• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _BCACHE_H
2 #define _BCACHE_H
3 
4 /*
5  * SOME HIGH LEVEL CODE DOCUMENTATION:
6  *
7  * Bcache mostly works with cache sets, cache devices, and backing devices.
8  *
9  * Support for multiple cache devices hasn't quite been finished off yet, but
10  * it's about 95% plumbed through. A cache set and its cache devices is sort of
11  * like a md raid array and its component devices. Most of the code doesn't care
12  * about individual cache devices, the main abstraction is the cache set.
13  *
14  * Multiple cache devices is intended to give us the ability to mirror dirty
15  * cached data and metadata, without mirroring clean cached data.
16  *
17  * Backing devices are different, in that they have a lifetime independent of a
18  * cache set. When you register a newly formatted backing device it'll come up
19  * in passthrough mode, and then you can attach and detach a backing device from
20  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21  * invalidates any cached data for that backing device.
22  *
23  * A cache set can have multiple (many) backing devices attached to it.
24  *
25  * There's also flash only volumes - this is the reason for the distinction
26  * between struct cached_dev and struct bcache_device. A flash only volume
27  * works much like a bcache device that has a backing device, except the
28  * "cached" data is always dirty. The end result is that we get thin
29  * provisioning with very little additional code.
30  *
31  * Flash only volumes work but they're not production ready because the moving
32  * garbage collector needs more work. More on that later.
33  *
34  * BUCKETS/ALLOCATION:
35  *
36  * Bcache is primarily designed for caching, which means that in normal
37  * operation all of our available space will be allocated. Thus, we need an
38  * efficient way of deleting things from the cache so we can write new things to
39  * it.
40  *
41  * To do this, we first divide the cache device up into buckets. A bucket is the
42  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43  * works efficiently.
44  *
45  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46  * it. The gens and priorities for all the buckets are stored contiguously and
47  * packed on disk (in a linked list of buckets - aside from the superblock, all
48  * of bcache's metadata is stored in buckets).
49  *
50  * The priority is used to implement an LRU. We reset a bucket's priority when
51  * we allocate it or on cache it, and every so often we decrement the priority
52  * of each bucket. It could be used to implement something more sophisticated,
53  * if anyone ever gets around to it.
54  *
55  * The generation is used for invalidating buckets. Each pointer also has an 8
56  * bit generation embedded in it; for a pointer to be considered valid, its gen
57  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
58  * we have to do is increment its gen (and write its new gen to disk; we batch
59  * this up).
60  *
61  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62  * contain metadata (including btree nodes).
63  *
64  * THE BTREE:
65  *
66  * Bcache is in large part design around the btree.
67  *
68  * At a high level, the btree is just an index of key -> ptr tuples.
69  *
70  * Keys represent extents, and thus have a size field. Keys also have a variable
71  * number of pointers attached to them (potentially zero, which is handy for
72  * invalidating the cache).
73  *
74  * The key itself is an inode:offset pair. The inode number corresponds to a
75  * backing device or a flash only volume. The offset is the ending offset of the
76  * extent within the inode - not the starting offset; this makes lookups
77  * slightly more convenient.
78  *
79  * Pointers contain the cache device id, the offset on that device, and an 8 bit
80  * generation number. More on the gen later.
81  *
82  * Index lookups are not fully abstracted - cache lookups in particular are
83  * still somewhat mixed in with the btree code, but things are headed in that
84  * direction.
85  *
86  * Updates are fairly well abstracted, though. There are two different ways of
87  * updating the btree; insert and replace.
88  *
89  * BTREE_INSERT will just take a list of keys and insert them into the btree -
90  * overwriting (possibly only partially) any extents they overlap with. This is
91  * used to update the index after a write.
92  *
93  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94  * overwriting a key that matches another given key. This is used for inserting
95  * data into the cache after a cache miss, and for background writeback, and for
96  * the moving garbage collector.
97  *
98  * There is no "delete" operation; deleting things from the index is
99  * accomplished by either by invalidating pointers (by incrementing a bucket's
100  * gen) or by inserting a key with 0 pointers - which will overwrite anything
101  * previously present at that location in the index.
102  *
103  * This means that there are always stale/invalid keys in the btree. They're
104  * filtered out by the code that iterates through a btree node, and removed when
105  * a btree node is rewritten.
