• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27 #include <linux/writeback.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (unlikely(condition)) {				\
39 			WARN_ON(1);					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 		}							\
42 	} while (0)
43 #endif
44 
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 	FAULT_KMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 
100 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
101 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
102 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
103 
104 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
105 		typecheck(unsigned long long, b) &&			\
106 		((long long)((a) - (b)) > 0))
107 
108 typedef u32 block_t;	/*
109 			 * should not change u32, since it is the on-disk block
110 			 * address format, __le32.
111 			 */
112 typedef u32 nid_t;
113 
114 struct f2fs_mount_info {
115 	unsigned int	opt;
116 };
117 
118 #define F2FS_FEATURE_ENCRYPT		0x0001
119 #define F2FS_FEATURE_BLKZONED		0x0002
120 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
121 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
122 #define F2FS_FEATURE_PRJQUOTA		0x0010
123 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
124 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
125 #define F2FS_FEATURE_QUOTA_INO		0x0080
126 
127 #define F2FS_HAS_FEATURE(sb, mask)					\
128 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
129 #define F2FS_SET_FEATURE(sb, mask)					\
130 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
131 #define F2FS_CLEAR_FEATURE(sb, mask)					\
132 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
133 
134 /* bio stuffs */
135 #define REQ_OP_READ	READ
136 #define REQ_OP_WRITE	WRITE
137 #define bio_op(bio)	((bio)->bi_rw & 1)
138 
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)139 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
140 		unsigned op_flags)
141 {
142 	bio->bi_rw = op | op_flags;
143 }
144 
wbc_to_write_flags(struct writeback_control * wbc)145 static inline int wbc_to_write_flags(struct writeback_control *wbc)
146 {
147 	if (wbc->sync_mode == WB_SYNC_ALL)
148 		return REQ_SYNC;
149 	return 0;
150 }
151 
inode_lock(struct inode * inode)152 static inline void inode_lock(struct inode *inode)
153 {
154 	mutex_lock(&inode->i_mutex);
155 }
156 
inode_trylock(struct inode * inode)157 static inline int inode_trylock(struct inode *inode)
158 {
159 	return mutex_trylock(&inode->i_mutex);
160 }
161 
inode_unlock(struct inode * inode)162 static inline void inode_unlock(struct inode *inode)
163 {
164 	mutex_unlock(&inode->i_mutex);
165 }
166 
167 #define rb_entry_safe(ptr, type, member) \
168 	({ typeof(ptr) ____ptr = (ptr); \
169 	   ____ptr ? rb_entry(____ptr, type, member) : NULL; \
170 	})
171 
172 #define list_last_entry(ptr, type, member) \
173 	list_entry((ptr)->prev, type, member)
174 
175 #define list_first_entry(ptr, type, member) \
176 	list_entry((ptr)->next, type, member)
177 
178 /**
179  * wq_has_sleeper - check if there are any waiting processes
180  * @wq: wait queue head
181  *
182  * Returns true if wq has waiting processes
183  *
184  * Please refer to the comment for waitqueue_active.
185  */
wq_has_sleeper(wait_queue_head_t * wq)186 static inline bool wq_has_sleeper(wait_queue_head_t *wq)
187 {
188 	/*
189 	 * We need to be sure we are in sync with the
190 	 * add_wait_queue modifications to the wait queue.
191 	 *
192 	 * This memory barrier should be paired with one on the
193 	 * waiting side.
194 	 */
195 	smp_mb();
196 	return waitqueue_active(wq);
197 }
198 
file_dentry(const struct file * file)199 static inline struct dentry *file_dentry(const struct file *file)
200 {
201 	return file->f_path.dentry;
202 }
203 
204 /**
205  * current_time - Return FS time
206  * @inode: inode.
207  *
208  * Return the current time truncated to the time granularity supported by
209  * the fs.
210  *
211  * Note that inode and inode->sb cannot be NULL.
212  * Otherwise, the function warns and returns time without truncation.
213  */
current_time(struct inode * inode)214 static inline struct timespec current_time(struct inode *inode)
215 {
216 	struct timespec now = current_kernel_time();
217 
218 	if (unlikely(!inode->i_sb)) {
219 		WARN(1, "current_time() called with uninitialized super_block in the inode");
220 		return now;
221 	}
222 
223 	return timespec_trunc(now, inode->i_sb->s_time_gran);
224 }
225 
226 /*
227  * For checkpoint manager
228  */
229 enum {
230 	NAT_BITMAP,
231 	SIT_BITMAP
232 };
233 
234 #define	CP_UMOUNT	0x00000001
235 #define	CP_FASTBOOT	0x00000002
236 #define	CP_SYNC		0x00000004
237 #define	CP_RECOVERY	0x00000008
238 #define	CP_DISCARD	0x00000010
239 #define CP_TRIMMED	0x00000020
240 
241 #define DEF_BATCHED_TRIM_SECTIONS	2048
242 #define BATCHED_TRIM_SEGMENTS(sbi)	\
243 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
244 #define BATCHED_TRIM_BLOCKS(sbi)	\
245 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
246 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
247 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
248 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
249 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
250 #define DEF_CP_INTERVAL			60	/* 60 secs */
251 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
252 
253 struct cp_control {
254 	int reason;
255 	__u64 trim_start;
256 	__u64 trim_end;
257 	__u64 trim_minlen;
258 };
259 
260 /*
261  * For CP/NAT/SIT/SSA readahead
262  */
263 enum {
264 	META_CP,
265 	META_NAT,
266 	META_SIT,
267 	META_SSA,
268 	META_POR,
269 };
270 
271 /* for the list of ino */
272 enum {
273 	ORPHAN_INO,		/* for orphan ino list */
274 	APPEND_INO,		/* for append ino list */
275 	UPDATE_INO,		/* for update ino list */
276 	FLUSH_INO,		/* for multiple device flushing */
277 	MAX_INO_ENTRY,		/* max. list */
278 };
279 
280 struct ino_entry {
281 	struct list_head list;		/* list head */
282 	nid_t ino;			/* inode number */
283 	unsigned int dirty_device;	/* dirty device bitmap */
284 };
285 
286 /* for the list of inodes to be GCed */
287 struct inode_entry {
288 	struct list_head list;	/* list head */
289 	struct inode *inode;	/* vfs inode pointer */
290 };
291 
292 /* for the bitmap indicate blocks to be discarded */
293 struct discard_entry {
294 	struct list_head list;	/* list head */
295 	block_t start_blkaddr;	/* start blockaddr of current segment */
296 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
297 };
298 
299 /* default discard granularity of inner discard thread, unit: block count */
300 #define DEFAULT_DISCARD_GRANULARITY		16
301 
302 /* max discard pend list number */
303 #define MAX_PLIST_NUM		512
304 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
305 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
306 
307 enum {
308 	D_PREP,
309 	D_SUBMIT,
310 	D_DONE,
311 };
312 
313 struct discard_info {
314 	block_t lstart;			/* logical start address */
315 	block_t len;			/* length */
316 	block_t start;			/* actual start address in dev */
317 };
318 
319 struct discard_cmd {
320 	struct rb_node rb_node;		/* rb node located in rb-tree */
321 	union {
322 		struct {
323 			block_t lstart;	/* logical start address */
324 			block_t len;	/* length */
325 			block_t start;	/* actual start address in dev */
326 		};
327 		struct discard_info di;	/* discard info */
328 
329 	};
330 	struct list_head list;		/* command list */
331 	struct completion wait;		/* compleation */
332 	struct block_device *bdev;	/* bdev */
333 	unsigned short ref;		/* reference count */
334 	unsigned char state;		/* state */
335 	int error;			/* bio error */
336 };
337 
338 enum {
339 	DPOLICY_BG,
340 	DPOLICY_FORCE,
341 	DPOLICY_FSTRIM,
342 	DPOLICY_UMOUNT,
343 	MAX_DPOLICY,
344 };
345 
346 struct discard_policy {
347 	int type;			/* type of discard */
348 	unsigned int min_interval;	/* used for candidates exist */
349 	unsigned int max_interval;	/* used for candidates not exist */
350 	unsigned int max_requests;	/* # of discards issued per round */
351 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
352 	bool io_aware;			/* issue discard in idle time */
353 	bool sync;			/* submit discard with REQ_SYNC flag */
354 	unsigned int granularity;	/* discard granularity */
355 };
356 
357 struct discard_cmd_control {
358 	struct task_struct *f2fs_issue_discard;	/* discard thread */
359 	struct list_head entry_list;		/* 4KB discard entry list */
360 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
361 	unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
362 	struct list_head wait_list;		/* store on-flushing entries */
363 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
364 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
365 	unsigned int discard_wake;		/* to wake up discard thread */
366 	struct mutex cmd_lock;
367 	unsigned int nr_discards;		/* # of discards in the list */
368 	unsigned int max_discards;		/* max. discards to be issued */
369 	unsigned int discard_granularity;	/* discard granularity */
370 	unsigned int undiscard_blks;		/* # of undiscard blocks */
371 	atomic_t issued_discard;		/* # of issued discard */
372 	atomic_t issing_discard;		/* # of issing discard */
373 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
374 	struct rb_root root;			/* root of discard rb-tree */
375 };
376 
377 /* for the list of fsync inodes, used only during recovery */
378 struct fsync_inode_entry {
379 	struct list_head list;	/* list head */
380 	struct inode *inode;	/* vfs inode pointer */
381 	block_t blkaddr;	/* block address locating the last fsync */
382 	block_t last_dentry;	/* block address locating the last dentry */
383 };
384 
385 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
386 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
387 
388 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
389 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
390 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
391 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
392 
393 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
394 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
395 
update_nats_in_cursum(struct f2fs_journal * journal,int i)396 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
397 {
398 	int before = nats_in_cursum(journal);
399 
400 	journal->n_nats = cpu_to_le16(before + i);
401 	return before;
402 }
403 
update_sits_in_cursum(struct f2fs_journal * journal,int i)404 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
405 {
406 	int before = sits_in_cursum(journal);
407 
408 	journal->n_sits = cpu_to_le16(before + i);
409 	return before;
410 }
411 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)412 static inline bool __has_cursum_space(struct f2fs_journal *journal,
413 							int size, int type)
414 {
415 	if (type == NAT_JOURNAL)
416 		return size <= MAX_NAT_JENTRIES(journal);
417 	return size <= MAX_SIT_JENTRIES(journal);
418 }
419 
420 /*
421  * ioctl commands
422  */
423 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
424 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
425 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
426 
427 #define F2FS_IOCTL_MAGIC		0xf5
428 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
429 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
430 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
431 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
432 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
433 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
434 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
435 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
436 						struct f2fs_defragment)
437 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
438 						struct f2fs_move_range)
439 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
440 						struct f2fs_flush_device)
441 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
442 						struct f2fs_gc_range)
443 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
444 
445 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
446 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
447 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
448 
449 /*
450  * should be same as XFS_IOC_GOINGDOWN.
