• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk-private.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 /***           locking             ***/
clk_prepare_lock(void)41 static void clk_prepare_lock(void)
42 {
43 	if (!mutex_trylock(&prepare_lock)) {
44 		if (prepare_owner == current) {
45 			prepare_refcnt++;
46 			return;
47 		}
48 		mutex_lock(&prepare_lock);
49 	}
50 	WARN_ON_ONCE(prepare_owner != NULL);
51 	WARN_ON_ONCE(prepare_refcnt != 0);
52 	prepare_owner = current;
53 	prepare_refcnt = 1;
54 }
55 
clk_prepare_unlock(void)56 static void clk_prepare_unlock(void)
57 {
58 	WARN_ON_ONCE(prepare_owner != current);
59 	WARN_ON_ONCE(prepare_refcnt == 0);
60 
61 	if (--prepare_refcnt)
62 		return;
63 	prepare_owner = NULL;
64 	mutex_unlock(&prepare_lock);
65 }
66 
clk_enable_lock(void)67 static unsigned long clk_enable_lock(void)
68 {
69 	unsigned long flags;
70 
71 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
72 		if (enable_owner == current) {
73 			enable_refcnt++;
74 			return flags;
75 		}
76 		spin_lock_irqsave(&enable_lock, flags);
77 	}
78 	WARN_ON_ONCE(enable_owner != NULL);
79 	WARN_ON_ONCE(enable_refcnt != 0);
80 	enable_owner = current;
81 	enable_refcnt = 1;
82 	return flags;
83 }
84 
clk_enable_unlock(unsigned long flags)85 static void clk_enable_unlock(unsigned long flags)
86 {
87 	WARN_ON_ONCE(enable_owner != current);
88 	WARN_ON_ONCE(enable_refcnt == 0);
89 
90 	if (--enable_refcnt)
91 		return;
92 	enable_owner = NULL;
93 	spin_unlock_irqrestore(&enable_lock, flags);
94 }
95 
96 /***        debugfs support        ***/
97 
98 #ifdef CONFIG_DEBUG_FS
99 #include <linux/debugfs.h>
100 
101 static struct dentry *rootdir;
102 static int inited = 0;
103 static DEFINE_MUTEX(clk_debug_lock);
104 static HLIST_HEAD(clk_debug_list);
105 
106 static struct hlist_head *all_lists[] = {
107 	&clk_root_list,
108 	&clk_orphan_list,
109 	NULL,
110 };
111 
112 static struct hlist_head *orphan_list[] = {
113 	&clk_orphan_list,
114 	NULL,
115 };
116 
117 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
118 
119 #ifdef CONFIG_COMMON_CLK_BEGIN_ACCOUNTING_FROM_BOOT
120 static bool freq_stats_on = true;
121 #else
122 static bool freq_stats_on;
123 #endif /*CONFIG_COMMON_CLK_BEGIN_ACCOUNTING_FROM_BOOT*/
124 
free_tree(struct rb_node * node)125 static void free_tree(struct rb_node *node)
126 {
127 	struct freq_stats *this;
128 
129 	if (!node)
130 		return;
131 
132 	free_tree(node->rb_left);
133 	free_tree(node->rb_right);
134 
135 	this = rb_entry(node, struct freq_stats, node);
136 	kfree(this);
137 }
138 
freq_stats_insert(struct rb_root * freq_stats_table,unsigned long rate)139 static struct freq_stats *freq_stats_insert(struct rb_root *freq_stats_table,
140 		unsigned long rate)
141 {
142 	struct rb_node **new = &(freq_stats_table->rb_node), *parent = NULL;
143 	struct freq_stats *this;
144 
145 	/* Figure out where to put new node */
146 	while (*new) {
147 		this = rb_entry(*new, struct freq_stats, node);
148 		parent = *new;
149 
150 		if (rate < this->rate)
151 			new = &((*new)->rb_left);
152 		else if (rate > this->rate)
153 			new = &((*new)->rb_right);
154 		else
155 			return this;
156 	}
157 
158 	this = kzalloc(sizeof(*this), GFP_ATOMIC);
159 	this->rate = rate;
160 
161 	/* Add new node and rebalance tree. */
162 	rb_link_node(&this->node, parent, new);
163 	rb_insert_color(&this->node, freq_stats_table);
164 
165 	return this;
166 }
167 
generic_print_freq_stats_table(struct seq_file * m,struct clk * clk,bool indent,int level)168 static void generic_print_freq_stats_table(struct seq_file *m,
169 				struct clk *clk,
170 				bool indent, int level)
171 {
172 	struct rb_node *pos;
173 	struct freq_stats *cur;
174 
175 	if (indent)
176 		seq_printf(m, "%*s*%s%20s", level * 3 + 1, "",
177 			!clk->current_freq_stats ? "[" : "",
178 			"default_freq");
179 	else
180 		seq_printf(m, "%2s%20s", !clk->current_freq_stats ? "[" : "",
181 			"default_freq");
182 
183 	if (!clk->current_freq_stats && !ktime_equal(clk->start_time,
184 					ktime_set(0, 0)))
185 		seq_printf(m, "%40llu",
186 			ktime_to_ms(ktime_add(clk->default_freq_time,
187 			ktime_sub(ktime_get(), clk->start_time))));
188 	else
189 		seq_printf(m, "%40llu", ktime_to_ms(clk->default_freq_time));
190 
191 	if (!clk->current_freq_stats)
192 		seq_puts(m, "]");
193 
194 	seq_puts(m, "\n");
195 
196 	for (pos = rb_first(&clk->freq_stats_table); pos; pos = rb_next(pos)) {
197 		cur = rb_entry(pos, typeof(*cur), node);
198 
199 		if (indent)
200 			seq_printf(m, "%*s*%s%20lu", level * 3 + 1, "",
201 				cur->rate == clk->rate ? "[" : "", cur->rate);
202 		else
203 			seq_printf(m, "%2s%20lu", cur->rate == clk->rate ?
204 				"[" : "", cur->rate);
205 
206 		if (cur->rate == clk->rate && !ktime_equal(clk->start_time,
207 					ktime_set(0, 0)))
208 			seq_printf(m, "%40llu",
209 			ktime_to_ms(ktime_add(cur->time_spent,
210 			ktime_sub(ktime_get(), clk->start_time))));
211 		else
212 			seq_printf(m, "%40llu", ktime_to_ms(cur->time_spent));
213 
214 		if (cur->rate == clk->rate)
215 			seq_puts(m, "]");
216 		seq_puts(m, "\n");
217 	}
218 }
219 
clock_print_freq_stats_table(struct seq_file * m,void * unused)220 static int clock_print_freq_stats_table(struct seq_file *m, void *unused)
221 {
222 	struct clk *clk = m->private;
223 
224 	if (!(clk->flags & CLK_GET_RATE_NOCACHE))
225 		generic_print_freq_stats_table(m, clk, false, 0);
226 
227 	return 0;
228 }
229 
freq_stats_table_open(struct inode * inode,struct file * file)230 static int freq_stats_table_open(struct inode *inode, struct file *file)
231 {
232 	return single_open(file, clock_print_freq_stats_table,
233 		inode->i_private);
234 }
235 
236 static const struct file_operations freq_stats_table_fops = {
237 	.open           = freq_stats_table_open,
238 	.read           = seq_read,
239 	.llseek         = seq_lseek,
240 	.release        = seq_release,
241 };
242 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
243 
244 
clk_summary_show_one(struct seq_file * s,struct clk * c,int level)245 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
246 {
247 	if (!c)
248 		return;
249 
250 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
251 		   level * 3 + 1, "",
252 		   30 - level * 3, c->name,
253 		   c->enable_count, c->prepare_count, clk_get_rate(c),
254 		   clk_get_accuracy(c), clk_get_phase(c));
255 
256 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
257 	if (!(c->flags & CLK_GET_RATE_NOCACHE))
258 		generic_print_freq_stats_table(s, c, true, level);
259 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
260 
261 }
262 
clk_summary_show_subtree(struct seq_file * s,struct clk * c,int level)263 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
264 				     int level)
265 {
266 	struct clk *child;
267 
268 	if (!c)
269 		return;
270 
271 	clk_summary_show_one(s, c, level);
272 
273 	hlist_for_each_entry(child, &c->children, child_node)
274 		clk_summary_show_subtree(s, child, level + 1);
275 }
276 
clk_summary_show(struct seq_file * s,void * data)277 static int clk_summary_show(struct seq_file *s, void *data)
278 {
279 	struct clk *c;
280 	struct hlist_head **lists = (struct hlist_head **)s->private;
281 
282 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
283 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
284 
285 	clk_prepare_lock();
286 
287 	for (; *lists; lists++)
288 		hlist_for_each_entry(c, *lists, child_node)
289 			clk_summary_show_subtree(s, c, 0);
290 
291 	clk_prepare_unlock();
292 
293 	return 0;
294 }
295 
296 
clk_summary_open(struct inode * inode,struct file * file)297 static int clk_summary_open(struct inode *inode, struct file *file)
298 {
299 	return single_open(file, clk_summary_show, inode->i_private);
300 }
301 
302 static const struct file_operations clk_summary_fops = {
303 	.open		= clk_summary_open,
304 	.read		= seq_read,
305 	.llseek		= seq_lseek,
306 	.release	= single_release,
307 };
308 
clk_dump_one(struct seq_file * s,struct clk * c,int level)309 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
310 {
311 	if (!c)
312 		return;
313 
314 	seq_printf(s, "\"%s\": { ", c->name);
315 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
316 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
317 	seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
318 	seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
319 	seq_printf(s, "\"phase\": %d", clk_get_phase(c));
320 }
321 
clk_dump_subtree(struct seq_file * s,struct clk * c,int level)322 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
323 {
324 	struct clk *child;
325 
326 	if (!c)
327 		return;
328 
329 	clk_dump_one(s, c, level);
330 
331 	hlist_for_each_entry(child, &c->children, child_node) {
332 		seq_printf(s, ",");
333 		clk_dump_subtree(s, child, level + 1);
334 	}
335 
336 	seq_printf(s, "}");
337 }
338 
clk_dump(struct seq_file * s,void * data)339 static int clk_dump(struct seq_file *s, void *data)
340 {
341 	struct clk *c;
342 	bool first_node = true;
343 	struct hlist_head **lists = (struct hlist_head **)s->private;
344 
345 	seq_printf(s, "{");
346 
347 	clk_prepare_lock();
348 
349 	for (; *lists; lists++) {
350 		hlist_for_each_entry(c, *lists, child_node) {
351 			if (!first_node)
352 				seq_puts(s, ",");
353 			first_node = false;
354 			clk_dump_subtree(s, c, 0);
355 		}
356 	}
357 
358 	clk_prepare_unlock();
359 
360 	seq_printf(s, "}");
361 	return 0;
362 }
363 
364 
clk_dump_open(struct inode * inode,struct file * file)365 static int clk_dump_open(struct inode *inode, struct file *file)
366 {
367 	return single_open(file, clk_dump, inode->i_private);
368 }
369 
370 static const struct file_operations clk_dump_fops = {
371 	.open		= clk_dump_open,
372 	.read		= seq_read,
373 	.llseek		= seq_lseek,
374 	.release	= single_release,
375 };
376 
377 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
freq_stats_get(void * unused,u64 * val)378 static int freq_stats_get(void *unused, u64 *val)
379 {
380 	*val = freq_stats_on;
381 	return 0;
382 }
383 
clk_traverse_subtree(struct clk * clk,int freq_stats_on)384 static void clk_traverse_subtree(struct clk *clk, int freq_stats_on)
385 {
386 	struct clk *child;
387 	struct rb_node *node;
388 
389 	if (!clk)
390 		return;
391 
392 	if (freq_stats_on) {
393 		for (node = rb_first(&clk->freq_stats_table);
394 			node; node = rb_next(node))
395 			rb_entry(node, struct freq_stats, node)->time_spent =
396 							ktime_set(0, 0);
397 
398 		clk->current_freq_stats = freq_stats_insert(
399 						&clk->freq_stats_table,
400 						clk_get_rate(clk));
401 
402 		if (clk->enable_count > 0)
403 			clk->start_time = ktime_get();
404 	} else {
405 		if (clk->enable_count > 0) {
406 			if (!clk->current_freq_stats)
407 				clk->default_freq_time =
