• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
69 #else
70 #  define is_migrate_cma(migratetype) false
71 #  define is_migrate_cma_page(_page) false
72 #endif
73 
74 #define for_each_migratetype_order(order, type) \
75 	for (order = 0; order < MAX_ORDER; order++) \
76 		for (type = 0; type < MIGRATE_TYPES; type++)
77 
78 extern int page_group_by_mobility_disabled;
79 
80 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
81 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
82 
83 #define get_pageblock_migratetype(page)					\
84 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
85 			PB_migrate_end, MIGRATETYPE_MASK)
86 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)87 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
88 {
89 	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
90 	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
91 					MIGRATETYPE_MASK);
92 }
93 
94 struct free_area {
95 	struct list_head	free_list[MIGRATE_TYPES];
96 	unsigned long		nr_free;
97 };
98 
99 struct pglist_data;
100 
101 /*
102  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
103  * So add a wild amount of padding here to ensure that they fall into separate
104  * cachelines.  There are very few zone structures in the machine, so space
105  * consumption is not a concern here.
106  */
107 #if defined(CONFIG_SMP)
108 struct zone_padding {
109 	char x[0];
110 } ____cacheline_internodealigned_in_smp;
111 #define ZONE_PADDING(name)	struct zone_padding name;
112 #else
113 #define ZONE_PADDING(name)
114 #endif
115 
116 enum zone_stat_item {
117 	/* First 128 byte cacheline (assuming 64 bit words) */
118 	NR_FREE_PAGES,
119 	NR_ALLOC_BATCH,
120 	NR_LRU_BASE,
121 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
122 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
123 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
124 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
125 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
126 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
127 	NR_ANON_PAGES,	/* Mapped anonymous pages */
128 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
129 			   only modified from process context */
130 	NR_FILE_PAGES,
131 	NR_FILE_DIRTY,
132 	NR_WRITEBACK,
133 	NR_SLAB_RECLAIMABLE,
134 	NR_SLAB_UNRECLAIMABLE,
135 	NR_PAGETABLE,		/* used for pagetables */
136 	NR_KERNEL_STACK,
137 	/* Second 128 byte cacheline */
138 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
139 	NR_BOUNCE,
140 	NR_VMSCAN_WRITE,
141 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
142 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
143 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
144 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
145 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
146 	NR_DIRTIED,		/* page dirtyings since bootup */
147 	NR_WRITTEN,		/* page writings since bootup */
148 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
149 #ifdef CONFIG_NUMA
150 	NUMA_HIT,		/* allocated in intended node */
151 	NUMA_MISS,		/* allocated in non intended node */
152 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
153 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
154 	NUMA_LOCAL,		/* allocation from local node */
155 	NUMA_OTHER,		/* allocation from other node */
156 #endif
157 	WORKINGSET_REFAULT,
158 	WORKINGSET_ACTIVATE,
159 	WORKINGSET_NODERECLAIM,
160 	NR_ANON_TRANSPARENT_HUGEPAGES,
161 	NR_FREE_CMA_PAGES,
162 	NR_VM_ZONE_STAT_ITEMS };
163 
164 /*
165  * We do arithmetic on the LRU lists in various places in the code,
166  * so it is important to keep the active lists LRU_ACTIVE higher in
167  * the array than the corresponding inactive lists, and to keep
168  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
169  *
170  * This has to be kept in sync with the statistics in zone_stat_item
171  * above and the descriptions in vmstat_text in mm/vmstat.c
172  */
173 #define LRU_BASE 0
174 #define LRU_ACTIVE 1
175 #define LRU_FILE 2
176 
177 enum lru_list {
178 	LRU_INACTIVE_ANON = LRU_BASE,
179 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
180 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
181 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
182 	LRU_UNEVICTABLE,
183 	NR_LRU_LISTS
184 };
185 
186 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
187 
188 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
189 
is_file_lru(enum lru_list lru)190 static inline int is_file_lru(enum lru_list lru)
191 {
192 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
193 }
194 
is_active_lru(enum lru_list lru)195 static inline int is_active_lru(enum lru_list lru)
196 {
197 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
198 }
199 
is_unevictable_lru(enum lru_list lru)200 static inline int is_unevictable_lru(enum lru_list lru)
201 {
202 	return (lru == LRU_UNEVICTABLE);
203 }
204 
205 struct zone_reclaim_stat {
206 	/*
207 	 * The pageout code in vmscan.c keeps track of how many of the
208 	 * mem/swap backed and file backed pages are referenced.
209 	 * The higher the rotated/scanned ratio, the more valuable
210 	 * that cache is.