451  * Flags for going down operation used by FS_IOC_GOINGDOWN
452  */
453 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
454 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
455 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
456 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
457 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
458 
459 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
460 /*
461  * ioctl commands in 32 bit emulation
462  */
463 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
464 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
465 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
466 #endif
467 
468 struct f2fs_gc_range {
469 	u32 sync;
470 	u64 start;
471 	u64 len;
472 };
473 
474 struct f2fs_defragment {
475 	u64 start;
476 	u64 len;
477 };
478 
479 struct f2fs_move_range {
480 	u32 dst_fd;		/* destination fd */
481 	u64 pos_in;		/* start position in src_fd */
482 	u64 pos_out;		/* start position in dst_fd */
483 	u64 len;		/* size to move */
484 };
485 
486 struct f2fs_flush_device {
487 	u32 dev_num;		/* device number to flush */
488 	u32 segments;		/* # of segments to flush */
489 };
490 
491 /* for inline stuff */
492 #define DEF_INLINE_RESERVED_SIZE	1
493 #define DEF_MIN_INLINE_SIZE		1
494 static inline int get_extra_isize(struct inode *inode);
495 static inline int get_inline_xattr_addrs(struct inode *inode);
496 #define F2FS_INLINE_XATTR_ADDRS(inode)	get_inline_xattr_addrs(inode)
497 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
498 				(CUR_ADDRS_PER_INODE(inode) -		\
499 				F2FS_INLINE_XATTR_ADDRS(inode) -	\
500 				DEF_INLINE_RESERVED_SIZE))
501 
502 /* for inline dir */
503 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
504 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
505 				BITS_PER_BYTE + 1))
506 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
507 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
508 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
509 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
510 				NR_INLINE_DENTRY(inode) + \
511 				INLINE_DENTRY_BITMAP_SIZE(inode)))
512 
513 /*
514  * For INODE and NODE manager
515  */
516 /* for directory operations */
517 struct f2fs_dentry_ptr {
518 	struct inode *inode;
519 	void *bitmap;
520 	struct f2fs_dir_entry *dentry;
521 	__u8 (*filename)[F2FS_SLOT_LEN];
522 	int max;
523 	int nr_bitmap;
524 };
525 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)526 static inline void make_dentry_ptr_block(struct inode *inode,
527 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
528 {
529 	d->inode = inode;
530 	d->max = NR_DENTRY_IN_BLOCK;
531 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
532 	d->bitmap = &t->dentry_bitmap;
533 	d->dentry = t->dentry;
534 	d->filename = t->filename;
535 }
536 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)537 static inline void make_dentry_ptr_inline(struct inode *inode,
538 					struct f2fs_dentry_ptr *d, void *t)
539 {
540 	int entry_cnt = NR_INLINE_DENTRY(inode);
541 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
542 	int reserved_size = INLINE_RESERVED_SIZE(inode);
543 
544 	d->inode = inode;
545 	d->max = entry_cnt;
546 	d->nr_bitmap = bitmap_size;
547 	d->bitmap = t;
548 	d->dentry = t + bitmap_size + reserved_size;
549 	d->filename = t + bitmap_size + reserved_size +
550 					SIZE_OF_DIR_ENTRY * entry_cnt;
551 }
552 
553 /*
554  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
555  * as its node offset to distinguish from index node blocks.
556  * But some bits are used to mark the node block.
557  */
558 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
559 				>> OFFSET_BIT_SHIFT)
560 enum {
561 	ALLOC_NODE,			/* allocate a new node page if needed */
562 	LOOKUP_NODE,			/* look up a node without readahead */
563 	LOOKUP_NODE_RA,			/*
564 					 * look up a node with readahead called
565 					 * by get_data_block.
566 					 */
567 };
568 
569 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
570 
571 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
572 
573 /* vector size for gang look-up from extent cache that consists of radix tree */
574 #define EXT_TREE_VEC_SIZE	64
575 
576 /* for in-memory extent cache entry */
577 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
578 
579 /* number of extent info in extent cache we try to shrink */
580 #define EXTENT_CACHE_SHRINK_NUMBER	128
581 
582 struct rb_entry {
583 	struct rb_node rb_node;		/* rb node located in rb-tree */
584 	unsigned int ofs;		/* start offset of the entry */
585 	unsigned int len;		/* length of the entry */
586 };
587 
588 struct extent_info {
589 	unsigned int fofs;		/* start offset in a file */
590 	unsigned int len;		/* length of the extent */
591 	u32 blk;			/* start block address of the extent */
592 };
593 
594 struct extent_node {
595 	struct rb_node rb_node;
596 	union {
597 		struct {
598 			unsigned int fofs;
599 			unsigned int len;
600 			u32 blk;
601 		};
602 		struct extent_info ei;	/* extent info */
603 
604 	};
605 	struct list_head list;		/* node in global extent list of sbi */
606 	struct extent_tree *et;		/* extent tree pointer */
607 };
608 
609 struct extent_tree {
610 	nid_t ino;			/* inode number */
611 	struct rb_root root;		/* root of extent info rb-tree */
612 	struct extent_node *cached_en;	/* recently accessed extent node */
613 	struct extent_info largest;	/* largested extent info */
614 	struct list_head list;		/* to be used by sbi->zombie_list */
615 	rwlock_t lock;			/* protect extent info rb-tree */
616 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
617 };
618 
619 /*
620  * This structure is taken from ext4_map_blocks.
621  *
622  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
623  */
624 #define F2FS_MAP_NEW		(1 << BH_New)
625 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
626 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
627 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
628 				F2FS_MAP_UNWRITTEN)
629 
630 struct f2fs_map_blocks {
631 	block_t m_pblk;
632 	block_t m_lblk;
633 	unsigned int m_len;
634 	unsigned int m_flags;
635 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
636 };
637 
638 /* for flag in get_data_block */
639 enum {
640 	F2FS_GET_BLOCK_DEFAULT,
641 	F2FS_GET_BLOCK_FIEMAP,
642 	F2FS_GET_BLOCK_BMAP,
643 	F2FS_GET_BLOCK_PRE_DIO,
644 	F2FS_GET_BLOCK_PRE_AIO,
645 };
646 
647 /*
648  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
649  */
650 #define FADVISE_COLD_BIT	0x01
651 #define FADVISE_LOST_PINO_BIT	0x02
652 #define FADVISE_ENCRYPT_BIT	0x04
653 #define FADVISE_ENC_NAME_BIT	0x08
654 #define FADVISE_KEEP_SIZE_BIT	0x10
655 
656 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
657 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
658 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
659 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
660 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
661 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
662 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
663 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
664 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
665 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
666 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
667 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
668 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
669 
670 #define DEF_DIR_LEVEL		0
671 
672 struct f2fs_inode_info {
673 	struct inode vfs_inode;		/* serve a vfs inode */
674 	unsigned long i_flags;		/* keep an inode flags for ioctl */
675 	unsigned char i_advise;		/* use to give file attribute hints */
676 	unsigned char i_dir_level;	/* use for dentry level for large dir */
677 	unsigned int i_current_depth;	/* use only in directory structure */
678 	unsigned int i_pino;		/* parent inode number */
679 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
680 
681 	/* Use below internally in f2fs*/
682 	unsigned long flags;		/* use to pass per-file flags */
683 	struct rw_semaphore i_sem;	/* protect fi info */
684 	atomic_t dirty_pages;		/* # of dirty pages */
685 	f2fs_hash_t chash;		/* hash value of given file name */
686 	unsigned int clevel;		/* maximum level of given file name */
687 	struct task_struct *task;	/* lookup and create consistency */
688 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
689 	nid_t i_xattr_nid;		/* node id that contains xattrs */
690 	loff_t	last_disk_size;		/* lastly written file size */
691 
692 #ifdef CONFIG_QUOTA
693 	/* quota space reservation, managed internally by quota code */
694 	qsize_t i_reserved_quota;
695 #endif
696 	struct list_head dirty_list;	/* dirty list for dirs and files */
697 	struct list_head gdirty_list;	/* linked in global dirty list */
698 	struct list_head inmem_ilist;	/* list for inmem inodes */
699 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
700 	struct task_struct *inmem_task;	/* store inmemory task */
701 	struct mutex inmem_lock;	/* lock for inmemory pages */
702 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
703 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
704 	struct rw_semaphore i_mmap_sem;
705 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
706 
707 	int i_extra_isize;		/* size of extra space located in i_addr */
708 	kprojid_t i_projid;		/* id for project quota */
709 	int i_inline_xattr_size;	/* inline xattr size */
710 };
711 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)712 static inline void get_extent_info(struct extent_info *ext,
713 					struct f2fs_extent *i_ext)
714 {
715 	ext->fofs = le32_to_cpu(i_ext->fofs);
716 	ext->blk = le32_to_cpu(i_ext->blk);
717 	ext->len = le32_to_cpu(i_ext->len);
718 }
719 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)720 static inline void set_raw_extent(struct extent_info *ext,
721 					struct f2fs_extent *i_ext)
722 {
723 	i_ext->fofs = cpu_to_le32(ext->fofs);
724 	i_ext->blk = cpu_to_le32(ext->blk);
725 	i_ext->len = cpu_to_le32(ext->len);
726 }
727 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)728 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
729 						u32 blk, unsigned int len)
730 {
731 	ei->fofs = fofs;
732 	ei->blk = blk;
733 	ei->len = len;
734 }
735 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front)736 static inline bool __is_discard_mergeable(struct discard_info *back,
737 						struct discard_info *front)
738 {
739 	return back->lstart + back->len == front->lstart;
740 }
741 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back)742 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
743 						struct discard_info *back)
744 {
745 	return __is_discard_mergeable(back, cur);
746 }
747 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front)748 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
749 						struct discard_info *front)
750 {
751 	return __is_discard_mergeable(cur, front);
752 }
753 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)754 static inline bool __is_extent_mergeable(struct extent_info *back,
755 						struct extent_info *front)
756 {
757 	return (back->fofs + back->len == front->fofs &&
758 			back->blk + back->len == front->blk);
759 }
760 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)761 static inline bool __is_back_mergeable(struct extent_info *cur,
762 						struct extent_info *back)
763 {
764 	return __is_extent_mergeable(back, cur);
765 }
766 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)767 static inline bool __is_front_mergeable(struct extent_info *cur,
768 						struct extent_info *front)
769 {
770 	return __is_extent_mergeable(cur, front);
771 }
772 
773 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct inode * inode,struct extent_tree * et,struct extent_node * en)774 static inline void __try_update_largest_extent(struct inode *inode,
775 			struct extent_tree *et, struct extent_node *en)
776 {
777 	if (en->ei.len > et->largest.len) {
778 		et->largest = en->ei;
779 		f2fs_mark_inode_dirty_sync(inode, true);
780 	}
781 }
782 
783 /*
784  * For free nid management
785  */
786 enum nid_state {
787 	FREE_NID,		/* newly added to free nid list */
788 	PREALLOC_NID,		/* it is preallocated */
789 	MAX_NID_STATE,
790 };
791 
792 struct f2fs_nm_info {
793 	block_t nat_blkaddr;		/* base disk address of NAT */
794 	nid_t max_nid;			/* maximum possible node ids */
795 	nid_t available_nids;		/* # of available node ids */
796 	nid_t next_scan_nid;		/* the next nid to be scanned */
797 	unsigned int ram_thresh;	/* control the memory footprint */
798 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
799 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
800 
801 	/* NAT cache management */
802 	struct radix_tree_root nat_root;/* root of the nat entry cache */
803 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
804 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
805 	struct list_head nat_entries;	/* cached nat entry list (clean) */
806 	unsigned int nat_cnt;		/* the # of cached nat entries */
807 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
808 	unsigned int nat_blocks;	/* # of nat blocks */
809 
810 	/* free node ids management */
811 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
812 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
813 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
814 	spinlock_t nid_list_lock;	/* protect nid lists ops */
815 	struct mutex build_lock;	/* lock for build free nids */
816 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
817 	unsigned char *nat_block_bitmap;
818 	unsigned short *free_nid_count;	/* free nid count of NAT block */
819 
820 	/* for checkpoint */
821 	char *nat_bitmap;		/* NAT bitmap pointer */
822 
823 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
824 	unsigned char *nat_bits;	/* NAT bits blocks */
825 	unsigned char *full_nat_bits;	/* full NAT pages */
826 	unsigned char *empty_nat_bits;	/* empty NAT pages */
827 #ifdef CONFIG_F2FS_CHECK_FS
828 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
829 #endif
830 	int bitmap_size;		/* bitmap size */
831 };
832 
833 /*
834  * this structure is used as one of function parameters.
835  * all the information are dedicated to a given direct node block determined
836  * by the data offset in a file.
837  */
838 struct dnode_of_data {
839 	struct inode *inode;		/* vfs inode pointer */
840 	struct page *inode_page;	/* its inode page, NULL is possible */
841 	struct page *node_page;		/* cached direct node page */
842 	nid_t nid;			/* node id of the direct node block */
843 	unsigned int ofs_in_node;	/* data offset in the node page */
844 	bool inode_page_locked;		/* inode page is locked or not */
845 	bool node_changed;		/* is node block changed */
846 	char cur_level;			/* level of hole node page */
847 	char max_level;			/* level of current page located */
848 	block_t	data_blkaddr;		/* block address of the node block */
849 };
850 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)851 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
852 		struct page *ipage, struct page *npage, nid_t nid)
853 {
854 	memset(dn, 0, sizeof(*dn));
855 	dn->inode = inode;
856 	dn->inode_page = ipage;
857 	dn->node_page = npage;
858 	dn->nid = nid;
859 }
860 
861 /*
862  * For SIT manager
863  *
864  * By default, there are 6 active log areas across the whole main area.
865  * When considering hot and cold data separation to reduce cleaning overhead,
866  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
867  * respectively.
868  * In the current design, you should not change the numbers intentionally.