408 				ktime_add(clk->default_freq_time,
409 				ktime_sub(ktime_get(), clk->start_time));
410 			else
411 				clk->current_freq_stats->time_spent =
412 				ktime_add(clk->current_freq_stats->time_spent,
413 				ktime_sub(ktime_get(), clk->start_time));
414 
415 			clk->start_time = ktime_set(0, 0);
416 		}
417 	}
418 	hlist_for_each_entry(child, &clk->children, child_node)
419 		clk_traverse_subtree(child, freq_stats_on);
420 }
421 
freq_stats_set(void * data,u64 val)422 static int freq_stats_set(void *data, u64 val)
423 {
424 	struct clk *c;
425 	unsigned long flags;
426 	struct hlist_head **lists = (struct hlist_head **)data;
427 
428 	clk_prepare_lock();
429 	flags = clk_enable_lock();
430 
431 	if (val == 0)
432 		freq_stats_on = 0;
433 	else
434 		freq_stats_on = 1;
435 
436 	for (; *lists; lists++)
437 		hlist_for_each_entry(c, *lists, child_node)
438 			clk_traverse_subtree(c, freq_stats_on);
439 
440 	clk_enable_unlock(flags);
441 	clk_prepare_unlock();
442 
443 	return 0;
444 }
445 DEFINE_SIMPLE_ATTRIBUTE(freq_stats_fops, freq_stats_get,
446 			freq_stats_set, "%llu\n");
447 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
448 
clk_debug_create_one(struct clk * clk,struct dentry * pdentry)449 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
450 {
451 	struct dentry *d;
452 	int ret = -ENOMEM;
453 
454 	if (!clk || !pdentry) {
455 		ret = -EINVAL;
456 		goto out;
457 	}
458 
459 	d = debugfs_create_dir(clk->name, pdentry);
460 	if (!d)
461 		goto out;
462 
463 	clk->dentry = d;
464 
465 	d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
466 			(u32 *)&clk->rate);
467 	if (!d)
468 		goto err_out;
469 
470 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
471 			(u32 *)&clk->accuracy);
472 	if (!d)
473 		goto err_out;
474 
475 	d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
476 			(u32 *)&clk->phase);
477 	if (!d)
478 		goto err_out;
479 
480 	d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
481 			(u32 *)&clk->flags);
482 	if (!d)
483 		goto err_out;
484 
485 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
486 			(u32 *)&clk->prepare_count);
487 	if (!d)
488 		goto err_out;
489 
490 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
491 			(u32 *)&clk->enable_count);
492 	if (!d)
493 		goto err_out;
494 
495 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
496 			(u32 *)&clk->notifier_count);
497 	if (!d)
498 		goto err_out;
499 
500 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
501 	d = debugfs_create_file("frequency_stats_table", S_IRUGO, clk->dentry,
502 			clk, &freq_stats_table_fops);
503 
504 	if (!d)
505 		goto err_out;
506 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
507 
508 	if (clk->ops->debug_init) {
509 		ret = clk->ops->debug_init(clk->hw, clk->dentry);
510 		if (ret)
511 			goto err_out;
512 	}
513 
514 	ret = 0;
515 	goto out;
516 
517 err_out:
518 	debugfs_remove_recursive(clk->dentry);
519 	clk->dentry = NULL;
520 out:
521 	return ret;
522 }
523 
524 /**
525  * clk_debug_register - add a clk node to the debugfs clk tree
526  * @clk: the clk being added to the debugfs clk tree
527  *
528  * Dynamically adds a clk to the debugfs clk tree if debugfs has been
529  * initialized.  Otherwise it bails out early since the debugfs clk tree
530  * will be created lazily by clk_debug_init as part of a late_initcall.
531  */
clk_debug_register(struct clk * clk)532 static int clk_debug_register(struct clk *clk)
533 {
534 	int ret = 0;
535 
536 	mutex_lock(&clk_debug_lock);
537 	hlist_add_head(&clk->debug_node, &clk_debug_list);
538 
539 	if (!inited)
540 		goto unlock;
541 
542 	ret = clk_debug_create_one(clk, rootdir);
543 unlock:
544 	mutex_unlock(&clk_debug_lock);
545 
546 	return ret;
547 }
548 
549  /**
550  * clk_debug_unregister - remove a clk node from the debugfs clk tree
551  * @clk: the clk being removed from the debugfs clk tree
552  *
553  * Dynamically removes a clk and all it's children clk nodes from the
554  * debugfs clk tree if clk->dentry points to debugfs created by
555  * clk_debug_register in __clk_init.
556  */
clk_debug_unregister(struct clk * clk)557 static void clk_debug_unregister(struct clk *clk)
558 {
559 	mutex_lock(&clk_debug_lock);
560 	hlist_del_init(&clk->debug_node);
561 	debugfs_remove_recursive(clk->dentry);
562 	clk->dentry = NULL;
563 	mutex_unlock(&clk_debug_lock);
564 }
565 
clk_debugfs_add_file(struct clk * clk,char * name,umode_t mode,void * data,const struct file_operations * fops)566 struct dentry *clk_debugfs_add_file(struct clk *clk, char *name, umode_t mode,
567 				void *data, const struct file_operations *fops)
568 {
569 	struct dentry *d = NULL;
570 
571 	if (clk->dentry)
572 		d = debugfs_create_file(name, mode, clk->dentry, data, fops);
573 
574 	return d;
575 }
576 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
577 
578 /**
579  * clk_debug_init - lazily create the debugfs clk tree visualization
580  *
581  * clks are often initialized very early during boot before memory can
582  * be dynamically allocated and well before debugfs is setup.
583  * clk_debug_init walks the clk tree hierarchy while holding
584  * prepare_lock and creates the topology as part of a late_initcall,
585  * thus insuring that clks initialized very early will still be
586  * represented in the debugfs clk tree.  This function should only be
587  * called once at boot-time, and all other clks added dynamically will
588  * be done so with clk_debug_register.
589  */
clk_debug_init(void)590 static int __init clk_debug_init(void)
591 {
592 	struct clk *clk;
593 	struct dentry *d;
594 
595 	rootdir = debugfs_create_dir("clk", NULL);
596 
597 	if (!rootdir)
598 		return -ENOMEM;
599 
600 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
601 				&clk_summary_fops);
602 	if (!d)
603 		return -ENOMEM;
604 
605 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
606 				&clk_dump_fops);
607 	if (!d)
608 		return -ENOMEM;
609 
610 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
611 				&orphan_list, &clk_summary_fops);
612 	if (!d)
613 		return -ENOMEM;
614 
615 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
616 				&orphan_list, &clk_dump_fops);
617 	if (!d)
618 		return -ENOMEM;
619 
620 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
621 	d = debugfs_create_file("freq_stats_on", S_IRUGO|S_IWUSR,
622 				rootdir, &all_lists, &freq_stats_fops);
623 	if (!d)
624 		return -ENOMEM;
625 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
626 
627 	mutex_lock(&clk_debug_lock);
628 	hlist_for_each_entry(clk, &clk_debug_list, debug_node)
629 		clk_debug_create_one(clk, rootdir);
630 
631 	inited = 1;
632 	mutex_unlock(&clk_debug_lock);
633 
634 	return 0;
635 }
636 late_initcall(clk_debug_init);
637 #else
clk_debug_register(struct clk * clk)638 static inline int clk_debug_register(struct clk *clk) { return 0; }
clk_debug_reparent(struct clk * clk,struct clk * new_parent)639 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
640 {
641 }
clk_debug_unregister(struct clk * clk)642 static inline void clk_debug_unregister(struct clk *clk)
643 {
644 }
645 #endif
646 
647 /* caller must hold prepare_lock */
clk_unprepare_unused_subtree(struct clk * clk)648 static void clk_unprepare_unused_subtree(struct clk *clk)
649 {
650 	struct clk *child;
651 
652 	if (!clk)
653 		return;
654 
655 	hlist_for_each_entry(child, &clk->children, child_node)
656 		clk_unprepare_unused_subtree(child);
657 
658 	if (clk->prepare_count)
659 		return;
660 
661 	if (clk->flags & CLK_IGNORE_UNUSED)
662 		return;
663 
664 	if (__clk_is_prepared(clk)) {
665 		if (clk->ops->unprepare_unused)
666 			clk->ops->unprepare_unused(clk->hw);
667 		else if (clk->ops->unprepare)
668 			clk->ops->unprepare(clk->hw);
669 	}
670 }
671 
672 /* caller must hold prepare_lock */
clk_disable_unused_subtree(struct clk * clk)673 static void clk_disable_unused_subtree(struct clk *clk)
674 {
675 	struct clk *child;
676 	unsigned long flags;
677 
678 	if (!clk)
679 		goto out;
680 
681 	hlist_for_each_entry(child, &clk->children, child_node)
682 		clk_disable_unused_subtree(child);
683 
684 	flags = clk_enable_lock();
685 
686 	if (clk->enable_count)
687 		goto unlock_out;
688 
689 	if (clk->flags & CLK_IGNORE_UNUSED)
690 		goto unlock_out;
691 
692 	/*
693 	 * some gate clocks have special needs during the disable-unused
694 	 * sequence.  call .disable_unused if available, otherwise fall
695 	 * back to .disable
696 	 */
697 	if (__clk_is_enabled(clk)) {
698 		if (clk->ops->disable_unused)
699 			clk->ops->disable_unused(clk->hw);
700 		else if (clk->ops->disable)
701 			clk->ops->disable(clk->hw);
702 	}
703 
704 unlock_out:
705 	clk_enable_unlock(flags);
706 
707 out:
708 	return;
709 }
710 
711 static bool clk_ignore_unused;
clk_ignore_unused_setup(char * __unused)712 static int __init clk_ignore_unused_setup(char *__unused)
713 {
714 	clk_ignore_unused = true;
715 	return 1;
716 }
717 __setup("clk_ignore_unused", clk_ignore_unused_setup);
718 
clk_disable_unused(void)719 static int clk_disable_unused(void)
720 {
721 	struct clk *clk;
722 
723 	if (clk_ignore_unused) {
724 		pr_warn("clk: Not disabling unused clocks\n");
725 		return 0;
726 	}
727 
728 	clk_prepare_lock();
729 
730 	hlist_for_each_entry(clk, &clk_root_list, child_node)
731 		clk_disable_unused_subtree(clk);
732 
733 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
734 		clk_disable_unused_subtree(clk);
735 
736 	hlist_for_each_entry(clk, &clk_root_list, child_node)
737 		clk_unprepare_unused_subtree(clk);
738 
739 	hlist_for_each_entry(clk, &clk_orphan_list, child_node)
740 		clk_unprepare_unused_subtree(clk);
741 
742 	clk_prepare_unlock();
743 
744 	return 0;
745 }
746 late_initcall_sync(clk_disable_unused);
747 
748 /***    helper functions   ***/
749 
__clk_get_name(struct clk * clk)750 const char *__clk_get_name(struct clk *clk)
751 {
752 	return !clk ? NULL : clk->name;
753 }
754 EXPORT_SYMBOL_GPL(__clk_get_name);
755 
__clk_get_hw(struct clk * clk)756 struct clk_hw *__clk_get_hw(struct clk *clk)
757 {
758 	return !clk ? NULL : clk->hw;
759 }
760 EXPORT_SYMBOL_GPL(__clk_get_hw);
761 
__clk_get_num_parents(struct clk * clk)762 u8 __clk_get_num_parents(struct clk *clk)
763 {
764 	return !clk ? 0 : clk->num_parents;
765 }
766 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
767 
__clk_get_parent(struct clk * clk)768 struct clk *__clk_get_parent(struct clk *clk)
769 {
770 	return !clk ? NULL : clk->parent;
771 }
772 EXPORT_SYMBOL_GPL(__clk_get_parent);
773 
clk_get_parent_by_index(struct clk * clk,u8 index)774 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
775 {
776 	if (!clk || index >= clk->num_parents)
777 		return NULL;
778 	else if (!clk->parents)
779 		return __clk_lookup(clk->parent_names[index]);