211 	 *
212 	 * The anon LRU stats live in [0], file LRU stats in [1]
213 	 */
214 	unsigned long		recent_rotated[2];
215 	unsigned long		recent_scanned[2];
216 };
217 
218 struct lruvec {
219 	struct list_head lists[NR_LRU_LISTS];
220 	struct zone_reclaim_stat reclaim_stat;
221 #ifdef CONFIG_MEMCG
222 	struct zone *zone;
223 #endif
224 };
225 
226 /* Mask used at gathering information at once (see memcontrol.c) */
227 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
228 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
229 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
230 
231 /* Isolate clean file */
232 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
233 /* Isolate unmapped file */
234 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
235 /* Isolate for asynchronous migration */
236 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
237 /* Isolate unevictable pages */
238 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
239 
240 /* LRU Isolation modes. */
241 typedef unsigned __bitwise__ isolate_mode_t;
242 
243 enum zone_watermarks {
244 	WMARK_MIN,
245 	WMARK_LOW,
246 	WMARK_HIGH,
247 	NR_WMARK
248 };
249 
250 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
251 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
252 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
253 
254 struct per_cpu_pages {
255 	int count;		/* number of pages in the list */
256 	int high;		/* high watermark, emptying needed */
257 	int batch;		/* chunk size for buddy add/remove */
258 
259 	/* Lists of pages, one per migrate type stored on the pcp-lists */
260 	struct list_head lists[MIGRATE_PCPTYPES];
261 };
262 
263 struct per_cpu_pageset {
264 	struct per_cpu_pages pcp;
265 #ifdef CONFIG_NUMA
266 	s8 expire;
267 #endif
268 #ifdef CONFIG_SMP
269 	s8 stat_threshold;
270 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
271 #endif
272 };
273 
274 #endif /* !__GENERATING_BOUNDS.H */
275 
276 enum zone_type {
277 #ifdef CONFIG_ZONE_DMA
278 	/*
279 	 * ZONE_DMA is used when there are devices that are not able
280 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
281 	 * carve out the portion of memory that is needed for these devices.
282 	 * The range is arch specific.
283 	 *
284 	 * Some examples
285 	 *
286 	 * Architecture		Limit
287 	 * ---------------------------
288 	 * parisc, ia64, sparc	<4G
289 	 * s390			<2G
290 	 * arm			Various
291 	 * alpha		Unlimited or 0-16MB.
292 	 *
293 	 * i386, x86_64 and multiple other arches
294 	 * 			<16M.
295 	 */
296 	ZONE_DMA,
297 #endif
298 #ifdef CONFIG_ZONE_DMA32
299 	/*
300 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
301 	 * only able to do DMA to the lower 16M but also 32 bit devices that
302 	 * can only do DMA areas below 4G.
303 	 */
304 	ZONE_DMA32,
305 #endif
306 	/*
307 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
308 	 * performed on pages in ZONE_NORMAL if the DMA devices support
309 	 * transfers to all addressable memory.
310 	 */
311 	ZONE_NORMAL,
312 #ifdef CONFIG_HIGHMEM
313 	/*
314 	 * A memory area that is only addressable by the kernel through
315 	 * mapping portions into its own address space. This is for example
316 	 * used by i386 to allow the kernel to address the memory beyond
317 	 * 900MB. The kernel will set up special mappings (page
318 	 * table entries on i386) for each page that the kernel needs to
319 	 * access.
320 	 */
321 	ZONE_HIGHMEM,
322 #endif
323 	ZONE_MOVABLE,
324 	__MAX_NR_ZONES
325 };
326 
327 #ifndef __GENERATING_BOUNDS_H
328 
329 struct zone {
330 	/* Read-mostly fields */
331 
332 	/* zone watermarks, access with *_wmark_pages(zone) macros */
333 	unsigned long watermark[NR_WMARK];
334 
335 	/*
336 	 * We don't know if the memory that we're going to allocate will be freeable
337 	 * or/and it will be released eventually, so to avoid totally wasting several
338 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
339 	 * to run OOM on the lower zones despite there's tons of freeable ram
340 	 * on the higher zones). This array is recalculated at runtime if the
341 	 * sysctl_lowmem_reserve_ratio sysctl changes.
342 	 */
343 	long lowmem_reserve[MAX_NR_ZONES];
344 
345 #ifdef CONFIG_NUMA
346 	int node;
347 #endif
348 
349 	/*
350 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
351 	 * this zone's LRU.  Maintained by the pageout code.
352 	 */
353 	unsigned int inactive_ratio;
354 
355 	struct pglist_data	*zone_pgdat;
356 	struct per_cpu_pageset __percpu *pageset;
357 
358 	/*
359 	 * This is a per-zone reserve of pages that should not be
360 	 * considered dirtyable memory.
361 	 */
362 	unsigned long		dirty_balance_reserve;
363 
364 #ifndef CONFIG_SPARSEMEM
365 	/*
366 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
367 	 * In SPARSEMEM, this map is stored in struct mem_section
368 	 */
369 	unsigned long		*pageblock_flags;
370 #endif /* CONFIG_SPARSEMEM */
371 
372 #ifdef CONFIG_NUMA
373 	/*
374 	 * zone reclaim becomes active if more unmapped pages exist.