869  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
870  * logs individually according to the underlying devices. (default: 6)
871  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
872  * data and 8 for node logs.
873  */
874 #define	NR_CURSEG_DATA_TYPE	(3)
875 #define NR_CURSEG_NODE_TYPE	(3)
876 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
877 
878 enum {
879 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
880 	CURSEG_WARM_DATA,	/* data blocks */
881 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
882 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
883 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
884 	CURSEG_COLD_NODE,	/* indirect node blocks */
885 	NO_CHECK_TYPE,
886 };
887 
888 struct flush_cmd {
889 	struct completion wait;
890 	struct llist_node llnode;
891 	nid_t ino;
892 	int ret;
893 };
894 
895 struct flush_cmd_control {
896 	struct task_struct *f2fs_issue_flush;	/* flush thread */
897 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
898 	atomic_t issued_flush;			/* # of issued flushes */
899 	atomic_t issing_flush;			/* # of issing flushes */
900 	struct llist_head issue_list;		/* list for command issue */
901 	struct llist_node *dispatch_list;	/* list for command dispatch */
902 };
903 
904 struct f2fs_sm_info {
905 	struct sit_info *sit_info;		/* whole segment information */
906 	struct free_segmap_info *free_info;	/* free segment information */
907 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
908 	struct curseg_info *curseg_array;	/* active segment information */
909 
910 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
911 
912 	block_t seg0_blkaddr;		/* block address of 0'th segment */
913 	block_t main_blkaddr;		/* start block address of main area */
914 	block_t ssa_blkaddr;		/* start block address of SSA area */
915 
916 	unsigned int segment_count;	/* total # of segments */
917 	unsigned int main_segments;	/* # of segments in main area */
918 	unsigned int reserved_segments;	/* # of reserved segments */
919 	unsigned int ovp_segments;	/* # of overprovision segments */
920 
921 	/* a threshold to reclaim prefree segments */
922 	unsigned int rec_prefree_segments;
923 
924 	/* for batched trimming */
925 	unsigned int trim_sections;		/* # of sections to trim */
926 
927 	struct list_head sit_entry_set;	/* sit entry set list */
928 
929 	unsigned int ipu_policy;	/* in-place-update policy */
930 	unsigned int min_ipu_util;	/* in-place-update threshold */
931 	unsigned int min_fsync_blocks;	/* threshold for fsync */
932 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
933 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
934 
935 	/* for flush command control */
936 	struct flush_cmd_control *fcc_info;
937 
938 	/* for discard command control */
939 	struct discard_cmd_control *dcc_info;
940 };
941 
942 /*
943  * For superblock
944  */
945 /*
946  * COUNT_TYPE for monitoring
947  *
948  * f2fs monitors the number of several block types such as on-writeback,
949  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
950  */
951 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
952 enum count_type {
953 	F2FS_DIRTY_DENTS,
954 	F2FS_DIRTY_DATA,
955 	F2FS_DIRTY_QDATA,
956 	F2FS_DIRTY_NODES,
957 	F2FS_DIRTY_META,
958 	F2FS_INMEM_PAGES,
959 	F2FS_DIRTY_IMETA,
960 	F2FS_WB_CP_DATA,
961 	F2FS_WB_DATA,
962 	NR_COUNT_TYPE,
963 };
964 
965 /*
966  * The below are the page types of bios used in submit_bio().
967  * The available types are:
968  * DATA			User data pages. It operates as async mode.
969  * NODE			Node pages. It operates as async mode.
970  * META			FS metadata pages such as SIT, NAT, CP.
971  * NR_PAGE_TYPE		The number of page types.
972  * META_FLUSH		Make sure the previous pages are written
973  *			with waiting the bio's completion
974  * ...			Only can be used with META.
975  */
976 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
977 enum page_type {
978 	DATA,
979 	NODE,
980 	META,
981 	NR_PAGE_TYPE,
982 	META_FLUSH,
983 	INMEM,		/* the below types are used by tracepoints only. */
984 	INMEM_DROP,
985 	INMEM_INVALIDATE,
986 	INMEM_REVOKE,
987 	IPU,
988 	OPU,
989 };
990 
991 enum temp_type {
992 	HOT = 0,	/* must be zero for meta bio */
993 	WARM,
994 	COLD,
995 	NR_TEMP_TYPE,
996 };
997 
998 enum need_lock_type {
999 	LOCK_REQ = 0,
1000 	LOCK_DONE,
1001 	LOCK_RETRY,
1002 };
1003 
1004 enum cp_reason_type {
1005 	CP_NO_NEEDED,
1006 	CP_NON_REGULAR,
1007 	CP_HARDLINK,
1008 	CP_SB_NEED_CP,
1009 	CP_WRONG_PINO,
1010 	CP_NO_SPC_ROLL,
1011 	CP_NODE_NEED_CP,
1012 	CP_FASTBOOT_MODE,
1013 	CP_SPEC_LOG_NUM,
1014 };
1015 
1016 enum iostat_type {
1017 	APP_DIRECT_IO,			/* app direct IOs */
1018 	APP_BUFFERED_IO,		/* app buffered IOs */
1019 	APP_WRITE_IO,			/* app write IOs */
1020 	APP_MAPPED_IO,			/* app mapped IOs */
1021 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1022 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1023 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1024 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1025 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1026 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1027 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1028 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1029 	FS_DISCARD,			/* discard */
1030 	NR_IO_TYPE,
1031 };
1032 
1033 struct f2fs_io_info {
1034 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1035 	nid_t ino;		/* inode number */
1036 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1037 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1038 	int op;			/* contains REQ_OP_ */
1039 	int op_flags;		/* req_flag_bits */
1040 	block_t new_blkaddr;	/* new block address to be written */
1041 	block_t old_blkaddr;	/* old block address before Cow */
1042 	struct page *page;	/* page to be written */
1043 	struct page *encrypted_page;	/* encrypted page */
1044 	struct list_head list;		/* serialize IOs */
1045 	bool submitted;		/* indicate IO submission */
1046 	int need_lock;		/* indicate we need to lock cp_rwsem */
1047 	bool in_list;		/* indicate fio is in io_list */
1048 	enum iostat_type io_type;	/* io type */
1049 };
1050 
1051 #define is_read_io(rw) ((rw) == READ)
1052 struct f2fs_bio_info {
1053 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1054 	struct bio *bio;		/* bios to merge */
1055 	sector_t last_block_in_bio;	/* last block number */
1056 	struct f2fs_io_info fio;	/* store buffered io info. */
1057 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1058 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1059 	struct list_head io_list;	/* track fios */
1060 };
1061 
1062 #define FDEV(i)				(sbi->devs[i])
1063 #define RDEV(i)				(raw_super->devs[i])
1064 struct f2fs_dev_info {
1065 	struct block_device *bdev;
1066 	char path[MAX_PATH_LEN];
1067 	unsigned int total_segments;
1068 	block_t start_blk;
1069 	block_t end_blk;
1070 #ifdef CONFIG_BLK_DEV_ZONED
1071 	unsigned int nr_blkz;			/* Total number of zones */
1072 	u8 *blkz_type;				/* Array of zones type */
1073 #endif
1074 };
1075 
1076 enum inode_type {
1077 	DIR_INODE,			/* for dirty dir inode */
1078 	FILE_INODE,			/* for dirty regular/symlink inode */
1079 	DIRTY_META,			/* for all dirtied inode metadata */
1080 	ATOMIC_FILE,			/* for all atomic files */
1081 	NR_INODE_TYPE,
1082 };
1083 
1084 /* for inner inode cache management */
1085 struct inode_management {
1086 	struct radix_tree_root ino_root;	/* ino entry array */
1087 	spinlock_t ino_lock;			/* for ino entry lock */
1088 	struct list_head ino_list;		/* inode list head */
1089 	unsigned long ino_num;			/* number of entries */
1090 };
1091 
1092 /* For s_flag in struct f2fs_sb_info */
1093 enum {
1094 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1095 	SBI_IS_CLOSE,				/* specify unmounting */
1096 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1097 	SBI_POR_DOING,				/* recovery is doing or not */
1098 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1099 	SBI_NEED_CP,				/* need to checkpoint */
1100 };
1101 
1102 enum {
1103 	CP_TIME,
1104 	REQ_TIME,
1105 	MAX_TIME,
1106 };
1107 
1108 #ifdef CONFIG_QUOTA
1109 #define F2FS_MAXQUOTAS 2
1110 #endif
1111 
1112 struct f2fs_sb_info {
1113 	struct super_block *sb;			/* pointer to VFS super block */
1114 	struct proc_dir_entry *s_proc;		/* proc entry */
1115 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1116 	int valid_super_block;			/* valid super block no */
1117 	unsigned long s_flag;				/* flags for sbi */
1118 
1119 #ifdef CONFIG_BLK_DEV_ZONED
1120 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1121 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1122 #endif
1123 
1124 	/* for node-related operations */
1125 	struct f2fs_nm_info *nm_info;		/* node manager */
1126 	struct inode *node_inode;		/* cache node blocks */
1127 
1128 	/* for segment-related operations */
1129 	struct f2fs_sm_info *sm_info;		/* segment manager */
1130 
1131 	/* for bio operations */
1132 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1133 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1134 						/* bio ordering for NODE/DATA */
1135 	int write_io_size_bits;			/* Write IO size bits */
1136 	mempool_t *write_io_dummy;		/* Dummy pages */
1137 
1138 	/* for checkpoint */
1139 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1140 	int cur_cp_pack;			/* remain current cp pack */
1141 	spinlock_t cp_lock;			/* for flag in ckpt */
1142 	struct inode *meta_inode;		/* cache meta blocks */
1143 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1144 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1145 	struct rw_semaphore node_write;		/* locking node writes */
1146 	struct rw_semaphore node_change;	/* locking node change */
1147 	wait_queue_head_t cp_wait;
1148 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1149 	long interval_time[MAX_TIME];		/* to store thresholds */
1150 
1151 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1152 
1153 	/* for orphan inode, use 0'th array */
1154 	unsigned int max_orphans;		/* max orphan inodes */
1155 
1156 	/* for inode management */
1157 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1158 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1159 
1160 	/* for extent tree cache */
1161 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1162 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1163 	struct list_head extent_list;		/* lru list for shrinker */
1164 	spinlock_t extent_lock;			/* locking extent lru list */
1165 	atomic_t total_ext_tree;		/* extent tree count */
1166 	struct list_head zombie_list;		/* extent zombie tree list */
1167 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1168 	atomic_t total_ext_node;		/* extent info count */
1169 
1170 	/* basic filesystem units */
1171 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1172 	unsigned int log_blocksize;		/* log2 block size */
1173 	unsigned int blocksize;			/* block size */
1174 	unsigned int root_ino_num;		/* root inode number*/
1175 	unsigned int node_ino_num;		/* node inode number*/
1176 	unsigned int meta_ino_num;		/* meta inode number*/
1177 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1178 	unsigned int blocks_per_seg;		/* blocks per segment */
1179 	unsigned int segs_per_sec;		/* segments per section */
1180 	unsigned int secs_per_zone;		/* sections per zone */
1181 	unsigned int total_sections;		/* total section count */
1182 	unsigned int total_node_count;		/* total node block count */
1183 	unsigned int total_valid_node_count;	/* valid node block count */
1184 	loff_t max_file_blocks;			/* max block index of file */
1185 	int active_logs;			/* # of active logs */
1186 	int dir_level;				/* directory level */
1187 	int inline_xattr_size;			/* inline xattr size */
1188 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1189 
1190 	block_t user_block_count;		/* # of user blocks */
1191 	block_t total_valid_block_count;	/* # of valid blocks */
1192 	block_t discard_blks;			/* discard command candidats */
1193 	block_t last_valid_block_count;		/* for recovery */
1194 	block_t reserved_blocks;		/* configurable reserved blocks */
1195 	block_t current_reserved_blocks;	/* current reserved blocks */
1196 
1197 	u32 s_next_generation;			/* for NFS support */
1198 
1199 	/* # of pages, see count_type */
1200 	atomic_t nr_pages[NR_COUNT_TYPE];
1201 	/* # of allocated blocks */
1202 	struct percpu_counter alloc_valid_block_count;
1203 
1204 	/* writeback control */
1205 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1206 
1207 	/* valid inode count */
1208 	struct percpu_counter total_valid_inode_count;
1209 
1210 	struct f2fs_mount_info mount_opt;	/* mount options */
1211 
1212 	/* for cleaning operations */
1213 	struct mutex gc_mutex;			/* mutex for GC */
1214 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1215 	unsigned int cur_victim_sec;		/* current victim section num */
1216 
1217 	/* threshold for converting bg victims for fg */
1218 	u64 fggc_threshold;
1219 
1220 	/* maximum # of trials to find a victim segment for SSR and GC */
1221 	unsigned int max_victim_search;
1222 
1223 	/*
1224 	 * for stat information.