106  *
107  * BTREE NODES:
108  *
109  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110  * free smaller than a bucket - so, that's how big our btree nodes are.
111  *
112  * (If buckets are really big we'll only use part of the bucket for a btree node
113  * - no less than 1/4th - but a bucket still contains no more than a single
114  * btree node. I'd actually like to change this, but for now we rely on the
115  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116  *
117  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118  * btree implementation.
119  *
120  * The way this is solved is that btree nodes are internally log structured; we
121  * can append new keys to an existing btree node without rewriting it. This
122  * means each set of keys we write is sorted, but the node is not.
123  *
124  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125  * be expensive, and we have to distinguish between the keys we have written and
126  * the keys we haven't. So to do a lookup in a btree node, we have to search
127  * each sorted set. But we do merge written sets together lazily, so the cost of
128  * these extra searches is quite low (normally most of the keys in a btree node
129  * will be in one big set, and then there'll be one or two sets that are much
130  * smaller).
131  *
132  * This log structure makes bcache's btree more of a hybrid between a
133  * conventional btree and a compacting data structure, with some of the
134  * advantages of both.
135  *
136  * GARBAGE COLLECTION:
137  *
138  * We can't just invalidate any bucket - it might contain dirty data or
139  * metadata. If it once contained dirty data, other writes might overwrite it
140  * later, leaving no valid pointers into that bucket in the index.
141  *
142  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143  * It also counts how much valid data it each bucket currently contains, so that
144  * allocation can reuse buckets sooner when they've been mostly overwritten.
145  *
146  * It also does some things that are really internal to the btree
147  * implementation. If a btree node contains pointers that are stale by more than
148  * some threshold, it rewrites the btree node to avoid the bucket's generation
149  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150  *
151  * THE JOURNAL:
152  *
153  * Bcache's journal is not necessary for consistency; we always strictly
154  * order metadata writes so that the btree and everything else is consistent on
155  * disk in the event of an unclean shutdown, and in fact bcache had writeback
156  * caching (with recovery from unclean shutdown) before journalling was
157  * implemented.
158  *
159  * Rather, the journal is purely a performance optimization; we can't complete a
160  * write until we've updated the index on disk, otherwise the cache would be
161  * inconsistent in the event of an unclean shutdown. This means that without the
162  * journal, on random write workloads we constantly have to update all the leaf
163  * nodes in the btree, and those writes will be mostly empty (appending at most
164  * a few keys each) - highly inefficient in terms of amount of metadata writes,
165  * and it puts more strain on the various btree resorting/compacting code.
166  *
167  * The journal is just a log of keys we've inserted; on startup we just reinsert
168  * all the keys in the open journal entries. That means that when we're updating
169  * a node in the btree, we can wait until a 4k block of keys fills up before
170  * writing them out.
171  *
172  * For simplicity, we only journal updates to leaf nodes; updates to parent
173  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174  * the complexity to deal with journalling them (in particular, journal replay)
175  * - updates to non leaf nodes just happen synchronously (see btree_split()).
176  */
177 
178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179 
180 #include <linux/bcache.h>
181 #include <linux/bio.h>
182 #include <linux/kobject.h>
183 #include <linux/list.h>
184 #include <linux/mutex.h>
185 #include <linux/rbtree.h>
186 #include <linux/rwsem.h>
187 #include <linux/types.h>
188 #include <linux/workqueue.h>
189 
190 #include "bset.h"
191 #include "util.h"
192 #include "closure.h"
193 
194 struct bucket {
195 	atomic_t	pin;
196 	uint16_t	prio;
197 	uint8_t		gen;
198 	uint8_t		last_gc; /* Most out of date gen in the btree */
199 	uint16_t	gc_mark; /* Bitfield used by GC. See below for field */
200 };
201 
202 /*
203  * I'd use bitfields for these, but I don't trust the compiler not to screw me
204  * as multiple threads touch struct bucket without locking
205  */
206 
207 BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
208 #define GC_MARK_RECLAIMABLE	1
209 #define GC_MARK_DIRTY		2
210 #define GC_MARK_METADATA	3
211 #define GC_SECTORS_USED_SIZE	13
212 #define MAX_GC_SECTORS_USED	(~(~0ULL << GC_SECTORS_USED_SIZE))
213 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
214 BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
215 
216 #include "journal.h"
217 #include "stats.h"
218 struct search;
219 struct btree;
220 struct keybuf;
221 
222 struct keybuf_key {
223 	struct rb_node		node;
224 	BKEY_PADDED(key);
225 	void			*private;
226 };
227 
228 struct keybuf {
229 	struct bkey		last_scanned;
230 	spinlock_t		lock;
231 
232 	/*
233 	 * Beginning and end of range in rb tree - so that we can skip taking
234 	 * lock and checking the rb tree when we need to check for overlapping
235 	 * keys.