375 	 */
376 	unsigned long		min_unmapped_pages;
377 	unsigned long		min_slab_pages;
378 #endif /* CONFIG_NUMA */
379 
380 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
381 	unsigned long		zone_start_pfn;
382 
383 	/*
384 	 * spanned_pages is the total pages spanned by the zone, including
385 	 * holes, which is calculated as:
386 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
387 	 *
388 	 * present_pages is physical pages existing within the zone, which
389 	 * is calculated as:
390 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
391 	 *
392 	 * managed_pages is present pages managed by the buddy system, which
393 	 * is calculated as (reserved_pages includes pages allocated by the
394 	 * bootmem allocator):
395 	 *	managed_pages = present_pages - reserved_pages;
396 	 *
397 	 * So present_pages may be used by memory hotplug or memory power
398 	 * management logic to figure out unmanaged pages by checking
399 	 * (present_pages - managed_pages). And managed_pages should be used
400 	 * by page allocator and vm scanner to calculate all kinds of watermarks
401 	 * and thresholds.
402 	 *
403 	 * Locking rules:
404 	 *
405 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
406 	 * It is a seqlock because it has to be read outside of zone->lock,
407 	 * and it is done in the main allocator path.  But, it is written
408 	 * quite infrequently.
409 	 *
410 	 * The span_seq lock is declared along with zone->lock because it is
411 	 * frequently read in proximity to zone->lock.  It's good to
412 	 * give them a chance of being in the same cacheline.
413 	 *
414 	 * Write access to present_pages at runtime should be protected by
415 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
416 	 * present_pages should get_online_mems() to get a stable value.
417 	 *
418 	 * Read access to managed_pages should be safe because it's unsigned
419 	 * long. Write access to zone->managed_pages and totalram_pages are
420 	 * protected by managed_page_count_lock at runtime. Idealy only
421 	 * adjust_managed_page_count() should be used instead of directly
422 	 * touching zone->managed_pages and totalram_pages.
423 	 */
424 	unsigned long		managed_pages;
425 	unsigned long		spanned_pages;
426 	unsigned long		present_pages;
427 
428 	const char		*name;
429 
430 	/*
431 	 * Number of MIGRATE_RESEVE page block. To maintain for just
432 	 * optimization. Protected by zone->lock.
433 	 */
434 	int			nr_migrate_reserve_block;
435 
436 #ifdef CONFIG_MEMORY_ISOLATION
437 	/*
438 	 * Number of isolated pageblock. It is used to solve incorrect
439 	 * freepage counting problem due to racy retrieving migratetype
440 	 * of pageblock. Protected by zone->lock.
441 	 */
442 	unsigned long		nr_isolate_pageblock;
443 #endif
444 
445 #ifdef CONFIG_MEMORY_HOTPLUG
446 	/* see spanned/present_pages for more description */
447 	seqlock_t		span_seqlock;
448 #endif
449 
450 	/*
451 	 * wait_table		-- the array holding the hash table
452 	 * wait_table_hash_nr_entries	-- the size of the hash table array
453 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
454 	 *
455 	 * The purpose of all these is to keep track of the people
456 	 * waiting for a page to become available and make them
457 	 * runnable again when possible. The trouble is that this
458 	 * consumes a lot of space, especially when so few things
459 	 * wait on pages at a given time. So instead of using
460 	 * per-page waitqueues, we use a waitqueue hash table.
461 	 *
462 	 * The bucket discipline is to sleep on the same queue when
463 	 * colliding and wake all in that wait queue when removing.
464 	 * When something wakes, it must check to be sure its page is
465 	 * truly available, a la thundering herd. The cost of a
466 	 * collision is great, but given the expected load of the
467 	 * table, they should be so rare as to be outweighed by the
468 	 * benefits from the saved space.
469 	 *
470 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
471 	 * primary users of these fields, and in mm/page_alloc.c
472 	 * free_area_init_core() performs the initialization of them.
473 	 */
474 	wait_queue_head_t	*wait_table;
475 	unsigned long		wait_table_hash_nr_entries;
476 	unsigned long		wait_table_bits;
477 
478 	ZONE_PADDING(_pad1_)
479 
480 	/* Write-intensive fields used from the page allocator */
481 	spinlock_t		lock;
482 
483 	/* free areas of different sizes */
484 	struct free_area	free_area[MAX_ORDER];
485 
486 	/* zone flags, see below */
487 	unsigned long		flags;
488 
489 	ZONE_PADDING(_pad2_)
490 
491 	/* Write-intensive fields used by page reclaim */
492 
493 	/* Fields commonly accessed by the page reclaim scanner */
494 	spinlock_t		lru_lock;
495 	struct lruvec		lruvec;
496 
497 	/* Evictions & activations on the inactive file list */
498 	atomic_long_t		inactive_age;
499 
500 	/*
501 	 * When free pages are below this point, additional steps are taken
502 	 * when reading the number of free pages to avoid per-cpu counter
503 	 * drift allowing watermarks to be breached
504 	 */
505 	unsigned long percpu_drift_mark;
506 
507 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
508 	/* pfn where compaction free scanner should start */
509 	unsigned long		compact_cached_free_pfn;
510 	/* pfn where async and sync compaction migration scanner should start */
511 	unsigned long		compact_cached_migrate_pfn[2];
512 #endif
513 
514 #ifdef CONFIG_COMPACTION
515 	/*
516 	 * On compaction failure, 1<<compact_defer_shift compactions
517 	 * are skipped before trying again. The number attempted since
518 	 * last failure is tracked with compact_considered.
