1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/page-debug-flags.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 #include <asm/page.h>
18 #include <asm/mmu.h>
19
20 #ifndef AT_VECTOR_SIZE_ARCH
21 #define AT_VECTOR_SIZE_ARCH 0
22 #endif
23 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24
25 struct address_space;
26
27 #define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
28 #define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \
29 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
30 #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8)
31
32 /*
33 * Each physical page in the system has a struct page associated with
34 * it to keep track of whatever it is we are using the page for at the
35 * moment. Note that we have no way to track which tasks are using
36 * a page, though if it is a pagecache page, rmap structures can tell us
37 * who is mapping it.
38 *
39 * The objects in struct page are organized in double word blocks in
40 * order to allows us to use atomic double word operations on portions
41 * of struct page. That is currently only used by slub but the arrangement
42 * allows the use of atomic double word operations on the flags/mapping
43 * and lru list pointers also.
44 */
45 struct page {
46 /* First double word block */
47 unsigned long flags; /* Atomic flags, some possibly
48 * updated asynchronously */
49 union {
50 struct address_space *mapping; /* If low bit clear, points to
51 * inode address_space, or NULL.
52 * If page mapped as anonymous
53 * memory, low bit is set, and
54 * it points to anon_vma object:
55 * see PAGE_MAPPING_ANON below.
56 */
57 void *s_mem; /* slab first object */
58 };
59
60 /* Second double word */
61 struct {
62 union {
63 pgoff_t index; /* Our offset within mapping. */
64 void *freelist; /* sl[aou]b first free object */
65 bool pfmemalloc; /* If set by the page allocator,
66 * ALLOC_NO_WATERMARKS was set
67 * and the low watermark was not
68 * met implying that the system
69 * is under some pressure. The
70 * caller should try ensure
71 * this page is only used to
72 * free other pages.
73 */
74 };
75
76 union {
77 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
78 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
79 /* Used for cmpxchg_double in slub */
80 unsigned long counters;
81 #else
82 /*
83 * Keep _count separate from slub cmpxchg_double data.
84 * As the rest of the double word is protected by
85 * slab_lock but _count is not.
86 */
87 unsigned counters;
88 #endif
89
90 struct {
91
92 union {
93 /*
94 * Count of ptes mapped in
95 * mms, to show when page is
96 * mapped & limit reverse map
97 * searches.
98 *
99 * Used also for tail pages
100 * refcounting instead of
101 * _count. Tail pages cannot
102 * be mapped and keeping the
103 * tail page _count zero at
104 * all times guarantees
105 * get_page_unless_zero() will
106 * never succeed on tail
107 * pages.
108 */
109 atomic_t _mapcount;
110
111 struct { /* SLUB */
112 unsigned inuse:16;
113 unsigned objects:15;
114 unsigned frozen:1;
115 };
116 int units; /* SLOB */
117 };
118 atomic_t _count; /* Usage count, see below. */
119 };
120 unsigned int active; /* SLAB */
121 };
122 };
123
124 /* Third double word block */
125 union {
126 struct list_head lru; /* Pageout list, eg. active_list
127 * protected by zone->lru_lock !
128 * Can be used as a generic list
129 * by the page owner.
130 */
131 struct { /* slub per cpu partial pages */
132 struct page *next; /* Next partial slab */
133 #ifdef CONFIG_64BIT
134 int pages; /* Nr of partial slabs left */
135 int pobjects; /* Approximate # of objects */
136 #else
137 short int pages;
138 short int pobjects;
139 #endif
140 };
141
142 struct slab *slab_page; /* slab fields */
143 struct rcu_head rcu_head; /* Used by SLAB
144 * when destroying via RCU
145 */
146 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
147 pgtable_t pmd_huge_pte; /* protected by page->ptl */
148 #endif
149 };
150
151 /* Remainder is not double word aligned */
152 union {
153 unsigned long private; /* Mapping-private opaque data:
154 * usually used for buffer_heads
155 * if PagePrivate set; used for
156 * swp_entry_t if PageSwapCache;
157 * indicates order in the buddy
158 * system if PG_buddy is set.
