• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136 
137 #include "net-sysfs.h"
138 
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141 
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly;	/* Taps */
149 static struct list_head offload_base __read_mostly;
150 
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 					 struct net_device *dev,
154 					 struct netdev_notifier_info *info);
155 
156 /*
157  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158  * semaphore.
159  *
160  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161  *
162  * Writers must hold the rtnl semaphore while they loop through the
163  * dev_base_head list, and hold dev_base_lock for writing when they do the
164  * actual updates.  This allows pure readers to access the list even
165  * while a writer is preparing to update it.
166  *
167  * To put it another way, dev_base_lock is held for writing only to
168  * protect against pure readers; the rtnl semaphore provides the
169  * protection against other writers.
170  *
171  * See, for example usages, register_netdevice() and
172  * unregister_netdevice(), which must be called with the rtnl
173  * semaphore held.
174  */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177 
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180 
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183 
184 static seqcount_t devnet_rename_seq;
185 
dev_base_seq_inc(struct net * net)186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	while (++net->dev_base_seq == 0);
189 }
190 
dev_name_hash(struct net * net,const char * name)191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
dev_index_hash(struct net * net,int ifindex)198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
rps_lock(struct softnet_data * sd)203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
rps_unlock(struct softnet_data * sd)210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 /* Device list insertion */
list_netdevice(struct net_device * dev)218 static void list_netdevice(struct net_device *dev)
219 {
220 	struct net *net = dev_net(dev);
221 
222 	ASSERT_RTNL();
223 
224 	write_lock_bh(&dev_base_lock);
225 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 	hlist_add_head_rcu(&dev->index_hlist,
228 			   dev_index_hash(net, dev->ifindex));
229 	write_unlock_bh(&dev_base_lock);
230 
231 	dev_base_seq_inc(net);
232 }
233 
234 /* Device list removal
235  * caller must respect a RCU grace period before freeing/reusing dev
236  */
unlist_netdevice(struct net_device * dev)237 static void unlist_netdevice(struct net_device *dev)
238 {
239 	ASSERT_RTNL();
240 
241 	/* Unlink dev from the device chain */
242 	write_lock_bh(&dev_base_lock);
243 	list_del_rcu(&dev->dev_list);
244 	hlist_del_rcu(&dev->name_hlist);
245 	hlist_del_rcu(&dev->index_hlist);
246 	write_unlock_bh(&dev_base_lock);
247 
248 	dev_base_seq_inc(dev_net(dev));
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264 
265 #ifdef CONFIG_LOCKDEP
266 /*
267  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268  * according to dev->type
269  */
270 static const unsigned short netdev_lock_type[] =
271 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286 
287 static const char *const netdev_lock_name[] =
288 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303 
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306 
netdev_lock_pos(unsigned short dev_type)307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 		if (netdev_lock_type[i] == dev_type)
313 			return i;
314 	/* the last key is used by default */
315 	return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 						 unsigned short dev_type)
320 {
321 	int i;
322 
323 	i = netdev_lock_pos(dev_type);
324 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 				   netdev_lock_name[i]);
326 }
327 
netdev_set_addr_lockdep_class(struct net_device * dev)328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 	int i;
331 
332 	i = netdev_lock_pos(dev->type);
333 	lockdep_set_class_and_name(&dev->addr_list_lock,
334 				   &netdev_addr_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 }
netdev_set_addr_lockdep_class(struct net_device * dev)342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346 
347 /*******************************************************************************
348 
349 		Protocol management and registration routines
350 
351 *******************************************************************************/
352 
353 /*
354  *	Add a protocol ID to the list. Now that the input handler is
355  *	smarter we can dispense with all the messy stuff that used to be
356  *	here.
357  *
358  *	BEWARE!!! Protocol handlers, mangling input packets,
359  *	MUST BE last in hash buckets and checking protocol handlers
360  *	MUST start from promiscuous ptype_all chain in net_bh.
361  *	It is true now, do not change it.
362  *	Explanation follows: if protocol handler, mangling packet, will
363  *	be the first on list, it is not able to sense, that packet
364  *	is cloned and should be copied-on-write, so that it will
365  *	change it and subsequent readers will get broken packet.
366  *							--ANK (980803)
367  */
368 
ptype_head(const struct packet_type * pt)369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 	if (pt->type == htons(ETH_P_ALL))
372 		return &ptype_all;
373 	else
374 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376 
377 /**
378  *	dev_add_pack - add packet handler
379  *	@pt: packet type declaration
380  *
381  *	Add a protocol handler to the networking stack. The passed &packet_type
382  *	is linked into kernel lists and may not be freed until it has been
383  *	removed from the kernel lists.
384  *
385  *	This call does not sleep therefore it can not
386  *	guarantee all CPU's that are in middle of receiving packets
387  *	will see the new packet type (until the next received packet).
388  */
389 
dev_add_pack(struct packet_type * pt)390 void dev_add_pack(struct packet_type *pt)
391 {
392 	struct list_head *head = ptype_head(pt);
393 
394 	spin_lock(&ptype_lock);
395 	list_add_rcu(&pt->list, head);
396 	spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399 
400 /**
401  *	__dev_remove_pack	 - remove packet handler
402  *	@pt: packet type declaration
403  *
404  *	Remove a protocol handler that was previously added to the kernel
405  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
406  *	from the kernel lists and can be freed or reused once this function
407  *	returns.
408  *
409  *      The packet type might still be in use by receivers
410  *	and must not be freed until after all the CPU's have gone
411  *	through a quiescent state.
412  */
__dev_remove_pack(struct packet_type * pt)413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 	struct list_head *head = ptype_head(pt);
416 	struct packet_type *pt1;
417 
418 	spin_lock(&ptype_lock);
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 	spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432 
433 /**
434  *	dev_remove_pack	 - remove packet handler
435  *	@pt: packet type declaration
436  *
437  *	Remove a protocol handler that was previously added to the kernel
438  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
439  *	from the kernel lists and can be freed or reused once this function
440  *	returns.
441  *
442  *	This call sleeps to guarantee that no CPU is looking at the packet
443  *	type after return.
444  */
dev_remove_pack(struct packet_type * pt)445 void dev_remove_pack(struct packet_type *pt)
446 {
447 	__dev_remove_pack(pt);
448 
449 	synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452 
453 
454 /**
455  *	dev_add_offload - register offload handlers
456  *	@po: protocol offload declaration
457  *
458  *	Add protocol offload handlers to the networking stack. The passed
459  *	&proto_offload is linked into kernel lists and may not be freed until
460  *	it has been removed from the kernel lists.
461  *
462  *	This call does not sleep therefore it can not
463  *	guarantee all CPU's that are in middle of receiving packets
464  *	will see the new offload handlers (until the next received packet).
465  */
dev_add_offload(struct packet_offload * po)466 void dev_add_offload(struct packet_offload *po)
467 {
468 	struct list_head *head = &offload_base;
469 
470 	spin_lock(&offload_lock);
471 	list_add_rcu(&po->list, head);
472 	spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475 
476 /**
477  *	__dev_remove_offload	 - remove offload handler
478  *	@po: packet offload declaration
479  *
480  *	Remove a protocol offload handler that was previously added to the
481  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
482  *	is removed from the kernel lists and can be freed or reused once this
483  *	function returns.
484  *
485  *      The packet type might still be in use by receivers
486  *	and must not be freed until after all the CPU's have gone
487  *	through a quiescent state.
488  */
__dev_remove_offload(struct packet_offload * po)489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 	struct list_head *head = &offload_base;
492 	struct packet_offload *po1;
493 
494 	spin_lock(&offload_lock);
495 
496 	list_for_each_entry(po1, head, list) {
497 		if (po == po1) {
498 			list_del_rcu(&po->list);
499 			goto out;
500 		}
501 	}
502 
503 	pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 	spin_unlock(&offload_lock);
506 }
507 
508 /**
509  *	dev_remove_offload	 - remove packet offload handler
510  *	@po: packet offload declaration
511  *
512  *	Remove a packet offload handler that was previously added to the kernel
513  *	offload handlers by dev_add_offload(). The passed &offload_type is
514  *	removed from the kernel lists and can be freed or reused once this
515  *	function returns.
516  *
517  *	This call sleeps to guarantee that no CPU is looking at the packet
518  *	type after return.
519  */
dev_remove_offload(struct packet_offload * po)520 void dev_remove_offload(struct packet_offload *po)
521 {
522 	__dev_remove_offload(po);
523 
524 	synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527 
528 /******************************************************************************
529 
530 		      Device Boot-time Settings Routines
531 
532 *******************************************************************************/
533 
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536 
537 /**
538  *	netdev_boot_setup_add	- add new setup entry
539  *	@name: name of the device
540  *	@map: configured settings for the device
541  *
542  *	Adds new setup entry to the dev_boot_setup list.  The function
543  *	returns 0 on error and 1 on success.  This is a generic routine to
544  *	all netdevices.
545  */
netdev_boot_setup_add(char * name,struct ifmap * map)546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 	struct netdev_boot_setup *s;
549 	int i;
550 
551 	s = dev_boot_setup;
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 			memset(s[i].name, 0, sizeof(s[i].name));
555 			strlcpy(s[i].name, name, IFNAMSIZ);
556 			memcpy(&s[i].map, map, sizeof(s[i].map));
557 			break;
558 		}
559 	}
560 
561 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563 
564 /**
565  *	netdev_boot_setup_check	- check boot time settings
566  *	@dev: the netdevice
567  *
568  * 	Check boot time settings for the device.
569  *	The found settings are set for the device to be used
570  *	later in the device probing.
571  *	Returns 0 if no settings found, 1 if they are.
572  */
netdev_boot_setup_check(struct net_device * dev)573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 	struct netdev_boot_setup *s = dev_boot_setup;
576 	int i;
577 
578 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 		    !strcmp(dev->name, s[i].name)) {
581 			dev->irq 	= s[i].map.irq;
582 			dev->base_addr 	= s[i].map.base_addr;
583 			dev->mem_start 	= s[i].map.mem_start;
584 			dev->mem_end 	= s[i].map.mem_end;
585 			return 1;
586 		}
587 	}
588 	return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591 
592 
593 /**
594  *	netdev_boot_base	- get address from boot time settings
595  *	@prefix: prefix for network device
596  *	@unit: id for network device
597  *
598  * 	Check boot time settings for the base address of device.
599  *	The found settings are set for the device to be used
600  *	later in the device probing.
601  *	Returns 0 if no settings found.
602  */
netdev_boot_base(const char * prefix,int unit)603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 	const struct netdev_boot_setup *s = dev_boot_setup;
606 	char name[IFNAMSIZ];
607 	int i;
608 
609 	sprintf(name, "%s%d", prefix, unit);
610 
611 	/*
612 	 * If device already registered then return base of 1
613 	 * to indicate not to probe for this interface
614 	 */
615 	if (__dev_get_by_name(&init_net, name))
616 		return 1;
617 
618 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 		if (!strcmp(name, s[i].name))
620 			return s[i].map.base_addr;
621 	return 0;
622 }
623 
624 /*
625  * Saves at boot time configured settings for any netdevice.