236 	 */
237 	struct bkey		start;
238 	struct bkey		end;
239 
240 	struct rb_root		keys;
241 
242 #define KEYBUF_NR		500
243 	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
244 };
245 
246 struct bio_split_pool {
247 	struct bio_set		*bio_split;
248 	mempool_t		*bio_split_hook;
249 };
250 
251 struct bio_split_hook {
252 	struct closure		cl;
253 	struct bio_split_pool	*p;
254 	struct bio		*bio;
255 	bio_end_io_t		*bi_end_io;
256 	void			*bi_private;
257 };
258 
259 struct bcache_device {
260 	struct closure		cl;
261 
262 	struct kobject		kobj;
263 
264 	struct cache_set	*c;
265 	unsigned		id;
266 #define BCACHEDEVNAME_SIZE	12
267 	char			name[BCACHEDEVNAME_SIZE];
268 
269 	struct gendisk		*disk;
270 
271 	unsigned long		flags;
272 #define BCACHE_DEV_CLOSING	0
273 #define BCACHE_DEV_DETACHING	1
274 #define BCACHE_DEV_UNLINK_DONE	2
275 
276 	unsigned		nr_stripes;
277 	unsigned		stripe_size;
278 	atomic_t		*stripe_sectors_dirty;
279 	unsigned long		*full_dirty_stripes;
280 
281 	unsigned long		sectors_dirty_last;
282 	long			sectors_dirty_derivative;
283 
284 	struct bio_set		*bio_split;
285 
286 	unsigned		data_csum:1;
287 
288 	int (*cache_miss)(struct btree *, struct search *,
289 			  struct bio *, unsigned);
290 	int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
291 
292 	struct bio_split_pool	bio_split_hook;
293 };
294 
295 struct io {
296 	/* Used to track sequential IO so it can be skipped */
297 	struct hlist_node	hash;
298 	struct list_head	lru;
299 
300 	unsigned long		jiffies;
301 	unsigned		sequential;
302 	sector_t		last;
303 };
304 
305 struct cached_dev {
306 	struct list_head	list;
307 	struct bcache_device	disk;
308 	struct block_device	*bdev;
309 
310 	struct cache_sb		sb;
311 	struct bio		sb_bio;
312 	struct bio_vec		sb_bv[1];
313 	struct closure		sb_write;
314 	struct semaphore	sb_write_mutex;
315 
316 	/* Refcount on the cache set. Always nonzero when we're caching. */
317 	atomic_t		count;
318 	struct work_struct	detach;
319 
320 	/*
321 	 * Device might not be running if it's dirty and the cache set hasn't
322 	 * showed up yet.
323 	 */
324 	atomic_t		running;
325 
326 	/*
327 	 * Writes take a shared lock from start to finish; scanning for dirty
328 	 * data to refill the rb tree requires an exclusive lock.
329 	 */
330 	struct rw_semaphore	writeback_lock;
331 
332 	/*
333 	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
334 	 * data in the cache. Protected by writeback_lock; must have an
335 	 * shared lock to set and exclusive lock to clear.
336 	 */
337 	atomic_t		has_dirty;
338 
339 	struct bch_ratelimit	writeback_rate;
340 	struct delayed_work	writeback_rate_update;
341 
342 	/*
343 	 * Internal to the writeback code, so read_dirty() can keep track of
344 	 * where it's at.