159 */
160 #if USE_SPLIT_PTE_PTLOCKS
161 #if ALLOC_SPLIT_PTLOCKS
162 spinlock_t *ptl;
163 #else
164 spinlock_t ptl;
165 #endif
166 #endif
167 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
168 struct page *first_page; /* Compound tail pages */
169 };
170
171 /*
172 * On machines where all RAM is mapped into kernel address space,
173 * we can simply calculate the virtual address. On machines with
174 * highmem some memory is mapped into kernel virtual memory
175 * dynamically, so we need a place to store that address.
176 * Note that this field could be 16 bits on x86 ... ;)
177 *
178 * Architectures with slow multiplication can define
179 * WANT_PAGE_VIRTUAL in asm/page.h
180 */
181 #if defined(WANT_PAGE_VIRTUAL)
182 void *virtual; /* Kernel virtual address (NULL if
183 not kmapped, ie. highmem) */
184 #endif /* WANT_PAGE_VIRTUAL */
185 #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
186 unsigned long debug_flags; /* Use atomic bitops on this */
187 #endif
188
189 #ifdef CONFIG_KMEMCHECK
190 /*
191 * kmemcheck wants to track the status of each byte in a page; this
192 * is a pointer to such a status block. NULL if not tracked.
193 */
194 void *shadow;
195 #endif
196
197 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
198 int _last_cpupid;
199 #endif
200 }
201 /*
202 * The struct page can be forced to be double word aligned so that atomic ops
203 * on double words work. The SLUB allocator can make use of such a feature.
204 */
205 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
206 __aligned(2 * sizeof(unsigned long))
207 #endif
208 ;
209
210 struct page_frag {
211 struct page *page;
212 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
213 __u32 offset;
214 __u32 size;
215 #else
216 __u16 offset;
217 __u16 size;
218 #endif
219 };
220
221 typedef unsigned long __nocast vm_flags_t;
222
223 /*
224 * A region containing a mapping of a non-memory backed file under NOMMU
225 * conditions. These are held in a global tree and are pinned by the VMAs that
226 * map parts of them.
227 */
228 struct vm_region {
229 struct rb_node vm_rb; /* link in global region tree */
230 vm_flags_t vm_flags; /* VMA vm_flags */
231 unsigned long vm_start; /* start address of region */
232 unsigned long vm_end; /* region initialised to here */
233 unsigned long vm_top; /* region allocated to here */
234 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
235 struct file *vm_file; /* the backing file or NULL */
236
237 int vm_usage; /* region usage count (access under nommu_region_sem) */
238 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
239 * this region */
240 };
241
242 /*
243 * This struct defines a memory VMM memory area. There is one of these
244 * per VM-area/task. A VM area is any part of the process virtual memory
245 * space that has a special rule for the page-fault handlers (ie a shared
246 * library, the executable area etc).
247 */
248 struct vm_area_struct {
249 /* The first cache line has the info for VMA tree walking. */
250
251 unsigned long vm_start; /* Our start address within vm_mm. */
252 unsigned long vm_end; /* The first byte after our end address
253 within vm_mm. */
254
255 /* linked list of VM areas per task, sorted by address */
256 struct vm_area_struct *vm_next, *vm_prev;
257
258 struct rb_node vm_rb;
259
260 /*
261 * Largest free memory gap in bytes to the left of this VMA.
262 * Either between this VMA and vma->vm_prev, or between one of the
263 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
264 * get_unmapped_area find a free area of the right size.
265 */
266 unsigned long rb_subtree_gap;
267
268 /* Second cache line starts here. */
269
270 struct mm_struct *vm_mm; /* The address space we belong to. */
271 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
272 unsigned long vm_flags; /* Flags, see mm.h. */
273
274 /*
275 * For areas with an address space and backing store,
276 * linkage into the address_space->i_mmap interval tree, or
277 * linkage of vma in the address_space->i_mmap_nonlinear list.
278 *
279 * For private anonymous mappings, a pointer to a null terminated string
280 * in the user process containing the name given to the vma, or NULL
281 * if unnamed.
282 */
283 union {
284 struct {
285 struct rb_node rb;
286 unsigned long rb_subtree_last;
287 } linear;
288 struct list_head nonlinear;
289 const char __user *anon_name;
290 } shared;
291
292 /*
293 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
294 * list, after a COW of one of the file pages. A MAP_SHARED vma
295 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
296 * or brk vma (with NULL file) can only be in an anon_vma list.