1225 	 * one is for the LFS mode, and the other is for the SSR mode.
1226 	 */
1227 #ifdef CONFIG_F2FS_STAT_FS
1228 	struct f2fs_stat_info *stat_info;	/* FS status information */
1229 	unsigned int segment_count[2];		/* # of allocated segments */
1230 	unsigned int block_count[2];		/* # of allocated blocks */
1231 	atomic_t inplace_count;		/* # of inplace update */
1232 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1233 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1234 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1235 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1236 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1237 	atomic_t inline_inode;			/* # of inline_data inodes */
1238 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1239 	atomic_t aw_cnt;			/* # of atomic writes */
1240 	atomic_t vw_cnt;			/* # of volatile writes */
1241 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1242 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1243 	int bg_gc;				/* background gc calls */
1244 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1245 #endif
1246 	spinlock_t stat_lock;			/* lock for stat operations */
1247 
1248 	/* For app/fs IO statistics */
1249 	spinlock_t iostat_lock;
1250 	unsigned long long write_iostat[NR_IO_TYPE];
1251 	bool iostat_enable;
1252 
1253 	/* For sysfs suppport */
1254 	struct kobject s_kobj;
1255 	struct completion s_kobj_unregister;
1256 
1257 	/* For shrinker support */
1258 	struct list_head s_list;
1259 	int s_ndevs;				/* number of devices */
1260 	struct f2fs_dev_info *devs;		/* for device list */
1261 	unsigned int dirty_device;		/* for checkpoint data flush */
1262 	spinlock_t dev_lock;			/* protect dirty_device */
1263 	struct mutex umount_mutex;
1264 	unsigned int shrinker_run_no;
1265 
1266 	/* For write statistics */
1267 	u64 sectors_written_start;
1268 	u64 kbytes_written;
1269 
1270 	/* Reference to checksum algorithm driver via cryptoapi */
1271 	struct crypto_shash *s_chksum_driver;
1272 
1273 	/* Precomputed FS UUID checksum for seeding other checksums */
1274 	__u32 s_chksum_seed;
1275 
1276 	/* For fault injection */
1277 #ifdef CONFIG_F2FS_FAULT_INJECTION
1278 	struct f2fs_fault_info fault_info;
1279 #endif
1280 
1281 #ifdef CONFIG_QUOTA
1282 	/* Names of quota files with journalled quota */
1283 	char *s_qf_names[F2FS_MAXQUOTAS];
1284 	int s_jquota_fmt;			/* Format of quota to use */
1285 #endif
1286 };
1287 
1288 #ifdef CONFIG_F2FS_FAULT_INJECTION
1289 #define f2fs_show_injection_info(type)				\
1290 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1291 		KERN_INFO, fault_name[type],			\
1292 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1293 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1294 {
1295 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1296 
1297 	if (!ffi->inject_rate)
1298 		return false;
1299 
1300 	if (!IS_FAULT_SET(ffi, type))
1301 		return false;
1302 
1303 	atomic_inc(&ffi->inject_ops);
1304 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1305 		atomic_set(&ffi->inject_ops, 0);
1306 		return true;
1307 	}
1308 	return false;
1309 }
1310 #endif
1311 
1312 /* For write statistics. Suppose sector size is 512 bytes,
1313  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1314  */
1315 #define BD_PART_WRITTEN(s)						 \
1316 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1317 		(s)->sectors_written_start) >> 1)
1318 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1319 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1320 {
1321 	sbi->last_time[type] = jiffies;
1322 }
1323 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1324 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1325 {
1326 	unsigned long interval = sbi->interval_time[type] * HZ;
1327 
1328 	return time_after(jiffies, sbi->last_time[type] + interval);
1329 }
1330 
is_idle(struct f2fs_sb_info * sbi)1331 static inline bool is_idle(struct f2fs_sb_info *sbi)
1332 {
1333 	struct block_device *bdev = sbi->sb->s_bdev;
1334 	struct request_queue *q = bdev_get_queue(bdev);
1335 	struct request_list *rl = &q->root_rl;
1336 
1337 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1338 		return 0;
1339 
1340 	return f2fs_time_over(sbi, REQ_TIME);
1341 }
1342 
1343 /*
1344  * Inline functions
1345  */
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1346 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1347 			   unsigned int length)
1348 {
1349 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1350 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1351 	int err;
1352 
1353 	shash->tfm = sbi->s_chksum_driver;
1354 	shash->flags = 0;
1355 	*ctx = F2FS_SUPER_MAGIC;
1356 
1357 	err = crypto_shash_update(shash, address, length);
1358 	BUG_ON(err);
1359 
1360 	return *ctx;
1361 }
1362 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1363 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1364 				  void *buf, size_t buf_size)
1365 {
1366 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1367 }
1368 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1369 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1370 			      const void *address, unsigned int length)
1371 {
1372 	struct {
1373 		struct shash_desc shash;
1374 		char ctx[4];
1375 	} desc;
1376 	int err;
1377 
1378 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1379 
1380 	desc.shash.tfm = sbi->s_chksum_driver;
1381 	desc.shash.flags = 0;
1382 	*(u32 *)desc.ctx = crc;
1383 
1384 	err = crypto_shash_update(&desc.shash, address, length);
1385 	BUG_ON(err);
1386 
1387 	return *(u32 *)desc.ctx;
1388 }
1389 
F2FS_I(struct inode * inode)1390 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1391 {
1392 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1393 }
1394 
F2FS_SB(struct super_block * sb)1395 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1396 {
1397 	return sb->s_fs_info;
1398 }
1399 
F2FS_I_SB(struct inode * inode)1400 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1401 {
1402 	return F2FS_SB(inode->i_sb);
1403 }
1404 
F2FS_M_SB(struct address_space * mapping)1405 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1406 {
1407 	return F2FS_I_SB(mapping->host);
1408 }
1409 
F2FS_P_SB(struct page * page)1410 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1411 {
1412 	return F2FS_M_SB(page->mapping);
1413 }
1414 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1415 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1416 {
1417 	return (struct f2fs_super_block *)(sbi->raw_super);
1418 }
1419 
F2FS_CKPT(struct f2fs_sb_info * sbi)1420 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1421 {
1422 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1423 }
1424 
F2FS_NODE(struct page * page)1425 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1426 {
1427 	return (struct f2fs_node *)page_address(page);
1428 }
1429 
F2FS_INODE(struct page * page)1430 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1431 {
1432 	return &((struct f2fs_node *)page_address(page))->i;
1433 }
1434 
NM_I(struct f2fs_sb_info * sbi)1435 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1436 {
1437 	return (struct f2fs_nm_info *)(sbi->nm_info);
1438 }
1439 
SM_I(struct f2fs_sb_info * sbi)1440 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1441 {
1442 	return (struct f2fs_sm_info *)(sbi->sm_info);
1443 }
1444 
SIT_I(struct f2fs_sb_info * sbi)1445 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1446 {
1447 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1448 }
1449 
FREE_I(struct f2fs_sb_info * sbi)1450 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1451 {
1452 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1453 }
1454 
DIRTY_I(struct f2fs_sb_info * sbi)1455 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1456 {
1457 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1458 }
1459 
META_MAPPING(struct f2fs_sb_info * sbi)1460 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1461 {
1462 	return sbi->meta_inode->i_mapping;
1463 }
1464 
NODE_MAPPING(struct f2fs_sb_info * sbi)1465 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1466 {
1467 	return sbi->node_inode->i_mapping;
1468 }
1469 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1470 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1471 {
1472 	return test_bit(type, &sbi->s_flag);
1473 }
1474 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1475 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1476 {
1477 	set_bit(type, &sbi->s_flag);
1478 }
1479 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1480 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1481 {
1482 	clear_bit(type, &sbi->s_flag);
1483 }
1484 
cur_cp_version(struct f2fs_checkpoint * cp)1485 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1486 {
1487 	return le64_to_cpu(cp->checkpoint_ver);
1488 }
1489 
f2fs_qf_ino(struct super_block * sb,int type)1490 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1491 {
1492 	if (type < F2FS_MAX_QUOTAS)
1493 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1494 	return 0;
1495 }
1496 
cur_cp_crc(struct f2fs_checkpoint * cp)1497 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1498 {
1499 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1500 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1501 }
1502 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1503 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1504 {
1505 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1506 
1507 	return ckpt_flags & f;
1508 }
1509 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1510 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1511 {
1512 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1513 }
1514 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1515 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1516 {
1517 	unsigned int ckpt_flags;
1518 
1519 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1520 	ckpt_flags |= f;
1521 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1522 }
1523 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1524 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1525 {
1526 	unsigned long flags;
1527 
1528 	spin_lock_irqsave(&sbi->cp_lock, flags);
1529 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1530 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1531 }
1532 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1533 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1534 {
1535 	unsigned int ckpt_flags;
1536 
1537 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1538 	ckpt_flags &= (~f);
1539 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1540 }
1541 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1542 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1543 {
1544 	unsigned long flags;
1545 
1546 	spin_lock_irqsave(&sbi->cp_lock, flags);
1547 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1548 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1549 }
1550 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1551 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1552 {
1553 	unsigned long flags;
1554 
1555 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1556 
1557 	if (lock)
1558 		spin_lock_irqsave(&sbi->cp_lock, flags);
1559 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1560 	kfree(NM_I(sbi)->nat_bits);
1561 	NM_I(sbi)->nat_bits = NULL;
1562 	if (lock)
1563 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1564 }
1565 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1566 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1567 					struct cp_control *cpc)
1568 {
1569 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1570 
1571 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1572 }
1573 
f2fs_lock_op(struct f2fs_sb_info * sbi)1574 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1575 {
1576 	down_read(&sbi->cp_rwsem);
1577 }
1578 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1579 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1580 {
1581 	return down_read_trylock(&sbi->cp_rwsem);
1582 }
1583 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1584 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1585 {
1586 	up_read(&sbi->cp_rwsem);
1587 }
1588 
f2fs_lock_all(struct f2fs_sb_info * sbi)1589 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1590 {
1591 	down_write(&sbi->cp_rwsem);
1592 }
1593 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1594 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1595 {
1596 	up_write(&sbi->cp_rwsem);
1597 }
1598 
__get_cp_reason(struct f2fs_sb_info * sbi)1599 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1600 {
1601 	int reason = CP_SYNC;
1602 
1603 	if (test_opt(sbi, FASTBOOT))
1604 		reason = CP_FASTBOOT;
1605 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1606 		reason = CP_UMOUNT;
1607 	return reason;
1608 }
1609 
__remain_node_summaries(int reason)1610 static inline bool __remain_node_summaries(int reason)
1611 {
1612 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1613 }
1614 
__exist_node_summaries(struct f2fs_sb_info * sbi)1615 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1616 {
1617 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1618 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1619 }
1620 
1621 /*
1622  * Check whether the given nid is within node id range.