780 	else if (!clk->parents[index])
781 		return clk->parents[index] =
782 			__clk_lookup(clk->parent_names[index]);
783 	else
784 		return clk->parents[index];
785 }
786 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
787 
__clk_get_enable_count(struct clk * clk)788 unsigned int __clk_get_enable_count(struct clk *clk)
789 {
790 	return !clk ? 0 : clk->enable_count;
791 }
792 
__clk_get_prepare_count(struct clk * clk)793 unsigned int __clk_get_prepare_count(struct clk *clk)
794 {
795 	return !clk ? 0 : clk->prepare_count;
796 }
797 
__clk_get_rate(struct clk * clk)798 unsigned long __clk_get_rate(struct clk *clk)
799 {
800 	unsigned long ret;
801 
802 	if (!clk) {
803 		ret = 0;
804 		goto out;
805 	}
806 
807 	ret = clk->rate;
808 
809 	if (clk->flags & CLK_IS_ROOT)
810 		goto out;
811 
812 	if (!clk->parent)
813 		ret = 0;
814 
815 out:
816 	return ret;
817 }
818 EXPORT_SYMBOL_GPL(__clk_get_rate);
819 
__clk_get_accuracy(struct clk * clk)820 unsigned long __clk_get_accuracy(struct clk *clk)
821 {
822 	if (!clk)
823 		return 0;
824 
825 	return clk->accuracy;
826 }
827 
__clk_get_flags(struct clk * clk)828 unsigned long __clk_get_flags(struct clk *clk)
829 {
830 	return !clk ? 0 : clk->flags;
831 }
832 EXPORT_SYMBOL_GPL(__clk_get_flags);
833 
__clk_is_prepared(struct clk * clk)834 bool __clk_is_prepared(struct clk *clk)
835 {
836 	int ret;
837 
838 	if (!clk)
839 		return false;
840 
841 	/*
842 	 * .is_prepared is optional for clocks that can prepare
843 	 * fall back to software usage counter if it is missing
844 	 */
845 	if (!clk->ops->is_prepared) {
846 		ret = clk->prepare_count ? 1 : 0;
847 		goto out;
848 	}
849 
850 	ret = clk->ops->is_prepared(clk->hw);
851 out:
852 	return !!ret;
853 }
854 
__clk_is_enabled(struct clk * clk)855 bool __clk_is_enabled(struct clk *clk)
856 {
857 	int ret;
858 
859 	if (!clk)
860 		return false;
861 
862 	/*
863 	 * .is_enabled is only mandatory for clocks that gate
864 	 * fall back to software usage counter if .is_enabled is missing
865 	 */
866 	if (!clk->ops->is_enabled) {
867 		ret = clk->enable_count ? 1 : 0;
868 		goto out;
869 	}
870 
871 	ret = clk->ops->is_enabled(clk->hw);
872 out:
873 	return !!ret;
874 }
875 EXPORT_SYMBOL_GPL(__clk_is_enabled);
876 
__clk_lookup_subtree(const char * name,struct clk * clk)877 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
878 {
879 	struct clk *child;
880 	struct clk *ret;
881 
882 	if (!strcmp(clk->name, name))
883 		return clk;
884 
885 	hlist_for_each_entry(child, &clk->children, child_node) {
886 		ret = __clk_lookup_subtree(name, child);
887 		if (ret)
888 			return ret;
889 	}
890 
891 	return NULL;
892 }
893 
__clk_lookup(const char * name)894 struct clk *__clk_lookup(const char *name)
895 {
896 	struct clk *root_clk;
897 	struct clk *ret;
898 
899 	if (!name)
900 		return NULL;
901 
902 	/* search the 'proper' clk tree first */
903 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
904 		ret = __clk_lookup_subtree(name, root_clk);
905 		if (ret)
906 			return ret;
907 	}
908 
909 	/* if not found, then search the orphan tree */
910 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
911 		ret = __clk_lookup_subtree(name, root_clk);
912 		if (ret)
913 			return ret;
914 	}
915 
916 	return NULL;
917 }
918 
919 /*
920  * Helper for finding best parent to provide a given frequency. This can be used
921  * directly as a determine_rate callback (e.g. for a mux), or from a more
922  * complex clock that may combine a mux with other operations.
923  */
__clk_mux_determine_rate(struct clk_hw * hw,unsigned long rate,unsigned long * best_parent_rate,struct clk ** best_parent_p)924 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
925 			      unsigned long *best_parent_rate,
926 			      struct clk **best_parent_p)
927 {
928 	struct clk *clk = hw->clk, *parent, *best_parent = NULL;
929 	int i, num_parents;
930 	unsigned long parent_rate, best = 0;
931 
932 	/* if NO_REPARENT flag set, pass through to current parent */
933 	if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
934 		parent = clk->parent;
935 		if (clk->flags & CLK_SET_RATE_PARENT)
936 			best = __clk_round_rate(parent, rate);
937 		else if (parent)
938 			best = __clk_get_rate(parent);
939 		else
940 			best = __clk_get_rate(clk);
941 		goto out;
942 	}
943 
944 	/* find the parent that can provide the fastest rate <= rate */
945 	num_parents = clk->num_parents;
946 	for (i = 0; i < num_parents; i++) {
947 		parent = clk_get_parent_by_index(clk, i);
948 		if (!parent)
949 			continue;
950 		if (clk->flags & CLK_SET_RATE_PARENT)
951 			parent_rate = __clk_round_rate(parent, rate);
952 		else
953 			parent_rate = __clk_get_rate(parent);
954 		if (parent_rate <= rate && parent_rate > best) {
955 			best_parent = parent;
956 			best = parent_rate;
957 		}
958 	}
959 
960 out:
961 	if (best_parent)
962 		*best_parent_p = best_parent;
963 	*best_parent_rate = best;
964 
965 	return best;
966 }
967 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
968 
969 /***        clk api        ***/
970 
__clk_unprepare(struct clk * clk)971 void __clk_unprepare(struct clk *clk)
972 {
973 	if (!clk)
974 		return;
975 
976 	if (WARN_ON(clk->prepare_count == 0))
977 		return;
978 
979 	if (--clk->prepare_count > 0)
980 		return;
981 
982 	WARN_ON(clk->enable_count > 0);
983 
984 	if (clk->ops->unprepare)
985 		clk->ops->unprepare(clk->hw);
986 
987 	__clk_unprepare(clk->parent);
988 }
989 
990 /**
991  * clk_unprepare - undo preparation of a clock source
992  * @clk: the clk being unprepared
993  *
994  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
995  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
996  * if the operation may sleep.  One example is a clk which is accessed over
997  * I2c.  In the complex case a clk gate operation may require a fast and a slow
998  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
999  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1000  */
clk_unprepare(struct clk * clk)1001 void clk_unprepare(struct clk *clk)
1002 {
1003 	if (IS_ERR_OR_NULL(clk))
1004 		return;
1005 
1006 	clk_prepare_lock();
1007 	__clk_unprepare(clk);
1008 	clk_prepare_unlock();
1009 }
1010 EXPORT_SYMBOL_GPL(clk_unprepare);
1011 
__clk_prepare(struct clk * clk)1012 int __clk_prepare(struct clk *clk)
1013 {
1014 	int ret = 0;
1015 
1016 	if (!clk)
1017 		return 0;
1018 
1019 	if (clk->prepare_count == 0) {
1020 		ret = __clk_prepare(clk->parent);
1021 		if (ret)
1022 			return ret;
1023 
1024 		if (clk->ops->prepare) {
1025 			ret = clk->ops->prepare(clk->hw);
1026 			if (ret) {
1027 				__clk_unprepare(clk->parent);
1028 				return ret;
1029 			}
1030 		}
1031 	}
1032 
1033 	clk->prepare_count++;
1034 
1035 	return 0;
1036 }
1037 
1038 /**
1039  * clk_prepare - prepare a clock source
1040  * @clk: the clk being prepared
1041  *
1042  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1043  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1044  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1045  * the complex case a clk ungate operation may require a fast and a slow part.
1046  * It is this reason that clk_prepare and clk_enable are not mutually
1047  * exclusive.  In fact clk_prepare must be called before clk_enable.
1048  * Returns 0 on success, -EERROR otherwise.
1049  */
clk_prepare(struct clk * clk)1050 int clk_prepare(struct clk *clk)
1051 {
1052 	int ret;
1053 
1054 	clk_prepare_lock();
1055 	ret = __clk_prepare(clk);
1056 	clk_prepare_unlock();
1057 
1058 	return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(clk_prepare);
1061 
__clk_disable(struct clk * clk)1062 static void __clk_disable(struct clk *clk)
1063 {
1064 	if (!clk)
1065 		return;
1066 
1067 	if (WARN_ON(clk->enable_count == 0))
1068 		return;
1069 
1070 	if (--clk->enable_count > 0)
1071 		return;
1072 
1073 	if (clk->ops->disable)
1074 		clk->ops->disable(clk->hw);
1075 
1076 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
1077 
1078 	if (freq_stats_on) {
1079 		if (!clk->current_freq_stats)
1080 			clk->default_freq_time =
1081 			ktime_add(clk->default_freq_time,
1082 			ktime_sub(ktime_get(), clk->start_time));
1083 		else
1084 			clk->current_freq_stats->time_spent =
1085 			ktime_add(clk->current_freq_stats->time_spent,
1086 			ktime_sub(ktime_get(), clk->start_time));
1087 
1088 		clk->start_time = ktime_set(0, 0);
1089 	}
1090 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
1091 
1092 	__clk_disable(clk->parent);
1093 }
1094 
1095 /**
1096  * clk_disable - gate a clock
1097  * @clk: the clk being gated
1098  *
1099  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1100  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1101  * clk if the operation is fast and will never sleep.  One example is a
1102  * SoC-internal clk which is controlled via simple register writes.  In the
1103  * complex case a clk gate operation may require a fast and a slow part.  It is
1104  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1105  * In fact clk_disable must be called before clk_unprepare.
1106  */
clk_disable(struct clk * clk)1107 void clk_disable(struct clk *clk)
1108 {
1109 	unsigned long flags;
1110 
1111 	if (IS_ERR_OR_NULL(clk))
1112 		return;
1113 
1114 	flags = clk_enable_lock();
1115 	__clk_disable(clk);
1116 	clk_enable_unlock(flags);
1117 }
1118 EXPORT_SYMBOL_GPL(clk_disable);
1119 
__clk_enable(struct clk * clk)1120 static int __clk_enable(struct clk *clk)
1121 {
1122 	int ret = 0;
1123 
1124 	if (!clk)
1125 		return 0;
1126 
1127 	if (WARN_ON(clk->prepare_count == 0))
1128 		return -ESHUTDOWN;
1129 
1130 	if (clk->enable_count == 0) {
1131 		ret = __clk_enable(clk->parent);
1132 
1133 		if (ret)
1134 			return ret;
1135 
1136 		if (clk->ops->enable) {
1137 			ret = clk->ops->enable(clk->hw);
1138 			if (ret) {
1139 				__clk_disable(clk->parent);
1140 				return ret;
1141 			}
1142 		}
1143 
1144 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
1145 	if (freq_stats_on)
1146 		clk->start_time = ktime_get();
1147 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
1148 	}
1149 
1150 	clk->enable_count++;
1151 	return 0;
1152 }
1153 
1154 /**
1155  * clk_enable - ungate a clock
1156  * @clk: the clk being ungated
1157  *
1158  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1159  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1160  * if the operation will never sleep.  One example is a SoC-internal clk which
1161  * is controlled via simple register writes.  In the complex case a clk ungate
1162  * operation may require a fast and a slow part.  It is this reason that
1163  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1164  * must be called before clk_enable.  Returns 0 on success, -EERROR
1165  * otherwise.