626  */
netdev_boot_setup(char * str)627 int __init netdev_boot_setup(char *str)
628 {
629 	int ints[5];
630 	struct ifmap map;
631 
632 	str = get_options(str, ARRAY_SIZE(ints), ints);
633 	if (!str || !*str)
634 		return 0;
635 
636 	/* Save settings */
637 	memset(&map, 0, sizeof(map));
638 	if (ints[0] > 0)
639 		map.irq = ints[1];
640 	if (ints[0] > 1)
641 		map.base_addr = ints[2];
642 	if (ints[0] > 2)
643 		map.mem_start = ints[3];
644 	if (ints[0] > 3)
645 		map.mem_end = ints[4];
646 
647 	/* Add new entry to the list */
648 	return netdev_boot_setup_add(str, &map);
649 }
650 
651 __setup("netdev=", netdev_boot_setup);
652 
653 /*******************************************************************************
654 
655 			    Device Interface Subroutines
656 
657 *******************************************************************************/
658 
659 /**
660  *	__dev_get_by_name	- find a device by its name
661  *	@net: the applicable net namespace
662  *	@name: name to find
663  *
664  *	Find an interface by name. Must be called under RTNL semaphore
665  *	or @dev_base_lock. If the name is found a pointer to the device
666  *	is returned. If the name is not found then %NULL is returned. The
667  *	reference counters are not incremented so the caller must be
668  *	careful with locks.
669  */
670 
__dev_get_by_name(struct net * net,const char * name)671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 	struct net_device *dev;
674 	struct hlist_head *head = dev_name_hash(net, name);
675 
676 	hlist_for_each_entry(dev, head, name_hlist)
677 		if (!strncmp(dev->name, name, IFNAMSIZ))
678 			return dev;
679 
680 	return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683 
684 /**
685  *	dev_get_by_name_rcu	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name.
690  *	If the name is found a pointer to the device is returned.
691  * 	If the name is not found then %NULL is returned.
692  *	The reference counters are not incremented so the caller must be
693  *	careful with locks. The caller must hold RCU lock.
694  */
695 
dev_get_by_name_rcu(struct net * net,const char * name)696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry_rcu(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708 
709 /**
710  *	dev_get_by_name		- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name. This can be called from any
715  *	context and does its own locking. The returned handle has
716  *	the usage count incremented and the caller must use dev_put() to
717  *	release it when it is no longer needed. %NULL is returned if no
718  *	matching device is found.
719  */
720 
dev_get_by_name(struct net * net,const char * name)721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 
725 	rcu_read_lock();
726 	dev = dev_get_by_name_rcu(net, name);
727 	if (dev)
728 		dev_hold(dev);
729 	rcu_read_unlock();
730 	return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733 
734 /**
735  *	__dev_get_by_index - find a device by its ifindex
736  *	@net: the applicable net namespace
737  *	@ifindex: index of device
738  *
739  *	Search for an interface by index. Returns %NULL if the device
740  *	is not found or a pointer to the device. The device has not
741  *	had its reference counter increased so the caller must be careful
742  *	about locking. The caller must hold either the RTNL semaphore
743  *	or @dev_base_lock.
744  */
745 
__dev_get_by_index(struct net * net,int ifindex)746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 	struct hlist_head *head = dev_index_hash(net, ifindex);
750 
751 	hlist_for_each_entry(dev, head, index_hlist)
752 		if (dev->ifindex == ifindex)
753 			return dev;
754 
755 	return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758 
759 /**
760  *	dev_get_by_index_rcu - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold RCU lock.
768  */
769 
dev_get_by_index_rcu(struct net * net,int ifindex)770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 	struct net_device *dev;
773 	struct hlist_head *head = dev_index_hash(net, ifindex);
774 
775 	hlist_for_each_entry_rcu(dev, head, index_hlist)
776 		if (dev->ifindex == ifindex)
777 			return dev;
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782 
783 
784 /**
785  *	dev_get_by_index - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns NULL if the device
790  *	is not found or a pointer to the device. The device returned has
791  *	had a reference added and the pointer is safe until the user calls
792  *	dev_put to indicate they have finished with it.
793  */
794 
dev_get_by_index(struct net * net,int ifindex)795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 
799 	rcu_read_lock();
800 	dev = dev_get_by_index_rcu(net, ifindex);
801 	if (dev)
802 		dev_hold(dev);
803 	rcu_read_unlock();
804 	return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807 
808 /**
809  *	netdev_get_name - get a netdevice name, knowing its ifindex.
810  *	@net: network namespace
811  *	@name: a pointer to the buffer where the name will be stored.
812  *	@ifindex: the ifindex of the interface to get the name from.
813  *
814  *	The use of raw_seqcount_begin() and cond_resched() before
815  *	retrying is required as we want to give the writers a chance
816  *	to complete when CONFIG_PREEMPT is not set.
817  */
netdev_get_name(struct net * net,char * name,int ifindex)818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 	struct net_device *dev;
821 	unsigned int seq;
822 
823 retry:
824 	seq = raw_seqcount_begin(&devnet_rename_seq);
825 	rcu_read_lock();
826 	dev = dev_get_by_index_rcu(net, ifindex);
827 	if (!dev) {
828 		rcu_read_unlock();
829 		return -ENODEV;
830 	}
831 
832 	strcpy(name, dev->name);
833 	rcu_read_unlock();
834 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 		cond_resched();
836 		goto retry;
837 	}
838 
839 	return 0;
840 }
841 
842 /**
843  *	dev_getbyhwaddr_rcu - find a device by its hardware address
844  *	@net: the applicable net namespace
845  *	@type: media type of device
846  *	@ha: hardware address
847  *
848  *	Search for an interface by MAC address. Returns NULL if the device
849  *	is not found or a pointer to the device.
850  *	The caller must hold RCU or RTNL.
851  *	The returned device has not had its ref count increased
852  *	and the caller must therefore be careful about locking
853  *
854  */
855 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 				       const char *ha)
858 {
859 	struct net_device *dev;
860 
861 	for_each_netdev_rcu(net, dev)
862 		if (dev->type == type &&
863 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
864 			return dev;
865 
866 	return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 	struct net_device *dev;
873 
874 	ASSERT_RTNL();
875 	for_each_netdev(net, dev)
876 		if (dev->type == type)
877 			return dev;
878 
879 	return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882 
dev_getfirstbyhwtype(struct net * net,unsigned short type)883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 	struct net_device *dev, *ret = NULL;
886 
887 	rcu_read_lock();
888 	for_each_netdev_rcu(net, dev)
889 		if (dev->type == type) {
890 			dev_hold(dev);
891 			ret = dev;
892 			break;
893 		}
894 	rcu_read_unlock();
895 	return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898 
899 /**
900  *	__dev_get_by_flags - find any device with given flags
901  *	@net: the applicable net namespace
902  *	@if_flags: IFF_* values
903  *	@mask: bitmask of bits in if_flags to check
904  *
905  *	Search for any interface with the given flags. Returns NULL if a device
906  *	is not found or a pointer to the device. Must be called inside
907  *	rtnl_lock(), and result refcount is unchanged.
908  */
909 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 				      unsigned short mask)
912 {
913 	struct net_device *dev, *ret;
914 
915 	ASSERT_RTNL();
916 
917 	ret = NULL;
918 	for_each_netdev(net, dev) {
919 		if (((dev->flags ^ if_flags) & mask) == 0) {
920 			ret = dev;
921 			break;
922 		}
923 	}
924 	return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927 
928 /**
929  *	dev_valid_name - check if name is okay for network device
930  *	@name: name string
931  *
932  *	Network device names need to be valid file names to
933  *	to allow sysfs to work.  We also disallow any kind of
934  *	whitespace.
935  */
dev_valid_name(const char * name)936 bool dev_valid_name(const char *name)
937 {
938 	if (*name == '\0')
939 		return false;
940 	if (strlen(name) >= IFNAMSIZ)
941 		return false;
942 	if (!strcmp(name, ".") || !strcmp(name, ".."))
943 		return false;
944 
945 	while (*name) {
946 		if (*name == '/' || *name == ':' || isspace(*name))
947 			return false;
948 		name++;
949 	}
950 	return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953 
954 /**
955  *	__dev_alloc_name - allocate a name for a device
956  *	@net: network namespace to allocate the device name in
957  *	@name: name format string
958  *	@buf:  scratch buffer and result name string
959  *
960  *	Passed a format string - eg "lt%d" it will try and find a suitable
961  *	id. It scans list of devices to build up a free map, then chooses
962  *	the first empty slot. The caller must hold the dev_base or rtnl lock
963  *	while allocating the name and adding the device in order to avoid
964  *	duplicates.
965  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966  *	Returns the number of the unit assigned or a negative errno code.
967  */
968 
__dev_alloc_name(struct net * net,const char * name,char * buf)969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971 	int i = 0;
972 	const char *p;
973 	const int max_netdevices = 8*PAGE_SIZE;
974 	unsigned long *inuse;
975 	struct net_device *d;
976 
977 	p = strnchr(name, IFNAMSIZ-1, '%');
978 	if (p) {
979 		/*
980 		 * Verify the string as this thing may have come from
981 		 * the user.  There must be either one "%d" and no other "%"
982 		 * characters.
983 		 */
984 		if (p[1] != 'd' || strchr(p + 2, '%'))
985 			return -EINVAL;
986 
987 		/* Use one page as a bit array of possible slots */
988 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 		if (!inuse)
990 			return -ENOMEM;
991 
992 		for_each_netdev(net, d) {
993 			if (!sscanf(d->name, name, &i))
994 				continue;
995 			if (i < 0 || i >= max_netdevices)
996 				continue;
997 
998 			/*  avoid cases where sscanf is not exact inverse of printf */
999 			snprintf(buf, IFNAMSIZ, name, i);
1000 			if (!strncmp(buf, d->name, IFNAMSIZ))
1001 				set_bit(i, inuse);
1002 		}
1003 
1004 		i = find_first_zero_bit(inuse, max_netdevices);
1005 		free_page((unsigned long) inuse);
1006 	}
1007 
1008 	if (buf != name)
1009 		snprintf(buf, IFNAMSIZ, name, i);
1010 	if (!__dev_get_by_name(net, buf))
1011 		return i;
1012 
1013 	/* It is possible to run out of possible slots
1014 	 * when the name is long and there isn't enough space left
1015 	 * for the digits, or if all bits are used.
1016 	 */
1017 	return -ENFILE;
1018 }
1019 
1020 /**
1021  *	dev_alloc_name - allocate a name for a device
1022  *	@dev: device
1023  *	@name: name format string
1024  *
1025  *	Passed a format string - eg "lt%d" it will try and find a suitable
1026  *	id. It scans list of devices to build up a free map, then chooses
1027  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1028  *	while allocating the name and adding the device in order to avoid
1029  *	duplicates.
1030  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031  *	Returns the number of the unit assigned or a negative errno code.
1032  */
1033 
dev_alloc_name(struct net_device * dev,const char * name)1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036 	char buf[IFNAMSIZ];
1037 	struct net *net;
1038 	int ret;
1039 
1040 	BUG_ON(!dev_net(dev));
1041 	net = dev_net(dev);
1042 	ret = __dev_alloc_name(net, name, buf);
1043 	if (ret >= 0)
1044 		strlcpy(dev->name, buf, IFNAMSIZ);
1045 	return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1049 static int dev_alloc_name_ns(struct net *net,
1050 			     struct net_device *dev,
1051 			     const char *name)
1052 {
1053 	char buf[IFNAMSIZ];
1054 	int ret;
1055 
1056 	ret = __dev_alloc_name(net, name, buf);
1057 	if (ret >= 0)
1058 		strlcpy(dev->name, buf, IFNAMSIZ);
1059 	return ret;
1060 }
1061 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1062 int dev_get_valid_name(struct net *net, struct net_device *dev,
1063 		       const char *name)
1064 {
1065 	BUG_ON(!net);
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	if (strchr(name, '%'))
1071 		return dev_alloc_name_ns(net, dev, name);
1072 	else if (__dev_get_by_name(net, name))
1073 		return -EEXIST;
1074 	else if (dev->name != name)
1075 		strlcpy(dev->name, name, IFNAMSIZ);
1076 
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL(dev_get_valid_name);
1080 
1081 /**
1082  *	dev_change_name - change name of a device
1083  *	@dev: device
1084  *	@newname: name (or format string) must be at least IFNAMSIZ
1085  *
1086  *	Change name of a device, can pass format strings "eth%d".
