1 #include <linux/suspend.h>
2 #include <linux/suspend_ioctls.h>
3 #include <linux/utsname.h>
4 #include <linux/freezer.h>
5 #include <linux/compiler.h>
6
7 struct swsusp_info {
8 struct new_utsname uts;
9 u32 version_code;
10 unsigned long num_physpages;
11 int cpus;
12 unsigned long image_pages;
13 unsigned long pages;
14 unsigned long size;
15 } __aligned(PAGE_SIZE);
16
17 #ifdef CONFIG_HIBERNATION
18 /* kernel/power/snapshot.c */
19 extern void __init hibernate_reserved_size_init(void);
20 extern void __init hibernate_image_size_init(void);
21
22 #ifdef CONFIG_ARCH_HIBERNATION_HEADER
23 /* Maximum size of architecture specific data in a hibernation header */
24 #define MAX_ARCH_HEADER_SIZE (sizeof(struct new_utsname) + 4)
25
26 extern int arch_hibernation_header_save(void *addr, unsigned int max_size);
27 extern int arch_hibernation_header_restore(void *addr);
28
init_header_complete(struct swsusp_info * info)29 static inline int init_header_complete(struct swsusp_info *info)
30 {
31 return arch_hibernation_header_save(info, MAX_ARCH_HEADER_SIZE);
32 }
33
check_image_kernel(struct swsusp_info * info)34 static inline char *check_image_kernel(struct swsusp_info *info)
35 {
36 return arch_hibernation_header_restore(info) ?
37 "architecture specific data" : NULL;
38 }
39 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
40
41 /*
42 * Keep some memory free so that I/O operations can succeed without paging
43 * [Might this be more than 4 MB?]
44 */
45 #define PAGES_FOR_IO ((4096 * 1024) >> PAGE_SHIFT)
46
47 /*
48 * Keep 1 MB of memory free so that device drivers can allocate some pages in
49 * their .suspend() routines without breaking the suspend to disk.
50 */
51 #define SPARE_PAGES ((1024 * 1024) >> PAGE_SHIFT)
52
53 asmlinkage int swsusp_save(void);
54
55 /* kernel/power/hibernate.c */
56 extern bool freezer_test_done;
57
58 extern int hibernation_snapshot(int platform_mode);
59 extern int hibernation_restore(int platform_mode);
60 extern int hibernation_platform_enter(void);
61
62 #else /* !CONFIG_HIBERNATION */
63
hibernate_reserved_size_init(void)64 static inline void hibernate_reserved_size_init(void) {}
hibernate_image_size_init(void)65 static inline void hibernate_image_size_init(void) {}
66 #endif /* !CONFIG_HIBERNATION */
67
68 extern int pfn_is_nosave(unsigned long);
69
70 #define power_attr(_name) \
71 static struct kobj_attribute _name##_attr = { \
72 .attr = { \
73 .name = __stringify(_name), \
74 .mode = 0644, \
75 }, \
76 .show = _name##_show, \
77 .store = _name##_store, \
78 }
79
80 /* Preferred image size in bytes (default 500 MB) */
81 extern unsigned long image_size;
82 /* Size of memory reserved for drivers (default SPARE_PAGES x PAGE_SIZE) */
83 extern unsigned long reserved_size;
84 extern int in_suspend;
85 extern dev_t swsusp_resume_device;
86 extern sector_t swsusp_resume_block;
87
88 extern asmlinkage int swsusp_arch_suspend(void);
89 extern asmlinkage int swsusp_arch_resume(void);
90
91 extern int create_basic_memory_bitmaps(void);
92 extern void free_basic_memory_bitmaps(void);
93 extern int hibernate_preallocate_memory(void);
94
95 /**
96 * Auxiliary structure used for reading the snapshot image data and
97 * metadata from and writing them to the list of page backup entries
98 * (PBEs) which is the main data structure of swsusp.