1166  */
clk_enable(struct clk * clk)1167 int clk_enable(struct clk *clk)
1168 {
1169 	unsigned long flags;
1170 	int ret;
1171 
1172 	flags = clk_enable_lock();
1173 	ret = __clk_enable(clk);
1174 	clk_enable_unlock(flags);
1175 
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL_GPL(clk_enable);
1179 
1180 /**
1181  * __clk_round_rate - round the given rate for a clk
1182  * @clk: round the rate of this clock
1183  * @rate: the rate which is to be rounded
1184  *
1185  * Caller must hold prepare_lock.  Useful for clk_ops such as .set_rate
1186  */
__clk_round_rate(struct clk * clk,unsigned long rate)1187 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1188 {
1189 	unsigned long parent_rate = 0;
1190 	struct clk *parent;
1191 
1192 	if (!clk)
1193 		return 0;
1194 
1195 	parent = clk->parent;
1196 	if (parent)
1197 		parent_rate = parent->rate;
1198 
1199 	if (clk->ops->determine_rate)
1200 		return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
1201 						&parent);
1202 	else if (clk->ops->round_rate)
1203 		return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1204 	else if (clk->flags & CLK_SET_RATE_PARENT)
1205 		return __clk_round_rate(clk->parent, rate);
1206 	else
1207 		return clk->rate;
1208 }
1209 EXPORT_SYMBOL_GPL(__clk_round_rate);
1210 
1211 /**
1212  * clk_round_rate - round the given rate for a clk
1213  * @clk: the clk for which we are rounding a rate
1214  * @rate: the rate which is to be rounded
1215  *
1216  * Takes in a rate as input and rounds it to a rate that the clk can actually
1217  * use which is then returned.  If clk doesn't support round_rate operation
1218  * then the parent rate is returned.
1219  */
clk_round_rate(struct clk * clk,unsigned long rate)1220 long clk_round_rate(struct clk *clk, unsigned long rate)
1221 {
1222 	unsigned long ret;
1223 
1224 	clk_prepare_lock();
1225 	ret = __clk_round_rate(clk, rate);
1226 	clk_prepare_unlock();
1227 
1228 	return ret;
1229 }
1230 EXPORT_SYMBOL_GPL(clk_round_rate);
1231 
1232 /**
1233  * __clk_notify - call clk notifier chain
1234  * @clk: struct clk * that is changing rate
1235  * @msg: clk notifier type (see include/linux/clk.h)
1236  * @old_rate: old clk rate
1237  * @new_rate: new clk rate
1238  *
1239  * Triggers a notifier call chain on the clk rate-change notification
1240  * for 'clk'.  Passes a pointer to the struct clk and the previous
1241  * and current rates to the notifier callback.  Intended to be called by
1242  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1243  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1244  * a driver returns that.
1245  */
__clk_notify(struct clk * clk,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1246 static int __clk_notify(struct clk *clk, unsigned long msg,
1247 		unsigned long old_rate, unsigned long new_rate)
1248 {
1249 	struct clk_notifier *cn;
1250 	struct clk_notifier_data cnd;
1251 	int ret = NOTIFY_DONE;
1252 
1253 	cnd.clk = clk;
1254 	cnd.old_rate = old_rate;
1255 	cnd.new_rate = new_rate;
1256 
1257 	list_for_each_entry(cn, &clk_notifier_list, node) {
1258 		if (cn->clk == clk) {
1259 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1260 					&cnd);
1261 			break;
1262 		}
1263 	}
1264 
1265 	return ret;
1266 }
1267 
1268 /**
1269  * __clk_recalc_accuracies
1270  * @clk: first clk in the subtree
1271  *
1272  * Walks the subtree of clks starting with clk and recalculates accuracies as
1273  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1274  * callback then it is assumed that the clock will take on the accuracy of it's
1275  * parent.
1276  *
1277  * Caller must hold prepare_lock.
1278  */
__clk_recalc_accuracies(struct clk * clk)1279 static void __clk_recalc_accuracies(struct clk *clk)
1280 {
1281 	unsigned long parent_accuracy = 0;
1282 	struct clk *child;
1283 
1284 	if (clk->parent)
1285 		parent_accuracy = clk->parent->accuracy;
1286 
1287 	if (clk->ops->recalc_accuracy)
1288 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1289 							  parent_accuracy);
1290 	else
1291 		clk->accuracy = parent_accuracy;
1292 
1293 	hlist_for_each_entry(child, &clk->children, child_node)
1294 		__clk_recalc_accuracies(child);
1295 }
1296 
1297 /**
1298  * clk_get_accuracy - return the accuracy of clk
1299  * @clk: the clk whose accuracy is being returned
1300  *
1301  * Simply returns the cached accuracy of the clk, unless
1302  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1303  * issued.
1304  * If clk is NULL then returns 0.
1305  */
clk_get_accuracy(struct clk * clk)1306 long clk_get_accuracy(struct clk *clk)
1307 {
1308 	unsigned long accuracy;
1309 
1310 	clk_prepare_lock();
1311 	if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1312 		__clk_recalc_accuracies(clk);
1313 
1314 	accuracy = __clk_get_accuracy(clk);
1315 	clk_prepare_unlock();
1316 
1317 	return accuracy;
1318 }
1319 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1320 
clk_recalc(struct clk * clk,unsigned long parent_rate)1321 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate)
1322 {
1323 	if (clk->ops->recalc_rate)
1324 		return clk->ops->recalc_rate(clk->hw, parent_rate);
1325 	return parent_rate;
1326 }
1327 
1328 /**
1329  * __clk_recalc_rates
1330  * @clk: first clk in the subtree
1331  * @msg: notification type (see include/linux/clk.h)
1332  *
1333  * Walks the subtree of clks starting with clk and recalculates rates as it
1334  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1335  * it is assumed that the clock will take on the rate of its parent.
1336  *
1337  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1338  * if necessary.
1339  *
1340  * Caller must hold prepare_lock.
1341  */
__clk_recalc_rates(struct clk * clk,unsigned long msg)1342 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1343 {
1344 	unsigned long old_rate;
1345 	unsigned long parent_rate = 0;
1346 	struct clk *child;
1347 
1348 	old_rate = clk->rate;
1349 
1350 	if (clk->parent)
1351 		parent_rate = clk->parent->rate;
1352 
1353 	clk->rate = clk_recalc(clk, parent_rate);
1354 
1355 	/*
1356 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1357 	 * & ABORT_RATE_CHANGE notifiers
1358 	 */
1359 	if (clk->notifier_count && msg)
1360 		__clk_notify(clk, msg, old_rate, clk->rate);
1361 
1362 	hlist_for_each_entry(child, &clk->children, child_node)
1363 		__clk_recalc_rates(child, msg);
1364 }
1365 
1366 /**
1367  * clk_get_rate - return the rate of clk
1368  * @clk: the clk whose rate is being returned
1369  *
1370  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1371  * is set, which means a recalc_rate will be issued.
1372  * If clk is NULL then returns 0.
1373  */
clk_get_rate(struct clk * clk)1374 unsigned long clk_get_rate(struct clk *clk)
1375 {
1376 	unsigned long rate;
1377 
1378 	clk_prepare_lock();
1379 
1380 	if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1381 		__clk_recalc_rates(clk, 0);
1382 
1383 	rate = __clk_get_rate(clk);
1384 	clk_prepare_unlock();
1385 
1386 	return rate;
1387 }
1388 EXPORT_SYMBOL_GPL(clk_get_rate);
1389 
clk_fetch_parent_index(struct clk * clk,struct clk * parent)1390 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1391 {
1392 	int i;
1393 
1394 	if (!clk->parents) {
1395 		clk->parents = kcalloc(clk->num_parents,
1396 					sizeof(struct clk *), GFP_KERNEL);
1397 		if (!clk->parents)
1398 			return -ENOMEM;
1399 	}
1400 
1401 	/*
1402 	 * find index of new parent clock using cached parent ptrs,
1403 	 * or if not yet cached, use string name comparison and cache
1404 	 * them now to avoid future calls to __clk_lookup.
1405 	 */
1406 	for (i = 0; i < clk->num_parents; i++) {
1407 		if (clk->parents[i] == parent)
1408 			return i;
1409 
1410 		if (clk->parents[i])
1411 			continue;
1412 
1413 		if (!strcmp(clk->parent_names[i], parent->name)) {
1414 			clk->parents[i] = __clk_lookup(parent->name);
1415 			return i;
1416 		}
1417 	}
1418 
1419 	return -EINVAL;
1420 }
1421 
clk_reparent(struct clk * clk,struct clk * new_parent)1422 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1423 {
1424 	hlist_del(&clk->child_node);
1425 
1426 	if (new_parent) {
1427 		/* avoid duplicate POST_RATE_CHANGE notifications */
1428 		if (new_parent->new_child == clk)
1429 			new_parent->new_child = NULL;
1430 
1431 		hlist_add_head(&clk->child_node, &new_parent->children);
1432 	} else {
1433 		hlist_add_head(&clk->child_node, &clk_orphan_list);
1434 	}
1435 
1436 	clk->parent = new_parent;
1437 }
1438 
__clk_set_parent_before(struct clk * clk,struct clk * parent)1439 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1440 {
1441 	unsigned long flags;
1442 	struct clk *old_parent = clk->parent;
1443 
1444 	/*
1445 	 * Migrate prepare state between parents and prevent race with
1446 	 * clk_enable().
1447 	 *
1448 	 * If the clock is not prepared, then a race with
1449 	 * clk_enable/disable() is impossible since we already have the
1450 	 * prepare lock (future calls to clk_enable() need to be preceded by
1451 	 * a clk_prepare()).
1452 	 *
1453 	 * If the clock is prepared, migrate the prepared state to the new
1454 	 * parent and also protect against a race with clk_enable() by
1455 	 * forcing the clock and the new parent on.  This ensures that all
1456 	 * future calls to clk_enable() are practically NOPs with respect to
1457 	 * hardware and software states.
1458 	 *
1459 	 * See also: Comment for clk_set_parent() below.
1460 	 */
1461 	if (clk->prepare_count) {
1462 		__clk_prepare(parent);
1463 		clk_enable(parent);
1464 		clk_enable(clk);
1465 	}
1466 
1467 	/* update the clk tree topology */
1468 	flags = clk_enable_lock();
1469 	clk_reparent(clk, parent);
1470 	clk_enable_unlock(flags);
1471 
1472 	return old_parent;
1473 }
1474 
__clk_set_parent_after(struct clk * clk,struct clk * parent,struct clk * old_parent)1475 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1476 		struct clk *old_parent)
1477 {
1478 	/*
1479 	 * Finish the migration of prepare state and undo the changes done
1480 	 * for preventing a race with clk_enable().
1481 	 */
1482 	if (clk->prepare_count) {
1483 		clk_disable(clk);
1484 		clk_disable(old_parent);
1485 		__clk_unprepare(old_parent);
1486 	}
1487 }
1488 
__clk_set_parent(struct clk * clk,struct clk * parent,u8 p_index)1489 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1490 {
1491 	unsigned long flags;
1492 	int ret = 0;
1493 	struct clk *old_parent;
1494 
1495 	old_parent = __clk_set_parent_before(clk, parent);
1496 
1497 	/* change clock input source */
1498 	if (parent && clk->ops->set_parent)
1499 		ret = clk->ops->set_parent(clk->hw, p_index);
1500 
1501 	if (ret) {
1502 		flags = clk_enable_lock();
1503 		clk_reparent(clk, old_parent);
1504 		clk_enable_unlock(flags);
1505 
1506 		if (clk->prepare_count) {
1507 			clk_disable(clk);
1508 			clk_disable(parent);
1509 			__clk_unprepare(parent);
1510 		}
1511 		return ret;
1512 	}
1513 
1514 	__clk_set_parent_after(clk, parent, old_parent);
1515 
1516 	return 0;
1517 }
1518 
1519 /**
1520  * __clk_speculate_rates
1521  * @clk: first clk in the subtree
1522  * @parent_rate: the "future" rate of clk's parent
1523  *
1524  * Walks the subtree of clks starting with clk, speculating rates as it
1525  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1526  *
1527  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1528  * pre-rate change notifications and returns early if no clks in the
1529  * subtree have subscribed to the notifications.  Note that if a clk does not
1530  * implement the .recalc_rate callback then it is assumed that the clock will
1531  * take on the rate of its parent.