345 	 */
346 	sector_t		last_read;
347 
348 	/* Limit number of writeback bios in flight */
349 	struct semaphore	in_flight;
350 	struct task_struct	*writeback_thread;
351 	struct workqueue_struct	*writeback_write_wq;
352 
353 	struct keybuf		writeback_keys;
354 
355 	/* For tracking sequential IO */
356 #define RECENT_IO_BITS	7
357 #define RECENT_IO	(1 << RECENT_IO_BITS)
358 	struct io		io[RECENT_IO];
359 	struct hlist_head	io_hash[RECENT_IO + 1];
360 	struct list_head	io_lru;
361 	spinlock_t		io_lock;
362 
363 	struct cache_accounting	accounting;
364 
365 	/* The rest of this all shows up in sysfs */
366 	unsigned		sequential_cutoff;
367 	unsigned		readahead;
368 
369 	unsigned		verify:1;
370 	unsigned		bypass_torture_test:1;
371 
372 	unsigned		partial_stripes_expensive:1;
373 	unsigned		writeback_metadata:1;
374 	unsigned		writeback_running:1;
375 	unsigned char		writeback_percent;
376 	unsigned		writeback_delay;
377 
378 	uint64_t		writeback_rate_target;
379 	int64_t			writeback_rate_proportional;
380 	int64_t			writeback_rate_derivative;
381 	int64_t			writeback_rate_change;
382 
383 	unsigned		writeback_rate_update_seconds;
384 	unsigned		writeback_rate_d_term;
385 	unsigned		writeback_rate_p_term_inverse;
386 };
387 
388 enum alloc_reserve {
389 	RESERVE_BTREE,
390 	RESERVE_PRIO,
391 	RESERVE_MOVINGGC,
392 	RESERVE_NONE,
393 	RESERVE_NR,
394 };
395 
396 struct cache {
397 	struct cache_set	*set;
398 	struct cache_sb		sb;
399 	struct bio		sb_bio;
400 	struct bio_vec		sb_bv[1];
401 
402 	struct kobject		kobj;
403 	struct block_device	*bdev;
404 
405 	struct task_struct	*alloc_thread;
406 
407 	struct closure		prio;
408 	struct prio_set		*disk_buckets;
409 
410 	/*
411 	 * When allocating new buckets, prio_write() gets first dibs - since we
412 	 * may not be allocate at all without writing priorities and gens.
413 	 * prio_buckets[] contains the last buckets we wrote priorities to (so
414 	 * gc can mark them as metadata), prio_next[] contains the buckets
415 	 * allocated for the next prio write.
416 	 */
417 	uint64_t		*prio_buckets;
418 	uint64_t		*prio_last_buckets;
419 
420 	/*
421 	 * free: Buckets that are ready to be used
422 	 *
423 	 * free_inc: Incoming buckets - these are buckets that currently have
424 	 * cached data in them, and we can't reuse them until after we write
425 	 * their new gen to disk. After prio_write() finishes writing the new
426 	 * gens/prios, they'll be moved to the free list (and possibly discarded
427 	 * in the process)
428 	 */
429 	DECLARE_FIFO(long, free)[RESERVE_NR];
430 	DECLARE_FIFO(long, free_inc);
431 
432 	size_t			fifo_last_bucket;
433 
434 	/* Allocation stuff: */
435 	struct bucket		*buckets;
436 
437 	DECLARE_HEAP(struct bucket *, heap);
438 
439 	/*
440 	 * If nonzero, we know we aren't going to find any buckets to invalidate
441 	 * until a gc finishes - otherwise we could pointlessly burn a ton of
442 	 * cpu
443 	 */
444 	unsigned		invalidate_needs_gc:1;
445 
446 	bool			discard; /* Get rid of? */
447 
448 	struct journal_device	journal;
449 
450 	/* The rest of this all shows up in sysfs */
451 #define IO_ERROR_SHIFT		20
452 	atomic_t		io_errors;
453 	atomic_t		io_count;
454 
455 	atomic_long_t		meta_sectors_written;
456 	atomic_long_t		btree_sectors_written;
457 	atomic_long_t		sectors_written;
458 
459 	struct bio_split_pool	bio_split_hook;
460 };
461 
462 struct gc_stat {
463 	size_t			nodes;
464 	size_t			key_bytes;
465 
466 	size_t			nkeys;
467 	uint64_t		data;	/* sectors */
468 	unsigned		in_use; /* percent */
469 };
470 
471 /*
472  * Flag bits, for how the cache set is shutting down, and what phase it's at:
473  *
474  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
475  * all the backing devices first (their cached data gets invalidated, and they
476  * won't automatically reattach).