99 *
100 * Using struct snapshot_handle we can transfer the image, including its
101 * metadata, as a continuous sequence of bytes with the help of
102 * snapshot_read_next() and snapshot_write_next().
103 *
104 * The code that writes the image to a storage or transfers it to
105 * the user land is required to use snapshot_read_next() for this
106 * purpose and it should not make any assumptions regarding the internal
107 * structure of the image. Similarly, the code that reads the image from
108 * a storage or transfers it from the user land is required to use
109 * snapshot_write_next().
110 *
111 * This may allow us to change the internal structure of the image
112 * in the future with considerably less effort.
113 */
114
115 struct snapshot_handle {
116 unsigned int cur; /* number of the block of PAGE_SIZE bytes the
117 * next operation will refer to (ie. current)
118 */
119 void *buffer; /* address of the block to read from
120 * or write to
121 */
122 int sync_read; /* Set to one to notify the caller of
123 * snapshot_write_next() that it may
124 * need to call wait_on_bio_chain()
125 */
126 };
127
128 /* This macro returns the address from/to which the caller of
129 * snapshot_read_next()/snapshot_write_next() is allowed to
130 * read/write data after the function returns
131 */
132 #define data_of(handle) ((handle).buffer)
133
134 extern unsigned int snapshot_additional_pages(struct zone *zone);
135 extern unsigned long snapshot_get_image_size(void);
136 extern int snapshot_read_next(struct snapshot_handle *handle);
137 extern int snapshot_write_next(struct snapshot_handle *handle);
138 extern void snapshot_write_finalize(struct snapshot_handle *handle);
139 extern int snapshot_image_loaded(struct snapshot_handle *handle);
140
141 /* If unset, the snapshot device cannot be open. */
142 extern atomic_t snapshot_device_available;
143
144 extern sector_t alloc_swapdev_block(int swap);
145 extern void free_all_swap_pages(int swap);
146 extern int swsusp_swap_in_use(void);
147
148 /*
149 * Flags that can be passed from the hibernatig hernel to the "boot" kernel in
150 * the image header.
151 */
152 #define SF_PLATFORM_MODE 1
153 #define SF_NOCOMPRESS_MODE 2
154 #define SF_CRC32_MODE 4
155
156 /* kernel/power/hibernate.c */
157 extern int swsusp_check(void);
158 extern void swsusp_free(void);
159 extern int swsusp_read(unsigned int *flags_p);
160 extern int swsusp_write(unsigned int flags);
161 extern void swsusp_close(fmode_t);
162 #ifdef CONFIG_SUSPEND
163 extern int swsusp_unmark(void);
164 #endif
165
166 /* kernel/power/block_io.c */
167 extern struct block_device *hib_resume_bdev;
168
169 extern int hib_bio_read_page(pgoff_t page_off, void *addr,
170 struct bio **bio_chain);
171 extern int hib_bio_write_page(pgoff_t page_off, void *addr,
172 struct bio **bio_chain);
173 extern int hib_wait_on_bio_chain(struct bio **bio_chain);
174
175 struct timeval;
176 /* kernel/power/swsusp.c */
177 extern void swsusp_show_speed(struct timeval *, struct timeval *,
178 unsigned int, char *);
179
180 #ifdef CONFIG_SUSPEND
181 /* kernel/power/suspend.c */
182 extern const char *pm_labels[];
183 extern const char *pm_states[];
184
185 extern int suspend_devices_and_enter(suspend_state_t state);
186 #else /* !CONFIG_SUSPEND */
suspend_devices_and_enter(suspend_state_t state)187 static inline int suspend_devices_and_enter(suspend_state_t state)