1623  */
check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)1624 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1625 {
1626 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1627 		return -EINVAL;
1628 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1629 		return -EINVAL;
1630 	return 0;
1631 }
1632 
1633 /*
1634  * Check whether the inode has blocks or not
1635  */
F2FS_HAS_BLOCKS(struct inode * inode)1636 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1637 {
1638 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1639 
1640 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1641 }
1642 
f2fs_has_xattr_block(unsigned int ofs)1643 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1644 {
1645 	return ofs == XATTR_NODE_OFFSET;
1646 }
1647 
1648 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1649 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1650 				 struct inode *inode, blkcnt_t *count)
1651 {
1652 	blkcnt_t diff = 0, release = 0;
1653 	block_t avail_user_block_count;
1654 	int ret;
1655 
1656 	ret = dquot_reserve_block(inode, *count);
1657 	if (ret)
1658 		return ret;
1659 
1660 #ifdef CONFIG_F2FS_FAULT_INJECTION
1661 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1662 		f2fs_show_injection_info(FAULT_BLOCK);
1663 		release = *count;
1664 		goto enospc;
1665 	}
1666 #endif
1667 	/*
1668 	 * let's increase this in prior to actual block count change in order
1669 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1670 	 */
1671 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1672 
1673 	spin_lock(&sbi->stat_lock);
1674 	sbi->total_valid_block_count += (block_t)(*count);
1675 	avail_user_block_count = sbi->user_block_count -
1676 					sbi->current_reserved_blocks;
1677 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1678 		diff = sbi->total_valid_block_count - avail_user_block_count;
1679 		*count -= diff;
1680 		release = diff;
1681 		sbi->total_valid_block_count = avail_user_block_count;
1682 		if (!*count) {
1683 			spin_unlock(&sbi->stat_lock);
1684 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1685 			goto enospc;
1686 		}
1687 	}
1688 	spin_unlock(&sbi->stat_lock);
1689 
1690 	if (release)
1691 		dquot_release_reservation_block(inode, release);
1692 	f2fs_i_blocks_write(inode, *count, true, true);
1693 	return 0;
1694 
1695 enospc:
1696 	dquot_release_reservation_block(inode, release);
1697 	return -ENOSPC;
1698 }
1699 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1700 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1701 						struct inode *inode,
1702 						block_t count)
1703 {
1704 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1705 
1706 	spin_lock(&sbi->stat_lock);
1707 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1708 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1709 	sbi->total_valid_block_count -= (block_t)count;
1710 	if (sbi->reserved_blocks &&
1711 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1712 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1713 					sbi->current_reserved_blocks + count);
1714 	spin_unlock(&sbi->stat_lock);
1715 	f2fs_i_blocks_write(inode, count, false, true);
1716 }
1717 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1718 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1719 {
1720 	atomic_inc(&sbi->nr_pages[count_type]);
1721 
1722 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1723 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1724 		return;
1725 
1726 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1727 }
1728 
inode_inc_dirty_pages(struct inode * inode)1729 static inline void inode_inc_dirty_pages(struct inode *inode)
1730 {
1731 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1732 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1733 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1734 	if (IS_NOQUOTA(inode))
1735 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1736 }
1737 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1738 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1739 {
1740 	atomic_dec(&sbi->nr_pages[count_type]);
1741 }
1742 
inode_dec_dirty_pages(struct inode * inode)1743 static inline void inode_dec_dirty_pages(struct inode *inode)
1744 {
1745 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1746 			!S_ISLNK(inode->i_mode))
1747 		return;
1748 
1749 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1750 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1751 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1752 	if (IS_NOQUOTA(inode))
1753 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1754 }
1755 
get_pages(struct f2fs_sb_info * sbi,int count_type)1756 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1757 {
1758 	return atomic_read(&sbi->nr_pages[count_type]);
1759 }
1760 
get_dirty_pages(struct inode * inode)1761 static inline int get_dirty_pages(struct inode *inode)
1762 {
1763 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1764 }
1765 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1766 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1767 {
1768 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1769 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1770 						sbi->log_blocks_per_seg;
1771 
1772 	return segs / sbi->segs_per_sec;
1773 }
1774 
valid_user_blocks(struct f2fs_sb_info * sbi)1775 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1776 {
1777 	return sbi->total_valid_block_count;
1778 }
1779 
discard_blocks(struct f2fs_sb_info * sbi)1780 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1781 {
1782 	return sbi->discard_blks;
1783 }
1784 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1785 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1786 {
1787 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1788 
1789 	/* return NAT or SIT bitmap */
1790 	if (flag == NAT_BITMAP)
1791 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1792 	else if (flag == SIT_BITMAP)
1793 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1794 
1795 	return 0;
1796 }
1797 
__cp_payload(struct f2fs_sb_info * sbi)1798 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1799 {
1800 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1801 }
1802 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1803 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1804 {
1805 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1806 	int offset;
1807 
1808 	if (__cp_payload(sbi) > 0) {
1809 		if (flag == NAT_BITMAP)
1810 			return &ckpt->sit_nat_version_bitmap;
1811 		else
1812 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1813 	} else {
1814 		offset = (flag == NAT_BITMAP) ?
1815 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1816 		return &ckpt->sit_nat_version_bitmap + offset;
1817 	}
1818 }
1819 
__start_cp_addr(struct f2fs_sb_info * sbi)1820 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1821 {
1822 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1823 
1824 	if (sbi->cur_cp_pack == 2)
1825 		start_addr += sbi->blocks_per_seg;
1826 	return start_addr;
1827 }
1828 
__start_cp_next_addr(struct f2fs_sb_info * sbi)1829 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1830 {
1831 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1832 
1833 	if (sbi->cur_cp_pack == 1)
1834 		start_addr += sbi->blocks_per_seg;
1835 	return start_addr;
1836 }
1837 
__set_cp_next_pack(struct f2fs_sb_info * sbi)1838 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1839 {
1840 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1841 }
1842 
__start_sum_addr(struct f2fs_sb_info * sbi)1843 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1844 {
1845 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1846 }
1847 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1848 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1849 					struct inode *inode, bool is_inode)
1850 {
1851 	block_t	valid_block_count;
1852 	unsigned int valid_node_count;
1853 	bool quota = inode && !is_inode;
1854 
1855 	if (quota) {
1856 		int ret = dquot_reserve_block(inode, 1);
1857 		if (ret)
1858 			return ret;
1859 	}
1860 
1861 #ifdef CONFIG_F2FS_FAULT_INJECTION
1862 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1863 		f2fs_show_injection_info(FAULT_BLOCK);
1864 		goto enospc;
1865 	}
1866 #endif
1867 
1868 	spin_lock(&sbi->stat_lock);
1869 
1870 	valid_block_count = sbi->total_valid_block_count + 1;
1871 	if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1872 						sbi->user_block_count)) {
1873 		spin_unlock(&sbi->stat_lock);
1874 		goto enospc;
1875 	}
1876 
1877 	valid_node_count = sbi->total_valid_node_count + 1;
1878 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1879 		spin_unlock(&sbi->stat_lock);
1880 		goto enospc;
1881 	}
1882 
1883 	sbi->total_valid_node_count++;
1884 	sbi->total_valid_block_count++;
1885 	spin_unlock(&sbi->stat_lock);
1886 
1887 	if (inode) {
1888 		if (is_inode)
1889 			f2fs_mark_inode_dirty_sync(inode, true);
1890 		else
1891 			f2fs_i_blocks_write(inode, 1, true, true);
1892 	}
1893 
1894 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1895 	return 0;
1896 
1897 enospc:
1898 	if (quota)
1899 		dquot_release_reservation_block(inode, 1);
1900 	return -ENOSPC;
1901 }
1902 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1903 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1904 					struct inode *inode, bool is_inode)
1905 {
1906 	spin_lock(&sbi->stat_lock);
1907 
1908 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1909 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1910 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1911 
1912 	sbi->total_valid_node_count--;
1913 	sbi->total_valid_block_count--;
1914 	if (sbi->reserved_blocks &&
1915 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1916 		sbi->current_reserved_blocks++;
1917 
1918 	spin_unlock(&sbi->stat_lock);
1919 
1920 	if (!is_inode)
1921 		f2fs_i_blocks_write(inode, 1, false, true);
1922 }
1923 
valid_node_count(struct f2fs_sb_info * sbi)1924 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1925 {
1926 	return sbi->total_valid_node_count;
1927 }
1928 
inc_valid_inode_count(struct f2fs_sb_info * sbi)1929 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1930 {
1931 	percpu_counter_inc(&sbi->total_valid_inode_count);
1932 }
1933 
dec_valid_inode_count(struct f2fs_sb_info * sbi)1934 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1935 {
1936 	percpu_counter_dec(&sbi->total_valid_inode_count);
1937 }
1938 
valid_inode_count(struct f2fs_sb_info * sbi)1939 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1940 {
1941 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1942 }
1943 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)1944 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1945 						pgoff_t index, bool for_write)
1946 {
1947 #ifdef CONFIG_F2FS_FAULT_INJECTION
1948 	struct page *page = find_lock_page(mapping, index);
1949 
1950 	if (page)
1951 		return page;
1952 
1953 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1954 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1955 		return NULL;
1956 	}
1957 #endif
1958 	if (!for_write)
1959 		return grab_cache_page(mapping, index);
1960 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1961 }
1962 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1963 static inline struct page *f2fs_pagecache_get_page(
1964 				struct address_space *mapping, pgoff_t index,
1965 				int fgp_flags, gfp_t gfp_mask)
1966 {
1967 #ifdef CONFIG_F2FS_FAULT_INJECTION
1968 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1969 		f2fs_show_injection_info(FAULT_PAGE_GET);
1970 		return NULL;
1971 	}
1972 #endif
1973 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1974 }
1975 
f2fs_copy_page(struct page * src,struct page * dst)1976 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1977 {
1978 	char *src_kaddr = kmap(src);
1979 	char *dst_kaddr = kmap(dst);
1980 
1981 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1982 	kunmap(dst);
1983 	kunmap(src);
1984 }
1985 
f2fs_put_page(struct page * page,int unlock)1986 static inline void f2fs_put_page(struct page *page, int unlock)
1987 {
1988 	if (!page)
1989 		return;
1990 
1991 	if (unlock) {
1992 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1993 		unlock_page(page);
1994 	}
1995 	put_page(page);
1996 }
1997 
f2fs_put_dnode(struct dnode_of_data * dn)1998 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1999 {
2000 	if (dn->node_page)
2001 		f2fs_put_page(dn->node_page, 1);
2002 	if (dn->inode_page && dn->node_page != dn->inode_page)
2003 		f2fs_put_page(dn->inode_page, 0);
2004 	dn->node_page = NULL;
2005 	dn->inode_page = NULL;
2006 }
2007 
f2fs_kmem_cache_create(const char * name,size_t size)2008 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2009 					size_t size)
2010 {
2011 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2012 }
2013 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2014 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2015 						gfp_t flags)
2016 {
2017 	void *entry;
2018 
2019 	entry = kmem_cache_alloc(cachep, flags);
2020 	if (!entry)
2021 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2022 	return entry;
2023 }
2024 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2025 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2026 						int npages, bool no_fail)
2027 {
2028 	struct bio *bio;
2029 
2030 	if (no_fail) {
2031 		/* No failure on bio allocation */
2032 		bio = bio_alloc(GFP_NOIO, npages);
2033 		if (!bio)
2034 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2035 		return bio;
2036 	}
2037 #ifdef CONFIG_F2FS_FAULT_INJECTION
2038 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2039 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2040 		return NULL;
2041 	}
2042 #endif
2043 	return bio_alloc(GFP_KERNEL, npages);
2044 }
2045 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2046 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2047 				unsigned long index, void *item)
2048 {
2049 	while (radix_tree_insert(root, index, item))
2050 		cond_resched();
2051 }
2052 
2053 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2054 
IS_INODE(struct page * page)2055 static inline bool IS_INODE(struct page *page)
2056 {
2057 	struct f2fs_node *p = F2FS_NODE(page);
2058 
2059 	return RAW_IS_INODE(p);
2060 }
2061 
offset_in_addr(struct f2fs_inode * i)2062 static inline int offset_in_addr(struct f2fs_inode *i)
2063 {