297 */
298 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
299 * page_table_lock */
300 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
301
302 /* Function pointers to deal with this struct. */
303 const struct vm_operations_struct *vm_ops;
304
305 /* Information about our backing store: */
306 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
307 units, *not* PAGE_CACHE_SIZE */
308 struct file * vm_file; /* File we map to (can be NULL). */
309 void * vm_private_data; /* was vm_pte (shared mem) */
310
311 #ifndef CONFIG_MMU
312 struct vm_region *vm_region; /* NOMMU mapping region */
313 #endif
314 #ifdef CONFIG_NUMA
315 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
316 #endif
317 };
318
319 struct core_thread {
320 struct task_struct *task;
321 struct core_thread *next;
322 };
323
324 struct core_state {
325 atomic_t nr_threads;
326 struct core_thread dumper;
327 struct completion startup;
328 };
329
330 enum {
331 MM_FILEPAGES,
332 MM_ANONPAGES,
333 MM_SWAPENTS,
334 NR_MM_COUNTERS
335 };
336
337 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
338 #define SPLIT_RSS_COUNTING
339 /* per-thread cached information, */
340 struct task_rss_stat {
341 int events; /* for synchronization threshold */
342 int count[NR_MM_COUNTERS];
343 };
344 #endif /* USE_SPLIT_PTE_PTLOCKS */
345
346 struct mm_rss_stat {
347 atomic_long_t count[NR_MM_COUNTERS];
348 };
349
350 struct kioctx_table;
351 struct mm_struct {
352 struct vm_area_struct *mmap; /* list of VMAs */
353 struct rb_root mm_rb;
354 u32 vmacache_seqnum; /* per-thread vmacache */
355 #ifdef CONFIG_MMU
356 unsigned long (*get_unmapped_area) (struct file *filp,
357 unsigned long addr, unsigned long len,
358 unsigned long pgoff, unsigned long flags);
359 #endif
360 unsigned long mmap_base; /* base of mmap area */
361 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
362 unsigned long task_size; /* size of task vm space */
363 unsigned long highest_vm_end; /* highest vma end address */
364 pgd_t * pgd;
365 atomic_t mm_users; /* How many users with user space? */
366 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
367 atomic_long_t nr_ptes; /* Page table pages */
368 int map_count; /* number of VMAs */
369
370 spinlock_t page_table_lock; /* Protects page tables and some counters */
371 struct rw_semaphore mmap_sem;
372
373 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
374 * together off init_mm.mmlist, and are protected
375 * by mmlist_lock
376 */
377
378
379 unsigned long hiwater_rss; /* High-watermark of RSS usage */
380 unsigned long hiwater_vm; /* High-water virtual memory usage */
381
382 unsigned long total_vm; /* Total pages mapped */
383 unsigned long locked_vm; /* Pages that have PG_mlocked set */
384 unsigned long pinned_vm; /* Refcount permanently increased */
385 unsigned long shared_vm; /* Shared pages (files) */
386 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */
387 unsigned long stack_vm; /* VM_GROWSUP/DOWN */
388 unsigned long def_flags;
389 unsigned long start_code, end_code, start_data, end_data;
390 unsigned long start_brk, brk, start_stack;
391 unsigned long arg_start, arg_end, env_start, env_end;
392
393 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
394
395 /*
396 * Special counters, in some configurations protected by the
397 * page_table_lock, in other configurations by being atomic.
