• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  *   PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 
18 /*
19  * This is necessary to get the definition of PGTABLE_RANGE which we
20  * need for various slices related matters. Note that this isn't the
21  * complete pgtable.h but only a portion of it.
22  */
23 #include <asm/pgtable-ppc64.h>
24 #include <asm/bug.h>
25 #include <asm/processor.h>
26 
27 /*
28  * SLB
29  */
30 
31 #define SLB_NUM_BOLTED		3
32 #define SLB_CACHE_ENTRIES	8
33 #define SLB_MIN_SIZE		32
34 
35 /* Bits in the SLB ESID word */
36 #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
37 
38 /* Bits in the SLB VSID word */
39 #define SLB_VSID_SHIFT		12
40 #define SLB_VSID_SHIFT_1T	24
41 #define SLB_VSID_SSIZE_SHIFT	62
42 #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
43 #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
44 #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
45 #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
46 #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
47 #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
48 #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
49 #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
50 #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
51 #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
52 #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
53 #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
54 #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
55 #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
56 
57 #define SLB_VSID_KERNEL		(SLB_VSID_KP)
58 #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
59 
60 #define SLBIE_C			(0x08000000)
61 #define SLBIE_SSIZE_SHIFT	25
62 
63 /*
64  * Hash table
65  */
66 
67 #define HPTES_PER_GROUP 8
68 
69 #define HPTE_V_SSIZE_SHIFT	62
70 #define HPTE_V_AVPN_SHIFT	7
71 #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
72 #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
73 #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
74 #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
75 #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
76 #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
77 #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
78 #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
79 
80 #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
81 #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
82 #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
83 #define HPTE_R_RPN_SHIFT	12
84 #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
85 #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
86 #define HPTE_R_N		ASM_CONST(0x0000000000000004)
87 #define HPTE_R_G		ASM_CONST(0x0000000000000008)
88 #define HPTE_R_M		ASM_CONST(0x0000000000000010)
89 #define HPTE_R_I		ASM_CONST(0x0000000000000020)
90 #define HPTE_R_W		ASM_CONST(0x0000000000000040)
91 #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
92 #define HPTE_R_C		ASM_CONST(0x0000000000000080)
93 #define HPTE_R_R		ASM_CONST(0x0000000000000100)
94 #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
95 
96 #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
97 #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
98 
99 /* Values for PP (assumes Ks=0, Kp=1) */
100 #define PP_RWXX	0	/* Supervisor read/write, User none */
101 #define PP_RWRX 1	/* Supervisor read/write, User read */
102 #define PP_RWRW 2	/* Supervisor read/write, User read/write */
103 #define PP_RXRX 3	/* Supervisor read,       User read */
104 #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
105 
106 /* Fields for tlbiel instruction in architecture 2.06 */
107 #define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
108 #define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
109 #define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
110 #define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
111 #define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
112 #define TLBIEL_INVAL_SET_SHIFT	12
113 
114 #define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
115 
116 #ifndef __ASSEMBLY__
117 
118 struct hash_pte {
119 	__be64 v;
120 	__be64 r;
121 };
122 
123 extern struct hash_pte *htab_address;
124 extern unsigned long htab_size_bytes;
125 extern unsigned long htab_hash_mask;
126 
127 /*
128  * Page size definition
129  *
130  *    shift : is the "PAGE_SHIFT" value for that page size
131  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
132  *            directly to a slbmte "vsid" value
133  *    penc  : is the HPTE encoding mask for the "LP" field:
134  *
135  */
136 struct mmu_psize_def
137 {
138 	unsigned int	shift;	/* number of bits */
139 	int		penc[MMU_PAGE_COUNT];	/* HPTE encoding */
140 	unsigned int	tlbiel;	/* tlbiel supported for that page size */
141 	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
142 	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
143 };
144 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
145 
shift_to_mmu_psize(unsigned int shift)146 static inline int shift_to_mmu_psize(unsigned int shift)
147 {
148 	int psize;
149 
150 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
151 		if (mmu_psize_defs[psize].shift == shift)
152 			return psize;
153 	return -1;
154 }
155 
mmu_psize_to_shift(unsigned int mmu_psize)156 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
157 {
158 	if (mmu_psize_defs[mmu_psize].shift)
159 		return mmu_psize_defs[mmu_psize].shift;
160 	BUG();
161 }
162 
163 #endif /* __ASSEMBLY__ */
164 
165 /*
166  * Segment sizes.
167  * These are the values used by hardware in the B field of
168  * SLB entries and the first dword of MMU hashtable entries.
169  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
170  */
171 #define MMU_SEGSIZE_256M	0
172 #define MMU_SEGSIZE_1T		1
173 
174 /*
175  * encode page number shift.
176  * in order to fit the 78 bit va in a 64 bit variable we shift the va by
177  * 12 bits. This enable us to address upto 76 bit va.