1087  *	for wildcarding.
1088  */
dev_change_name(struct net_device * dev,const char * newname)1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091 	unsigned char old_assign_type;
1092 	char oldname[IFNAMSIZ];
1093 	int err = 0;
1094 	int ret;
1095 	struct net *net;
1096 
1097 	ASSERT_RTNL();
1098 	BUG_ON(!dev_net(dev));
1099 
1100 	net = dev_net(dev);
1101 	if (dev->flags & IFF_UP)
1102 		return -EBUSY;
1103 
1104 	write_seqcount_begin(&devnet_rename_seq);
1105 
1106 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 		write_seqcount_end(&devnet_rename_seq);
1108 		return 0;
1109 	}
1110 
1111 	memcpy(oldname, dev->name, IFNAMSIZ);
1112 
1113 	err = dev_get_valid_name(net, dev, newname);
1114 	if (err < 0) {
1115 		write_seqcount_end(&devnet_rename_seq);
1116 		return err;
1117 	}
1118 
1119 	if (oldname[0] && !strchr(oldname, '%'))
1120 		netdev_info(dev, "renamed from %s\n", oldname);
1121 
1122 	old_assign_type = dev->name_assign_type;
1123 	dev->name_assign_type = NET_NAME_RENAMED;
1124 
1125 rollback:
1126 	ret = device_rename(&dev->dev, dev->name);
1127 	if (ret) {
1128 		memcpy(dev->name, oldname, IFNAMSIZ);
1129 		dev->name_assign_type = old_assign_type;
1130 		write_seqcount_end(&devnet_rename_seq);
1131 		return ret;
1132 	}
1133 
1134 	write_seqcount_end(&devnet_rename_seq);
1135 
1136 	netdev_adjacent_rename_links(dev, oldname);
1137 
1138 	write_lock_bh(&dev_base_lock);
1139 	hlist_del_rcu(&dev->name_hlist);
1140 	write_unlock_bh(&dev_base_lock);
1141 
1142 	synchronize_rcu();
1143 
1144 	write_lock_bh(&dev_base_lock);
1145 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 	write_unlock_bh(&dev_base_lock);
1147 
1148 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 	ret = notifier_to_errno(ret);
1150 
1151 	if (ret) {
1152 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1153 		if (err >= 0) {
1154 			err = ret;
1155 			write_seqcount_begin(&devnet_rename_seq);
1156 			memcpy(dev->name, oldname, IFNAMSIZ);
1157 			memcpy(oldname, newname, IFNAMSIZ);
1158 			dev->name_assign_type = old_assign_type;
1159 			old_assign_type = NET_NAME_RENAMED;
1160 			goto rollback;
1161 		} else {
1162 			pr_err("%s: name change rollback failed: %d\n",
1163 			       dev->name, ret);
1164 		}
1165 	}
1166 
1167 	return err;
1168 }
1169 
1170 /**
1171  *	dev_set_alias - change ifalias of a device
1172  *	@dev: device
1173  *	@alias: name up to IFALIASZ
1174  *	@len: limit of bytes to copy from info
1175  *
1176  *	Set ifalias for a device,
1177  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180 	char *new_ifalias;
1181 
1182 	ASSERT_RTNL();
1183 
1184 	if (len >= IFALIASZ)
1185 		return -EINVAL;
1186 
1187 	if (!len) {
1188 		kfree(dev->ifalias);
1189 		dev->ifalias = NULL;
1190 		return 0;
1191 	}
1192 
1193 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 	if (!new_ifalias)
1195 		return -ENOMEM;
1196 	dev->ifalias = new_ifalias;
1197 	memcpy(dev->ifalias, alias, len);
1198 	dev->ifalias[len] = 0;
1199 
1200 	return len;
1201 }
1202 
1203 
1204 /**
1205  *	netdev_features_change - device changes features
1206  *	@dev: device to cause notification
1207  *
1208  *	Called to indicate a device has changed features.
1209  */
netdev_features_change(struct net_device * dev)1210 void netdev_features_change(struct net_device *dev)
1211 {
1212 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1213 }
1214 EXPORT_SYMBOL(netdev_features_change);
1215 
1216 /**
1217  *	netdev_state_change - device changes state
1218  *	@dev: device to cause notification
1219  *
1220  *	Called to indicate a device has changed state. This function calls
1221  *	the notifier chains for netdev_chain and sends a NEWLINK message
1222  *	to the routing socket.
1223  */
netdev_state_change(struct net_device * dev)1224 void netdev_state_change(struct net_device *dev)
1225 {
1226 	if (dev->flags & IFF_UP) {
1227 		struct netdev_notifier_change_info change_info;
1228 
1229 		change_info.flags_changed = 0;
1230 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1231 					      &change_info.info);
1232 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1233 	}
1234 }
1235 EXPORT_SYMBOL(netdev_state_change);
1236 
1237 /**
1238  * 	netdev_notify_peers - notify network peers about existence of @dev
1239  * 	@dev: network device
1240  *
1241  * Generate traffic such that interested network peers are aware of
1242  * @dev, such as by generating a gratuitous ARP. This may be used when
1243  * a device wants to inform the rest of the network about some sort of
1244  * reconfiguration such as a failover event or virtual machine
1245  * migration.
1246  */
netdev_notify_peers(struct net_device * dev)1247 void netdev_notify_peers(struct net_device *dev)
1248 {
1249 	rtnl_lock();
1250 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1251 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1252 	rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255 
__dev_open(struct net_device * dev)1256 static int __dev_open(struct net_device *dev)
1257 {
1258 	const struct net_device_ops *ops = dev->netdev_ops;
1259 	int ret;
1260 
1261 	ASSERT_RTNL();
1262 
1263 	if (!netif_device_present(dev))
1264 		return -ENODEV;
1265 
1266 	/* Block netpoll from trying to do any rx path servicing.
1267 	 * If we don't do this there is a chance ndo_poll_controller
1268 	 * or ndo_poll may be running while we open the device
1269 	 */
1270 	netpoll_poll_disable(dev);
1271 
1272 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 	ret = notifier_to_errno(ret);
1274 	if (ret)
1275 		return ret;
1276 
1277 	set_bit(__LINK_STATE_START, &dev->state);
1278 
1279 	if (ops->ndo_validate_addr)
1280 		ret = ops->ndo_validate_addr(dev);
1281 
1282 	if (!ret && ops->ndo_open)
1283 		ret = ops->ndo_open(dev);
1284 
1285 	netpoll_poll_enable(dev);
1286 
1287 	if (ret)
1288 		clear_bit(__LINK_STATE_START, &dev->state);
1289 	else {
1290 		dev->flags |= IFF_UP;
1291 		dev_set_rx_mode(dev);
1292 		dev_activate(dev);
1293 		add_device_randomness(dev->dev_addr, dev->addr_len);
1294 	}
1295 
1296 	return ret;
1297 }
1298 
1299 /**
1300  *	dev_open	- prepare an interface for use.
1301  *	@dev:	device to open
1302  *
1303  *	Takes a device from down to up state. The device's private open
1304  *	function is invoked and then the multicast lists are loaded. Finally
1305  *	the device is moved into the up state and a %NETDEV_UP message is
1306  *	sent to the netdev notifier chain.
1307  *
1308  *	Calling this function on an active interface is a nop. On a failure
1309  *	a negative errno code is returned.
1310  */
dev_open(struct net_device * dev)1311 int dev_open(struct net_device *dev)
1312 {
1313 	int ret;
1314 
1315 	if (dev->flags & IFF_UP)
1316 		return 0;
1317 
1318 	ret = __dev_open(dev);
1319 	if (ret < 0)
1320 		return ret;
1321 
1322 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 	call_netdevice_notifiers(NETDEV_UP, dev);
1324 
1325 	return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328 
__dev_close_many(struct list_head * head)1329 static int __dev_close_many(struct list_head *head)
1330 {
1331 	struct net_device *dev;
1332 
1333 	ASSERT_RTNL();
1334 	might_sleep();
1335 
1336 	list_for_each_entry(dev, head, close_list) {
1337 		/* Temporarily disable netpoll until the interface is down */
1338 		netpoll_poll_disable(dev);
1339 
1340 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341 
1342 		clear_bit(__LINK_STATE_START, &dev->state);
1343 
1344 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1345 		 * can be even on different cpu. So just clear netif_running().
1346 		 *
1347 		 * dev->stop() will invoke napi_disable() on all of it's
1348 		 * napi_struct instances on this device.
1349 		 */
1350 		smp_mb__after_atomic(); /* Commit netif_running(). */
1351 	}
1352 
1353 	dev_deactivate_many(head);
1354 
1355 	list_for_each_entry(dev, head, close_list) {
1356 		const struct net_device_ops *ops = dev->netdev_ops;
1357 
1358 		/*
1359 		 *	Call the device specific close. This cannot fail.
1360 		 *	Only if device is UP
1361 		 *
1362 		 *	We allow it to be called even after a DETACH hot-plug
1363 		 *	event.
1364 		 */
1365 		if (ops->ndo_stop)
1366 			ops->ndo_stop(dev);
1367 
1368 		dev->flags &= ~IFF_UP;
1369 		netpoll_poll_enable(dev);
1370 	}
1371 
1372 	return 0;
1373 }
1374 
__dev_close(struct net_device * dev)1375 static int __dev_close(struct net_device *dev)
1376 {
1377 	int retval;
1378 	LIST_HEAD(single);
1379 
1380 	list_add(&dev->close_list, &single);
1381 	retval = __dev_close_many(&single);
1382 	list_del(&single);
1383 
1384 	return retval;
1385 }
1386 
dev_close_many(struct list_head * head)1387 static int dev_close_many(struct list_head *head)
1388 {
1389 	struct net_device *dev, *tmp;
1390 
1391 	/* Remove the devices that don't need to be closed */
1392 	list_for_each_entry_safe(dev, tmp, head, close_list)
1393 		if (!(dev->flags & IFF_UP))
1394 			list_del_init(&dev->close_list);
1395 
1396 	__dev_close_many(head);
1397 
1398 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 		list_del_init(&dev->close_list);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  *	dev_close - shutdown an interface.
1409  *	@dev: device to shutdown
1410  *
1411  *	This function moves an active device into down state. A
1412  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414  *	chain.
1415  */
dev_close(struct net_device * dev)1416 int dev_close(struct net_device *dev)
1417 {
1418 	if (dev->flags & IFF_UP) {
1419 		LIST_HEAD(single);
1420 
1421 		list_add(&dev->close_list, &single);
1422 		dev_close_many(&single);
1423 		list_del(&single);
1424 	}
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428 
1429 
1430 /**
1431  *	dev_disable_lro - disable Large Receive Offload on a device
1432  *	@dev: device
1433  *
1434  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1435  *	called under RTNL.  This is needed if received packets may be
1436  *	forwarded to another interface.
1437  */
dev_disable_lro(struct net_device * dev)1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 	/*
1441 	 * If we're trying to disable lro on a vlan device
1442 	 * use the underlying physical device instead
1443 	 */
1444 	if (is_vlan_dev(dev))
1445 		dev = vlan_dev_real_dev(dev);
1446 
1447 	/* the same for macvlan devices */
1448 	if (netif_is_macvlan(dev))
1449 		dev = macvlan_dev_real_dev(dev);
1450 
1451 	dev->wanted_features &= ~NETIF_F_LRO;
1452 	netdev_update_features(dev);
1453 
1454 	if (unlikely(dev->features & NETIF_F_LRO))
1455 		netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460 				   struct net_device *dev)
1461 {
1462 	struct netdev_notifier_info info;
1463 
1464 	netdev_notifier_info_init(&info, dev);
1465 	return nb->notifier_call(nb, val, &info);
1466 }
1467 
1468 static int dev_boot_phase = 1;
1469 
1470 /**
1471  *	register_netdevice_notifier - register a network notifier block
1472  *	@nb: notifier
1473  *
1474  *	Register a notifier to be called when network device events occur.