519 	 */
520 	unsigned int		compact_considered;
521 	unsigned int		compact_defer_shift;
522 	int			compact_order_failed;
523 #endif
524 
525 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
526 	/* Set to true when the PG_migrate_skip bits should be cleared */
527 	bool			compact_blockskip_flush;
528 #endif
529 
530 	ZONE_PADDING(_pad3_)
531 	/* Zone statistics */
532 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
533 } ____cacheline_internodealigned_in_smp;
534 
535 enum zone_flags {
536 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
537 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
538 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
539 					 * a congested BDI
540 					 */
541 	ZONE_DIRTY,			/* reclaim scanning has recently found
542 					 * many dirty file pages at the tail
543 					 * of the LRU.
544 					 */
545 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
546 					 * many pages under writeback
547 					 */
548 	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
549 };
550 
zone_end_pfn(const struct zone * zone)551 static inline unsigned long zone_end_pfn(const struct zone *zone)
552 {
553 	return zone->zone_start_pfn + zone->spanned_pages;
554 }
555 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)556 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
557 {
558 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
559 }
560 
zone_is_initialized(struct zone * zone)561 static inline bool zone_is_initialized(struct zone *zone)
562 {
563 	return !!zone->wait_table;
564 }
565 
zone_is_empty(struct zone * zone)566 static inline bool zone_is_empty(struct zone *zone)
567 {
568 	return zone->spanned_pages == 0;
569 }
570 
571 /*
572  * The "priority" of VM scanning is how much of the queues we will scan in one
573  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
574  * queues ("queue_length >> 12") during an aging round.
575  */
576 #define DEF_PRIORITY 12
577 
578 /* Maximum number of zones on a zonelist */
579 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
580 
581 #ifdef CONFIG_NUMA
582 
583 /*
584  * The NUMA zonelists are doubled because we need zonelists that restrict the
585  * allocations to a single node for __GFP_THISNODE.
586  *
587  * [0]	: Zonelist with fallback
588  * [1]	: No fallback (__GFP_THISNODE)
589  */
590 #define MAX_ZONELISTS 2
591 
592 
593 /*
594  * We cache key information from each zonelist for smaller cache
595  * footprint when scanning for free pages in get_page_from_freelist().
596  *
597  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
598  *    up short of free memory since the last time (last_fullzone_zap)
599  *    we zero'd fullzones.
600  * 2) The array z_to_n[] maps each zone in the zonelist to its node
601  *    id, so that we can efficiently evaluate whether that node is
602  *    set in the current tasks mems_allowed.
603  *
604  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
605  * indexed by a zones offset in the zonelist zones[] array.
606  *
607  * The get_page_from_freelist() routine does two scans.  During the
608  * first scan, we skip zones whose corresponding bit in 'fullzones'
609  * is set or whose corresponding node in current->mems_allowed (which
610  * comes from cpusets) is not set.  During the second scan, we bypass
611  * this zonelist_cache, to ensure we look methodically at each zone.
612  *
613  * Once per second, we zero out (zap) fullzones, forcing us to
614  * reconsider nodes that might have regained more free memory.
615  * The field last_full_zap is the time we last zapped fullzones.
616  *
617  * This mechanism reduces the amount of time we waste repeatedly
618  * reexaming zones for free memory when they just came up low on
619  * memory momentarilly ago.
620  *
621  * The zonelist_cache struct members logically belong in struct
622  * zonelist.  However, the mempolicy zonelists constructed for
623  * MPOL_BIND are intentionally variable length (and usually much
624  * shorter).  A general purpose mechanism for handling structs with
625  * multiple variable length members is more mechanism than we want
626  * here.  We resort to some special case hackery instead.
627  *
628  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
629  * part because they are shorter), so we put the fixed length stuff
630  * at the front of the zonelist struct, ending in a variable length
631  * zones[], as is needed by MPOL_BIND.
632  *
633  * Then we put the optional zonelist cache on the end of the zonelist
634  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
635  * the fixed length portion at the front of the struct.  This pointer
636  * both enables us to find the zonelist cache, and in the case of
637  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
638  * to know that the zonelist cache is not there.