2064 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2065 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2066 }
2067 
blkaddr_in_node(struct f2fs_node * node)2068 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2069 {
2070 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2071 }
2072 
2073 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2074 static inline block_t datablock_addr(struct inode *inode,
2075 			struct page *node_page, unsigned int offset)
2076 {
2077 	struct f2fs_node *raw_node;
2078 	__le32 *addr_array;
2079 	int base = 0;
2080 	bool is_inode = IS_INODE(node_page);
2081 
2082 	raw_node = F2FS_NODE(node_page);
2083 
2084 	/* from GC path only */
2085 	if (!inode) {
2086 		if (is_inode)
2087 			base = offset_in_addr(&raw_node->i);
2088 	} else if (f2fs_has_extra_attr(inode) && is_inode) {
2089 		base = get_extra_isize(inode);
2090 	}
2091 
2092 	addr_array = blkaddr_in_node(raw_node);
2093 	return le32_to_cpu(addr_array[base + offset]);
2094 }
2095 
f2fs_test_bit(unsigned int nr,char * addr)2096 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2097 {
2098 	int mask;
2099 
2100 	addr += (nr >> 3);
2101 	mask = 1 << (7 - (nr & 0x07));
2102 	return mask & *addr;
2103 }
2104 
f2fs_set_bit(unsigned int nr,char * addr)2105 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2106 {
2107 	int mask;
2108 
2109 	addr += (nr >> 3);
2110 	mask = 1 << (7 - (nr & 0x07));
2111 	*addr |= mask;
2112 }
2113 
f2fs_clear_bit(unsigned int nr,char * addr)2114 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2115 {
2116 	int mask;
2117 
2118 	addr += (nr >> 3);
2119 	mask = 1 << (7 - (nr & 0x07));
2120 	*addr &= ~mask;
2121 }
2122 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2123 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2124 {
2125 	int mask;
2126 	int ret;
2127 
2128 	addr += (nr >> 3);
2129 	mask = 1 << (7 - (nr & 0x07));
2130 	ret = mask & *addr;
2131 	*addr |= mask;
2132 	return ret;
2133 }
2134 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2135 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2136 {
2137 	int mask;
2138 	int ret;
2139 
2140 	addr += (nr >> 3);
2141 	mask = 1 << (7 - (nr & 0x07));
2142 	ret = mask & *addr;
2143 	*addr &= ~mask;
2144 	return ret;
2145 }
2146 
f2fs_change_bit(unsigned int nr,char * addr)2147 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2148 {
2149 	int mask;
2150 
2151 	addr += (nr >> 3);
2152 	mask = 1 << (7 - (nr & 0x07));
2153 	*addr ^= mask;
2154 }
2155 
2156 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2157 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2158 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2159 
f2fs_mask_flags(umode_t mode,__u32 flags)2160 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2161 {
2162 	if (S_ISDIR(mode))
2163 		return flags;
2164 	else if (S_ISREG(mode))
2165 		return flags & F2FS_REG_FLMASK;
2166 	else
2167 		return flags & F2FS_OTHER_FLMASK;
2168 }
2169 
2170 /* used for f2fs_inode_info->flags */
2171 enum {
2172 	FI_NEW_INODE,		/* indicate newly allocated inode */
2173 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2174 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2175 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2176 	FI_INC_LINK,		/* need to increment i_nlink */
2177 	FI_ACL_MODE,		/* indicate acl mode */
2178 	FI_NO_ALLOC,		/* should not allocate any blocks */
2179 	FI_FREE_NID,		/* free allocated nide */
2180 	FI_NO_EXTENT,		/* not to use the extent cache */
2181 	FI_INLINE_XATTR,	/* used for inline xattr */
2182 	FI_INLINE_DATA,		/* used for inline data*/
2183 	FI_INLINE_DENTRY,	/* used for inline dentry */
2184 	FI_APPEND_WRITE,	/* inode has appended data */
2185 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2186 	FI_NEED_IPU,		/* used for ipu per file */
2187 	FI_ATOMIC_FILE,		/* indicate atomic file */
2188 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2189 	FI_VOLATILE_FILE,	/* indicate volatile file */
2190 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2191 	FI_DROP_CACHE,		/* drop dirty page cache */
2192 	FI_DATA_EXIST,		/* indicate data exists */
2193 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2194 	FI_DO_DEFRAG,		/* indicate defragment is running */
2195 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2196 	FI_HOT_DATA,		/* indicate file is hot */
2197 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2198 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2199 };
2200 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2201 static inline void __mark_inode_dirty_flag(struct inode *inode,
2202 						int flag, bool set)
2203 {
2204 	switch (flag) {
2205 	case FI_INLINE_XATTR:
2206 	case FI_INLINE_DATA:
2207 	case FI_INLINE_DENTRY:
2208 		if (set)
2209 			return;
2210 	case FI_DATA_EXIST:
2211 	case FI_INLINE_DOTS:
2212 		f2fs_mark_inode_dirty_sync(inode, true);
2213 	}
2214 }
2215 
set_inode_flag(struct inode * inode,int flag)2216 static inline void set_inode_flag(struct inode *inode, int flag)
2217 {
2218 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2219 		set_bit(flag, &F2FS_I(inode)->flags);
2220 	__mark_inode_dirty_flag(inode, flag, true);
2221 }
2222 
is_inode_flag_set(struct inode * inode,int flag)2223 static inline int is_inode_flag_set(struct inode *inode, int flag)
2224 {
2225 	return test_bit(flag, &F2FS_I(inode)->flags);
2226 }
2227 
clear_inode_flag(struct inode * inode,int flag)2228 static inline void clear_inode_flag(struct inode *inode, int flag)
2229 {
2230 	if (test_bit(flag, &F2FS_I(inode)->flags))
2231 		clear_bit(flag, &F2FS_I(inode)->flags);
2232 	__mark_inode_dirty_flag(inode, flag, false);
2233 }
2234 
set_acl_inode(struct inode * inode,umode_t mode)2235 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2236 {
2237 	F2FS_I(inode)->i_acl_mode = mode;
2238 	set_inode_flag(inode, FI_ACL_MODE);
2239 	f2fs_mark_inode_dirty_sync(inode, false);
2240 }
2241 
f2fs_i_links_write(struct inode * inode,bool inc)2242 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2243 {
2244 	if (inc)
2245 		inc_nlink(inode);
2246 	else
2247 		drop_nlink(inode);
2248 	f2fs_mark_inode_dirty_sync(inode, true);
2249 }
2250 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2251 static inline void f2fs_i_blocks_write(struct inode *inode,
2252 					block_t diff, bool add, bool claim)
2253 {
2254 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2255 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2256 
2257 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2258 	if (add) {
2259 		if (claim)
2260 			dquot_claim_block(inode, diff);
2261 		else
2262 			dquot_alloc_block_nofail(inode, diff);
2263 	} else {
2264 		dquot_free_block(inode, diff);
2265 	}
2266 
2267 	f2fs_mark_inode_dirty_sync(inode, true);
2268 	if (clean || recover)
2269 		set_inode_flag(inode, FI_AUTO_RECOVER);
2270 }
2271 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2272 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2273 {
2274 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2275 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2276 
2277 	if (i_size_read(inode) == i_size)
2278 		return;
2279 
2280 	i_size_write(inode, i_size);
2281 	f2fs_mark_inode_dirty_sync(inode, true);
2282 	if (clean || recover)
2283 		set_inode_flag(inode, FI_AUTO_RECOVER);
2284 }
2285 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2286 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2287 {
2288 	F2FS_I(inode)->i_current_depth = depth;
2289 	f2fs_mark_inode_dirty_sync(inode, true);
2290 }
2291 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2292 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2293 {
2294 	F2FS_I(inode)->i_xattr_nid = xnid;
2295 	f2fs_mark_inode_dirty_sync(inode, true);
2296 }
2297 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2298 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2299 {
2300 	F2FS_I(inode)->i_pino = pino;
2301 	f2fs_mark_inode_dirty_sync(inode, true);
2302 }
2303 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2304 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2305 {
2306 	struct f2fs_inode_info *fi = F2FS_I(inode);
2307 
2308 	if (ri->i_inline & F2FS_INLINE_XATTR)
2309 		set_bit(FI_INLINE_XATTR, &fi->flags);
2310 	if (ri->i_inline & F2FS_INLINE_DATA)
2311 		set_bit(FI_INLINE_DATA, &fi->flags);
2312 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2313 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2314 	if (ri->i_inline & F2FS_DATA_EXIST)
2315 		set_bit(FI_DATA_EXIST, &fi->flags);
2316 	if (ri->i_inline & F2FS_INLINE_DOTS)
2317 		set_bit(FI_INLINE_DOTS, &fi->flags);
2318 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2319 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2320 }
2321 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2322 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2323 {
2324 	ri->i_inline = 0;
2325 
2326 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2327 		ri->i_inline |= F2FS_INLINE_XATTR;
2328 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2329 		ri->i_inline |= F2FS_INLINE_DATA;
2330 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2331 		ri->i_inline |= F2FS_INLINE_DENTRY;
2332 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2333 		ri->i_inline |= F2FS_DATA_EXIST;
2334 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2335 		ri->i_inline |= F2FS_INLINE_DOTS;
2336 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2337 		ri->i_inline |= F2FS_EXTRA_ATTR;
2338 }
2339 
f2fs_has_extra_attr(struct inode * inode)2340 static inline int f2fs_has_extra_attr(struct inode *inode)
2341 {
2342 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2343 }
2344 
f2fs_has_inline_xattr(struct inode * inode)2345 static inline int f2fs_has_inline_xattr(struct inode *inode)
2346 {
2347 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2348 }
2349 
addrs_per_inode(struct inode * inode)2350 static inline unsigned int addrs_per_inode(struct inode *inode)
2351 {
2352 	return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2353 }
2354 
inline_xattr_addr(struct inode * inode,struct page * page)2355 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2356 {
2357 	struct f2fs_inode *ri = F2FS_INODE(page);
2358 
2359 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2360 					F2FS_INLINE_XATTR_ADDRS(inode)]);
2361 }
2362 
inline_xattr_size(struct inode * inode)2363 static inline int inline_xattr_size(struct inode *inode)
2364 {
2365 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2366 }
2367 
f2fs_has_inline_data(struct inode * inode)2368 static inline int f2fs_has_inline_data(struct inode *inode)
2369 {
2370 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2371 }
2372 
f2fs_exist_data(struct inode * inode)2373 static inline int f2fs_exist_data(struct inode *inode)
2374 {
2375 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2376 }
2377 
f2fs_has_inline_dots(struct inode * inode)2378 static inline int f2fs_has_inline_dots(struct inode *inode)
2379 {
2380 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2381 }
2382 
f2fs_is_atomic_file(struct inode * inode)2383 static inline bool f2fs_is_atomic_file(struct inode *inode)
2384 {
2385 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2386 }
2387 
f2fs_is_commit_atomic_write(struct inode * inode)2388 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2389 {
2390 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2391 }
2392 
f2fs_is_volatile_file(struct inode * inode)2393 static inline bool f2fs_is_volatile_file(struct inode *inode)
2394 {
2395 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2396 }
2397 
f2fs_is_first_block_written(struct inode * inode)2398 static inline bool f2fs_is_first_block_written(struct inode *inode)
2399 {
2400 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2401 }
2402 
f2fs_is_drop_cache(struct inode * inode)2403 static inline bool f2fs_is_drop_cache(struct inode *inode)
2404 {
2405 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2406 }
2407 
inline_data_addr(struct inode * inode,struct page * page)2408 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2409 {
2410 	struct f2fs_inode *ri = F2FS_INODE(page);
2411 	int extra_size = get_extra_isize(inode);
2412 
2413 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2414 }
2415 
f2fs_has_inline_dentry(struct inode * inode)2416 static inline int f2fs_has_inline_dentry(struct inode *inode)
2417 {
2418 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2419 }
2420 
f2fs_dentry_kunmap(struct inode * dir,struct page * page)2421 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2422 {
2423 	if (!f2fs_has_inline_dentry(dir))
2424 		kunmap(page);
2425 }
2426 
is_file(struct inode * inode,int type)2427 static inline int is_file(struct inode *inode, int type)
2428 {
2429 	return F2FS_I(inode)->i_advise & type;
2430 }
2431 
set_file(struct inode * inode,int type)2432 static inline void set_file(struct inode *inode, int type)
2433 {
2434 	F2FS_I(inode)->i_advise |= type;
2435 	f2fs_mark_inode_dirty_sync(inode, true);
2436 }
2437 
clear_file(struct inode * inode,int type)2438 static inline void clear_file(struct inode *inode, int type)
2439 {
2440 	F2FS_I(inode)->i_advise &= ~type;
2441 	f2fs_mark_inode_dirty_sync(inode, true);
2442 }
2443 
f2fs_skip_inode_update(struct inode * inode,int dsync)2444 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2445 {
2446 	bool ret;
2447 
2448 	if (dsync) {
2449 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2450 
2451 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2452 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2453 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2454 		return ret;
2455 	}
2456 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2457 			file_keep_isize(inode) ||
2458 			i_size_read(inode) & PAGE_MASK)
2459 		return false;
2460 
2461 	down_read(&F2FS_I(inode)->i_sem);
2462 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2463 	up_read(&F2FS_I(inode)->i_sem);
2464 
2465 	return ret;
2466 }
2467 
2468 #define sb_rdonly	f2fs_readonly
f2fs_readonly(struct super_block * sb)2469 static inline int f2fs_readonly(struct super_block *sb)
2470 {
2471 	return sb->s_flags & MS_RDONLY;
2472 }
2473 
f2fs_cp_error(struct f2fs_sb_info * sbi)2474 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2475 {
2476 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2477 }
2478 
is_dot_dotdot(const struct qstr * str)2479 static inline bool is_dot_dotdot(const struct qstr *str)
2480 {
2481 	if (str->len == 1 && str->name[0] == '.')