1475  *	The notifier passed is linked into the kernel structures and must
1476  *	not be reused until it has been unregistered. A negative errno code
1477  *	is returned on a failure.
1478  *
1479  * 	When registered all registration and up events are replayed
1480  *	to the new notifier to allow device to have a race free
1481  *	view of the network device list.
1482  */
1483 
register_netdevice_notifier(struct notifier_block * nb)1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486 	struct net_device *dev;
1487 	struct net_device *last;
1488 	struct net *net;
1489 	int err;
1490 
1491 	rtnl_lock();
1492 	err = raw_notifier_chain_register(&netdev_chain, nb);
1493 	if (err)
1494 		goto unlock;
1495 	if (dev_boot_phase)
1496 		goto unlock;
1497 	for_each_net(net) {
1498 		for_each_netdev(net, dev) {
1499 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500 			err = notifier_to_errno(err);
1501 			if (err)
1502 				goto rollback;
1503 
1504 			if (!(dev->flags & IFF_UP))
1505 				continue;
1506 
1507 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1508 		}
1509 	}
1510 
1511 unlock:
1512 	rtnl_unlock();
1513 	return err;
1514 
1515 rollback:
1516 	last = dev;
1517 	for_each_net(net) {
1518 		for_each_netdev(net, dev) {
1519 			if (dev == last)
1520 				goto outroll;
1521 
1522 			if (dev->flags & IFF_UP) {
1523 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524 							dev);
1525 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526 			}
1527 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528 		}
1529 	}
1530 
1531 outroll:
1532 	raw_notifier_chain_unregister(&netdev_chain, nb);
1533 	goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536 
1537 /**
1538  *	unregister_netdevice_notifier - unregister a network notifier block
1539  *	@nb: notifier
1540  *
1541  *	Unregister a notifier previously registered by
1542  *	register_netdevice_notifier(). The notifier is unlinked into the
1543  *	kernel structures and may then be reused. A negative errno code
1544  *	is returned on a failure.
1545  *
1546  * 	After unregistering unregister and down device events are synthesized
1547  *	for all devices on the device list to the removed notifier to remove
1548  *	the need for special case cleanup code.
1549  */
1550 
unregister_netdevice_notifier(struct notifier_block * nb)1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553 	struct net_device *dev;
1554 	struct net *net;
1555 	int err;
1556 
1557 	rtnl_lock();
1558 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559 	if (err)
1560 		goto unlock;
1561 
1562 	for_each_net(net) {
1563 		for_each_netdev(net, dev) {
1564 			if (dev->flags & IFF_UP) {
1565 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566 							dev);
1567 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568 			}
1569 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570 		}
1571 	}
1572 unlock:
1573 	rtnl_unlock();
1574 	return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577 
1578 /**
1579  *	call_netdevice_notifiers_info - call all network notifier blocks
1580  *	@val: value passed unmodified to notifier function
1581  *	@dev: net_device pointer passed unmodified to notifier function
1582  *	@info: notifier information data
1583  *
1584  *	Call all network notifier blocks.  Parameters and return value
1585  *	are as for raw_notifier_call_chain().
1586  */
1587 
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1588 static int call_netdevice_notifiers_info(unsigned long val,
1589 					 struct net_device *dev,
1590 					 struct netdev_notifier_info *info)
1591 {
1592 	ASSERT_RTNL();
1593 	netdev_notifier_info_init(info, dev);
1594 	return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596 
1597 /**
1598  *	call_netdevice_notifiers - call all network notifier blocks
1599  *      @val: value passed unmodified to notifier function
1600  *      @dev: net_device pointer passed unmodified to notifier function
1601  *
1602  *	Call all network notifier blocks.  Parameters and return value
1603  *	are as for raw_notifier_call_chain().
1604  */
1605 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608 	struct netdev_notifier_info info;
1609 
1610 	return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613 
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 static atomic_t netstamp_needed_deferred;
netstamp_clear(struct work_struct * work)1617 static void netstamp_clear(struct work_struct *work)
1618 {
1619 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1620 
1621 	while (deferred--)
1622 		static_key_slow_dec(&netstamp_needed);
1623 }
1624 static DECLARE_WORK(netstamp_work, netstamp_clear);
1625 #endif
1626 
net_enable_timestamp(void)1627 void net_enable_timestamp(void)
1628 {
1629 	static_key_slow_inc(&netstamp_needed);
1630 }
1631 EXPORT_SYMBOL(net_enable_timestamp);
1632 
net_disable_timestamp(void)1633 void net_disable_timestamp(void)
1634 {
1635 #ifdef HAVE_JUMP_LABEL
1636 	/* net_disable_timestamp() can be called from non process context */
1637 	atomic_inc(&netstamp_needed_deferred);
1638 	schedule_work(&netstamp_work);
1639 #else
1640 	static_key_slow_dec(&netstamp_needed);
1641 #endif
1642 }
1643 EXPORT_SYMBOL(net_disable_timestamp);
1644 
net_timestamp_set(struct sk_buff * skb)1645 static inline void net_timestamp_set(struct sk_buff *skb)
1646 {
1647 	skb->tstamp.tv64 = 0;
1648 	if (static_key_false(&netstamp_needed))
1649 		__net_timestamp(skb);
1650 }
1651 
1652 #define net_timestamp_check(COND, SKB)			\
1653 	if (static_key_false(&netstamp_needed)) {		\
1654 		if ((COND) && !(SKB)->tstamp.tv64)	\
1655 			__net_timestamp(SKB);		\
1656 	}						\
1657 
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659 {
1660 	unsigned int len;
1661 
1662 	if (!(dev->flags & IFF_UP))
1663 		return false;
1664 
1665 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 	if (skb->len <= len)
1667 		return true;
1668 
1669 	/* if TSO is enabled, we don't care about the length as the packet
1670 	 * could be forwarded without being segmented before
1671 	 */
1672 	if (skb_is_gso(skb))
1673 		return true;
1674 
1675 	return false;
1676 }
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 			atomic_long_inc(&dev->rx_dropped);
1684 			kfree_skb(skb);
1685 			return NET_RX_DROP;
1686 		}
1687 	}
1688 
1689 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 		atomic_long_inc(&dev->rx_dropped);
1691 		kfree_skb(skb);
1692 		return NET_RX_DROP;
1693 	}
1694 
1695 	skb_scrub_packet(skb, true);
1696 	skb->protocol = eth_type_trans(skb, dev);
1697 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1698 
1699 	return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702 
1703 /**
1704  * dev_forward_skb - loopback an skb to another netif
1705  *
1706  * @dev: destination network device
1707  * @skb: buffer to forward
1708  *
1709  * return values:
1710  *	NET_RX_SUCCESS	(no congestion)
1711  *	NET_RX_DROP     (packet was dropped, but freed)
1712  *
1713  * dev_forward_skb can be used for injecting an skb from the
1714  * start_xmit function of one device into the receive queue
1715  * of another device.
1716  *
1717  * The receiving device may be in another namespace, so
1718  * we have to clear all information in the skb that could
1719  * impact namespace isolation.
1720  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722 {
1723 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1724 }
1725 EXPORT_SYMBOL_GPL(dev_forward_skb);
1726 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1727 static inline int deliver_skb(struct sk_buff *skb,
1728 			      struct packet_type *pt_prev,
1729 			      struct net_device *orig_dev)
1730 {
1731 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732 		return -ENOMEM;
1733 	atomic_inc(&skb->users);
1734 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735 }
1736 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738 {
1739 	if (!ptype->af_packet_priv || !skb->sk)
1740 		return false;
1741 
1742 	if (ptype->id_match)
1743 		return ptype->id_match(ptype, skb->sk);
1744 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745 		return true;
1746 
1747 	return false;
1748 }
1749 
1750 /*
1751  *	Support routine. Sends outgoing frames to any network
1752  *	taps currently in use.
1753  */
1754 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1756 {
1757 	struct packet_type *ptype;
1758 	struct sk_buff *skb2 = NULL;
1759 	struct packet_type *pt_prev = NULL;
1760 
1761 	rcu_read_lock();
1762 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 		/* Never send packets back to the socket
1764 		 * they originated from - MvS (miquels@drinkel.ow.org)
1765 		 */
1766 		if ((ptype->dev == dev || !ptype->dev) &&
1767 		    (!skb_loop_sk(ptype, skb))) {
1768 			if (pt_prev) {
1769 				deliver_skb(skb2, pt_prev, skb->dev);
1770 				pt_prev = ptype;
1771 				continue;
1772 			}
1773 
1774 			skb2 = skb_clone(skb, GFP_ATOMIC);
1775 			if (!skb2)
1776 				break;
1777 
1778 			net_timestamp_set(skb2);
1779 
1780 			/* skb->nh should be correctly
1781 			   set by sender, so that the second statement is
1782 			   just protection against buggy protocols.
1783 			 */
1784 			skb_reset_mac_header(skb2);
1785 
1786 			if (skb_network_header(skb2) < skb2->data ||
1787 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 						     ntohs(skb2->protocol),
1790 						     dev->name);
1791 				skb_reset_network_header(skb2);
1792 			}
1793 
1794 			skb2->transport_header = skb2->network_header;
1795 			skb2->pkt_type = PACKET_OUTGOING;
1796 			pt_prev = ptype;
1797 		}
1798 	}
1799 	if (pt_prev)
1800 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1801 	rcu_read_unlock();
1802 }
1803 
1804 /**
1805  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806  * @dev: Network device
1807  * @txq: number of queues available
1808  *
1809  * If real_num_tx_queues is changed the tc mappings may no longer be
1810  * valid. To resolve this verify the tc mapping remains valid and if
1811  * not NULL the mapping. With no priorities mapping to this
1812  * offset/count pair it will no longer be used. In the worst case TC0
1813  * is invalid nothing can be done so disable priority mappings. If is
1814  * expected that drivers will fix this mapping if they can before
1815  * calling netif_set_real_num_tx_queues.
