1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41
42 /*
43 * State of the slab allocator.
44 *
45 * This is used to describe the states of the allocator during bootup.
46 * Allocators use this to gradually bootstrap themselves. Most allocators
47 * have the problem that the structures used for managing slab caches are
48 * allocated from slab caches themselves.
49 */
50 enum slab_state {
51 DOWN, /* No slab functionality yet */
52 PARTIAL, /* SLUB: kmem_cache_node available */
53 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
54 UP, /* Slab caches usable but not all extras yet */
55 FULL /* Everything is working */
56 };
57
58 extern enum slab_state slab_state;
59
60 /* The slab cache mutex protects the management structures during changes */
61 extern struct mutex slab_mutex;
62
63 /* The list of all slab caches on the system */
64 extern struct list_head slab_caches;
65
66 /* The slab cache that manages slab cache information */
67 extern struct kmem_cache *kmem_cache;
68
69 unsigned long calculate_alignment(unsigned long flags,
70 unsigned long align, unsigned long size);
71
72 #ifndef CONFIG_SLOB
73 /* Kmalloc array related functions */
74 void create_kmalloc_caches(unsigned long);
75
76 /* Find the kmalloc slab corresponding for a certain size */
77 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
78 #endif
79
80
81 /* Functions provided by the slab allocators */
82 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
83
84 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
85 unsigned long flags);
86 extern void create_boot_cache(struct kmem_cache *, const char *name,
87 size_t size, unsigned long flags);
88
89 struct mem_cgroup;
90
91 int slab_unmergeable(struct kmem_cache *s);
92 struct kmem_cache *find_mergeable(size_t size, size_t align,
93 unsigned long flags, const char *name, void (*ctor)(void *));
94 #ifndef CONFIG_SLOB
95 struct kmem_cache *
96 __kmem_cache_alias(const char *name, size_t size, size_t align,
97 unsigned long flags, void (*ctor)(void *));
98
99 unsigned long kmem_cache_flags(unsigned long object_size,
100 unsigned long flags, const char *name,
101 void (*ctor)(void *));
102 #else
103 static inline struct kmem_cache *
__kmem_cache_alias(const char * name,size_t size,size_t align,unsigned long flags,void (* ctor)(void *))104 __kmem_cache_alias(const char *name, size_t size, size_t align,
105 unsigned long flags, void (*ctor)(void *))
106 { return NULL; }
107
kmem_cache_flags(unsigned long object_size,unsigned long flags,const char * name,void (* ctor)(void *))108 static inline unsigned long kmem_cache_flags(unsigned long object_size,
109 unsigned long flags, const char *name,
110 void (*ctor)(void *))
111 {
112 return flags;
113 }
114 #endif
115
116
117 /* Legal flag mask for kmem_cache_create(), for various configurations */
118 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
119 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
120
121 #if defined(CONFIG_DEBUG_SLAB)
122 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
123 #elif defined(CONFIG_SLUB_DEBUG)
124 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
125 SLAB_TRACE | SLAB_DEBUG_FREE)
126 #else
127 #define SLAB_DEBUG_FLAGS (0)
128 #endif
129
130 #if defined(CONFIG_SLAB)
131 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
132 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
133 #elif defined(CONFIG_SLUB)
134 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
135 SLAB_TEMPORARY | SLAB_NOTRACK)
136 #else
137 #define SLAB_CACHE_FLAGS (0)
138 #endif
139
140 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
141
142 int __kmem_cache_shutdown(struct kmem_cache *);
143 int __kmem_cache_shrink(struct kmem_cache *);
144 void slab_kmem_cache_release(struct kmem_cache *);
145
146 struct seq_file;
147 struct file;
148
149 struct slabinfo {
150 unsigned long active_objs;
151 unsigned long num_objs;
152 unsigned long active_slabs;
153 unsigned long num_slabs;
154 unsigned long shared_avail;
155 unsigned int limit;
156 unsigned int batchcount;
157 unsigned int shared;
158 unsigned int objects_per_slab;
159 unsigned int cache_order;
160 };
161
162 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
163 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
164 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
165 size_t count, loff_t *ppos);
166
167 #ifdef CONFIG_MEMCG_KMEM
is_root_cache(struct kmem_cache * s)168 static inline bool is_root_cache(struct kmem_cache *s)
169 {
170 return !s->memcg_params || s->memcg_params->is_root_cache;
171 }
172
slab_equal_or_root(struct kmem_cache * s,struct kmem_cache * p)173 static inline bool slab_equal_or_root(struct kmem_cache *s,
174 struct kmem_cache *p)
175 {
176 return (p == s) ||
177 (s->memcg_params && (p == s->memcg_params->root_cache));
178 }
179
180 /*
181 * We use suffixes to the name in memcg because we can't have caches
182 * created in the system with the same name. But when we print them
183 * locally, better refer to them with the base name
184 */
cache_name(struct kmem_cache * s)185 static inline const char *cache_name(struct kmem_cache *s)
186 {
187 if (!is_root_cache(s))
188 return s->memcg_params->root_cache->name;
189 return s->name;
190 }
191
192 /*
193 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
194 * That said the caller must assure the memcg's cache won't go away. Since once
195 * created a memcg's cache is destroyed only along with the root cache, it is
196 * true if we are going to allocate from the cache or hold a reference to the
197 * root cache by other means. Otherwise, we should hold either the slab_mutex
198 * or the memcg's slab_caches_mutex while calling this function and accessing
199 * the returned value.