188 {
189 return -ENOSYS;
190 }
191 #endif /* !CONFIG_SUSPEND */
192
193 #ifdef CONFIG_PM_TEST_SUSPEND
194 /* kernel/power/suspend_test.c */
195 extern void suspend_test_start(void);
196 extern void suspend_test_finish(const char *label);
197 #else /* !CONFIG_PM_TEST_SUSPEND */
suspend_test_start(void)198 static inline void suspend_test_start(void) {}
suspend_test_finish(const char * label)199 static inline void suspend_test_finish(const char *label) {}
200 #endif /* !CONFIG_PM_TEST_SUSPEND */
201
202 #ifdef CONFIG_PM_SLEEP
203 /* kernel/power/main.c */
204 extern int __pm_notifier_call_chain(unsigned long val, int nr_to_call,
205 int *nr_calls);
206 extern int pm_notifier_call_chain(unsigned long val);
207 #endif
208
209 #ifdef CONFIG_HIGHMEM
210 int restore_highmem(void);
211 #else
count_highmem_pages(void)212 static inline unsigned int count_highmem_pages(void) { return 0; }
restore_highmem(void)213 static inline int restore_highmem(void) { return 0; }
214 #endif
215
216 /*
217 * Suspend test levels
218 */
219 enum {
220 /* keep first */
221 TEST_NONE,
222 TEST_CORE,
223 TEST_CPUS,
224 TEST_PLATFORM,
225 TEST_DEVICES,
226 TEST_FREEZER,
227 /* keep last */
228 __TEST_AFTER_LAST
229 };
230
231 #define TEST_FIRST TEST_NONE
232 #define TEST_MAX (__TEST_AFTER_LAST - 1)
233
234 extern int pm_test_level;
235
236 #ifdef CONFIG_SUSPEND_FREEZER
suspend_freeze_processes(void)237 static inline int suspend_freeze_processes(void)
238 {
239 int error;
240
241 error = freeze_processes();
242 /*
243 * freeze_processes() automatically thaws every task if freezing
244 * fails. So we need not do anything extra upon error.
245 */
246 if (error)
247 return error;
248
249 error = freeze_kernel_threads();
250 /*
251 * freeze_kernel_threads() thaws only kernel threads upon freezing
252 * failure. So we have to thaw the userspace tasks ourselves.
253 */
254 if (error)
255 thaw_processes();
256
257 return error;
258 }
259
suspend_thaw_processes(void)260 static inline void suspend_thaw_processes(void)
261 {
262 thaw_processes();
263 }
264 #else
suspend_freeze_processes(void)265 static inline int suspend_freeze_processes(void)
266 {
267 return 0;
268 }
269
suspend_thaw_processes(void)270 static inline void suspend_thaw_processes(void)
271 {
272 }
273 #endif
274
275 #ifdef CONFIG_PM_AUTOSLEEP
276
277 /* kernel/power/autosleep.c */
278 extern int pm_autosleep_init(void);
279 extern int pm_autosleep_lock(void);
280 extern void pm_autosleep_unlock(void);
281 extern suspend_state_t pm_autosleep_state(void);
282 extern int pm_autosleep_set_state(suspend_state_t state);
283
284 #else /* !CONFIG_PM_AUTOSLEEP */
285
pm_autosleep_init(void)286 static inline int pm_autosleep_init(void) { return 0; }
pm_autosleep_lock(void)287 static inline int pm_autosleep_lock(void) { return 0; }
pm_autosleep_unlock(void)288 static inline void pm_autosleep_unlock(void) {}
pm_autosleep_state(void)289 static inline suspend_state_t pm_autosleep_state(void) { return PM_SUSPEND_ON; }
290
291 #endif /* !CONFIG_PM_AUTOSLEEP */
292
293 #ifdef CONFIG_PM_WAKELOCKS
294
295 /* kernel/power/wakelock.c */
296 extern ssize_t pm_show_wakelocks(char *buf, bool show_active);
297 extern int pm_wake_lock(const char *buf);
298 extern int pm_wake_unlock(const char *buf);
299
300 #endif /* !CONFIG_PM_WAKELOCKS */
301