1816  */
netif_setup_tc(struct net_device * dev,unsigned int txq)1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1818 {
1819 	int i;
1820 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821 
1822 	/* If TC0 is invalidated disable TC mapping */
1823 	if (tc->offset + tc->count > txq) {
1824 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1825 		dev->num_tc = 0;
1826 		return;
1827 	}
1828 
1829 	/* Invalidated prio to tc mappings set to TC0 */
1830 	for (i = 1; i < TC_BITMASK + 1; i++) {
1831 		int q = netdev_get_prio_tc_map(dev, i);
1832 
1833 		tc = &dev->tc_to_txq[q];
1834 		if (tc->offset + tc->count > txq) {
1835 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836 				i, q);
1837 			netdev_set_prio_tc_map(dev, i, 0);
1838 		}
1839 	}
1840 }
1841 
1842 #ifdef CONFIG_XPS
1843 static DEFINE_MUTEX(xps_map_mutex);
1844 #define xmap_dereference(P)		\
1845 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846 
remove_xps_queue(struct xps_dev_maps * dev_maps,int cpu,u16 index)1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848 					int cpu, u16 index)
1849 {
1850 	struct xps_map *map = NULL;
1851 	int pos;
1852 
1853 	if (dev_maps)
1854 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1855 
1856 	for (pos = 0; map && pos < map->len; pos++) {
1857 		if (map->queues[pos] == index) {
1858 			if (map->len > 1) {
1859 				map->queues[pos] = map->queues[--map->len];
1860 			} else {
1861 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862 				kfree_rcu(map, rcu);
1863 				map = NULL;
1864 			}
1865 			break;
1866 		}
1867 	}
1868 
1869 	return map;
1870 }
1871 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1873 {
1874 	struct xps_dev_maps *dev_maps;
1875 	int cpu, i;
1876 	bool active = false;
1877 
1878 	mutex_lock(&xps_map_mutex);
1879 	dev_maps = xmap_dereference(dev->xps_maps);
1880 
1881 	if (!dev_maps)
1882 		goto out_no_maps;
1883 
1884 	for_each_possible_cpu(cpu) {
1885 		for (i = index; i < dev->num_tx_queues; i++) {
1886 			if (!remove_xps_queue(dev_maps, cpu, i))
1887 				break;
1888 		}
1889 		if (i == dev->num_tx_queues)
1890 			active = true;
1891 	}
1892 
1893 	if (!active) {
1894 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 		kfree_rcu(dev_maps, rcu);
1896 	}
1897 
1898 	for (i = index; i < dev->num_tx_queues; i++)
1899 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900 					     NUMA_NO_NODE);
1901 
1902 out_no_maps:
1903 	mutex_unlock(&xps_map_mutex);
1904 }
1905 
expand_xps_map(struct xps_map * map,int cpu,u16 index)1906 static struct xps_map *expand_xps_map(struct xps_map *map,
1907 				      int cpu, u16 index)
1908 {
1909 	struct xps_map *new_map;
1910 	int alloc_len = XPS_MIN_MAP_ALLOC;
1911 	int i, pos;
1912 
1913 	for (pos = 0; map && pos < map->len; pos++) {
1914 		if (map->queues[pos] != index)
1915 			continue;
1916 		return map;
1917 	}
1918 
1919 	/* Need to add queue to this CPU's existing map */
1920 	if (map) {
1921 		if (pos < map->alloc_len)
1922 			return map;
1923 
1924 		alloc_len = map->alloc_len * 2;
1925 	}
1926 
1927 	/* Need to allocate new map to store queue on this CPU's map */
1928 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929 			       cpu_to_node(cpu));
1930 	if (!new_map)
1931 		return NULL;
1932 
1933 	for (i = 0; i < pos; i++)
1934 		new_map->queues[i] = map->queues[i];
1935 	new_map->alloc_len = alloc_len;
1936 	new_map->len = pos;
1937 
1938 	return new_map;
1939 }
1940 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942 			u16 index)
1943 {
1944 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945 	struct xps_map *map, *new_map;
1946 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947 	int cpu, numa_node_id = -2;
1948 	bool active = false;
1949 
1950 	mutex_lock(&xps_map_mutex);
1951 
1952 	dev_maps = xmap_dereference(dev->xps_maps);
1953 
1954 	/* allocate memory for queue storage */
1955 	for_each_online_cpu(cpu) {
1956 		if (!cpumask_test_cpu(cpu, mask))
1957 			continue;
1958 
1959 		if (!new_dev_maps)
1960 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961 		if (!new_dev_maps) {
1962 			mutex_unlock(&xps_map_mutex);
1963 			return -ENOMEM;
1964 		}
1965 
1966 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967 				 NULL;
1968 
1969 		map = expand_xps_map(map, cpu, index);
1970 		if (!map)
1971 			goto error;
1972 
1973 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 	}
1975 
1976 	if (!new_dev_maps)
1977 		goto out_no_new_maps;
1978 
1979 	for_each_possible_cpu(cpu) {
1980 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 			/* add queue to CPU maps */
1982 			int pos = 0;
1983 
1984 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 			while ((pos < map->len) && (map->queues[pos] != index))
1986 				pos++;
1987 
1988 			if (pos == map->len)
1989 				map->queues[map->len++] = index;
1990 #ifdef CONFIG_NUMA
1991 			if (numa_node_id == -2)
1992 				numa_node_id = cpu_to_node(cpu);
1993 			else if (numa_node_id != cpu_to_node(cpu))
1994 				numa_node_id = -1;
1995 #endif
1996 		} else if (dev_maps) {
1997 			/* fill in the new device map from the old device map */
1998 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2000 		}
2001 
2002 	}
2003 
2004 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005 
2006 	/* Cleanup old maps */
2007 	if (dev_maps) {
2008 		for_each_possible_cpu(cpu) {
2009 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 			if (map && map != new_map)
2012 				kfree_rcu(map, rcu);
2013 		}
2014 
2015 		kfree_rcu(dev_maps, rcu);
2016 	}
2017 
2018 	dev_maps = new_dev_maps;
2019 	active = true;
2020 
2021 out_no_new_maps:
2022 	/* update Tx queue numa node */
2023 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 				     (numa_node_id >= 0) ? numa_node_id :
2025 				     NUMA_NO_NODE);
2026 
2027 	if (!dev_maps)
2028 		goto out_no_maps;
2029 
2030 	/* removes queue from unused CPUs */
2031 	for_each_possible_cpu(cpu) {
2032 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033 			continue;
2034 
2035 		if (remove_xps_queue(dev_maps, cpu, index))
2036 			active = true;
2037 	}
2038 
2039 	/* free map if not active */
2040 	if (!active) {
2041 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 		kfree_rcu(dev_maps, rcu);
2043 	}
2044 
2045 out_no_maps:
2046 	mutex_unlock(&xps_map_mutex);
2047 
2048 	return 0;
2049 error:
2050 	/* remove any maps that we added */
2051 	for_each_possible_cpu(cpu) {
2052 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054 				 NULL;
2055 		if (new_map && new_map != map)
2056 			kfree(new_map);
2057 	}
2058 
2059 	mutex_unlock(&xps_map_mutex);
2060 
2061 	kfree(new_dev_maps);
2062 	return -ENOMEM;
2063 }
2064 EXPORT_SYMBOL(netif_set_xps_queue);
2065 
2066 #endif
2067 /*
2068  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2072 {
2073 	int rc;
2074 
2075 	if (txq < 1 || txq > dev->num_tx_queues)
2076 		return -EINVAL;
2077 
2078 	if (dev->reg_state == NETREG_REGISTERED ||
2079 	    dev->reg_state == NETREG_UNREGISTERING) {
2080 		ASSERT_RTNL();
2081 
2082 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083 						  txq);
2084 		if (rc)
2085 			return rc;
2086 
2087 		if (dev->num_tc)
2088 			netif_setup_tc(dev, txq);
2089 
2090 		if (txq < dev->real_num_tx_queues) {
2091 			qdisc_reset_all_tx_gt(dev, txq);
2092 #ifdef CONFIG_XPS
2093 			netif_reset_xps_queues_gt(dev, txq);
2094 #endif
2095 		}
2096 	}
2097 
2098 	dev->real_num_tx_queues = txq;
2099 	return 0;
2100 }
2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2102 
2103 #ifdef CONFIG_SYSFS
2104 /**
2105  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2106  *	@dev: Network device
2107  *	@rxq: Actual number of RX queues
2108  *
2109  *	This must be called either with the rtnl_lock held or before
2110  *	registration of the net device.  Returns 0 on success, or a
2111  *	negative error code.  If called before registration, it always
2112  *	succeeds.
2113  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115 {
2116 	int rc;
2117 
2118 	if (rxq < 1 || rxq > dev->num_rx_queues)
2119 		return -EINVAL;
2120 
2121 	if (dev->reg_state == NETREG_REGISTERED) {
2122 		ASSERT_RTNL();
2123 
2124 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125 						  rxq);
2126 		if (rc)
2127 			return rc;
2128 	}
2129 
2130 	dev->real_num_rx_queues = rxq;
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134 #endif
2135 
2136 /**
2137  * netif_get_num_default_rss_queues - default number of RSS queues
2138  *
2139  * This routine should set an upper limit on the number of RSS queues
2140  * used by default by multiqueue devices.
2141  */
netif_get_num_default_rss_queues(void)2142 int netif_get_num_default_rss_queues(void)
2143 {
2144 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145 }
2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147 
__netif_reschedule(struct Qdisc * q)2148 static inline void __netif_reschedule(struct Qdisc *q)
2149 {
2150 	struct softnet_data *sd;
2151 	unsigned long flags;
2152 
2153 	local_irq_save(flags);
2154 	sd = this_cpu_ptr(&softnet_data);
2155 	q->next_sched = NULL;
2156 	*sd->output_queue_tailp = q;
2157 	sd->output_queue_tailp = &q->next_sched;
2158 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 	local_irq_restore(flags);
2160 }
2161 
__netif_schedule(struct Qdisc * q)2162 void __netif_schedule(struct Qdisc *q)
2163 {
2164 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 		__netif_reschedule(q);
2166 }
2167 EXPORT_SYMBOL(__netif_schedule);
2168 
2169 struct dev_kfree_skb_cb {
2170 	enum skb_free_reason reason;
2171 };
2172 
get_kfree_skb_cb(const struct sk_buff * skb)2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2174 {
2175 	return (struct dev_kfree_skb_cb *)skb->cb;
2176 }
2177 
netif_schedule_queue(struct netdev_queue * txq)2178 void netif_schedule_queue(struct netdev_queue *txq)
2179 {
2180 	rcu_read_lock();
2181 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2182 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2183 
2184 		__netif_schedule(q);
2185 	}
2186 	rcu_read_unlock();
2187 }
2188 EXPORT_SYMBOL(netif_schedule_queue);
2189 
2190 /**
2191  *	netif_wake_subqueue - allow sending packets on subqueue
2192  *	@dev: network device
2193  *	@queue_index: sub queue index
2194  *
2195  * Resume individual transmit queue of a device with multiple transmit queues.
2196  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2197 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2198 {
2199 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2200 
2201 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2202 		struct Qdisc *q;
2203 
2204 		rcu_read_lock();
2205 		q = rcu_dereference(txq->qdisc);
2206 		__netif_schedule(q);
2207 		rcu_read_unlock();
2208 	}
2209 }
2210 EXPORT_SYMBOL(netif_wake_subqueue);
2211 
netif_tx_wake_queue(struct netdev_queue * dev_queue)2212 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2213 {
2214 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2215 		struct Qdisc *q;
2216 
2217 		rcu_read_lock();
2218 		q = rcu_dereference(dev_queue->qdisc);
2219 		__netif_schedule(q);
2220 		rcu_read_unlock();
2221 	}
2222 }
2223 EXPORT_SYMBOL(netif_tx_wake_queue);
2224 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2225 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2226 {
2227 	unsigned long flags;
2228 
2229 	if (unlikely(!skb))
2230 		return;
2231 
2232 	if (likely(atomic_read(&skb->users) == 1)) {
2233 		smp_rmb();
2234 		atomic_set(&skb->users, 0);
2235 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2236 		return;
2237 	}
2238 	get_kfree_skb_cb(skb)->reason = reason;
2239 	local_irq_save(flags);
2240 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2241 	__this_cpu_write(softnet_data.completion_queue, skb);
2242 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2243 	local_irq_restore(flags);
2244 }
2245 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2246 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2247 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2248 {
2249 	if (in_irq() || irqs_disabled())
2250 		__dev_kfree_skb_irq(skb, reason);
2251 	else
2252 		dev_kfree_skb(skb);
2253 }
2254 EXPORT_SYMBOL(__dev_kfree_skb_any);
2255 
2256 
2257 /**
2258  * netif_device_detach - mark device as removed
2259  * @dev: network device
2260  *
2261  * Mark device as removed from system and therefore no longer available.