1532  *
1533  * Caller must hold prepare_lock.
1534  */
__clk_speculate_rates(struct clk * clk,unsigned long parent_rate)1535 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1536 {
1537 	struct clk *child;
1538 	unsigned long new_rate;
1539 	int ret = NOTIFY_DONE;
1540 
1541 	new_rate = clk_recalc(clk, parent_rate);
1542 
1543 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1544 	if (clk->notifier_count)
1545 		ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1546 
1547 	if (ret & NOTIFY_STOP_MASK) {
1548 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1549 				__func__, clk->name, ret);
1550 		goto out;
1551 	}
1552 
1553 	hlist_for_each_entry(child, &clk->children, child_node) {
1554 		ret = __clk_speculate_rates(child, new_rate);
1555 		if (ret & NOTIFY_STOP_MASK)
1556 			break;
1557 	}
1558 
1559 out:
1560 	return ret;
1561 }
1562 
clk_calc_subtree(struct clk * clk,unsigned long new_rate,struct clk * new_parent,u8 p_index)1563 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1564 			     struct clk *new_parent, u8 p_index)
1565 {
1566 	struct clk *child;
1567 
1568 	clk->new_rate = new_rate;
1569 	clk->new_parent = new_parent;
1570 	clk->new_parent_index = p_index;
1571 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1572 	clk->new_child = NULL;
1573 	if (new_parent && new_parent != clk->parent)
1574 		new_parent->new_child = clk;
1575 
1576 	hlist_for_each_entry(child, &clk->children, child_node) {
1577 		child->new_rate = clk_recalc(child, new_rate);
1578 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1579 	}
1580 }
1581 
1582 /*
1583  * calculate the new rates returning the topmost clock that has to be
1584  * changed.
1585  */
clk_calc_new_rates(struct clk * clk,unsigned long rate)1586 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1587 {
1588 	struct clk *top = clk;
1589 	struct clk *old_parent, *parent;
1590 	unsigned long best_parent_rate = 0;
1591 	unsigned long new_rate;
1592 	int p_index = 0;
1593 
1594 	/* sanity */
1595 	if (IS_ERR_OR_NULL(clk))
1596 		return NULL;
1597 
1598 	/* save parent rate, if it exists */
1599 	parent = old_parent = clk->parent;
1600 	if (parent)
1601 		best_parent_rate = parent->rate;
1602 
1603 	/* find the closest rate and parent clk/rate */
1604 	if (clk->ops->determine_rate) {
1605 		new_rate = clk->ops->determine_rate(clk->hw, rate,
1606 						    &best_parent_rate,
1607 						    &parent);
1608 	} else if (clk->ops->round_rate) {
1609 		new_rate = clk->ops->round_rate(clk->hw, rate,
1610 						&best_parent_rate);
1611 	} else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1612 		/* pass-through clock without adjustable parent */
1613 		clk->new_rate = clk->rate;
1614 		return NULL;
1615 	} else {
1616 		/* pass-through clock with adjustable parent */
1617 		top = clk_calc_new_rates(parent, rate);
1618 		new_rate = parent->new_rate;
1619 		goto out;
1620 	}
1621 
1622 	/* some clocks must be gated to change parent */
1623 	if (parent != old_parent &&
1624 	    (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1625 		pr_debug("%s: %s not gated but wants to reparent\n",
1626 			 __func__, clk->name);
1627 		return NULL;
1628 	}
1629 
1630 	/* try finding the new parent index */
1631 	if (parent) {
1632 		p_index = clk_fetch_parent_index(clk, parent);
1633 		if (p_index < 0) {
1634 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1635 				 __func__, parent->name, clk->name);
1636 			return NULL;
1637 		}
1638 	}
1639 
1640 	if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1641 	    best_parent_rate != parent->rate)
1642 		top = clk_calc_new_rates(parent, best_parent_rate);
1643 
1644 out:
1645 	clk_calc_subtree(clk, new_rate, parent, p_index);
1646 
1647 	return top;
1648 }
1649 
1650 /*
1651  * Notify about rate changes in a subtree. Always walk down the whole tree
1652  * so that in case of an error we can walk down the whole tree again and
1653  * abort the change.
1654  */
clk_propagate_rate_change(struct clk * clk,unsigned long event)1655 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1656 {
1657 	struct clk *child, *tmp_clk, *fail_clk = NULL;
1658 	int ret = NOTIFY_DONE;
1659 
1660 	if (clk->rate == clk->new_rate)
1661 		return NULL;
1662 
1663 	if (clk->notifier_count) {
1664 		ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1665 		if (ret & NOTIFY_STOP_MASK)
1666 			fail_clk = clk;
1667 	}
1668 
1669 	hlist_for_each_entry(child, &clk->children, child_node) {
1670 		/* Skip children who will be reparented to another clock */
1671 		if (child->new_parent && child->new_parent != clk)
1672 			continue;
1673 		tmp_clk = clk_propagate_rate_change(child, event);
1674 		if (tmp_clk)
1675 			fail_clk = tmp_clk;
1676 	}
1677 
1678 	/* handle the new child who might not be in clk->children yet */
1679 	if (clk->new_child) {
1680 		tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1681 		if (tmp_clk)
1682 			fail_clk = tmp_clk;
1683 	}
1684 
1685 	return fail_clk;
1686 }
1687 
1688 /*
1689  * walk down a subtree and set the new rates notifying the rate
1690  * change on the way
1691  */
clk_change_rate(struct clk * clk)1692 static void clk_change_rate(struct clk *clk)
1693 {
1694 	struct clk *child;
1695 	struct hlist_node *tmp;
1696 	unsigned long old_rate;
1697 	unsigned long best_parent_rate = 0;
1698 	bool skip_set_rate = false;
1699 	struct clk *old_parent;
1700 
1701 	old_rate = clk->rate;
1702 
1703 	if (clk->new_parent)
1704 		best_parent_rate = clk->new_parent->rate;
1705 	else if (clk->parent)
1706 		best_parent_rate = clk->parent->rate;
1707 
1708 	if (clk->new_parent && clk->new_parent != clk->parent) {
1709 		old_parent = __clk_set_parent_before(clk, clk->new_parent);
1710 
1711 		if (clk->ops->set_rate_and_parent) {
1712 			skip_set_rate = true;
1713 			clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1714 					best_parent_rate,
1715 					clk->new_parent_index);
1716 		} else if (clk->ops->set_parent) {
1717 			clk->ops->set_parent(clk->hw, clk->new_parent_index);
1718 		}
1719 
1720 		__clk_set_parent_after(clk, clk->new_parent, old_parent);
1721 	}
1722 
1723 	if (!skip_set_rate && clk->ops->set_rate)
1724 		clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1725 
1726 	clk->rate = clk_recalc(clk, best_parent_rate);
1727 
1728 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
1729 	if (freq_stats_on) {
1730 		if (!ktime_equal(clk->start_time, ktime_set(0, 0))) {
1731 			if (!clk->current_freq_stats)
1732 				clk->default_freq_time =
1733 					ktime_add(clk->default_freq_time,
1734 					ktime_sub(ktime_get(),
1735 					clk->start_time));
1736 			else
1737 				clk->current_freq_stats->time_spent =
1738 					ktime_add(
1739 					clk->current_freq_stats->time_spent,
1740 					ktime_sub(ktime_get(),
1741 					clk->start_time));
1742 		}
1743 
1744 		clk->current_freq_stats = freq_stats_insert(
1745 						&clk->freq_stats_table,
1746 						clk->rate);
1747 
1748 		if (clk->enable_count > 0)
1749 			clk->start_time = ktime_get();
1750 	}
1751 #endif /*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
1752 
1753 
1754 	if (clk->notifier_count && old_rate != clk->rate)
1755 		__clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1756 
1757 	/*
1758 	 * Use safe iteration, as change_rate can actually swap parents
1759 	 * for certain clock types.
1760 	 */
1761 	hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1762 		/* Skip children who will be reparented to another clock */
1763 		if (child->new_parent && child->new_parent != clk)
1764 			continue;
1765 		clk_change_rate(child);
1766 	}
1767 
1768 	/* handle the new child who might not be in clk->children yet */
1769 	if (clk->new_child)
1770 		clk_change_rate(clk->new_child);
1771 }
1772 
1773 /**
1774  * clk_set_rate - specify a new rate for clk
1775  * @clk: the clk whose rate is being changed
1776  * @rate: the new rate for clk
1777  *
1778  * In the simplest case clk_set_rate will only adjust the rate of clk.
1779  *
1780  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1781  * propagate up to clk's parent; whether or not this happens depends on the
1782  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1783  * after calling .round_rate then upstream parent propagation is ignored.  If
1784  * *parent_rate comes back with a new rate for clk's parent then we propagate
1785  * up to clk's parent and set its rate.  Upward propagation will continue
1786  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1787  * .round_rate stops requesting changes to clk's parent_rate.
1788  *
1789  * Rate changes are accomplished via tree traversal that also recalculates the
1790  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1791  *
1792  * Returns 0 on success, -EERROR otherwise.
1793  */
clk_set_rate(struct clk * clk,unsigned long rate)1794 int clk_set_rate(struct clk *clk, unsigned long rate)
1795 {
1796 	struct clk *top, *fail_clk;
1797 	int ret = 0;
1798 
1799 	if (!clk)
1800 		return 0;
1801 
1802 	/* prevent racing with updates to the clock topology */
1803 	clk_prepare_lock();
1804 
1805 	/* bail early if nothing to do */
1806 	if (rate == clk_get_rate(clk))
1807 		goto out;
1808 
1809 	if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1810 		ret = -EBUSY;
1811 		goto out;
1812 	}
1813 
1814 	/* calculate new rates and get the topmost changed clock */
1815 	top = clk_calc_new_rates(clk, rate);
1816 	if (!top) {
1817 		ret = -EINVAL;
1818 		goto out;
1819 	}
1820 
1821 	/* notify that we are about to change rates */
1822 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1823 	if (fail_clk) {
1824 		pr_debug("%s: failed to set %s rate\n", __func__,
1825 				fail_clk->name);
1826 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1827 		ret = -EBUSY;
1828 		goto out;
1829 	}
1830 
1831 	/* change the rates */
1832 	clk_change_rate(top);
1833 
1834 out:
1835 	clk_prepare_unlock();
1836 
1837 	return ret;
1838 }
1839 EXPORT_SYMBOL_GPL(clk_set_rate);
1840 
1841 /**
1842  * clk_get_parent - return the parent of a clk
1843  * @clk: the clk whose parent gets returned
1844  *
1845  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1846  */
clk_get_parent(struct clk * clk)1847 struct clk *clk_get_parent(struct clk *clk)
1848 {
1849 	struct clk *parent;
1850 
1851 	clk_prepare_lock();
1852 	parent = __clk_get_parent(clk);
1853 	clk_prepare_unlock();
1854 
1855 	return parent;
1856 }
1857 EXPORT_SYMBOL_GPL(clk_get_parent);
1858 
1859 /*
1860  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1861  * optional for single-parent clocks.  Always call .get_parent if it is
1862  * available and WARN if it is missing for multi-parent clocks.
1863  *
1864  * For single-parent clocks without .get_parent, first check to see if the
1865  * .parents array exists, and if so use it to avoid an expensive tree
1866  * traversal.  If .parents does not exist then walk the tree with __clk_lookup.