477  *
478  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
479  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
480  * flushing dirty data).
481  *
482  * CACHE_SET_RUNNING means all cache devices have been registered and journal
483  * replay is complete.
484  */
485 #define CACHE_SET_UNREGISTERING		0
486 #define	CACHE_SET_STOPPING		1
487 #define	CACHE_SET_RUNNING		2
488 
489 struct cache_set {
490 	struct closure		cl;
491 
492 	struct list_head	list;
493 	struct kobject		kobj;
494 	struct kobject		internal;
495 	struct dentry		*debug;
496 	struct cache_accounting accounting;
497 
498 	unsigned long		flags;
499 
500 	struct cache_sb		sb;
501 
502 	struct cache		*cache[MAX_CACHES_PER_SET];
503 	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
504 	int			caches_loaded;
505 
506 	struct bcache_device	**devices;
507 	struct list_head	cached_devs;
508 	uint64_t		cached_dev_sectors;
509 	struct closure		caching;
510 
511 	struct closure		sb_write;
512 	struct semaphore	sb_write_mutex;
513 
514 	mempool_t		*search;
515 	mempool_t		*bio_meta;
516 	struct bio_set		*bio_split;
517 
518 	/* For the btree cache */
519 	struct shrinker		shrink;
520 
521 	/* For the btree cache and anything allocation related */
522 	struct mutex		bucket_lock;
523 
524 	/* log2(bucket_size), in sectors */
525 	unsigned short		bucket_bits;
526 
527 	/* log2(block_size), in sectors */
528 	unsigned short		block_bits;
529 
530 	/*
531 	 * Default number of pages for a new btree node - may be less than a
532 	 * full bucket
533 	 */
534 	unsigned		btree_pages;
535 
536 	/*
537 	 * Lists of struct btrees; lru is the list for structs that have memory
538 	 * allocated for actual btree node, freed is for structs that do not.
539 	 *
540 	 * We never free a struct btree, except on shutdown - we just put it on
541 	 * the btree_cache_freed list and reuse it later. This simplifies the
542 	 * code, and it doesn't cost us much memory as the memory usage is
543 	 * dominated by buffers that hold the actual btree node data and those
544 	 * can be freed - and the number of struct btrees allocated is
545 	 * effectively bounded.
546 	 *
547 	 * btree_cache_freeable effectively is a small cache - we use it because
548 	 * high order page allocations can be rather expensive, and it's quite
549 	 * common to delete and allocate btree nodes in quick succession. It
550 	 * should never grow past ~2-3 nodes in practice.
551 	 */
552 	struct list_head	btree_cache;
553 	struct list_head	btree_cache_freeable;
554 	struct list_head	btree_cache_freed;
555 
556 	/* Number of elements in btree_cache + btree_cache_freeable lists */
557 	unsigned		btree_cache_used;
558 
559 	/*
560 	 * If we need to allocate memory for a new btree node and that
561 	 * allocation fails, we can cannibalize another node in the btree cache
562 	 * to satisfy the allocation - lock to guarantee only one thread does
563 	 * this at a time:
564 	 */
565 	wait_queue_head_t	btree_cache_wait;
566 	struct task_struct	*btree_cache_alloc_lock;
567 
568 	/*
569 	 * When we free a btree node, we increment the gen of the bucket the
570 	 * node is in - but we can't rewrite the prios and gens until we
571 	 * finished whatever it is we were doing, otherwise after a crash the
572 	 * btree node would be freed but for say a split, we might not have the
573 	 * pointers to the new nodes inserted into the btree yet.
574 	 *
575 	 * This is a refcount that blocks prio_write() until the new keys are
576 	 * written.
577 	 */
578 	atomic_t		prio_blocked;
579 	wait_queue_head_t	bucket_wait;
580 
581 	/*
582 	 * For any bio we don't skip we subtract the number of sectors from
583 	 * rescale; when it hits 0 we rescale all the bucket priorities.