2482 		return true;
2483 
2484 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2485 		return true;
2486 
2487 	return false;
2488 }
2489 
f2fs_may_extent_tree(struct inode * inode)2490 static inline bool f2fs_may_extent_tree(struct inode *inode)
2491 {
2492 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2493 			is_inode_flag_set(inode, FI_NO_EXTENT))
2494 		return false;
2495 
2496 	return S_ISREG(inode->i_mode);
2497 }
2498 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2499 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2500 					size_t size, gfp_t flags)
2501 {
2502 #ifdef CONFIG_F2FS_FAULT_INJECTION
2503 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2504 		f2fs_show_injection_info(FAULT_KMALLOC);
2505 		return NULL;
2506 	}
2507 #endif
2508 	return kmalloc(size, flags);
2509 }
2510 
kvmalloc(size_t size,gfp_t flags)2511 static inline void *kvmalloc(size_t size, gfp_t flags)
2512 {
2513 	void *ret;
2514 
2515 	ret = kmalloc(size, flags | __GFP_NOWARN);
2516 	if (!ret)
2517 		ret = __vmalloc(size, flags, PAGE_KERNEL);
2518 	return ret;
2519 }
2520 
kvzalloc(size_t size,gfp_t flags)2521 static inline void *kvzalloc(size_t size, gfp_t flags)
2522 {
2523 	void *ret;
2524 
2525 	ret = kzalloc(size, flags | __GFP_NOWARN);
2526 	if (!ret)
2527 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2528 	return ret;
2529 }
2530 
get_extra_isize(struct inode * inode)2531 static inline int get_extra_isize(struct inode *inode)
2532 {
2533 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2534 }
2535 
2536 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
get_inline_xattr_addrs(struct inode * inode)2537 static inline int get_inline_xattr_addrs(struct inode *inode)
2538 {
2539 	return F2FS_I(inode)->i_inline_xattr_size;
2540 }
2541 
2542 #define get_inode_mode(i) \
2543 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2544 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2545 
2546 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2547 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2548 	offsetof(struct f2fs_inode, i_extra_isize))	\
2549 
2550 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2551 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2552 		((offsetof(typeof(*f2fs_inode), field) +	\
2553 		sizeof((f2fs_inode)->field))			\
2554 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2555 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2556 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2557 {
2558 	int i;
2559 
2560 	spin_lock(&sbi->iostat_lock);
2561 	for (i = 0; i < NR_IO_TYPE; i++)
2562 		sbi->write_iostat[i] = 0;
2563 	spin_unlock(&sbi->iostat_lock);
2564 }
2565 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2566 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2567 			enum iostat_type type, unsigned long long io_bytes)
2568 {
2569 	if (!sbi->iostat_enable)
2570 		return;
2571 	spin_lock(&sbi->iostat_lock);
2572 	sbi->write_iostat[type] += io_bytes;
2573 
2574 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2575 		sbi->write_iostat[APP_BUFFERED_IO] =
2576 			sbi->write_iostat[APP_WRITE_IO] -
2577 			sbi->write_iostat[APP_DIRECT_IO];
2578 	spin_unlock(&sbi->iostat_lock);
2579 }
2580 
2581 /*
2582  * file.c
2583  */
2584 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2585 void truncate_data_blocks(struct dnode_of_data *dn);
2586 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2587 int f2fs_truncate(struct inode *inode);
2588 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry,
2589 			struct kstat *stat);
2590 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2591 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2592 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2593 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2594 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2595 
2596 /*
2597  * inode.c
2598  */
2599 void f2fs_set_inode_flags(struct inode *inode);
2600 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2601 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2602 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2603 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2604 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2605 int update_inode(struct inode *inode, struct page *node_page);
2606 int update_inode_page(struct inode *inode);
2607 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2608 void f2fs_evict_inode(struct inode *inode);
2609 void handle_failed_inode(struct inode *inode);
2610 
2611 /*
2612  * namei.c
2613  */
2614 struct dentry *f2fs_get_parent(struct dentry *child);
2615 
2616 /*
2617  * dir.c
2618  */
2619 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2620 unsigned char get_de_type(struct f2fs_dir_entry *de);
2621 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2622 			f2fs_hash_t namehash, int *max_slots,
2623 			struct f2fs_dentry_ptr *d);
2624 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2625 			unsigned int start_pos, struct fscrypt_str *fstr);
2626 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2627 			struct f2fs_dentry_ptr *d);
2628 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2629 			const struct qstr *new_name,
2630 			const struct qstr *orig_name, struct page *dpage);
2631 void update_parent_metadata(struct inode *dir, struct inode *inode,
2632 			unsigned int current_depth);
2633 int room_for_filename(const void *bitmap, int slots, int max_slots);
2634 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2635 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2636 			struct fscrypt_name *fname, struct page **res_page);
2637 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2638 			const struct qstr *child, struct page **res_page);
2639 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2640 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2641 			struct page **page);
2642 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2643 			struct page *page, struct inode *inode);
2644 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2645 			const struct qstr *name, f2fs_hash_t name_hash,
2646 			unsigned int bit_pos);
2647 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2648 			const struct qstr *orig_name,
2649 			struct inode *inode, nid_t ino, umode_t mode);
2650 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2651 			struct inode *inode, nid_t ino, umode_t mode);
2652 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2653 			struct inode *inode, nid_t ino, umode_t mode);
2654 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2655 			struct inode *dir, struct inode *inode);
2656 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2657 bool f2fs_empty_dir(struct inode *dir);
2658 
f2fs_add_link(struct dentry * dentry,struct inode * inode)2659 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2660 {
2661 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2662 				inode, inode->i_ino, inode->i_mode);
2663 }
2664 
2665 /*
2666  * super.c
2667  */
2668 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2669 void f2fs_inode_synced(struct inode *inode);
2670 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2671 void f2fs_quota_off_umount(struct super_block *sb);
2672 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2673 int f2fs_sync_fs(struct super_block *sb, int sync);
2674 extern __printf(3, 4)
2675 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2676 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2677 
2678 /*
2679  * hash.c
2680  */
2681 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2682 				struct fscrypt_name *fname);
2683 
2684 /*
2685  * node.c
2686  */
2687 struct dnode_of_data;
2688 struct node_info;
2689 
2690 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2691 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2692 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2693 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2694 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2695 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2696 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2697 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2698 int truncate_xattr_node(struct inode *inode);
2699 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2700 int remove_inode_page(struct inode *inode);
2701 struct page *new_inode_page(struct inode *inode);
2702 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2703 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2704 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2705 struct page *get_node_page_ra(struct page *parent, int start);
2706 void move_node_page(struct page *node_page, int gc_type);
2707 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2708 			struct writeback_control *wbc, bool atomic);
2709 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2710 			bool do_balance, enum iostat_type io_type);
2711 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2712 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2713 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2714 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2715 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2716 void recover_inline_xattr(struct inode *inode, struct page *page);
2717 int recover_xattr_data(struct inode *inode, struct page *page,
2718 			block_t blkaddr);
2719 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2720 int restore_node_summary(struct f2fs_sb_info *sbi,
2721 			unsigned int segno, struct f2fs_summary_block *sum);
2722 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2723 int build_node_manager(struct f2fs_sb_info *sbi);
2724 void destroy_node_manager(struct f2fs_sb_info *sbi);
2725 int __init create_node_manager_caches(void);
2726 void destroy_node_manager_caches(void);
2727 
2728 /*
2729  * segment.c
2730  */
2731 bool need_SSR(struct f2fs_sb_info *sbi);
2732 void register_inmem_page(struct inode *inode, struct page *page);
2733 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2734 void drop_inmem_pages(struct inode *inode);
2735 void drop_inmem_page(struct inode *inode, struct page *page);
2736 int commit_inmem_pages(struct inode *inode);
2737 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2738 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2739 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2740 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2741 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2742 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2743 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2744 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2745 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2746 						unsigned int granularity);
2747 void stop_discard_thread(struct f2fs_sb_info *sbi);
2748 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2749 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2750 void release_discard_addrs(struct f2fs_sb_info *sbi);
2751 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2752 void allocate_new_segments(struct f2fs_sb_info *sbi);
2753 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2754 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2755 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2756 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2757 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2758 						enum iostat_type io_type);
2759 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2760 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2761 int rewrite_data_page(struct f2fs_io_info *fio);
2762 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2763 			block_t old_blkaddr, block_t new_blkaddr,
2764 			bool recover_curseg, bool recover_newaddr);
2765 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2766 			block_t old_addr, block_t new_addr,
2767 			unsigned char version, bool recover_curseg,
2768 			bool recover_newaddr);
2769 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2770 			block_t old_blkaddr, block_t *new_blkaddr,
2771 			struct f2fs_summary *sum, int type,
2772 			struct f2fs_io_info *fio, bool add_list);
2773 void f2fs_wait_on_page_writeback(struct page *page,
2774 			enum page_type type, bool ordered);
2775 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2776 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2777 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2778 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2779 			unsigned int val, int alloc);
2780 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2781 int build_segment_manager(struct f2fs_sb_info *sbi);
2782 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2783 int __init create_segment_manager_caches(void);
2784 void destroy_segment_manager_caches(void);
2785 
2786 /*
2787  * checkpoint.c
2788  */
2789 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2790 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2791 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2792 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2793 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2794 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2795 			int type, bool sync);
2796 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2797 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2798 			long nr_to_write, enum iostat_type io_type);
2799 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2800 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2801 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2802 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2803 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2804 					unsigned int devidx, int type);
2805 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2806 					unsigned int devidx, int type);
2807 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2808 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2809 void release_orphan_inode(struct f2fs_sb_info *sbi);
2810 void add_orphan_inode(struct inode *inode);
2811 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2812 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2813 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2814 void update_dirty_page(struct inode *inode, struct page *page);
2815 void remove_dirty_inode(struct inode *inode);
2816 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2817 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2818 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2819 int __init create_checkpoint_caches(void);
2820 void destroy_checkpoint_caches(void);
2821 
2822 /*
2823  * data.c
2824  */
2825 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2826 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2827 				struct inode *inode, nid_t ino, pgoff_t idx,
2828 				enum page_type type);
2829 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2830 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2831 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2832 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2833 			block_t blk_addr, struct bio *bio);
2834 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2835 void set_data_blkaddr(struct dnode_of_data *dn);
2836 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2837 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2838 int reserve_new_block(struct dnode_of_data *dn);
2839 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2840 int f2fs_preallocate_blocks(struct inode *inode, loff_t pos,
2841 					size_t count, bool dio);
2842 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2843 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2844 			int op_flags, bool for_write);
2845 struct page *find_data_page(struct inode *inode, pgoff_t index);
2846 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2847 			bool for_write);
2848 struct page *get_new_data_page(struct inode *inode,
2849 			struct page *ipage, pgoff_t index, bool new_i_size);
2850 int do_write_data_page(struct f2fs_io_info *fio);
2851 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2852 			int create, int flag);
2853 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2854 			u64 start, u64 len);
2855 void f2fs_set_page_dirty_nobuffers(struct page *page);
2856 int __f2fs_write_data_pages(struct address_space *mapping,
2857 						struct writeback_control *wbc,
2858 						enum iostat_type io_type);
2859 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2860 			unsigned int length);