639  *
640  * The end result is that struct zonelists come in two flavors:
641  *  1) The full, fixed length version, shown below, and
642  *  2) The custom zonelists for MPOL_BIND.
643  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
644  *
645  * Even though there may be multiple CPU cores on a node modifying
646  * fullzones or last_full_zap in the same zonelist_cache at the same
647  * time, we don't lock it.  This is just hint data - if it is wrong now
648  * and then, the allocator will still function, perhaps a bit slower.
649  */
650 
651 
652 struct zonelist_cache {
653 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
654 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
655 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
656 };
657 #else
658 #define MAX_ZONELISTS 1
659 struct zonelist_cache;
660 #endif
661 
662 /*
663  * This struct contains information about a zone in a zonelist. It is stored
664  * here to avoid dereferences into large structures and lookups of tables
665  */
666 struct zoneref {
667 	struct zone *zone;	/* Pointer to actual zone */
668 	int zone_idx;		/* zone_idx(zoneref->zone) */
669 };
670 
671 /*
672  * One allocation request operates on a zonelist. A zonelist
673  * is a list of zones, the first one is the 'goal' of the
674  * allocation, the other zones are fallback zones, in decreasing
675  * priority.
676  *
677  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
678  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
679  * *
680  * To speed the reading of the zonelist, the zonerefs contain the zone index
681  * of the entry being read. Helper functions to access information given
682  * a struct zoneref are
683  *
684  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
685  * zonelist_zone_idx()	- Return the index of the zone for an entry
686  * zonelist_node_idx()	- Return the index of the node for an entry
687  */
688 struct zonelist {
689 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
690 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
691 #ifdef CONFIG_NUMA
692 	struct zonelist_cache zlcache;			     // optional ...
693 #endif
694 };
695 
696 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
697 struct node_active_region {
698 	unsigned long start_pfn;
699 	unsigned long end_pfn;
700 	int nid;
701 };
702 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
703 
704 #ifndef CONFIG_DISCONTIGMEM
705 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
706 extern struct page *mem_map;
707 #endif
708 
709 /*
710  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
711  * (mostly NUMA machines?) to denote a higher-level memory zone than the
712  * zone denotes.
713  *
714  * On NUMA machines, each NUMA node would have a pg_data_t to describe
715  * it's memory layout.
716  *
717  * Memory statistics and page replacement data structures are maintained on a
718  * per-zone basis.
719  */
720 struct bootmem_data;
721 typedef struct pglist_data {
722 	struct zone node_zones[MAX_NR_ZONES];
723 	struct zonelist node_zonelists[MAX_ZONELISTS];
724 	int nr_zones;
725 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
726 	struct page *node_mem_map;
727 #ifdef CONFIG_MEMCG
728 	struct page_cgroup *node_page_cgroup;
729 #endif
730 #endif
731 #ifndef CONFIG_NO_BOOTMEM
732 	struct bootmem_data *bdata;
733 #endif
734 #ifdef CONFIG_MEMORY_HOTPLUG
735 	/*
736 	 * Must be held any time you expect node_start_pfn, node_present_pages
737 	 * or node_spanned_pages stay constant.  Holding this will also
738 	 * guarantee that any pfn_valid() stays that way.
739 	 *
740 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
741 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
742 	 *
743 	 * Nests above zone->lock and zone->span_seqlock
744 	 */
745 	spinlock_t node_size_lock;
746 #endif
747 	unsigned long node_start_pfn;
748 	unsigned long node_present_pages; /* total number of physical pages */
749 	unsigned long node_spanned_pages; /* total size of physical page
750 					     range, including holes */
751 	int node_id;
752 	wait_queue_head_t kswapd_wait;
753 	wait_queue_head_t pfmemalloc_wait;
754 	struct task_struct *kswapd;	/* Protected by
755 					   mem_hotplug_begin/end() */
756 	int kswapd_max_order;
757 	enum zone_type classzone_idx;
758 #ifdef CONFIG_NUMA_BALANCING
759 	/* Lock serializing the migrate rate limiting window */
760 	spinlock_t numabalancing_migrate_lock;
761 
762 	/* Rate limiting time interval */
763 	unsigned long numabalancing_migrate_next_window;
764 
765 	/* Number of pages migrated during the rate limiting time interval */
766 	unsigned long numabalancing_migrate_nr_pages;
767 #endif
768 } pg_data_t;
769 
770 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
771 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
772 #ifdef CONFIG_FLAT_NODE_MEM_MAP
773 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
774 #else
775 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
776 #endif
777 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
778 
779 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
780 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