584 	 */
585 	atomic_t		rescale;
586 	/*
587 	 * When we invalidate buckets, we use both the priority and the amount
588 	 * of good data to determine which buckets to reuse first - to weight
589 	 * those together consistently we keep track of the smallest nonzero
590 	 * priority of any bucket.
591 	 */
592 	uint16_t		min_prio;
593 
594 	/*
595 	 * max(gen - last_gc) for all buckets. When it gets too big we have to gc
596 	 * to keep gens from wrapping around.
597 	 */
598 	uint8_t			need_gc;
599 	struct gc_stat		gc_stats;
600 	size_t			nbuckets;
601 
602 	struct task_struct	*gc_thread;
603 	/* Where in the btree gc currently is */
604 	struct bkey		gc_done;
605 
606 	/*
607 	 * The allocation code needs gc_mark in struct bucket to be correct, but
608 	 * it's not while a gc is in progress. Protected by bucket_lock.
609 	 */
610 	int			gc_mark_valid;
611 
612 	/* Counts how many sectors bio_insert has added to the cache */
613 	atomic_t		sectors_to_gc;
614 
615 	wait_queue_head_t	moving_gc_wait;
616 	struct keybuf		moving_gc_keys;
617 	/* Number of moving GC bios in flight */
618 	struct semaphore	moving_in_flight;
619 
620 	struct workqueue_struct	*moving_gc_wq;
621 
622 	struct btree		*root;
623 
624 #ifdef CONFIG_BCACHE_DEBUG
625 	struct btree		*verify_data;
626 	struct bset		*verify_ondisk;
627 	struct mutex		verify_lock;
628 #endif
629 
630 	unsigned		nr_uuids;
631 	struct uuid_entry	*uuids;
632 	BKEY_PADDED(uuid_bucket);
633 	struct closure		uuid_write;
634 	struct semaphore	uuid_write_mutex;
635 
636 	/*
637 	 * A btree node on disk could have too many bsets for an iterator to fit
638 	 * on the stack - have to dynamically allocate them
639 	 */
640 	mempool_t		*fill_iter;
641 
642 	struct bset_sort_state	sort;
643 
644 	/* List of buckets we're currently writing data to */
645 	struct list_head	data_buckets;
646 	spinlock_t		data_bucket_lock;
647 
648 	struct journal		journal;
649 
650 #define CONGESTED_MAX		1024
651 	unsigned		congested_last_us;
652 	atomic_t		congested;
653 
654 	/* The rest of this all shows up in sysfs */
655 	unsigned		congested_read_threshold_us;
656 	unsigned		congested_write_threshold_us;
657 
658 	struct time_stats	btree_gc_time;
659 	struct time_stats	btree_split_time;
660 	struct time_stats	btree_read_time;
661 
662 	atomic_long_t		cache_read_races;
663 	atomic_long_t		writeback_keys_done;
664 	atomic_long_t		writeback_keys_failed;
665 
666 	enum			{
667 		ON_ERROR_UNREGISTER,
668 		ON_ERROR_PANIC,
669 	}			on_error;
670 	unsigned		error_limit;
671 	unsigned		error_decay;
672 
673 	unsigned short		journal_delay_ms;
674 	bool			expensive_debug_checks;
675 	unsigned		verify:1;
676 	unsigned		key_merging_disabled:1;
677 	unsigned		gc_always_rewrite:1;
678 	unsigned		shrinker_disabled:1;
679 	unsigned		copy_gc_enabled:1;
680 
681 #define BUCKET_HASH_BITS	12
682 	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
683 };
684 
685 struct bbio {
686 	unsigned		submit_time_us;
687 	union {
688 		struct bkey	key;
689 		uint64_t	_pad[3];
690 		/*
691 		 * We only need pad = 3 here because we only ever carry around a
692 		 * single pointer - i.e. the pointer we're doing io to/from.