178  * For hpt hash from a va we can ignore the page size bits of va and for
179  * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
180  * we work in all cases including 4k page size.
181  */
182 #define VPN_SHIFT	12
183 
184 /*
185  * HPTE Large Page (LP) details
186  */
187 #define LP_SHIFT	12
188 #define LP_BITS		8
189 #define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
190 
191 #ifndef __ASSEMBLY__
192 
slb_vsid_shift(int ssize)193 static inline int slb_vsid_shift(int ssize)
194 {
195 	if (ssize == MMU_SEGSIZE_256M)
196 		return SLB_VSID_SHIFT;
197 	return SLB_VSID_SHIFT_1T;
198 }
199 
segment_shift(int ssize)200 static inline int segment_shift(int ssize)
201 {
202 	if (ssize == MMU_SEGSIZE_256M)
203 		return SID_SHIFT;
204 	return SID_SHIFT_1T;
205 }
206 
207 /*
208  * The current system page and segment sizes
209  */
210 extern int mmu_linear_psize;
211 extern int mmu_virtual_psize;
212 extern int mmu_vmalloc_psize;
213 extern int mmu_vmemmap_psize;
214 extern int mmu_io_psize;
215 extern int mmu_kernel_ssize;
216 extern int mmu_highuser_ssize;
217 extern u16 mmu_slb_size;
218 extern unsigned long tce_alloc_start, tce_alloc_end;
219 
220 /*
221  * If the processor supports 64k normal pages but not 64k cache
222  * inhibited pages, we have to be prepared to switch processes
223  * to use 4k pages when they create cache-inhibited mappings.
224  * If this is the case, mmu_ci_restrictions will be set to 1.
225  */
226 extern int mmu_ci_restrictions;
227 
228 /*
229  * This computes the AVPN and B fields of the first dword of a HPTE,
230  * for use when we want to match an existing PTE.  The bottom 7 bits
231  * of the returned value are zero.
232  */
hpte_encode_avpn(unsigned long vpn,int psize,int ssize)233 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
234 					     int ssize)
235 {
236 	unsigned long v;
237 	/*
238 	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
239 	 * These bits are not needed in the PTE, because the
240 	 * low-order b of these bits are part of the byte offset
241 	 * into the virtual page and, if b < 23, the high-order
242 	 * 23-b of these bits are always used in selecting the
243 	 * PTEGs to be searched
244 	 */
245 	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
246 	v <<= HPTE_V_AVPN_SHIFT;
247 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
248 	return v;
249 }
250 
251 /*
252  * This function sets the AVPN and L fields of the HPTE  appropriately
253  * using the base page size and actual page size.
254  */
hpte_encode_v(unsigned long vpn,int base_psize,int actual_psize,int ssize)255 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
256 					  int actual_psize, int ssize)
257 {
258 	unsigned long v;
259 	v = hpte_encode_avpn(vpn, base_psize, ssize);
260 	if (actual_psize != MMU_PAGE_4K)
261 		v |= HPTE_V_LARGE;
262 	return v;
263 }
264 
265 /*
266  * This function sets the ARPN, and LP fields of the HPTE appropriately
267  * for the page size. We assume the pa is already "clean" that is properly
268  * aligned for the requested page size
269  */
hpte_encode_r(unsigned long pa,int base_psize,int actual_psize)270 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
271 					  int actual_psize)
272 {
273 	/* A 4K page needs no special encoding */
274 	if (actual_psize == MMU_PAGE_4K)
275 		return pa & HPTE_R_RPN;
276 	else {
277 		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
278 		unsigned int shift = mmu_psize_defs[actual_psize].shift;
279 		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
280 	}
281 }
282 
283 /*
284  * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
285  */
hpt_vpn(unsigned long ea,unsigned long vsid,int ssize)286 static inline unsigned long hpt_vpn(unsigned long ea,
287 				    unsigned long vsid, int ssize)
288 {
289 	unsigned long mask;
290 	int s_shift = segment_shift(ssize);
291 
292 	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
293 	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
294 }
295 
296 /*
297  * This hashes a virtual address
298  */
hpt_hash(unsigned long vpn,unsigned int shift,int ssize)299 static inline unsigned long hpt_hash(unsigned long vpn,
300 				     unsigned int shift, int ssize)
301 {
302 	int mask;
303 	unsigned long hash, vsid;
304 
305 	/* VPN_SHIFT can be atmost 12 */
306 	if (ssize == MMU_SEGSIZE_256M) {
307 		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
308 		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
309 			((vpn & mask) >> (shift - VPN_SHIFT));
310 	} else {
311 		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
312 		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
313 		hash = vsid ^ (vsid << 25) ^
314 			((vpn & mask) >> (shift - VPN_SHIFT)) ;
315 	}
316 	return hash & 0x7fffffffffUL;
317 }
318 
319 extern int __hash_page_4K(unsigned long ea, unsigned long access,
320 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
321 			  unsigned int local, int ssize, int subpage_prot);
322 extern int __hash_page_64K(unsigned long ea, unsigned long access,
323 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
324 			   unsigned int local, int ssize);
325 struct mm_struct;
326 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
327 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap);
328 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
329 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
330 		     pte_t *ptep, unsigned long trap, int local, int ssize,
331 		     unsigned int shift, unsigned int mmu_psize);
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 extern int __hash_page_thp(unsigned long ea, unsigned long access,
334 			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
335 			   int local, int ssize, unsigned int psize);
336 #else
__hash_page_thp(unsigned long ea,unsigned long access,unsigned long vsid,pmd_t * pmdp,unsigned long trap,int local,int ssize,unsigned int psize)337 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
338 				  unsigned long vsid, pmd_t *pmdp,