781 
pgdat_end_pfn(pg_data_t * pgdat)782 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
783 {
784 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
785 }
786 
pgdat_is_empty(pg_data_t * pgdat)787 static inline bool pgdat_is_empty(pg_data_t *pgdat)
788 {
789 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
790 }
791 
792 #include <linux/memory_hotplug.h>
793 
794 extern struct mutex zonelists_mutex;
795 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
796 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
797 bool zone_watermark_ok(struct zone *z, unsigned int order,
798 		unsigned long mark, int classzone_idx, int alloc_flags);
799 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
800 		unsigned long mark, int classzone_idx, int alloc_flags);
801 enum memmap_context {
802 	MEMMAP_EARLY,
803 	MEMMAP_HOTPLUG,
804 };
805 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
806 				     unsigned long size,
807 				     enum memmap_context context);
808 
809 extern void lruvec_init(struct lruvec *lruvec);
810 
lruvec_zone(struct lruvec * lruvec)811 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
812 {
813 #ifdef CONFIG_MEMCG
814 	return lruvec->zone;
815 #else
816 	return container_of(lruvec, struct zone, lruvec);
817 #endif
818 }
819 
820 #ifdef CONFIG_HAVE_MEMORY_PRESENT
821 void memory_present(int nid, unsigned long start, unsigned long end);
822 #else
memory_present(int nid,unsigned long start,unsigned long end)823 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
824 #endif
825 
826 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
827 int local_memory_node(int node_id);
828 #else
local_memory_node(int node_id)829 static inline int local_memory_node(int node_id) { return node_id; };
830 #endif
831 
832 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
833 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
834 #endif
835 
836 /*
837  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
838  */
839 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
840 
populated_zone(struct zone * zone)841 static inline int populated_zone(struct zone *zone)
842 {
843 	return (!!zone->present_pages);
844 }
845 
846 extern int movable_zone;
847 
zone_movable_is_highmem(void)848 static inline int zone_movable_is_highmem(void)
849 {
850 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
851 	return movable_zone == ZONE_HIGHMEM;
852 #elif defined(CONFIG_HIGHMEM)
853 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
854 #else
855 	return 0;
856 #endif
857 }
858 
is_highmem_idx(enum zone_type idx)859 static inline int is_highmem_idx(enum zone_type idx)
860 {
861 #ifdef CONFIG_HIGHMEM
862 	return (idx == ZONE_HIGHMEM ||
863 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
864 #else
865 	return 0;
866 #endif
867 }
868 
869 /**
870  * is_highmem - helper function to quickly check if a struct zone is a
871  *              highmem zone or not.  This is an attempt to keep references
872  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
873  * @zone - pointer to struct zone variable
874  */
is_highmem(struct zone * zone)875 static inline int is_highmem(struct zone *zone)
876 {
877 #ifdef CONFIG_HIGHMEM
878 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
879 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
880 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
881 		zone_movable_is_highmem());
882 #else
883 	return 0;
884 #endif
885 }
886 
887 /* These two functions are used to setup the per zone pages min values */
888 struct ctl_table;
889 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
890 					void __user *, size_t *, loff_t *);
891 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
892 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
895 					void __user *, size_t *, loff_t *);
896 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
899 			void __user *, size_t *, loff_t *);
900 
901 extern int numa_zonelist_order_handler(struct ctl_table *, int,
902 			void __user *, size_t *, loff_t *);
903 extern char numa_zonelist_order[];
904 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
905 
906 #ifndef CONFIG_NEED_MULTIPLE_NODES
907 
908 extern struct pglist_data contig_page_data;
909 #define NODE_DATA(nid)		(&contig_page_data)
910 #define NODE_MEM_MAP(nid)	mem_map
911 
912 #else /* CONFIG_NEED_MULTIPLE_NODES */
913 
914 #include <asm/mmzone.h>
915 
916 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
917 
918 extern struct pglist_data *first_online_pgdat(void);
919 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
920 extern struct zone *next_zone(struct zone *zone);
921 
922 /**
923  * for_each_online_pgdat - helper macro to iterate over all online nodes
924  * @pgdat - pointer to a pg_data_t variable
925  */
926 #define for_each_online_pgdat(pgdat)			\
927 	for (pgdat = first_online_pgdat();		\
928 	     pgdat;					\
929 	     pgdat = next_online_pgdat(pgdat))
930 /**
931  * for_each_zone - helper macro to iterate over all memory zones
932  * @zone - pointer to struct zone variable
933  *
934  * The user only needs to declare the zone variable, for_each_zone
935  * fills it in.