2861 int f2fs_release_page(struct page *page, gfp_t wait);
2862 #ifdef CONFIG_MIGRATION
2863 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2864 			struct page *page, enum migrate_mode mode);
2865 #endif
2866 
2867 /*
2868  * gc.c
2869  */
2870 int start_gc_thread(struct f2fs_sb_info *sbi);
2871 void stop_gc_thread(struct f2fs_sb_info *sbi);
2872 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2873 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2874 			unsigned int segno);
2875 void build_gc_manager(struct f2fs_sb_info *sbi);
2876 
2877 /*
2878  * recovery.c
2879  */
2880 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2881 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2882 
2883 /*
2884  * debug.c
2885  */
2886 #ifdef CONFIG_F2FS_STAT_FS
2887 struct f2fs_stat_info {
2888 	struct list_head stat_list;
2889 	struct f2fs_sb_info *sbi;
2890 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2891 	int main_area_segs, main_area_sections, main_area_zones;
2892 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2893 	unsigned long long hit_total, total_ext;
2894 	int ext_tree, zombie_tree, ext_node;
2895 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2896 	int ndirty_data, ndirty_qdata;
2897 	int inmem_pages;
2898 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2899 	int nats, dirty_nats, sits, dirty_sits;
2900 	int free_nids, avail_nids, alloc_nids;
2901 	int total_count, utilization;
2902 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2903 	int nr_flushing, nr_flushed, flush_list_empty;
2904 	int nr_discarding, nr_discarded;
2905 	int nr_discard_cmd;
2906 	unsigned int undiscard_blks;
2907 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2908 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2909 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2910 	unsigned int bimodal, avg_vblocks;
2911 	int util_free, util_valid, util_invalid;
2912 	int rsvd_segs, overp_segs;
2913 	int dirty_count, node_pages, meta_pages;
2914 	int prefree_count, call_count, cp_count, bg_cp_count;
2915 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2916 	int bg_node_segs, bg_data_segs;
2917 	int tot_blks, data_blks, node_blks;
2918 	int bg_data_blks, bg_node_blks;
2919 	int curseg[NR_CURSEG_TYPE];
2920 	int cursec[NR_CURSEG_TYPE];
2921 	int curzone[NR_CURSEG_TYPE];
2922 
2923 	unsigned int segment_count[2];
2924 	unsigned int block_count[2];
2925 	unsigned int inplace_count;
2926 	unsigned long long base_mem, cache_mem, page_mem;
2927 };
2928 
F2FS_STAT(struct f2fs_sb_info * sbi)2929 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2930 {
2931 	return (struct f2fs_stat_info *)sbi->stat_info;
2932 }
2933 
2934 #define stat_inc_cp_count(si)		((si)->cp_count++)
2935 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2936 #define stat_inc_call_count(si)		((si)->call_count++)
2937 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2938 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2939 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2940 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2941 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2942 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2943 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2944 #define stat_inc_inline_xattr(inode)					\
2945 	do {								\
2946 		if (f2fs_has_inline_xattr(inode))			\
2947 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2948 	} while (0)
2949 #define stat_dec_inline_xattr(inode)					\
2950 	do {								\
2951 		if (f2fs_has_inline_xattr(inode))			\
2952 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2953 	} while (0)
2954 #define stat_inc_inline_inode(inode)					\
2955 	do {								\
2956 		if (f2fs_has_inline_data(inode))			\
2957 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2958 	} while (0)
2959 #define stat_dec_inline_inode(inode)					\
2960 	do {								\
2961 		if (f2fs_has_inline_data(inode))			\
2962 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2963 	} while (0)
2964 #define stat_inc_inline_dir(inode)					\
2965 	do {								\
2966 		if (f2fs_has_inline_dentry(inode))			\
2967 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2968 	} while (0)
2969 #define stat_dec_inline_dir(inode)					\
2970 	do {								\
2971 		if (f2fs_has_inline_dentry(inode))			\
2972 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2973 	} while (0)
2974 #define stat_inc_seg_type(sbi, curseg)					\
2975 		((sbi)->segment_count[(curseg)->alloc_type]++)
2976 #define stat_inc_block_count(sbi, curseg)				\
2977 		((sbi)->block_count[(curseg)->alloc_type]++)
2978 #define stat_inc_inplace_blocks(sbi)					\
2979 		(atomic_inc(&(sbi)->inplace_count))
2980 #define stat_inc_atomic_write(inode)					\
2981 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2982 #define stat_dec_atomic_write(inode)					\
2983 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2984 #define stat_update_max_atomic_write(inode)				\
2985 	do {								\
2986 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2987 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2988 		if (cur > max)						\
2989 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2990 	} while (0)
2991 #define stat_inc_volatile_write(inode)					\
2992 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2993 #define stat_dec_volatile_write(inode)					\
2994 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2995 #define stat_update_max_volatile_write(inode)				\
2996 	do {								\
2997 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2998 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2999 		if (cur > max)						\
3000 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3001 	} while (0)
3002 #define stat_inc_seg_count(sbi, type, gc_type)				\
3003 	do {								\
3004 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3005 		si->tot_segs++;						\
3006 		if ((type) == SUM_TYPE_DATA) {				\
3007 			si->data_segs++;				\
3008 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3009 		} else {						\
3010 			si->node_segs++;				\
3011 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3012 		}							\
3013 	} while (0)
3014 
3015 #define stat_inc_tot_blk_count(si, blks)				\
3016 	((si)->tot_blks += (blks))
3017 
3018 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3019 	do {								\
3020 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3021 		stat_inc_tot_blk_count(si, blks);			\
3022 		si->data_blks += (blks);				\
3023 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3024 	} while (0)
3025 
3026 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3027 	do {								\
3028 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3029 		stat_inc_tot_blk_count(si, blks);			\
3030 		si->node_blks += (blks);				\
3031 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3032 	} while (0)
3033 
3034 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3035 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3036 int __init f2fs_create_root_stats(void);
3037 void f2fs_destroy_root_stats(void);
3038 #else
3039 #define stat_inc_cp_count(si)				do { } while (0)
3040 #define stat_inc_bg_cp_count(si)			do { } while (0)
3041 #define stat_inc_call_count(si)				do { } while (0)
3042 #define stat_inc_bggc_count(si)				do { } while (0)
3043 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3044 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3045 #define stat_inc_total_hit(sb)				do { } while (0)
3046 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3047 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3048 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3049 #define stat_inc_inline_xattr(inode)			do { } while (0)
3050 #define stat_dec_inline_xattr(inode)			do { } while (0)
3051 #define stat_inc_inline_inode(inode)			do { } while (0)
3052 #define stat_dec_inline_inode(inode)			do { } while (0)
3053 #define stat_inc_inline_dir(inode)			do { } while (0)
3054 #define stat_dec_inline_dir(inode)			do { } while (0)
3055 #define stat_inc_atomic_write(inode)			do { } while (0)
3056 #define stat_dec_atomic_write(inode)			do { } while (0)
3057 #define stat_update_max_atomic_write(inode)		do { } while (0)
3058 #define stat_inc_volatile_write(inode)			do { } while (0)
3059 #define stat_dec_volatile_write(inode)			do { } while (0)
3060 #define stat_update_max_volatile_write(inode)		do { } while (0)
3061 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3062 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3063 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3064 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3065 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3066 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3067 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3068 
f2fs_build_stats(struct f2fs_sb_info * sbi)3069 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3070 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3071 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3072 static inline void f2fs_destroy_root_stats(void) { }
3073 #endif
3074 
3075 extern const struct file_operations f2fs_dir_operations;
3076 extern const struct file_operations f2fs_file_operations;
3077 extern const struct inode_operations f2fs_file_inode_operations;
3078 extern const struct address_space_operations f2fs_dblock_aops;
3079 extern const struct address_space_operations f2fs_node_aops;
3080 extern const struct address_space_operations f2fs_meta_aops;
3081 extern const struct inode_operations f2fs_dir_inode_operations;
3082 extern const struct inode_operations f2fs_symlink_inode_operations;
3083 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3084 extern const struct inode_operations f2fs_special_inode_operations;
3085 extern struct kmem_cache *inode_entry_slab;
3086 
3087 /*
3088  * inline.c
3089  */
3090 bool f2fs_may_inline_data(struct inode *inode);
3091 bool f2fs_may_inline_dentry(struct inode *inode);
3092 void read_inline_data(struct page *page, struct page *ipage);
3093 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3094 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3095 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3096 int f2fs_convert_inline_inode(struct inode *inode);
3097 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3098 bool recover_inline_data(struct inode *inode, struct page *npage);
3099 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3100 			struct fscrypt_name *fname, struct page **res_page);
3101 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3102 			struct page *ipage);
3103 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3104 			const struct qstr *orig_name,
3105 			struct inode *inode, nid_t ino, umode_t mode);
3106 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3107 			struct inode *dir, struct inode *inode);
3108 bool f2fs_empty_inline_dir(struct inode *dir);
3109 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3110 			struct fscrypt_str *fstr);
3111 int f2fs_inline_data_fiemap(struct inode *inode,
3112 			struct fiemap_extent_info *fieinfo,
3113 			__u64 start, __u64 len);
3114 
3115 /*
3116  * shrinker.c
3117  */
3118 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3119 			struct shrink_control *sc);
3120 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3121 			struct shrink_control *sc);
3122 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3123 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3124 
3125 /*
3126  * extent_cache.c
3127  */
3128 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3129 				struct rb_entry *cached_re, unsigned int ofs);
3130 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3131 				struct rb_root *root, struct rb_node **parent,
3132 				unsigned int ofs);
3133 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3134 		struct rb_entry *cached_re, unsigned int ofs,
3135 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3136 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3137 		bool force);
3138 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3139 						struct rb_root *root);
3140 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3141 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3142 void f2fs_drop_extent_tree(struct inode *inode);
3143 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3144 void f2fs_destroy_extent_tree(struct inode *inode);
3145 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3146 			struct extent_info *ei);
3147 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3148 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3149 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3150 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3151 int __init create_extent_cache(void);
3152 void destroy_extent_cache(void);
3153 
3154 /*
3155  * sysfs.c
3156  */
3157 int __init f2fs_init_sysfs(void);
3158 void f2fs_exit_sysfs(void);
3159 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3160 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3161 
3162 /*
3163  * crypto support
3164  */
f2fs_encrypted_inode(struct inode * inode)3165 static inline bool f2fs_encrypted_inode(struct inode *inode)
3166 {
3167 	return file_is_encrypt(inode);
3168 }
3169 
f2fs_encrypted_file(struct inode * inode)3170 static inline bool f2fs_encrypted_file(struct inode *inode)
3171 {
3172 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3173 }
3174 
f2fs_set_encrypted_inode(struct inode * inode)3175 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3176 {
3177 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3178 	file_set_encrypt(inode);
3179 	inode->i_flags |= S_ENCRYPTED;
3180 #endif
3181 }
3182 
f2fs_bio_encrypted(struct bio * bio)3183 static inline bool f2fs_bio_encrypted(struct bio *bio)
3184 {
3185 	return bio->bi_private != NULL;
3186 }
3187 
f2fs_sb_has_crypto(struct super_block * sb)3188 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3189 {
3190 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3191 }
3192 
f2fs_sb_mounted_blkzoned(struct super_block * sb)3193 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3194 {
3195 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3196 }
3197 
f2fs_sb_has_extra_attr(struct super_block * sb)3198 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3199 {
3200 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3201 }
3202 
f2fs_sb_has_project_quota(struct super_block * sb)3203 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3204 {
3205 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3206 }
3207 
f2fs_sb_has_inode_chksum(struct super_block * sb)3208 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3209 {
3210 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3211 }
3212 
f2fs_sb_has_flexible_inline_xattr(struct super_block * sb)3213 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3214 {
3215 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3216 }
3217 
f2fs_sb_has_quota_ino(struct super_block * sb)3218 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3219 {
3220 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3221 }
3222 
3223 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3224 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3225 			struct block_device *bdev, block_t blkaddr)
3226 {
3227 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3228 	int i;
3229 
3230 	for (i = 0; i < sbi->s_ndevs; i++)
3231 		if (FDEV(i).bdev == bdev)
3232 			return FDEV(i).blkz_type[zno];
3233 	return -EINVAL;
3234 }
3235 #endif
3236 
f2fs_discard_en(struct f2fs_sb_info * sbi)3237 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3238 {
3239 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3240 
3241 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3242 }
3243 
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3244 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3245 {
3246 	clear_opt(sbi, ADAPTIVE);
3247 	clear_opt(sbi, LFS);
3248 
3249 	switch (mt) {
3250 	case F2FS_MOUNT_ADAPTIVE:
3251 		set_opt(sbi, ADAPTIVE);
3252 		break;
3253 	case F2FS_MOUNT_LFS:
3254 		set_opt(sbi, LFS);
3255 		break;
3256 	}
3257 }
3258 
f2fs_may_encrypt(struct inode * inode)3259 static inline bool f2fs_may_encrypt(struct inode *inode)
3260 {
3261 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3262 	umode_t mode = inode->i_mode;
3263 
3264 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3265 #else
3266 	return 0;
3267 #endif
3268 }
3269 
3270 #endif
3271