398 */
399 struct mm_rss_stat rss_stat;
400
401 struct linux_binfmt *binfmt;
402
403 cpumask_var_t cpu_vm_mask_var;
404
405 /* Architecture-specific MM context */
406 mm_context_t context;
407
408 unsigned long flags; /* Must use atomic bitops to access the bits */
409
410 struct core_state *core_state; /* coredumping support */
411 #ifdef CONFIG_AIO
412 spinlock_t ioctx_lock;
413 struct kioctx_table __rcu *ioctx_table;
414 #endif
415 #ifdef CONFIG_MEMCG
416 /*
417 * "owner" points to a task that is regarded as the canonical
418 * user/owner of this mm. All of the following must be true in
419 * order for it to be changed:
420 *
421 * current == mm->owner
422 * current->mm != mm
423 * new_owner->mm == mm
424 * new_owner->alloc_lock is held
425 */
426 struct task_struct __rcu *owner;
427 #endif
428
429 /* store ref to file /proc/<pid>/exe symlink points to */
430 struct file *exe_file;
431 #ifdef CONFIG_MMU_NOTIFIER
432 struct mmu_notifier_mm *mmu_notifier_mm;
433 #endif
434 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
435 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
436 #endif
437 #ifdef CONFIG_CPUMASK_OFFSTACK
438 struct cpumask cpumask_allocation;
439 #endif
440 #ifdef CONFIG_NUMA_BALANCING
441 /*
442 * numa_next_scan is the next time that the PTEs will be marked
443 * pte_numa. NUMA hinting faults will gather statistics and migrate
444 * pages to new nodes if necessary.
445 */
446 unsigned long numa_next_scan;
447
448 /* Restart point for scanning and setting pte_numa */
449 unsigned long numa_scan_offset;
450
451 /* numa_scan_seq prevents two threads setting pte_numa */
452 int numa_scan_seq;
453 #endif
454 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
455 /*
456 * An operation with batched TLB flushing is going on. Anything that
457 * can move process memory needs to flush the TLB when moving a
458 * PROT_NONE or PROT_NUMA mapped page.
459 */
460 bool tlb_flush_pending;
461 #endif
462 struct uprobes_state uprobes_state;
463 struct work_struct async_put_work;
464 };
465
mm_init_cpumask(struct mm_struct * mm)466 static inline void mm_init_cpumask(struct mm_struct *mm)
467 {
468 #ifdef CONFIG_CPUMASK_OFFSTACK
469 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
470 #endif
471 cpumask_clear(mm->cpu_vm_mask_var);
472 }
473
474 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)475 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
476 {
477 return mm->cpu_vm_mask_var;
478 }
479
480 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
481 /*
482 * Memory barriers to keep this state in sync are graciously provided by
483 * the page table locks, outside of which no page table modifications happen.
484 * The barriers below prevent the compiler from re-ordering the instructions
485 * around the memory barriers that are already present in the code.
486 */
mm_tlb_flush_pending(struct mm_struct * mm)487 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
488 {
489 barrier();
490 return mm->tlb_flush_pending;
491 }
set_tlb_flush_pending(struct mm_struct * mm)492 static inline void set_tlb_flush_pending(struct mm_struct *mm)
493 {
494 mm->tlb_flush_pending = true;
495
496 /*
497 * Guarantee that the tlb_flush_pending store does not leak into the
498 * critical section updating the page tables
499 */
500 smp_mb__before_spinlock();
501 }
502 /* Clearing is done after a TLB flush, which also provides a barrier. */
clear_tlb_flush_pending(struct mm_struct * mm)503 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
504 {
505 barrier();
506 mm->tlb_flush_pending = false;
507 }
508 #else
mm_tlb_flush_pending(struct mm_struct * mm)509 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
510 {
511 return false;
512 }
set_tlb_flush_pending(struct mm_struct * mm)513 static inline void set_tlb_flush_pending(struct mm_struct *mm)
514 {
515 }
clear_tlb_flush_pending(struct mm_struct * mm)516 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
517 {
518 }
519 #endif
520
521 struct vm_special_mapping
522 {
523 const char *name;
524 struct page **pages;
525 };
526
527 enum tlb_flush_reason {
528 TLB_FLUSH_ON_TASK_SWITCH,
529 TLB_REMOTE_SHOOTDOWN,
530 TLB_LOCAL_SHOOTDOWN,
531 TLB_LOCAL_MM_SHOOTDOWN,
532 NR_TLB_FLUSH_REASONS,
533 };
534
535 /* Return the name for an anonymous mapping or NULL for a file-backed mapping */
vma_get_anon_name(struct vm_area_struct * vma)536 static inline const char __user *vma_get_anon_name(struct vm_area_struct *vma)
537 {
538 if (vma->vm_file)
539 return NULL;
540
541 return vma->shared.anon_name;
542 }
543
544 #endif /* _LINUX_MM_TYPES_H */
545