2262  */
netif_device_detach(struct net_device * dev)2263 void netif_device_detach(struct net_device *dev)
2264 {
2265 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2266 	    netif_running(dev)) {
2267 		netif_tx_stop_all_queues(dev);
2268 	}
2269 }
2270 EXPORT_SYMBOL(netif_device_detach);
2271 
2272 /**
2273  * netif_device_attach - mark device as attached
2274  * @dev: network device
2275  *
2276  * Mark device as attached from system and restart if needed.
2277  */
netif_device_attach(struct net_device * dev)2278 void netif_device_attach(struct net_device *dev)
2279 {
2280 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2281 	    netif_running(dev)) {
2282 		netif_tx_wake_all_queues(dev);
2283 		__netdev_watchdog_up(dev);
2284 	}
2285 }
2286 EXPORT_SYMBOL(netif_device_attach);
2287 
skb_warn_bad_offload(const struct sk_buff * skb)2288 static void skb_warn_bad_offload(const struct sk_buff *skb)
2289 {
2290 	static const netdev_features_t null_features = 0;
2291 	struct net_device *dev = skb->dev;
2292 	const char *driver = "";
2293 
2294 	if (!net_ratelimit())
2295 		return;
2296 
2297 	if (dev && dev->dev.parent)
2298 		driver = dev_driver_string(dev->dev.parent);
2299 
2300 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2301 	     "gso_type=%d ip_summed=%d\n",
2302 	     driver, dev ? &dev->features : &null_features,
2303 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2304 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2305 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2306 }
2307 
2308 /*
2309  * Invalidate hardware checksum when packet is to be mangled, and
2310  * complete checksum manually on outgoing path.
2311  */
skb_checksum_help(struct sk_buff * skb)2312 int skb_checksum_help(struct sk_buff *skb)
2313 {
2314 	__wsum csum;
2315 	int ret = 0, offset;
2316 
2317 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2318 		goto out_set_summed;
2319 
2320 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2321 		skb_warn_bad_offload(skb);
2322 		return -EINVAL;
2323 	}
2324 
2325 	/* Before computing a checksum, we should make sure no frag could
2326 	 * be modified by an external entity : checksum could be wrong.
2327 	 */
2328 	if (skb_has_shared_frag(skb)) {
2329 		ret = __skb_linearize(skb);
2330 		if (ret)
2331 			goto out;
2332 	}
2333 
2334 	offset = skb_checksum_start_offset(skb);
2335 	BUG_ON(offset >= skb_headlen(skb));
2336 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2337 
2338 	offset += skb->csum_offset;
2339 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2340 
2341 	if (skb_cloned(skb) &&
2342 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2343 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2344 		if (ret)
2345 			goto out;
2346 	}
2347 
2348 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2349 out_set_summed:
2350 	skb->ip_summed = CHECKSUM_NONE;
2351 out:
2352 	return ret;
2353 }
2354 EXPORT_SYMBOL(skb_checksum_help);
2355 
skb_network_protocol(struct sk_buff * skb,int * depth)2356 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2357 {
2358 	unsigned int vlan_depth = skb->mac_len;
2359 	__be16 type = skb->protocol;
2360 
2361 	/* Tunnel gso handlers can set protocol to ethernet. */
2362 	if (type == htons(ETH_P_TEB)) {
2363 		struct ethhdr *eth;
2364 
2365 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2366 			return 0;
2367 
2368 		eth = (struct ethhdr *)skb_mac_header(skb);
2369 		type = eth->h_proto;
2370 	}
2371 
2372 	/* if skb->protocol is 802.1Q/AD then the header should already be
2373 	 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2374 	 * ETH_HLEN otherwise
2375 	 */
2376 	if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2377 		if (vlan_depth) {
2378 			if (WARN_ON(vlan_depth < VLAN_HLEN))
2379 				return 0;
2380 			vlan_depth -= VLAN_HLEN;
2381 		} else {
2382 			vlan_depth = ETH_HLEN;
2383 		}
2384 		do {
2385 			struct vlan_hdr *vh;
2386 
2387 			if (unlikely(!pskb_may_pull(skb,
2388 						    vlan_depth + VLAN_HLEN)))
2389 				return 0;
2390 
2391 			vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2392 			type = vh->h_vlan_encapsulated_proto;
2393 			vlan_depth += VLAN_HLEN;
2394 		} while (type == htons(ETH_P_8021Q) ||
2395 			 type == htons(ETH_P_8021AD));
2396 	}
2397 
2398 	*depth = vlan_depth;
2399 
2400 	return type;
2401 }
2402 
2403 /**
2404  *	skb_mac_gso_segment - mac layer segmentation handler.
2405  *	@skb: buffer to segment
2406  *	@features: features for the output path (see dev->features)
2407  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2408 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2409 				    netdev_features_t features)
2410 {
2411 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2412 	struct packet_offload *ptype;
2413 	int vlan_depth = skb->mac_len;
2414 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2415 
2416 	if (unlikely(!type))
2417 		return ERR_PTR(-EINVAL);
2418 
2419 	__skb_pull(skb, vlan_depth);
2420 
2421 	rcu_read_lock();
2422 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2423 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2424 			segs = ptype->callbacks.gso_segment(skb, features);
2425 			break;
2426 		}
2427 	}
2428 	rcu_read_unlock();
2429 
2430 	__skb_push(skb, skb->data - skb_mac_header(skb));
2431 
2432 	return segs;
2433 }
2434 EXPORT_SYMBOL(skb_mac_gso_segment);
2435 
2436 
2437 /* openvswitch calls this on rx path, so we need a different check.
2438  */
skb_needs_check(struct sk_buff * skb,bool tx_path)2439 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2440 {
2441 	if (tx_path)
2442 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2443 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2444 
2445 	return skb->ip_summed == CHECKSUM_NONE;
2446 }
2447 
2448 /**
2449  *	__skb_gso_segment - Perform segmentation on skb.
2450  *	@skb: buffer to segment
2451  *	@features: features for the output path (see dev->features)
2452  *	@tx_path: whether it is called in TX path
2453  *
2454  *	This function segments the given skb and returns a list of segments.
2455  *
2456  *	It may return NULL if the skb requires no segmentation.  This is
2457  *	only possible when GSO is used for verifying header integrity.
2458  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2459 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460 				  netdev_features_t features, bool tx_path)
2461 {
2462 	struct sk_buff *segs;
2463 
2464 	if (unlikely(skb_needs_check(skb, tx_path))) {
2465 		int err;
2466 
2467 		/* We're going to init ->check field in TCP or UDP header */
2468 		err = skb_cow_head(skb, 0);
2469 		if (err < 0)
2470 			return ERR_PTR(err);
2471 	}
2472 
2473 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2474 	SKB_GSO_CB(skb)->encap_level = 0;
2475 
2476 	skb_reset_mac_header(skb);
2477 	skb_reset_mac_len(skb);
2478 
2479 	segs = skb_mac_gso_segment(skb, features);
2480 
2481 	if (unlikely(skb_needs_check(skb, tx_path)))
2482 		skb_warn_bad_offload(skb);
2483 
2484 	return segs;
2485 }
2486 EXPORT_SYMBOL(__skb_gso_segment);
2487 
2488 /* Take action when hardware reception checksum errors are detected. */
2489 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2490 void netdev_rx_csum_fault(struct net_device *dev)
2491 {
2492 	if (net_ratelimit()) {
2493 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2494 		dump_stack();
2495 	}
2496 }
2497 EXPORT_SYMBOL(netdev_rx_csum_fault);
2498 #endif
2499 
2500 /* Actually, we should eliminate this check as soon as we know, that:
2501  * 1. IOMMU is present and allows to map all the memory.
2502  * 2. No high memory really exists on this machine.
2503  */
2504 
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2505 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2506 {
2507 #ifdef CONFIG_HIGHMEM
2508 	int i;
2509 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2510 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 			if (PageHighMem(skb_frag_page(frag)))
2513 				return 1;
2514 		}
2515 	}
2516 
2517 	if (PCI_DMA_BUS_IS_PHYS) {
2518 		struct device *pdev = dev->dev.parent;
2519 
2520 		if (!pdev)
2521 			return 0;
2522 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2523 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2524 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2525 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2526 				return 1;
2527 		}
2528 	}
2529 #endif
2530 	return 0;
2531 }
2532 
2533 /* If MPLS offload request, verify we are testing hardware MPLS features
2534  * instead of standard features for the netdev.
2535  */
2536 #ifdef CONFIG_NET_MPLS_GSO
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2538 					   netdev_features_t features,
2539 					   __be16 type)
2540 {
2541 	if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2542 		features &= skb->dev->mpls_features;
2543 
2544 	return features;
2545 }
2546 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2547 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2548 					   netdev_features_t features,
2549 					   __be16 type)
2550 {
2551 	return features;
2552 }
2553 #endif
2554 
harmonize_features(struct sk_buff * skb,netdev_features_t features)2555 static netdev_features_t harmonize_features(struct sk_buff *skb,
2556 	netdev_features_t features)
2557 {
2558 	int tmp;
2559 	__be16 type;
2560 
2561 	type = skb_network_protocol(skb, &tmp);
2562 	features = net_mpls_features(skb, features, type);
2563 
2564 	if (skb->ip_summed != CHECKSUM_NONE &&
2565 	    !can_checksum_protocol(features, type)) {
2566 		features &= ~NETIF_F_ALL_CSUM;
2567 	} else if (illegal_highdma(skb->dev, skb)) {
2568 		features &= ~NETIF_F_SG;
2569 	}
2570 
2571 	return features;
2572 }
2573 
netif_skb_features(struct sk_buff * skb)2574 netdev_features_t netif_skb_features(struct sk_buff *skb)
2575 {
2576 	struct net_device *dev = skb->dev;
2577 	netdev_features_t features = dev->features;
2578 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2579 	__be16 protocol = skb->protocol;
2580 
2581 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2582 		features &= ~NETIF_F_GSO_MASK;
2583 
2584 	/* If encapsulation offload request, verify we are testing
2585 	 * hardware encapsulation features instead of standard
2586 	 * features for the netdev
2587 	 */
2588 	if (skb->encapsulation)
2589 		features &= dev->hw_enc_features;
2590 
2591 	if (!vlan_tx_tag_present(skb)) {
2592 		if (unlikely(protocol == htons(ETH_P_8021Q) ||
2593 			     protocol == htons(ETH_P_8021AD))) {
2594 			struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2595 			protocol = veh->h_vlan_encapsulated_proto;
2596 		} else {
2597 			goto finalize;
2598 		}
2599 	}
2600 
2601 	features = netdev_intersect_features(features,
2602 					     dev->vlan_features |
2603 					     NETIF_F_HW_VLAN_CTAG_TX |
2604 					     NETIF_F_HW_VLAN_STAG_TX);
2605 
2606 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2607 		features = netdev_intersect_features(features,
2608 						     NETIF_F_SG |
2609 						     NETIF_F_HIGHDMA |
2610 						     NETIF_F_FRAGLIST |
2611 						     NETIF_F_GEN_CSUM |
2612 						     NETIF_F_HW_VLAN_CTAG_TX |
2613 						     NETIF_F_HW_VLAN_STAG_TX);
2614 
2615 finalize:
2616 	if (dev->netdev_ops->ndo_features_check)
2617 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2618 								features);
2619 
2620 	return harmonize_features(skb, features);
2621 }
2622 EXPORT_SYMBOL(netif_skb_features);
2623 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2624 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2625 		    struct netdev_queue *txq, bool more)
2626 {
2627 	unsigned int len;
2628 	int rc;
2629 
2630 	if (!list_empty(&ptype_all))
2631 		dev_queue_xmit_nit(skb, dev);
2632 
2633 	len = skb->len;
2634 	trace_net_dev_start_xmit(skb, dev);
2635 	rc = netdev_start_xmit(skb, dev, txq, more);
2636 	trace_net_dev_xmit(skb, rc, dev, len);
2637 
2638 	return rc;
2639 }
2640 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)2641 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2642 				    struct netdev_queue *txq, int *ret)
2643 {
2644 	struct sk_buff *skb = first;
2645 	int rc = NETDEV_TX_OK;
2646 
2647 	while (skb) {
2648 		struct sk_buff *next = skb->next;
2649 
2650 		skb->next = NULL;
2651 		rc = xmit_one(skb, dev, txq, next != NULL);
2652 		if (unlikely(!dev_xmit_complete(rc))) {
2653 			skb->next = next;
2654 			goto out;
2655 		}
2656 
2657 		skb = next;
2658 		if (netif_xmit_stopped(txq) && skb) {
2659 			rc = NETDEV_TX_BUSY;
2660 			break;
2661 		}
2662 	}
2663 
2664 out:
2665 	*ret = rc;
2666 	return skb;
2667 }
2668 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)2669 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2670 					  netdev_features_t features)
2671 {
2672 	if (vlan_tx_tag_present(skb) &&
2673 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2674 		skb = __vlan_hwaccel_push_inside(skb);
2675 	return skb;
2676 }
2677 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2678 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2679 {
2680 	netdev_features_t features;
2681 
2682 	if (skb->next)
2683 		return skb;
2684 
2685 	features = netif_skb_features(skb);
2686 	skb = validate_xmit_vlan(skb, features);
2687 	if (unlikely(!skb))
2688 		goto out_null;
2689 
2690 	if (netif_needs_gso(dev, skb, features)) {
2691 		struct sk_buff *segs;
2692 
2693 		segs = skb_gso_segment(skb, features);
2694 		if (IS_ERR(segs)) {
2695 			goto out_kfree_skb;
2696 		} else if (segs) {
2697 			consume_skb(skb);
2698 			skb = segs;
2699 		}
2700 	} else {
2701 		if (skb_needs_linearize(skb, features) &&
2702 		    __skb_linearize(skb))
2703 			goto out_kfree_skb;
2704 
2705 		/* If packet is not checksummed and device does not
2706 		 * support checksumming for this protocol, complete
2707 		 * checksumming here.