339 				  unsigned long trap, int local,
340 				  int ssize, unsigned int psize)
341 {
342 	BUG();
343 	return -1;
344 }
345 #endif
346 extern void hash_failure_debug(unsigned long ea, unsigned long access,
347 			       unsigned long vsid, unsigned long trap,
348 			       int ssize, int psize, int lpsize,
349 			       unsigned long pte);
350 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
351 			     unsigned long pstart, unsigned long prot,
352 			     int psize, int ssize);
353 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
354 			int psize, int ssize);
355 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
356 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
357 
358 extern void hpte_init_native(void);
359 extern void hpte_init_lpar(void);
360 extern void hpte_init_beat(void);
361 extern void hpte_init_beat_v3(void);
362 
363 extern void slb_initialize(void);
364 extern void slb_flush_and_rebolt(void);
365 
366 extern void slb_vmalloc_update(void);
367 extern void slb_set_size(u16 size);
368 #endif /* __ASSEMBLY__ */
369 
370 /*
371  * VSID allocation (256MB segment)
372  *
373  * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
374  * from mmu context id and effective segment id of the address.
375  *
376  * For user processes max context id is limited to ((1ul << 19) - 5)
377  * for kernel space, we use the top 4 context ids to map address as below
378  * NOTE: each context only support 64TB now.
379  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
380  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
381  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
382  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
383  *
384  * The proto-VSIDs are then scrambled into real VSIDs with the
385  * multiplicative hash:
386  *
387  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
388  *
389  * VSID_MULTIPLIER is prime, so in particular it is
390  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
391  * Because the modulus is 2^n-1 we can compute it efficiently without
392  * a divide or extra multiply (see below). The scramble function gives
393  * robust scattering in the hash table (at least based on some initial
394  * results).
395  *
396  * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
397  * bad address. This enables us to consolidate bad address handling in
398  * hash_page.
399  *
400  * We also need to avoid the last segment of the last context, because that
401  * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
402  * because of the modulo operation in vsid scramble. But the vmemmap
403  * (which is what uses region 0xf) will never be close to 64TB in size
404  * (it's 56 bytes per page of system memory).
405  */
406 
407 #define CONTEXT_BITS		19
408 #define ESID_BITS		18
409 #define ESID_BITS_1T		6
410 
411 /*
412  * 256MB segment
413  * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
414  * available for user + kernel mapping. The top 4 contexts are used for
415  * kernel mapping. Each segment contains 2^28 bytes. Each
416  * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
417  * (19 == 37 + 28 - 46).
418  */
419 #define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)
420 
421 /*
422  * This should be computed such that protovosid * vsid_mulitplier
423  * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
424  */
425 #define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
426 #define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
427 #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
428 
429 #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
430 #define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
431 #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
432 
433 
434 #define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
435 
436 /*
437  * This macro generates asm code to compute the VSID scramble
438  * function.  Used in slb_allocate() and do_stab_bolted.  The function
439  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
440  *
441  *	rt = register continaing the proto-VSID and into which the
442  *		VSID will be stored
443  *	rx = scratch register (clobbered)
444  *
445  * 	- rt and rx must be different registers
446  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
447  * 	  bits may contain other garbage, so you may need to mask the
448  * 	  result.
449  */
450 #define ASM_VSID_SCRAMBLE(rt, rx, size)					\
451 	lis	rx,VSID_MULTIPLIER_##size@h;				\
452 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
453 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
454 									\
455 	srdi	rx,rt,VSID_BITS_##size;					\
456 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
457 	add	rt,rt,rx;		/* add high and low bits */	\
458 	/* NOTE: explanation based on VSID_BITS_##size = 36		\
459 	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
460 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
461 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
462 	 * the bit clear, r3 already has the answer we want, if it	\
463 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
464 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
465 	addi	rx,rt,1;						\
466 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
467 	add	rt,rt,rx
468 
469 /* 4 bits per slice and we have one slice per 1TB */
470 #define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
471 
472 #ifndef __ASSEMBLY__
473 
474 #ifdef CONFIG_PPC_SUBPAGE_PROT
475 /*
476  * For the sub-page protection option, we extend the PGD with one of
477  * these.  Basically we have a 3-level tree, with the top level being
478  * the protptrs array.  To optimize speed and memory consumption when
479  * only addresses < 4GB are being protected, pointers to the first
480  * four pages of sub-page protection words are stored in the low_prot
481  * array.