1867  */
__clk_init_parent(struct clk * clk)1868 static struct clk *__clk_init_parent(struct clk *clk)
1869 {
1870 	struct clk *ret = NULL;
1871 	u8 index;
1872 
1873 	/* handle the trivial cases */
1874 
1875 	if (!clk->num_parents)
1876 		goto out;
1877 
1878 	if (clk->num_parents == 1) {
1879 		if (IS_ERR_OR_NULL(clk->parent))
1880 			ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1881 		ret = clk->parent;
1882 		goto out;
1883 	}
1884 
1885 	if (!clk->ops->get_parent) {
1886 		WARN(!clk->ops->get_parent,
1887 			"%s: multi-parent clocks must implement .get_parent\n",
1888 			__func__);
1889 		goto out;
1890 	};
1891 
1892 	/*
1893 	 * Do our best to cache parent clocks in clk->parents.  This prevents
1894 	 * unnecessary and expensive calls to __clk_lookup.  We don't set
1895 	 * clk->parent here; that is done by the calling function
1896 	 */
1897 
1898 	index = clk->ops->get_parent(clk->hw);
1899 
1900 	if (!clk->parents)
1901 		clk->parents =
1902 			kcalloc(clk->num_parents, sizeof(struct clk *),
1903 					GFP_KERNEL);
1904 
1905 	ret = clk_get_parent_by_index(clk, index);
1906 
1907 out:
1908 	return ret;
1909 }
1910 
__clk_reparent(struct clk * clk,struct clk * new_parent)1911 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1912 {
1913 	clk_reparent(clk, new_parent);
1914 	__clk_recalc_accuracies(clk);
1915 	__clk_recalc_rates(clk, POST_RATE_CHANGE);
1916 }
1917 
1918 /**
1919  * clk_set_parent - switch the parent of a mux clk
1920  * @clk: the mux clk whose input we are switching
1921  * @parent: the new input to clk
1922  *
1923  * Re-parent clk to use parent as its new input source.  If clk is in
1924  * prepared state, the clk will get enabled for the duration of this call. If
1925  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1926  * that, the reparenting is glitchy in hardware, etc), use the
1927  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1928  *
1929  * After successfully changing clk's parent clk_set_parent will update the
1930  * clk topology, sysfs topology and propagate rate recalculation via
1931  * __clk_recalc_rates.
1932  *
1933  * Returns 0 on success, -EERROR otherwise.
1934  */
clk_set_parent(struct clk * clk,struct clk * parent)1935 int clk_set_parent(struct clk *clk, struct clk *parent)
1936 {
1937 	int ret = 0;
1938 	int p_index = 0;
1939 	unsigned long p_rate = 0;
1940 
1941 	if (!clk)
1942 		return 0;
1943 
1944 	/* verify ops for for multi-parent clks */
1945 	if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1946 		return -ENOSYS;
1947 
1948 	/* prevent racing with updates to the clock topology */
1949 	clk_prepare_lock();
1950 
1951 	if (clk->parent == parent)
1952 		goto out;
1953 
1954 	/* check that we are allowed to re-parent if the clock is in use */
1955 	if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1956 		ret = -EBUSY;
1957 		goto out;
1958 	}
1959 
1960 	/* try finding the new parent index */
1961 	if (parent) {
1962 		p_index = clk_fetch_parent_index(clk, parent);
1963 		p_rate = parent->rate;
1964 		if (p_index < 0) {
1965 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1966 					__func__, parent->name, clk->name);
1967 			ret = p_index;
1968 			goto out;
1969 		}
1970 	}
1971 
1972 	/* propagate PRE_RATE_CHANGE notifications */
1973 	ret = __clk_speculate_rates(clk, p_rate);
1974 
1975 	/* abort if a driver objects */
1976 	if (ret & NOTIFY_STOP_MASK)
1977 		goto out;
1978 
1979 	/* do the re-parent */
1980 	ret = __clk_set_parent(clk, parent, p_index);
1981 
1982 	/* propagate rate an accuracy recalculation accordingly */
1983 	if (ret) {
1984 		__clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1985 	} else {
1986 		__clk_recalc_rates(clk, POST_RATE_CHANGE);
1987 		__clk_recalc_accuracies(clk);
1988 	}
1989 
1990 out:
1991 	clk_prepare_unlock();
1992 
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL_GPL(clk_set_parent);
1996 
1997 /**
1998  * clk_set_phase - adjust the phase shift of a clock signal
1999  * @clk: clock signal source
2000  * @degrees: number of degrees the signal is shifted
2001  *
2002  * Shifts the phase of a clock signal by the specified
2003  * degrees. Returns 0 on success, -EERROR otherwise.
2004  *
2005  * This function makes no distinction about the input or reference
2006  * signal that we adjust the clock signal phase against. For example
2007  * phase locked-loop clock signal generators we may shift phase with
2008  * respect to feedback clock signal input, but for other cases the
2009  * clock phase may be shifted with respect to some other, unspecified
2010  * signal.
2011  *
2012  * Additionally the concept of phase shift does not propagate through
2013  * the clock tree hierarchy, which sets it apart from clock rates and
2014  * clock accuracy. A parent clock phase attribute does not have an
2015  * impact on the phase attribute of a child clock.
2016  */
clk_set_phase(struct clk * clk,int degrees)2017 int clk_set_phase(struct clk *clk, int degrees)
2018 {
2019 	int ret = 0;
2020 
2021 	if (!clk)
2022 		goto out;
2023 
2024 	/* sanity check degrees */
2025 	degrees %= 360;
2026 	if (degrees < 0)
2027 		degrees += 360;
2028 
2029 	clk_prepare_lock();
2030 
2031 	if (!clk->ops->set_phase)
2032 		goto out_unlock;
2033 
2034 	ret = clk->ops->set_phase(clk->hw, degrees);
2035 
2036 	if (!ret)
2037 		clk->phase = degrees;
2038 
2039 out_unlock:
2040 	clk_prepare_unlock();
2041 
2042 out:
2043 	return ret;
2044 }
2045 
2046 /**
2047  * clk_get_phase - return the phase shift of a clock signal
2048  * @clk: clock signal source
2049  *
2050  * Returns the phase shift of a clock node in degrees, otherwise returns
2051  * -EERROR.
2052  */
clk_get_phase(struct clk * clk)2053 int clk_get_phase(struct clk *clk)
2054 {
2055 	int ret = 0;
2056 
2057 	if (!clk)
2058 		goto out;
2059 
2060 	clk_prepare_lock();
2061 	ret = clk->phase;
2062 	clk_prepare_unlock();
2063 
2064 out:
2065 	return ret;
2066 }
2067 
2068 /**
2069  * __clk_init - initialize the data structures in a struct clk
2070  * @dev:	device initializing this clk, placeholder for now
2071  * @clk:	clk being initialized
2072  *
2073  * Initializes the lists in struct clk, queries the hardware for the
2074  * parent and rate and sets them both.
2075  */
__clk_init(struct device * dev,struct clk * clk)2076 int __clk_init(struct device *dev, struct clk *clk)
2077 {
2078 	int i, ret = 0;
2079 	struct clk *orphan;
2080 	struct hlist_node *tmp2;
2081 
2082 	if (!clk)
2083 		return -EINVAL;
2084 
2085 	clk_prepare_lock();
2086 
2087 	/* check to see if a clock with this name is already registered */
2088 	if (__clk_lookup(clk->name)) {
2089 		pr_debug("%s: clk %s already initialized\n",
2090 				__func__, clk->name);
2091 		ret = -EEXIST;
2092 		goto out;
2093 	}
2094 
2095 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2096 	if (clk->ops->set_rate &&
2097 	    !((clk->ops->round_rate || clk->ops->determine_rate) &&
2098 	      clk->ops->recalc_rate)) {
2099 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2100 				__func__, clk->name);
2101 		ret = -EINVAL;
2102 		goto out;
2103 	}
2104 
2105 	if (clk->ops->set_parent && !clk->ops->get_parent) {
2106 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2107 				__func__, clk->name);
2108 		ret = -EINVAL;
2109 		goto out;
2110 	}
2111 
2112 	if (clk->ops->set_rate_and_parent &&
2113 			!(clk->ops->set_parent && clk->ops->set_rate)) {
2114 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2115 				__func__, clk->name);
2116 		ret = -EINVAL;
2117 		goto out;
2118 	}
2119 
2120 	/* throw a WARN if any entries in parent_names are NULL */
2121 	for (i = 0; i < clk->num_parents; i++)
2122 		WARN(!clk->parent_names[i],
2123 				"%s: invalid NULL in %s's .parent_names\n",
2124 				__func__, clk->name);
2125 
2126 	/*
2127 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2128 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2129 	 * in to clk_init during early boot; thus any access to clk->parents[]
2130 	 * must always check for a NULL pointer and try to populate it if
2131 	 * necessary.
2132 	 *
2133 	 * If clk->parents is not NULL we skip this entire block.  This allows
2134 	 * for clock drivers to statically initialize clk->parents.
2135 	 */
2136 	if (clk->num_parents > 1 && !clk->parents) {
2137 		clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2138 					GFP_KERNEL);
2139 		/*
2140 		 * __clk_lookup returns NULL for parents that have not been
2141 		 * clk_init'd; thus any access to clk->parents[] must check
2142 		 * for a NULL pointer.  We can always perform lazy lookups for
2143 		 * missing parents later on.
2144 		 */
2145 		if (clk->parents)
2146 			for (i = 0; i < clk->num_parents; i++)
2147 				clk->parents[i] =
2148 					__clk_lookup(clk->parent_names[i]);
2149 	}
2150 
2151 	clk->parent = __clk_init_parent(clk);
2152 
2153 	/*
2154 	 * Populate clk->parent if parent has already been __clk_init'd.  If
2155 	 * parent has not yet been __clk_init'd then place clk in the orphan
2156 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2157 	 * clk list.
2158 	 *
2159 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2160 	 * clocks and re-parent any that are children of the clock currently
2161 	 * being clk_init'd.
2162 	 */
2163 	if (clk->parent)
2164 		hlist_add_head(&clk->child_node,
2165 				&clk->parent->children);
2166 	else if (clk->flags & CLK_IS_ROOT)
2167 		hlist_add_head(&clk->child_node, &clk_root_list);
2168 	else
2169 		hlist_add_head(&clk->child_node, &clk_orphan_list);
2170 
2171 	/*
2172 	 * Set clk's accuracy.  The preferred method is to use
2173 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2174 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2175 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2176 	 * clock).
2177 	 */
2178 	if (clk->ops->recalc_accuracy)
2179 		clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2180 					__clk_get_accuracy(clk->parent));
2181 	else if (clk->parent)
2182 		clk->accuracy = clk->parent->accuracy;
2183 	else
2184 		clk->accuracy = 0;
2185 
2186 	/*
2187 	 * Set clk's phase.
2188 	 * Since a phase is by definition relative to its parent, just
2189 	 * query the current clock phase, or just assume it's in phase.
2190 	 */
2191 	if (clk->ops->get_phase)
2192 		clk->phase = clk->ops->get_phase(clk->hw);
2193 	else
2194 		clk->phase = 0;
2195 
2196 	/*
2197 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2198 	 * simple clocks and lazy developers the default fallback is to use the
2199 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2200 	 * then rate is set to zero.