2708 		 */
2709 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2710 			if (skb->encapsulation)
2711 				skb_set_inner_transport_header(skb,
2712 							       skb_checksum_start_offset(skb));
2713 			else
2714 				skb_set_transport_header(skb,
2715 							 skb_checksum_start_offset(skb));
2716 			if (!(features & NETIF_F_ALL_CSUM) &&
2717 			    skb_checksum_help(skb))
2718 				goto out_kfree_skb;
2719 		}
2720 	}
2721 
2722 	return skb;
2723 
2724 out_kfree_skb:
2725 	kfree_skb(skb);
2726 out_null:
2727 	return NULL;
2728 }
2729 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)2730 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2731 {
2732 	struct sk_buff *next, *head = NULL, *tail;
2733 
2734 	for (; skb != NULL; skb = next) {
2735 		next = skb->next;
2736 		skb->next = NULL;
2737 
2738 		/* in case skb wont be segmented, point to itself */
2739 		skb->prev = skb;
2740 
2741 		skb = validate_xmit_skb(skb, dev);
2742 		if (!skb)
2743 			continue;
2744 
2745 		if (!head)
2746 			head = skb;
2747 		else
2748 			tail->next = skb;
2749 		/* If skb was segmented, skb->prev points to
2750 		 * the last segment. If not, it still contains skb.
2751 		 */
2752 		tail = skb->prev;
2753 	}
2754 	return head;
2755 }
2756 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2757 
qdisc_pkt_len_init(struct sk_buff * skb)2758 static void qdisc_pkt_len_init(struct sk_buff *skb)
2759 {
2760 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2761 
2762 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2763 
2764 	/* To get more precise estimation of bytes sent on wire,
2765 	 * we add to pkt_len the headers size of all segments
2766 	 */
2767 	if (shinfo->gso_size)  {
2768 		unsigned int hdr_len;
2769 		u16 gso_segs = shinfo->gso_segs;
2770 
2771 		/* mac layer + network layer */
2772 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2773 
2774 		/* + transport layer */
2775 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
2776 			const struct tcphdr *th;
2777 			struct tcphdr _tcphdr;
2778 
2779 			th = skb_header_pointer(skb, skb_transport_offset(skb),
2780 						sizeof(_tcphdr), &_tcphdr);
2781 			if (likely(th))
2782 				hdr_len += __tcp_hdrlen(th);
2783 		} else {
2784 			struct udphdr _udphdr;
2785 
2786 			if (skb_header_pointer(skb, skb_transport_offset(skb),
2787 					       sizeof(_udphdr), &_udphdr))
2788 				hdr_len += sizeof(struct udphdr);
2789 		}
2790 
2791 		if (shinfo->gso_type & SKB_GSO_DODGY)
2792 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2793 						shinfo->gso_size);
2794 
2795 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2796 	}
2797 }
2798 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2799 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2800 				 struct net_device *dev,
2801 				 struct netdev_queue *txq)
2802 {
2803 	spinlock_t *root_lock = qdisc_lock(q);
2804 	bool contended;
2805 	int rc;
2806 
2807 	qdisc_pkt_len_init(skb);
2808 	qdisc_calculate_pkt_len(skb, q);
2809 	/*
2810 	 * Heuristic to force contended enqueues to serialize on a
2811 	 * separate lock before trying to get qdisc main lock.
2812 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2813 	 * often and dequeue packets faster.
2814 	 */
2815 	contended = qdisc_is_running(q);
2816 	if (unlikely(contended))
2817 		spin_lock(&q->busylock);
2818 
2819 	spin_lock(root_lock);
2820 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2821 		kfree_skb(skb);
2822 		rc = NET_XMIT_DROP;
2823 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2824 		   qdisc_run_begin(q)) {
2825 		/*
2826 		 * This is a work-conserving queue; there are no old skbs
2827 		 * waiting to be sent out; and the qdisc is not running -
2828 		 * xmit the skb directly.
2829 		 */
2830 
2831 		qdisc_bstats_update(q, skb);
2832 
2833 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2834 			if (unlikely(contended)) {
2835 				spin_unlock(&q->busylock);
2836 				contended = false;
2837 			}
2838 			__qdisc_run(q);
2839 		} else
2840 			qdisc_run_end(q);
2841 
2842 		rc = NET_XMIT_SUCCESS;
2843 	} else {
2844 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2845 		if (qdisc_run_begin(q)) {
2846 			if (unlikely(contended)) {
2847 				spin_unlock(&q->busylock);
2848 				contended = false;
2849 			}
2850 			__qdisc_run(q);
2851 		}
2852 	}
2853 	spin_unlock(root_lock);
2854 	if (unlikely(contended))
2855 		spin_unlock(&q->busylock);
2856 	return rc;
2857 }
2858 
2859 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)2860 static void skb_update_prio(struct sk_buff *skb)
2861 {
2862 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2863 
2864 	if (!skb->priority && skb->sk && map) {
2865 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2866 
2867 		if (prioidx < map->priomap_len)
2868 			skb->priority = map->priomap[prioidx];
2869 	}
2870 }
2871 #else
2872 #define skb_update_prio(skb)
2873 #endif
2874 
2875 DEFINE_PER_CPU(int, xmit_recursion);
2876 EXPORT_SYMBOL(xmit_recursion);
2877 
2878 #define RECURSION_LIMIT 10
2879 
2880 /**
2881  *	dev_loopback_xmit - loop back @skb
2882  *	@skb: buffer to transmit
2883  */
dev_loopback_xmit(struct sk_buff * skb)2884 int dev_loopback_xmit(struct sk_buff *skb)
2885 {
2886 	skb_reset_mac_header(skb);
2887 	__skb_pull(skb, skb_network_offset(skb));
2888 	skb->pkt_type = PACKET_LOOPBACK;
2889 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2890 	WARN_ON(!skb_dst(skb));
2891 	skb_dst_force(skb);
2892 	netif_rx_ni(skb);
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL(dev_loopback_xmit);
2896 
2897 /**
2898  *	__dev_queue_xmit - transmit a buffer
2899  *	@skb: buffer to transmit
2900  *	@accel_priv: private data used for L2 forwarding offload
2901  *
2902  *	Queue a buffer for transmission to a network device. The caller must
2903  *	have set the device and priority and built the buffer before calling
2904  *	this function. The function can be called from an interrupt.
2905  *
2906  *	A negative errno code is returned on a failure. A success does not
2907  *	guarantee the frame will be transmitted as it may be dropped due
2908  *	to congestion or traffic shaping.
2909  *
2910  * -----------------------------------------------------------------------------------
2911  *      I notice this method can also return errors from the queue disciplines,
2912  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2913  *      be positive.
2914  *
2915  *      Regardless of the return value, the skb is consumed, so it is currently
2916  *      difficult to retry a send to this method.  (You can bump the ref count
2917  *      before sending to hold a reference for retry if you are careful.)
2918  *
2919  *      When calling this method, interrupts MUST be enabled.  This is because
2920  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2921  *          --BLG
2922  */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)2923 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2924 {
2925 	struct net_device *dev = skb->dev;
2926 	struct netdev_queue *txq;
2927 	struct Qdisc *q;
2928 	int rc = -ENOMEM;
2929 
2930 	skb_reset_mac_header(skb);
2931 
2932 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2933 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2934 
2935 	/* Disable soft irqs for various locks below. Also
2936 	 * stops preemption for RCU.
2937 	 */
2938 	rcu_read_lock_bh();
2939 
2940 	skb_update_prio(skb);
2941 
2942 	/* If device/qdisc don't need skb->dst, release it right now while
2943 	 * its hot in this cpu cache.
2944 	 */
2945 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2946 		skb_dst_drop(skb);
2947 	else
2948 		skb_dst_force(skb);
2949 
2950 	txq = netdev_pick_tx(dev, skb, accel_priv);
2951 	q = rcu_dereference_bh(txq->qdisc);
2952 
2953 #ifdef CONFIG_NET_CLS_ACT
2954 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2955 #endif
2956 	trace_net_dev_queue(skb);
2957 	if (q->enqueue) {
2958 		rc = __dev_xmit_skb(skb, q, dev, txq);
2959 		goto out;
2960 	}
2961 
2962 	/* The device has no queue. Common case for software devices:
2963 	   loopback, all the sorts of tunnels...
2964 
2965 	   Really, it is unlikely that netif_tx_lock protection is necessary
2966 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2967 	   counters.)
2968 	   However, it is possible, that they rely on protection
2969 	   made by us here.