482  * Each page of sub-page protection words protects 1GB (4 bytes
483  * protects 64k).  For the 3-level tree, each page of pointers then
484  * protects 8TB.
485  */
486 struct subpage_prot_table {
487 	unsigned long maxaddr;	/* only addresses < this are protected */
488 	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
489 	unsigned int *low_prot[4];
490 };
491 
492 #define SBP_L1_BITS		(PAGE_SHIFT - 2)
493 #define SBP_L2_BITS		(PAGE_SHIFT - 3)
494 #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
495 #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
496 #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
497 #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
498 
499 extern void subpage_prot_free(struct mm_struct *mm);
500 extern void subpage_prot_init_new_context(struct mm_struct *mm);
501 #else
subpage_prot_free(struct mm_struct * mm)502 static inline void subpage_prot_free(struct mm_struct *mm) {}
subpage_prot_init_new_context(struct mm_struct * mm)503 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
504 #endif /* CONFIG_PPC_SUBPAGE_PROT */
505 
506 typedef unsigned long mm_context_id_t;
507 struct spinlock;
508 
509 typedef struct {
510 	mm_context_id_t id;
511 	u16 user_psize;		/* page size index */
512 
513 #ifdef CONFIG_PPC_MM_SLICES
514 	u64 low_slices_psize;	/* SLB page size encodings */
515 	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
516 #else
517 	u16 sllp;		/* SLB page size encoding */
518 #endif
519 	unsigned long vdso_base;
520 #ifdef CONFIG_PPC_SUBPAGE_PROT
521 	struct subpage_prot_table spt;
522 #endif /* CONFIG_PPC_SUBPAGE_PROT */
523 #ifdef CONFIG_PPC_ICSWX
524 	struct spinlock *cop_lockp; /* guard acop and cop_pid */
525 	unsigned long acop;	/* mask of enabled coprocessor types */
526 	unsigned int cop_pid;	/* pid value used with coprocessors */
527 #endif /* CONFIG_PPC_ICSWX */
528 #ifdef CONFIG_PPC_64K_PAGES
529 	/* for 4K PTE fragment support */
530 	void *pte_frag;
531 #endif
532 } mm_context_t;
533 
534 
535 #if 0
536 /*
537  * The code below is equivalent to this function for arguments
538  * < 2^VSID_BITS, which is all this should ever be called
539  * with.  However gcc is not clever enough to compute the
540  * modulus (2^n-1) without a second multiply.
541  */
542 #define vsid_scramble(protovsid, size) \
543 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
544 
545 #else /* 1 */
546 #define vsid_scramble(protovsid, size) \
547 	({								 \
548 		unsigned long x;					 \
549 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
550 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
551 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
552 	})
553 #endif /* 1 */
554 
555 /* Returns the segment size indicator for a user address */
user_segment_size(unsigned long addr)556 static inline int user_segment_size(unsigned long addr)
557 {
558 	/* Use 1T segments if possible for addresses >= 1T */
559 	if (addr >= (1UL << SID_SHIFT_1T))
560 		return mmu_highuser_ssize;
561 	return MMU_SEGSIZE_256M;
562 }
563 
get_vsid(unsigned long context,unsigned long ea,int ssize)564 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
565 				     int ssize)
566 {
567 	/*
568 	 * Bad address. We return VSID 0 for that
569 	 */
570 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
571 		return 0;
572 
573 	if (ssize == MMU_SEGSIZE_256M)
574 		return vsid_scramble((context << ESID_BITS)
575 				     | (ea >> SID_SHIFT), 256M);
576 	return vsid_scramble((context << ESID_BITS_1T)
577 			     | (ea >> SID_SHIFT_1T), 1T);
578 }
579 
580 /*
581  * This is only valid for addresses >= PAGE_OFFSET
582  *
583  * For kernel space, we use the top 4 context ids to map address as below
584  * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
585  * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
586  * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
587  * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
588  */
get_kernel_vsid(unsigned long ea,int ssize)589 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
590 {
591 	unsigned long context;
592 
593 	/*
594 	 * kernel take the top 4 context from the available range
595 	 */
596 	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
597 	return get_vsid(context, ea, ssize);
598 }
599 #endif /* __ASSEMBLY__ */
600 
601 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
602