
857  * determing the number of free bytes in a Queue.  This routine,
858  * then subtracts that size from the full size of the Queue so
859  * the caller knows how many bytes are ready to be dequeued.
860  * Results:
861  * On success, available data size in bytes (up to MAX_INT64).
862  * On failure, appropriate error code.
863  */
864 static inline s64
vmci_q_header_buf_ready(const struct vmci_queue_header * consume_q_header,const struct vmci_queue_header * produce_q_header,const u64 consume_q_size)865 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
866 			const struct vmci_queue_header *produce_q_header,
867 			const u64 consume_q_size)
868 {
869 	s64 free_space;
870 
871 	free_space = vmci_q_header_free_space(consume_q_header,
872 					      produce_q_header, consume_q_size);
873 	if (free_space < VMCI_SUCCESS)
874 		return free_space;
875 
876 	return consume_q_size - free_space - 1;
877 }
878 
879 
880 #endif /* _VMW_VMCI_DEF_H_ */
881