693 		 */
694 	};
695 	struct bio		bio;
696 };
697 
698 #define BTREE_PRIO		USHRT_MAX
699 #define INITIAL_PRIO		32768U
700 
701 #define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
702 #define btree_blocks(b)							\
703 	((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
704 
705 #define btree_default_blocks(c)						\
706 	((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
707 
708 #define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
709 #define bucket_bytes(c)		((c)->sb.bucket_size << 9)
710 #define block_bytes(c)		((c)->sb.block_size << 9)
711 
712 #define prios_per_bucket(c)				\
713 	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
714 	 sizeof(struct bucket_disk))
715 #define prio_buckets(c)					\
716 	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
717 
sector_to_bucket(struct cache_set * c,sector_t s)718 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
719 {
720 	return s >> c->bucket_bits;
721 }
722 
bucket_to_sector(struct cache_set * c,size_t b)723 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
724 {
725 	return ((sector_t) b) << c->bucket_bits;
726 }
727 
bucket_remainder(struct cache_set * c,sector_t s)728 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
729 {
730 	return s & (c->sb.bucket_size - 1);
731 }
732 
PTR_CACHE(struct cache_set * c,const struct bkey * k,unsigned ptr)733 static inline struct cache *PTR_CACHE(struct cache_set *c,
734 				      const struct bkey *k,
735 				      unsigned ptr)
736 {
737 	return c->cache[PTR_DEV(k, ptr)];
738 }
739 
PTR_BUCKET_NR(struct cache_set * c,const struct bkey * k,unsigned ptr)740 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
741 				   const struct bkey *k,
742 				   unsigned ptr)
743 {
744 	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
745 }
746 
PTR_BUCKET(struct cache_set * c,const struct bkey * k,unsigned ptr)747 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
748 					const struct bkey *k,
749 					unsigned ptr)
750 {
751 	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
752 }
753 
gen_after(uint8_t a,uint8_t b)754 static inline uint8_t gen_after(uint8_t a, uint8_t b)
755 {
756 	uint8_t r = a - b;
757 	return r > 128U ? 0 : r;
758 }
759 
ptr_stale(struct cache_set * c,const struct bkey * k,unsigned i)760 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
761 				unsigned i)
762 {
763 	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
764 }
765 
ptr_available(struct cache_set * c,const struct bkey * k,unsigned i)766 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
767 				 unsigned i)
768 {
769 	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
770 }
771 
772 /* Btree key macros */
773 
774 /*
775  * This is used for various on disk data structures - cache_sb, prio_set, bset,
776  * jset: The checksum is _always_ the first 8 bytes of these structs
777  */
778 #define csum_set(i)							\
779 	bch_crc64(((void *) (i)) + sizeof(uint64_t),			\
780 		  ((void *) bset_bkey_last(i)) -			\
781 		  (((void *) (i)) + sizeof(uint64_t)))
782 
783 /* Error handling macros */
784 
785 #define btree_bug(b, ...)						\
786 do {									\
787 	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
788 		dump_stack();						\
789 } while (0)
790 
791 #define cache_bug(c, ...)						\
792 do {									\
793 	if (bch_cache_set_error(c, __VA_ARGS__))			\
794 		dump_stack();						\
795 } while (0)
796 
797 #define btree_bug_on(cond, b, ...)					\
798 do {									\
799 	if (cond)							\
800 		btree_bug(b, __VA_ARGS__);				\
801 } while (0)
802 
803 #define cache_bug_on(cond, c, ...)					\
804 do {									\
805 	if (cond)							\
806 		cache_bug(c, __VA_ARGS__);				\
807 } while (0)
808 
809 #define cache_set_err_on(cond, c, ...)					\
810 do {									\
811 	if (cond)							\
812 		bch_cache_set_error(c, __VA_ARGS__);			\
813 } while (0)
814 
815 /* Looping macros */
816 
817 #define for_each_cache(ca, cs, iter)					\
818 	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
819 
820 #define for_each_bucket(b, ca)						\
821 	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
822 	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)
823 
cached_dev_put(struct cached_dev * dc)824 static inline void cached_dev_put(struct cached_dev *dc)
825 {
826 	if (atomic_dec_and_test(&dc->count))
827 		schedule_work(&dc->detach);
828 }
829 
cached_dev_get(struct cached_dev * dc)830 static inline bool cached_dev_get(struct cached_dev *dc)
831 {
832 	if (!atomic_inc_not_zero(&dc->count))
833 		return false;
834 
835 	/* Paired with the mb in cached_dev_attach */
836 	smp_mb__after_atomic();
837 	return true;
838 }
839 
840 /*
841  * bucket_gc_gen() returns the difference between the bucket's current gen and
842  * the oldest gen of any pointer into that bucket in the btree (last_gc).