200 */
201 static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache * s,int idx)202 cache_from_memcg_idx(struct kmem_cache *s, int idx)
203 {
204 struct kmem_cache *cachep;
205 struct memcg_cache_params *params;
206
207 if (!s->memcg_params)
208 return NULL;
209
210 rcu_read_lock();
211 params = rcu_dereference(s->memcg_params);
212 cachep = params->memcg_caches[idx];
213 rcu_read_unlock();
214
215 /*
216 * Make sure we will access the up-to-date value. The code updating
217 * memcg_caches issues a write barrier to match this (see
218 * memcg_register_cache()).
219 */
220 smp_read_barrier_depends();
221 return cachep;
222 }
223
memcg_root_cache(struct kmem_cache * s)224 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
225 {
226 if (is_root_cache(s))
227 return s;
228 return s->memcg_params->root_cache;
229 }
230
memcg_charge_slab(struct kmem_cache * s,gfp_t gfp,int order)231 static __always_inline int memcg_charge_slab(struct kmem_cache *s,
232 gfp_t gfp, int order)
233 {
234 if (!memcg_kmem_enabled())
235 return 0;
236 if (is_root_cache(s))
237 return 0;
238 return __memcg_charge_slab(s, gfp, order);
239 }
240
memcg_uncharge_slab(struct kmem_cache * s,int order)241 static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
242 {
243 if (!memcg_kmem_enabled())
244 return;
245 if (is_root_cache(s))
246 return;
247 __memcg_uncharge_slab(s, order);
248 }
249 #else
is_root_cache(struct kmem_cache * s)250 static inline bool is_root_cache(struct kmem_cache *s)
251 {
252 return true;
253 }
254
slab_equal_or_root(struct kmem_cache * s,struct kmem_cache * p)255 static inline bool slab_equal_or_root(struct kmem_cache *s,
256 struct kmem_cache *p)
257 {
258 return true;
259 }
260
cache_name(struct kmem_cache * s)261 static inline const char *cache_name(struct kmem_cache *s)
262 {
263 return s->name;
264 }
265
266 static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache * s,int idx)267 cache_from_memcg_idx(struct kmem_cache *s, int idx)
268 {
269 return NULL;
270 }
271
memcg_root_cache(struct kmem_cache * s)272 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
273 {
274 return s;
275 }
276
memcg_charge_slab(struct kmem_cache * s,gfp_t gfp,int order)277 static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
278 {
279 return 0;
280 }
281
memcg_uncharge_slab(struct kmem_cache * s,int order)282 static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
283 {
284 }
285 #endif
286
cache_from_obj(struct kmem_cache * s,void * x)287 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
288 {
289 struct kmem_cache *cachep;
290 struct page *page;
291
292 /*
293 * When kmemcg is not being used, both assignments should return the
294 * same value. but we don't want to pay the assignment price in that
295 * case. If it is not compiled in, the compiler should be smart enough
296 * to not do even the assignment. In that case, slab_equal_or_root
297 * will also be a constant.
298 */
299 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
300 return s;
301
302 page = virt_to_head_page(x);
303 cachep = page->slab_cache;
304 if (slab_equal_or_root(cachep, s))
305 return cachep;
306
307 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
308 __func__, cachep->name, s->name);
309 WARN_ON_ONCE(1);
310 return s;
311 }
312
313 #ifndef CONFIG_SLOB
314 /*
315 * The slab lists for all objects.
316 */
317 struct kmem_cache_node {
318 spinlock_t list_lock;
319
320 #ifdef CONFIG_SLAB
321 struct list_head slabs_partial; /* partial list first, better asm code */
322 struct list_head slabs_full;
323 struct list_head slabs_free;
324 unsigned long free_objects;
325 unsigned int free_limit;
326 unsigned int colour_next; /* Per-node cache coloring */
327 struct array_cache *shared; /* shared per node */
328 struct alien_cache **alien; /* on other nodes */
329 unsigned long next_reap; /* updated without locking */
330 int free_touched; /* updated without locking */
331 #endif
332
333 #ifdef CONFIG_SLUB
334 unsigned long nr_partial;
335 struct list_head partial;
336 #ifdef CONFIG_SLUB_DEBUG
337 atomic_long_t nr_slabs;
338 atomic_long_t total_objects;
339 struct list_head full;
340 #endif
341 #endif
342
343 };
344
get_node(struct kmem_cache * s,int node)345 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
346 {
347 return s->node[node];
348 }
349
350 /*
351 * Iterator over all nodes. The body will be executed for each node that has
352 * a kmem_cache_node structure allocated (which is true for all online nodes)
353 */
354 #define for_each_kmem_cache_node(__s, __node, __n) \
355 for (__node = 0; __node < nr_node_ids; __node++) \
356 if ((__n = get_node(__s, __node)))
357
358 #endif
359
360 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
361 void slab_stop(struct seq_file *m, void *p);
362
363 #endif /* MM_SLAB_H */
364