936  */
937 #define for_each_zone(zone)			        \
938 	for (zone = (first_online_pgdat())->node_zones; \
939 	     zone;					\
940 	     zone = next_zone(zone))
941 
942 #define for_each_populated_zone(zone)		        \
943 	for (zone = (first_online_pgdat())->node_zones; \
944 	     zone;					\
945 	     zone = next_zone(zone))			\
946 		if (!populated_zone(zone))		\
947 			; /* do nothing */		\
948 		else
949 
zonelist_zone(struct zoneref * zoneref)950 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
951 {
952 	return zoneref->zone;
953 }
954 
zonelist_zone_idx(struct zoneref * zoneref)955 static inline int zonelist_zone_idx(struct zoneref *zoneref)
956 {
957 	return zoneref->zone_idx;
958 }
959 
zonelist_node_idx(struct zoneref * zoneref)960 static inline int zonelist_node_idx(struct zoneref *zoneref)
961 {
962 #ifdef CONFIG_NUMA
963 	/* zone_to_nid not available in this context */
964 	return zoneref->zone->node;
965 #else
966 	return 0;
967 #endif /* CONFIG_NUMA */
968 }
969 
970 /**
971  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
972  * @z - The cursor used as a starting point for the search
973  * @highest_zoneidx - The zone index of the highest zone to return
974  * @nodes - An optional nodemask to filter the zonelist with
975  * @zone - The first suitable zone found is returned via this parameter
976  *
977  * This function returns the next zone at or below a given zone index that is
978  * within the allowed nodemask using a cursor as the starting point for the
979  * search. The zoneref returned is a cursor that represents the current zone
980  * being examined. It should be advanced by one before calling
981  * next_zones_zonelist again.
982  */
983 struct zoneref *next_zones_zonelist(struct zoneref *z,
984 					enum zone_type highest_zoneidx,
985 					nodemask_t *nodes,
986 					struct zone **zone);
987 
988 /**
989  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
990  * @zonelist - The zonelist to search for a suitable zone
991  * @highest_zoneidx - The zone index of the highest zone to return
992  * @nodes - An optional nodemask to filter the zonelist with
993  * @zone - The first suitable zone found is returned via this parameter
994  *
995  * This function returns the first zone at or below a given zone index that is
996  * within the allowed nodemask. The zoneref returned is a cursor that can be
997  * used to iterate the zonelist with next_zones_zonelist by advancing it by
998  * one before calling.
999  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes,struct zone ** zone)1000 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1001 					enum zone_type highest_zoneidx,
1002 					nodemask_t *nodes,
1003 					struct zone **zone)
1004 {
1005 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1006 								zone);
1007 }
1008 
1009 /**
1010  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1011  * @zone - The current zone in the iterator
1012  * @z - The current pointer within zonelist->zones being iterated
1013  * @zlist - The zonelist being iterated
1014  * @highidx - The zone index of the highest zone to return
1015  * @nodemask - Nodemask allowed by the allocator
1016  *
1017  * This iterator iterates though all zones at or below a given zone index and
1018  * within a given nodemask
1019  */
1020 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1021 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1022 		zone;							\
1023 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1024 
1025 /**
1026  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1027  * @zone - The current zone in the iterator
1028  * @z - The current pointer within zonelist->zones being iterated
1029  * @zlist - The zonelist being iterated
1030  * @highidx - The zone index of the highest zone to return
1031  *
1032  * This iterator iterates though all zones at or below a given zone index.
1033  */
1034 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1035 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1036 
1037 #ifdef CONFIG_SPARSEMEM
1038 #include <asm/sparsemem.h>
1039 #endif
1040 
1041 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1042 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)1043 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1044 {
1045 	return 0;
1046 }
1047 #endif
1048 
1049 #ifdef CONFIG_FLATMEM
1050 #define pfn_to_nid(pfn)		(0)
1051 #endif
1052 
1053 #ifdef CONFIG_SPARSEMEM
1054 
1055 /*
1056  * SECTION_SHIFT    		#bits space required to store a section #
1057  *
1058  * PA_SECTION_SHIFT		physical address to/from section number
1059  * PFN_SECTION_SHIFT		pfn to/from section number
1060  */
1061 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1062 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1063 
1064 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1065 
1066 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1067 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1068 
1069 #define SECTION_BLOCKFLAGS_BITS \
1070 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1071 
1072 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1073 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1074 #endif
1075 
1076 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1077 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1078 
1079 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1080 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1081 
1082 struct page;
1083 struct page_cgroup;
1084 struct mem_section {
1085 	/*
1086 	 * This is, logically, a pointer to an array of struct
1087 	 * pages.  However, it is stored with some other magic.
1088 	 * (see sparse.c::sparse_init_one_section())
1089 	 *
1090 	 * Additionally during early boot we encode node id of
1091 	 * the location of the section here to guide allocation.
1092 	 * (see sparse.c::memory_present())
1093 	 *
1094 	 * Making it a UL at least makes someone do a cast
1095 	 * before using it wrong.