2201 	 */
2202 	if (clk->ops->recalc_rate)
2203 		clk->rate = clk->ops->recalc_rate(clk->hw,
2204 				__clk_get_rate(clk->parent));
2205 	else if (clk->parent)
2206 		clk->rate = clk->parent->rate;
2207 	else
2208 		clk->rate = 0;
2209 
2210 	/*
2211 	 * walk the list of orphan clocks and reparent any that are children of
2212 	 * this clock
2213 	 */
2214 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2215 		if (orphan->num_parents && orphan->ops->get_parent) {
2216 			i = orphan->ops->get_parent(orphan->hw);
2217 			if (!strcmp(clk->name, orphan->parent_names[i]))
2218 				__clk_reparent(orphan, clk);
2219 			continue;
2220 		}
2221 
2222 		for (i = 0; i < orphan->num_parents; i++)
2223 			if (!strcmp(clk->name, orphan->parent_names[i])) {
2224 				__clk_reparent(orphan, clk);
2225 				break;
2226 			}
2227 	 }
2228 
2229 	/*
2230 	 * optional platform-specific magic
2231 	 *
2232 	 * The .init callback is not used by any of the basic clock types, but
2233 	 * exists for weird hardware that must perform initialization magic.
2234 	 * Please consider other ways of solving initialization problems before
2235 	 * using this callback, as its use is discouraged.
2236 	 */
2237 	if (clk->ops->init)
2238 		clk->ops->init(clk->hw);
2239 
2240 	kref_init(&clk->ref);
2241 out:
2242 	clk_prepare_unlock();
2243 
2244 	if (!ret)
2245 		clk_debug_register(clk);
2246 
2247 	return ret;
2248 }
2249 
2250 /**
2251  * __clk_register - register a clock and return a cookie.
2252  *
2253  * Same as clk_register, except that the .clk field inside hw shall point to a
2254  * preallocated (generally statically allocated) struct clk. None of the fields
2255  * of the struct clk need to be initialized.
2256  *
2257  * The data pointed to by .init and .clk field shall NOT be marked as init
2258  * data.
2259  *
2260  * __clk_register is only exposed via clk-private.h and is intended for use with
2261  * very large numbers of clocks that need to be statically initialized.  It is
2262  * a layering violation to include clk-private.h from any code which implements
2263  * a clock's .ops; as such any statically initialized clock data MUST be in a
2264  * separate C file from the logic that implements its operations.  Returns 0
2265  * on success, otherwise an error code.
2266  */
__clk_register(struct device * dev,struct clk_hw * hw)2267 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
2268 {
2269 	int ret;
2270 	struct clk *clk;
2271 
2272 	clk = hw->clk;
2273 	clk->name = hw->init->name;
2274 	clk->ops = hw->init->ops;
2275 	clk->hw = hw;
2276 	clk->flags = hw->init->flags;
2277 	clk->parent_names = hw->init->parent_names;
2278 	clk->num_parents = hw->init->num_parents;
2279 	if (dev && dev->driver)
2280 		clk->owner = dev->driver->owner;
2281 	else
2282 		clk->owner = NULL;
2283 
2284 	ret = __clk_init(dev, clk);
2285 	if (ret)
2286 		return ERR_PTR(ret);
2287 
2288 	return clk;
2289 }
2290 EXPORT_SYMBOL_GPL(__clk_register);
2291 
2292 /**
2293  * clk_register - allocate a new clock, register it and return an opaque cookie
2294  * @dev: device that is registering this clock
2295  * @hw: link to hardware-specific clock data
2296  *
2297  * clk_register is the primary interface for populating the clock tree with new
2298  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2299  * cannot be dereferenced by driver code but may be used in conjuction with the
2300  * rest of the clock API.  In the event of an error clk_register will return an
2301  * error code; drivers must test for an error code after calling clk_register.
2302  */
clk_register(struct device * dev,struct clk_hw * hw)2303 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2304 {
2305 	int i, ret;
2306 	struct clk *clk;
2307 
2308 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2309 	if (!clk) {
2310 		pr_err("%s: could not allocate clk\n", __func__);
2311 		ret = -ENOMEM;
2312 		goto fail_out;
2313 	}
2314 
2315 	clk->name = kstrdup(hw->init->name, GFP_KERNEL);
2316 	if (!clk->name) {
2317 		pr_err("%s: could not allocate clk->name\n", __func__);
2318 		ret = -ENOMEM;
2319 		goto fail_name;
2320 	}
2321 	clk->ops = hw->init->ops;
2322 	if (dev && dev->driver)
2323 		clk->owner = dev->driver->owner;
2324 	clk->hw = hw;
2325 	clk->flags = hw->init->flags;
2326 	clk->num_parents = hw->init->num_parents;
2327 	hw->clk = clk;
2328 
2329 	/* allocate local copy in case parent_names is __initdata */
2330 	clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2331 					GFP_KERNEL);
2332 
2333 	if (!clk->parent_names) {
2334 		pr_err("%s: could not allocate clk->parent_names\n", __func__);
2335 		ret = -ENOMEM;
2336 		goto fail_parent_names;
2337 	}
2338 
2339 
2340 	/* copy each string name in case parent_names is __initdata */
2341 	for (i = 0; i < clk->num_parents; i++) {
2342 		clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2343 						GFP_KERNEL);
2344 		if (!clk->parent_names[i]) {
2345 			pr_err("%s: could not copy parent_names\n", __func__);
2346 			ret = -ENOMEM;
2347 			goto fail_parent_names_copy;
2348 		}
2349 	}
2350 
2351 	ret = __clk_init(dev, clk);
2352 	if (!ret)
2353 		return clk;
2354 
2355 fail_parent_names_copy:
2356 	while (--i >= 0)
2357 		kfree(clk->parent_names[i]);
2358 	kfree(clk->parent_names);
2359 fail_parent_names:
2360 	kfree(clk->name);
2361 fail_name:
2362 	kfree(clk);
2363 fail_out:
2364 	return ERR_PTR(ret);
2365 }
2366 EXPORT_SYMBOL_GPL(clk_register);
2367 
2368 /*
2369  * Free memory allocated for a clock.
2370  * Caller must hold prepare_lock.
2371  */
__clk_release(struct kref * ref)2372 static void __clk_release(struct kref *ref)
2373 {
2374 	struct clk *clk = container_of(ref, struct clk, ref);
2375 	int i = clk->num_parents;
2376 
2377 	kfree(clk->parents);
2378 	while (--i >= 0)
2379 		kfree(clk->parent_names[i]);
2380 
2381 	kfree(clk->parent_names);
2382 	kfree(clk->name);
2383 
2384 #ifdef CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING
2385 	free_tree(clk->freq_stats_table.rb_node);
2386 #endif/*CONFIG_COMMON_CLK_FREQ_STATS_ACCOUNTING*/
2387 
2388 	kfree(clk);
2389 }
2390 
2391 /*
2392  * Empty clk_ops for unregistered clocks. These are used temporarily
2393  * after clk_unregister() was called on a clock and until last clock
2394  * consumer calls clk_put() and the struct clk object is freed.
2395  */
clk_nodrv_prepare_enable(struct clk_hw * hw)2396 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2397 {
2398 	return -ENXIO;
2399 }
2400 
clk_nodrv_disable_unprepare(struct clk_hw * hw)2401 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2402 {
2403 	WARN_ON_ONCE(1);
2404 }
2405 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)2406 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2407 					unsigned long parent_rate)
2408 {
2409 	return -ENXIO;
2410 }
2411 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)2412 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2413 {
2414 	return -ENXIO;
2415 }
2416 
2417 static const struct clk_ops clk_nodrv_ops = {
2418 	.enable		= clk_nodrv_prepare_enable,
2419 	.disable	= clk_nodrv_disable_unprepare,
2420 	.prepare	= clk_nodrv_prepare_enable,
2421 	.unprepare	= clk_nodrv_disable_unprepare,
2422 	.set_rate	= clk_nodrv_set_rate,
2423 	.set_parent	= clk_nodrv_set_parent,
2424 };
2425 
2426 /**
2427  * clk_unregister - unregister a currently registered clock
2428  * @clk: clock to unregister
2429  */
clk_unregister(struct clk * clk)2430 void clk_unregister(struct clk *clk)
2431 {
2432 	unsigned long flags;
2433 
2434 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2435 		return;
2436 
2437 	clk_debug_unregister(clk);
2438 
2439 	clk_prepare_lock();
2440 
2441 	if (clk->ops == &clk_nodrv_ops) {
2442 		pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2443 		return;
2444 	}
2445 	/*
2446 	 * Assign empty clock ops for consumers that might still hold
2447 	 * a reference to this clock.
2448 	 */
2449 	flags = clk_enable_lock();
2450 	clk->ops = &clk_nodrv_ops;
2451 	clk_enable_unlock(flags);
2452 
2453 	if (!hlist_empty(&clk->children)) {
2454 		struct clk *child;
2455 		struct hlist_node *t;
2456 
2457 		/* Reparent all children to the orphan list. */
2458 		hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2459 			clk_set_parent(child, NULL);
2460 	}
2461 
2462 	hlist_del_init(&clk->child_node);
2463 
2464 	if (clk->prepare_count)
2465 		pr_warn("%s: unregistering prepared clock: %s\n",
2466 					__func__, clk->name);
2467 	kref_put(&clk->ref, __clk_release);
2468 
2469 	clk_prepare_unlock();
2470 }
2471 EXPORT_SYMBOL_GPL(clk_unregister);
2472 
devm_clk_release(struct device * dev,void * res)2473 static void devm_clk_release(struct device *dev, void *res)
2474 {
2475 	clk_unregister(*(struct clk **)res);
2476 }
2477 
2478 /**
2479  * devm_clk_register - resource managed clk_register()
2480  * @dev: device that is registering this clock
2481  * @hw: link to hardware-specific clock data
2482  *
2483  * Managed clk_register(). Clocks returned from this function are
2484  * automatically clk_unregister()ed on driver detach. See clk_register() for
2485  * more information.
2486  */
devm_clk_register(struct device * dev,struct clk_hw * hw)2487 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2488 {
2489 	struct clk *clk;
2490 	struct clk **clkp;
2491 
2492 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2493 	if (!clkp)
2494 		return ERR_PTR(-ENOMEM);
2495 
2496 	clk = clk_register(dev, hw);
2497 	if (!IS_ERR(clk)) {
2498 		*clkp = clk;
2499 		devres_add(dev, clkp);
2500 	} else {
2501 		devres_free(clkp);
2502 	}
2503 
2504 	return clk;
2505 }
2506 EXPORT_SYMBOL_GPL(devm_clk_register);
2507 
devm_clk_match(struct device * dev,void * res,void * data)2508 static int devm_clk_match(struct device *dev, void *res, void *data)
2509 {
2510 	struct clk *c = res;
2511 	if (WARN_ON(!c))
2512 		return 0;
2513 	return c == data;
2514 }
2515 
2516 /**
2517  * devm_clk_unregister - resource managed clk_unregister()
2518  * @clk: clock to unregister
2519  *
2520  * Deallocate a clock allocated with devm_clk_register(). Normally
2521  * this function will not need to be called and the resource management
2522  * code will ensure that the resource is freed.
2523  */
devm_clk_unregister(struct device * dev,struct clk * clk)2524 void devm_clk_unregister(struct device *dev, struct clk *clk)
2525 {
2526 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2527 }
2528 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2529 
2530 /*
2531  * clkdev helpers
2532  */
__clk_get(struct clk * clk)2533 int __clk_get(struct clk *clk)
2534 {
2535 	if (clk) {
2536 		if (!try_module_get(clk->owner))
2537 			return 0;
2538 
2539 		kref_get(&clk->ref);
2540 	}
2541 	return 1;
2542 }
2543 
__clk_put(struct clk * clk)2544 void __clk_put(struct clk *clk)
2545 {
2546 	struct module *owner;
2547 
2548 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2549 		return;
2550 
2551 	clk_prepare_lock();
2552 	owner = clk->owner;
2553 	kref_put(&clk->ref, __clk_release);
2554 	clk_prepare_unlock();
2555 
2556 	module_put(owner);
2557 }
2558 
2559 /***        clk rate change notifiers        ***/
2560 
2561 /**
2562  * clk_notifier_register - add a clk rate change notifier
2563  * @clk: struct clk * to watch
2564  * @nb: struct notifier_block * with callback info
2565  *
2566  * Request notification when clk's rate changes.  This uses an SRCU
2567  * notifier because we want it to block and notifier unregistrations are
2568  * uncommon.  The callbacks associated with the notifier must not
2569  * re-enter into the clk framework by calling any top-level clk APIs;
2570  * this will cause a nested prepare_lock mutex.