843  */
844 
bucket_gc_gen(struct bucket * b)845 static inline uint8_t bucket_gc_gen(struct bucket *b)
846 {
847 	return b->gen - b->last_gc;
848 }
849 
850 #define BUCKET_GC_GEN_MAX	96U
851 
852 #define kobj_attribute_write(n, fn)					\
853 	static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
854 
855 #define kobj_attribute_rw(n, show, store)				\
856 	static struct kobj_attribute ksysfs_##n =			\
857 		__ATTR(n, S_IWUSR|S_IRUSR, show, store)
858 
wake_up_allocators(struct cache_set * c)859 static inline void wake_up_allocators(struct cache_set *c)
860 {
861 	struct cache *ca;
862 	unsigned i;
863 
864 	for_each_cache(ca, c, i)
865 		wake_up_process(ca->alloc_thread);
866 }
867 
868 /* Forward declarations */
869 
870 void bch_count_io_errors(struct cache *, int, const char *);
871 void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
872 			      int, const char *);
873 void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
874 void bch_bbio_free(struct bio *, struct cache_set *);
875 struct bio *bch_bbio_alloc(struct cache_set *);
876 
877 void bch_generic_make_request(struct bio *, struct bio_split_pool *);
878 void __bch_submit_bbio(struct bio *, struct cache_set *);
879 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
880 
881 uint8_t bch_inc_gen(struct cache *, struct bucket *);
882 void bch_rescale_priorities(struct cache_set *, int);
883 
884 bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
885 void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
886 
887 void __bch_bucket_free(struct cache *, struct bucket *);
888 void bch_bucket_free(struct cache_set *, struct bkey *);
889 
890 long bch_bucket_alloc(struct cache *, unsigned, bool);
891 int __bch_bucket_alloc_set(struct cache_set *, unsigned,
892 			   struct bkey *, int, bool);
893 int bch_bucket_alloc_set(struct cache_set *, unsigned,
894 			 struct bkey *, int, bool);
895 bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
896 		       unsigned, unsigned, bool);
897 
898 __printf(2, 3)
899 bool bch_cache_set_error(struct cache_set *, const char *, ...);
900 
901 void bch_prio_write(struct cache *);
902 void bch_write_bdev_super(struct cached_dev *, struct closure *);
903 
904 extern struct workqueue_struct *bcache_wq;
905 extern const char * const bch_cache_modes[];
906 extern struct mutex bch_register_lock;
907 extern struct list_head bch_cache_sets;
908 
909 extern struct kobj_type bch_cached_dev_ktype;
910 extern struct kobj_type bch_flash_dev_ktype;
911 extern struct kobj_type bch_cache_set_ktype;
912 extern struct kobj_type bch_cache_set_internal_ktype;
913 extern struct kobj_type bch_cache_ktype;
914 
915 void bch_cached_dev_release(struct kobject *);
916 void bch_flash_dev_release(struct kobject *);
917 void bch_cache_set_release(struct kobject *);
918 void bch_cache_release(struct kobject *);
919 
920 int bch_uuid_write(struct cache_set *);
921 void bcache_write_super(struct cache_set *);
922 
923 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
924 
925 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
926 void bch_cached_dev_detach(struct cached_dev *);
927 void bch_cached_dev_run(struct cached_dev *);
928 void bcache_device_stop(struct bcache_device *);
929 
930 void bch_cache_set_unregister(struct cache_set *);
931 void bch_cache_set_stop(struct cache_set *);
932 
933 struct cache_set *bch_cache_set_alloc(struct cache_sb *);
934 void bch_btree_cache_free(struct cache_set *);
935 int bch_btree_cache_alloc(struct cache_set *);
936 void bch_moving_init_cache_set(struct cache_set *);
937 int bch_open_buckets_alloc(struct cache_set *);
938 void bch_open_buckets_free(struct cache_set *);
939 
940 int bch_cache_allocator_start(struct cache *ca);
941 
942 void bch_debug_exit(void);
943 int bch_debug_init(struct kobject *);
944 void bch_request_exit(void);
945 int bch_request_init(void);
946 
947 #endif /* _BCACHE_H */
948