1096 	 */
1097 	unsigned long section_mem_map;
1098 
1099 	/* See declaration of similar field in struct zone */
1100 	unsigned long *pageblock_flags;
1101 #ifdef CONFIG_MEMCG
1102 	/*
1103 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1104 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1105 	 */
1106 	struct page_cgroup *page_cgroup;
1107 	unsigned long pad;
1108 #endif
1109 	/*
1110 	 * WARNING: mem_section must be a power-of-2 in size for the
1111 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1112 	 */
1113 };
1114 
1115 #ifdef CONFIG_SPARSEMEM_EXTREME
1116 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1117 #else
1118 #define SECTIONS_PER_ROOT	1
1119 #endif
1120 
1121 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1122 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1123 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1124 
1125 #ifdef CONFIG_SPARSEMEM_EXTREME
1126 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1127 #else
1128 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1129 #endif
1130 
__nr_to_section(unsigned long nr)1131 static inline struct mem_section *__nr_to_section(unsigned long nr)
1132 {
1133 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1134 		return NULL;
1135 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1136 }
1137 extern int __section_nr(struct mem_section* ms);
1138 extern unsigned long usemap_size(void);
1139 
1140 /*
1141  * We use the lower bits of the mem_map pointer to store
1142  * a little bit of information.  There should be at least
1143  * 3 bits here due to 32-bit alignment.
1144  */
1145 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1146 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1147 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1148 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1149 #define SECTION_NID_SHIFT	2
1150 
__section_mem_map_addr(struct mem_section * section)1151 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1152 {
1153 	unsigned long map = section->section_mem_map;
1154 	map &= SECTION_MAP_MASK;
1155 	return (struct page *)map;
1156 }
1157 
present_section(struct mem_section * section)1158 static inline int present_section(struct mem_section *section)
1159 {
1160 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1161 }
1162 
present_section_nr(unsigned long nr)1163 static inline int present_section_nr(unsigned long nr)
1164 {
1165 	return present_section(__nr_to_section(nr));
1166 }
1167 
valid_section(struct mem_section * section)1168 static inline int valid_section(struct mem_section *section)
1169 {
1170 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1171 }
1172 
valid_section_nr(unsigned long nr)1173 static inline int valid_section_nr(unsigned long nr)
1174 {
1175 	return valid_section(__nr_to_section(nr));
1176 }
1177 
__pfn_to_section(unsigned long pfn)1178 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1179 {
1180 	return __nr_to_section(pfn_to_section_nr(pfn));
1181 }
1182 
1183 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1184 static inline int pfn_valid(unsigned long pfn)
1185 {
1186 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1187 		return 0;
1188 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1189 }
1190 #endif
1191 
pfn_present(unsigned long pfn)1192 static inline int pfn_present(unsigned long pfn)
1193 {
1194 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1195 		return 0;
1196 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1197 }
1198 
1199 /*
1200  * These are _only_ used during initialisation, therefore they
1201  * can use __initdata ...  They could have names to indicate
1202  * this restriction.
1203  */
1204 #ifdef CONFIG_NUMA
1205 #define pfn_to_nid(pfn)							\
1206 ({									\
1207 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1208 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1209 })
1210 #else
1211 #define pfn_to_nid(pfn)		(0)
1212 #endif
1213 
1214 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1215 void sparse_init(void);
1216 #else
1217 #define sparse_init()	do {} while (0)
1218 #define sparse_index_init(_sec, _nid)  do {} while (0)
1219 #endif /* CONFIG_SPARSEMEM */
1220 
1221 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1222 bool early_pfn_in_nid(unsigned long pfn, int nid);
1223 #else
1224 #define early_pfn_in_nid(pfn, nid)	(1)
1225 #endif
1226 
1227 #ifndef early_pfn_valid
1228 #define early_pfn_valid(pfn)	(1)
1229 #endif
1230 
1231 void memory_present(int nid, unsigned long start, unsigned long end);
1232 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1233 
1234 /*
1235  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1236  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1237  * pfn_valid_within() should be used in this case; we optimise this away
1238  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1239  */
1240 #ifdef CONFIG_HOLES_IN_ZONE
1241 #define pfn_valid_within(pfn) pfn_valid(pfn)
1242 #else
1243 #define pfn_valid_within(pfn) (1)
1244 #endif
1245 
1246 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1247 /*
1248  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1249  * associated with it or not. In FLATMEM, it is expected that holes always
1250  * have valid memmap as long as there is valid PFNs either side of the hole.
1251  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1252  * entire section.
1253  *
1254  * However, an ARM, and maybe other embedded architectures in the future
1255  * free memmap backing holes to save memory on the assumption the memmap is
1256  * never used. The page_zone linkages are then broken even though pfn_valid()
1257  * returns true. A walker of the full memmap must then do this additional
1258  * check to ensure the memmap they are looking at is sane by making sure
1259  * the zone and PFN linkages are still valid. This is expensive, but walkers
1260  * of the full memmap are extremely rare.
1261  */
1262 int memmap_valid_within(unsigned long pfn,
1263 					struct page *page, struct zone *zone);
1264 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1265 static inline int memmap_valid_within(unsigned long pfn,
1266 					struct page *page, struct zone *zone)
1267 {
1268 	return 1;
1269 }
1270 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1271 
1272 #endif /* !__GENERATING_BOUNDS.H */
1273 #endif /* !__ASSEMBLY__ */
1274 #endif /* _LINUX_MMZONE_H */
1275