2571  *
2572  * In all notification cases cases (pre, post and abort rate change) the
2573  * original clock rate is passed to the callback via struct
2574  * clk_notifier_data.old_rate and the new frequency is passed via struct
2575  * clk_notifier_data.new_rate.
2576  *
2577  * clk_notifier_register() must be called from non-atomic context.
2578  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2579  * allocation failure; otherwise, passes along the return value of
2580  * srcu_notifier_chain_register().
2581  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)2582 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2583 {
2584 	struct clk_notifier *cn;
2585 	int ret = -ENOMEM;
2586 
2587 	if (!clk || !nb)
2588 		return -EINVAL;
2589 
2590 	clk_prepare_lock();
2591 
2592 	/* search the list of notifiers for this clk */
2593 	list_for_each_entry(cn, &clk_notifier_list, node)
2594 		if (cn->clk == clk)
2595 			break;
2596 
2597 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2598 	if (cn->clk != clk) {
2599 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2600 		if (!cn)
2601 			goto out;
2602 
2603 		cn->clk = clk;
2604 		srcu_init_notifier_head(&cn->notifier_head);
2605 
2606 		list_add(&cn->node, &clk_notifier_list);
2607 	}
2608 
2609 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2610 
2611 	clk->notifier_count++;
2612 
2613 out:
2614 	clk_prepare_unlock();
2615 
2616 	return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(clk_notifier_register);
2619 
2620 /**
2621  * clk_notifier_unregister - remove a clk rate change notifier
2622  * @clk: struct clk *
2623  * @nb: struct notifier_block * with callback info
2624  *
2625  * Request no further notification for changes to 'clk' and frees memory
2626  * allocated in clk_notifier_register.
2627  *
2628  * Returns -EINVAL if called with null arguments; otherwise, passes
2629  * along the return value of srcu_notifier_chain_unregister().
2630  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)2631 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2632 {
2633 	struct clk_notifier *cn = NULL;
2634 	int ret = -EINVAL;
2635 
2636 	if (!clk || !nb)
2637 		return -EINVAL;
2638 
2639 	clk_prepare_lock();
2640 
2641 	list_for_each_entry(cn, &clk_notifier_list, node)
2642 		if (cn->clk == clk)
2643 			break;
2644 
2645 	if (cn->clk == clk) {
2646 		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2647 
2648 		clk->notifier_count--;
2649 
2650 		/* XXX the notifier code should handle this better */
2651 		if (!cn->notifier_head.head) {
2652 			srcu_cleanup_notifier_head(&cn->notifier_head);
2653 			list_del(&cn->node);
2654 			kfree(cn);
2655 		}
2656 
2657 	} else {
2658 		ret = -ENOENT;
2659 	}
2660 
2661 	clk_prepare_unlock();
2662 
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2666 
2667 #ifdef CONFIG_OF
2668 /**
2669  * struct of_clk_provider - Clock provider registration structure
2670  * @link: Entry in global list of clock providers
2671  * @node: Pointer to device tree node of clock provider
2672  * @get: Get clock callback.  Returns NULL or a struct clk for the
2673  *       given clock specifier
2674  * @data: context pointer to be passed into @get callback
2675  */
2676 struct of_clk_provider {
2677 	struct list_head link;
2678 
2679 	struct device_node *node;
2680 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2681 	void *data;
2682 };
2683 
2684 static const struct of_device_id __clk_of_table_sentinel
2685 	__used __section(__clk_of_table_end);
2686 
2687 static LIST_HEAD(of_clk_providers);
2688 static DEFINE_MUTEX(of_clk_mutex);
2689 
2690 /* of_clk_provider list locking helpers */
of_clk_lock(void)2691 void of_clk_lock(void)
2692 {
2693 	mutex_lock(&of_clk_mutex);
2694 }
2695 
of_clk_unlock(void)2696 void of_clk_unlock(void)
2697 {
2698 	mutex_unlock(&of_clk_mutex);
2699 }
2700 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)2701 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2702 				     void *data)
2703 {
2704 	return data;
2705 }
2706 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2707 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)2708 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2709 {
2710 	struct clk_onecell_data *clk_data = data;
2711 	unsigned int idx = clkspec->args[0];
2712 
2713 	if (idx >= clk_data->clk_num) {
2714 		pr_err("%s: invalid clock index %d\n", __func__, idx);
2715 		return ERR_PTR(-EINVAL);
2716 	}
2717 
2718 	return clk_data->clks[idx];
2719 }
2720 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2721 
2722 /**
2723  * of_clk_add_provider() - Register a clock provider for a node
2724  * @np: Device node pointer associated with clock provider
2725  * @clk_src_get: callback for decoding clock
2726  * @data: context pointer for @clk_src_get callback.
2727  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)2728 int of_clk_add_provider(struct device_node *np,
2729 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2730 						   void *data),
2731 			void *data)
2732 {
2733 	struct of_clk_provider *cp;
2734 	int ret;
2735 
2736 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2737 	if (!cp)
2738 		return -ENOMEM;
2739 
2740 	cp->node = of_node_get(np);
2741 	cp->data = data;
2742 	cp->get = clk_src_get;
2743 
2744 	mutex_lock(&of_clk_mutex);
2745 	list_add(&cp->link, &of_clk_providers);
2746 	mutex_unlock(&of_clk_mutex);
2747 	pr_debug("Added clock from %s\n", np->full_name);
2748 
2749 	ret = of_clk_set_defaults(np, true);
2750 	if (ret < 0)
2751 		of_clk_del_provider(np);
2752 
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2756 
2757 /**
2758  * of_clk_del_provider() - Remove a previously registered clock provider
2759  * @np: Device node pointer associated with clock provider
2760  */
of_clk_del_provider(struct device_node * np)2761 void of_clk_del_provider(struct device_node *np)
2762 {
2763 	struct of_clk_provider *cp;
2764 
2765 	mutex_lock(&of_clk_mutex);
2766 	list_for_each_entry(cp, &of_clk_providers, link) {
2767 		if (cp->node == np) {
2768 			list_del(&cp->link);
2769 			of_node_put(cp->node);
2770 			kfree(cp);
2771 			break;
2772 		}
2773 	}
2774 	mutex_unlock(&of_clk_mutex);
2775 }
2776 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2777 
__of_clk_get_from_provider(struct of_phandle_args * clkspec)2778 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2779 {
2780 	struct of_clk_provider *provider;
2781 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2782 
2783 	/* Check if we have such a provider in our array */
2784 	list_for_each_entry(provider, &of_clk_providers, link) {
2785 		if (provider->node == clkspec->np)
2786 			clk = provider->get(clkspec, provider->data);
2787 		if (!IS_ERR(clk))
2788 			break;
2789 	}
2790 
2791 	return clk;
2792 }
2793 
of_clk_get_from_provider(struct of_phandle_args * clkspec)2794 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2795 {
2796 	struct clk *clk;
2797 
2798 	mutex_lock(&of_clk_mutex);
2799 	clk = __of_clk_get_from_provider(clkspec);
2800 	mutex_unlock(&of_clk_mutex);
2801 
2802 	return clk;
2803 }
2804 
of_clk_get_parent_count(struct device_node * np)2805 int of_clk_get_parent_count(struct device_node *np)
2806 {
2807 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2808 }
2809 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2810 
of_clk_get_parent_name(struct device_node * np,int index)2811 const char *of_clk_get_parent_name(struct device_node *np, int index)
2812 {
2813 	struct of_phandle_args clkspec;
2814 	struct property *prop;
2815 	const char *clk_name;
2816 	const __be32 *vp;
2817 	u32 pv;
2818 	int rc;
2819 	int count;
2820 
2821 	if (index < 0)
2822 		return NULL;
2823 
2824 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2825 					&clkspec);
2826 	if (rc)
2827 		return NULL;
2828 
2829 	index = clkspec.args_count ? clkspec.args[0] : 0;
2830 	count = 0;
2831 
2832 	/* if there is an indices property, use it to transfer the index
2833 	 * specified into an array offset for the clock-output-names property.
2834 	 */
2835 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2836 		if (index == pv) {
2837 			index = count;
2838 			break;
2839 		}
2840 		count++;
2841 	}
2842 
2843 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
2844 					  index,
2845 					  &clk_name) < 0)
2846 		clk_name = clkspec.np->name;
2847 
2848 	of_node_put(clkspec.np);
2849 	return clk_name;
2850 }
2851 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2852 
2853 struct clock_provider {
2854 	of_clk_init_cb_t clk_init_cb;
2855 	struct device_node *np;
2856 	struct list_head node;
2857 };
2858 
2859 static LIST_HEAD(clk_provider_list);
2860 
2861 /*
2862  * This function looks for a parent clock. If there is one, then it
2863  * checks that the provider for this parent clock was initialized, in
2864  * this case the parent clock will be ready.
2865  */
parent_ready(struct device_node * np)2866 static int parent_ready(struct device_node *np)
2867 {
2868 	int i = 0;
2869 
2870 	while (true) {
2871 		struct clk *clk = of_clk_get(np, i);
2872 
2873 		/* this parent is ready we can check the next one */
2874 		if (!IS_ERR(clk)) {
2875 			clk_put(clk);
2876 			i++;
2877 			continue;
2878 		}
2879 
2880 		/* at least one parent is not ready, we exit now */
2881 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2882 			return 0;
2883 
2884 		/*
2885 		 * Here we make assumption that the device tree is
2886 		 * written correctly. So an error means that there is
2887 		 * no more parent. As we didn't exit yet, then the
2888 		 * previous parent are ready. If there is no clock
2889 		 * parent, no need to wait for them, then we can
2890 		 * consider their absence as being ready
2891 		 */
2892 		return 1;
2893 	}
2894 }
2895 
2896 /**
2897  * of_clk_init() - Scan and init clock providers from the DT
2898  * @matches: array of compatible values and init functions for providers.
2899  *
2900  * This function scans the device tree for matching clock providers
2901  * and calls their initialization functions. It also does it by trying
2902  * to follow the dependencies.
2903  */
of_clk_init(const struct of_device_id * matches)2904 void __init of_clk_init(const struct of_device_id *matches)
2905 {
2906 	const struct of_device_id *match;
2907 	struct device_node *np;
2908 	struct clock_provider *clk_provider, *next;
2909 	bool is_init_done;
2910 	bool force = false;
2911 
2912 	if (!matches)
2913 		matches = &__clk_of_table;
2914 
2915 	/* First prepare the list of the clocks providers */
2916 	for_each_matching_node_and_match(np, matches, &match) {
2917 		struct clock_provider *parent =
2918 			kzalloc(sizeof(struct clock_provider),	GFP_KERNEL);
2919 
2920 		parent->clk_init_cb = match->data;
2921 		parent->np = np;
2922 		list_add_tail(&parent->node, &clk_provider_list);
2923 	}
2924 
2925 	while (!list_empty(&clk_provider_list)) {
2926 		is_init_done = false;
2927 		list_for_each_entry_safe(clk_provider, next,
2928 					&clk_provider_list, node) {
2929 			if (force || parent_ready(clk_provider->np)) {
2930 
2931 				clk_provider->clk_init_cb(clk_provider->np);
2932 				of_clk_set_defaults(clk_provider->np, true);
2933 
2934 				list_del(&clk_provider->node);
2935 				kfree(clk_provider);
2936 				is_init_done = true;
2937 			}
2938 		}
2939 
2940 		/*
2941 		 * We didn't manage to initialize any of the
2942 		 * remaining providers during the last loop, so now we
2943 		 * initialize all the remaining ones unconditionally
2944 		 * in case the clock parent was not mandatory
2945 		 */
2946 		if (!is_init_done)
2947 			force = true;
2948 	}
2949 }
2950 #endif
2951