2970 
2971 	   Check this and shot the lock. It is not prone from deadlocks.
2972 	   Either shot noqueue qdisc, it is even simpler 8)
2973 	 */
2974 	if (dev->flags & IFF_UP) {
2975 		int cpu = smp_processor_id(); /* ok because BHs are off */
2976 
2977 		if (txq->xmit_lock_owner != cpu) {
2978 
2979 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2980 				goto recursion_alert;
2981 
2982 			skb = validate_xmit_skb(skb, dev);
2983 			if (!skb)
2984 				goto drop;
2985 
2986 			HARD_TX_LOCK(dev, txq, cpu);
2987 
2988 			if (!netif_xmit_stopped(txq)) {
2989 				__this_cpu_inc(xmit_recursion);
2990 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2991 				__this_cpu_dec(xmit_recursion);
2992 				if (dev_xmit_complete(rc)) {
2993 					HARD_TX_UNLOCK(dev, txq);
2994 					goto out;
2995 				}
2996 			}
2997 			HARD_TX_UNLOCK(dev, txq);
2998 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2999 					     dev->name);
3000 		} else {
3001 			/* Recursion is detected! It is possible,
3002 			 * unfortunately
3003 			 */
3004 recursion_alert:
3005 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3006 					     dev->name);
3007 		}
3008 	}
3009 
3010 	rc = -ENETDOWN;
3011 drop:
3012 	rcu_read_unlock_bh();
3013 
3014 	atomic_long_inc(&dev->tx_dropped);
3015 	kfree_skb_list(skb);
3016 	return rc;
3017 out:
3018 	rcu_read_unlock_bh();
3019 	return rc;
3020 }
3021 
dev_queue_xmit(struct sk_buff * skb)3022 int dev_queue_xmit(struct sk_buff *skb)
3023 {
3024 	return __dev_queue_xmit(skb, NULL);
3025 }
3026 EXPORT_SYMBOL(dev_queue_xmit);
3027 
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3028 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3029 {
3030 	return __dev_queue_xmit(skb, accel_priv);
3031 }
3032 EXPORT_SYMBOL(dev_queue_xmit_accel);
3033 
3034 
3035 /*=======================================================================
3036 			Receiver routines
3037   =======================================================================*/
3038 
3039 int netdev_max_backlog __read_mostly = 1000;
3040 EXPORT_SYMBOL(netdev_max_backlog);
3041 
3042 int netdev_tstamp_prequeue __read_mostly = 1;
3043 int netdev_budget __read_mostly = 300;
3044 int weight_p __read_mostly = 64;            /* old backlog weight */
3045 
3046 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3047 static inline void ____napi_schedule(struct softnet_data *sd,
3048 				     struct napi_struct *napi)
3049 {
3050 	list_add_tail(&napi->poll_list, &sd->poll_list);
3051 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3052 }
3053 
3054 #ifdef CONFIG_RPS
3055 
3056 /* One global table that all flow-based protocols share. */
3057 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3058 EXPORT_SYMBOL(rps_sock_flow_table);
3059 
3060 struct static_key rps_needed __read_mostly;
3061 
3062 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3063 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3064 	    struct rps_dev_flow *rflow, u16 next_cpu)
3065 {
3066 	if (next_cpu != RPS_NO_CPU) {
3067 #ifdef CONFIG_RFS_ACCEL
3068 		struct netdev_rx_queue *rxqueue;
3069 		struct rps_dev_flow_table *flow_table;
3070 		struct rps_dev_flow *old_rflow;
3071 		u32 flow_id;
3072 		u16 rxq_index;
3073 		int rc;
3074 
3075 		/* Should we steer this flow to a different hardware queue? */
3076 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3077 		    !(dev->features & NETIF_F_NTUPLE))
3078 			goto out;
3079 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3080 		if (rxq_index == skb_get_rx_queue(skb))
3081 			goto out;
3082 
3083 		rxqueue = dev->_rx + rxq_index;
3084 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3085 		if (!flow_table)
3086 			goto out;
3087 		flow_id = skb_get_hash(skb) & flow_table->mask;
3088 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3089 							rxq_index, flow_id);
3090 		if (rc < 0)
3091 			goto out;
3092 		old_rflow = rflow;
3093 		rflow = &flow_table->flows[flow_id];
3094 		rflow->filter = rc;
3095 		if (old_rflow->filter == rflow->filter)
3096 			old_rflow->filter = RPS_NO_FILTER;
3097 	out:
3098 #endif
3099 		rflow->last_qtail =
3100 			per_cpu(softnet_data, next_cpu).input_queue_head;
3101 	}
3102 
3103 	rflow->cpu = next_cpu;
3104 	return rflow;
3105 }
3106 
3107 /*
3108  * get_rps_cpu is called from netif_receive_skb and returns the target
3109  * CPU from the RPS map of the receiving queue for a given skb.
3110  * rcu_read_lock must be held on entry.
3111  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3112 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3113 		       struct rps_dev_flow **rflowp)
3114 {
3115 	struct netdev_rx_queue *rxqueue;
3116 	struct rps_map *map;
3117 	struct rps_dev_flow_table *flow_table;
3118 	struct rps_sock_flow_table *sock_flow_table;
3119 	int cpu = -1;
3120 	u16 tcpu;
3121 	u32 hash;
3122 
3123 	if (skb_rx_queue_recorded(skb)) {
3124 		u16 index = skb_get_rx_queue(skb);
3125 		if (unlikely(index >= dev->real_num_rx_queues)) {
3126 			WARN_ONCE(dev->real_num_rx_queues > 1,
3127 				  "%s received packet on queue %u, but number "
3128 				  "of RX queues is %u\n",
3129 				  dev->name, index, dev->real_num_rx_queues);
3130 			goto done;
3131 		}
3132 		rxqueue = dev->_rx + index;
3133 	} else
3134 		rxqueue = dev->_rx;
3135 
3136 	map = rcu_dereference(rxqueue->rps_map);
3137 	if (map) {
3138 		if (map->len == 1 &&
3139 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3140 			tcpu = map->cpus[0];
3141 			if (cpu_online(tcpu))
3142 				cpu = tcpu;
3143 			goto done;
3144 		}
3145 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3146 		goto done;
3147 	}
3148 
3149 	skb_reset_network_header(skb);
3150 	hash = skb_get_hash(skb);
3151 	if (!hash)
3152 		goto done;
3153 
3154 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3155 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3156 	if (flow_table && sock_flow_table) {
3157 		u16 next_cpu;
3158 		struct rps_dev_flow *rflow;
3159 
3160 		rflow = &flow_table->flows[hash & flow_table->mask];
3161 		tcpu = rflow->cpu;
3162 
3163 		next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3164 
3165 		/*
3166 		 * If the desired CPU (where last recvmsg was done) is
3167 		 * different from current CPU (one in the rx-queue flow
3168 		 * table entry), switch if one of the following holds:
3169 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3170 		 *   - Current CPU is offline.
3171 		 *   - The current CPU's queue tail has advanced beyond the
3172 		 *     last packet that was enqueued using this table entry.
3173 		 *     This guarantees that all previous packets for the flow
3174 		 *     have been dequeued, thus preserving in order delivery.
3175 		 */
3176 		if (unlikely(tcpu != next_cpu) &&
3177 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3178 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3179 		      rflow->last_qtail)) >= 0)) {
3180 			tcpu = next_cpu;
3181 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3182 		}
3183 
3184 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3185 			*rflowp = rflow;
3186 			cpu = tcpu;
3187 			goto done;
3188 		}
3189 	}
3190 
3191 	if (map) {
3192 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3193 		if (cpu_online(tcpu)) {
3194 			cpu = tcpu;
3195 			goto done;
3196 		}
3197 	}
3198 
3199 done:
3200 	return cpu;
3201 }
3202 
3203 #ifdef CONFIG_RFS_ACCEL
3204 
3205 /**
3206  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3207  * @dev: Device on which the filter was set
3208  * @rxq_index: RX queue index
3209  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3210  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3211  *
3212  * Drivers that implement ndo_rx_flow_steer() should periodically call
3213  * this function for each installed filter and remove the filters for
3214  * which it returns %true.
3215  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3216 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3217 			 u32 flow_id, u16 filter_id)
3218 {
3219 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3220 	struct rps_dev_flow_table *flow_table;
3221 	struct rps_dev_flow *rflow;
3222 	bool expire = true;
3223 	int cpu;
3224 
3225 	rcu_read_lock();
3226 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3227 	if (flow_table && flow_id <= flow_table->mask) {
3228 		rflow = &flow_table->flows[flow_id];
3229 		cpu = ACCESS_ONCE(rflow->cpu);
3230 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3231 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3232 			   rflow->last_qtail) <
3233 		     (int)(10 * flow_table->mask)))
3234 			expire = false;
3235 	}
3236 	rcu_read_unlock();
3237 	return expire;
3238 }
3239 EXPORT_SYMBOL(rps_may_expire_flow);
3240 
3241 #endif /* CONFIG_RFS_ACCEL */
3242 
3243 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3244 static void rps_trigger_softirq(void *data)
3245 {
3246 	struct softnet_data *sd = data;
3247 
3248 	____napi_schedule(sd, &sd->backlog);
3249 	sd->received_rps++;
3250 }
3251 
3252 #endif /* CONFIG_RPS */
3253 
3254 /*
3255  * Check if this softnet_data structure is another cpu one
3256  * If yes, queue it to our IPI list and return 1
3257  * If no, return 0
3258  */
rps_ipi_queued(struct softnet_data * sd)3259 static int rps_ipi_queued(struct softnet_data *sd)
3260 {
3261 #ifdef CONFIG_RPS
3262 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3263 
3264 	if (sd != mysd) {
3265 		sd->rps_ipi_next = mysd->rps_ipi_list;
3266 		mysd->rps_ipi_list = sd;
3267 
3268 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3269 		return 1;
3270 	}
3271 #endif /* CONFIG_RPS */
3272 	return 0;
3273 }
3274 
3275 #ifdef CONFIG_NET_FLOW_LIMIT
3276 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3277 #endif
3278 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3279 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3280 {
3281 #ifdef CONFIG_NET_FLOW_LIMIT
3282 	struct sd_flow_limit *fl;
3283 	struct softnet_data *sd;
3284 	unsigned int old_flow, new_flow;
3285 
3286 	if (qlen < (netdev_max_backlog >> 1))
3287 		return false;
3288 
3289 	sd = this_cpu_ptr(&softnet_data);
3290 
3291 	rcu_read_lock();
3292 	fl = rcu_dereference(sd->flow_limit);
3293 	if (fl) {
3294 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3295 		old_flow = fl->history[fl->history_head];
3296 		fl->history[fl->history_head] = new_flow;
3297 
3298 		fl->history_head++;
3299 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3300 
3301 		if (likely(fl->buckets[old_flow]))
3302 			fl->buckets[old_flow]--;
3303 
3304 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3305 			fl->count++;
3306 			rcu_read_unlock();
3307 			return true;
3308 		}
3309 	}
3310 	rcu_read_unlock();
3311 #endif
3312 	return false;
3313 }
3314 
3315 /*
3316  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3317  * queue (may be a remote CPU queue).
3318  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3319 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3320 			      unsigned int *qtail)
3321 {
3322 	struct softnet_data *sd;
3323 	unsigned long flags;
3324 	unsigned int qlen;
3325 
3326 	sd = &per_cpu(softnet_data, cpu);
3327 
3328 	local_irq_save(flags);
3329 
3330 	rps_lock(sd);
3331 	if (!netif_running(skb->dev))
3332 		goto drop;
3333 	qlen = skb_queue_len(&sd->input_pkt_queue);
3334 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3335 		if (skb_queue_len(&sd->input_pkt_queue)) {
3336 enqueue:
3337 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3338 			input_queue_tail_incr_save(sd, qtail);
3339 			rps_unlock(sd);
3340 			local_irq_restore(flags);
3341 			return NET_RX_SUCCESS;
3342 		}
3343 
3344 		/* Schedule NAPI for backlog device
3345 		 * We can use non atomic operation since we own the queue lock
3346 		 */
3347 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3348 			if (!rps_ipi_queued(sd))
3349 				____napi_schedule(sd, &sd->backlog);
3350 		}
3351 		goto enqueue;
3352 	}
3353 
3354 drop:
3355 	sd->dropped++;
3356 	rps_unlock(sd);
3357 
3358 	local_irq_restore(flags);
3359 
3360 	atomic_long_inc(&skb->dev->rx_dropped);
3361 	kfree_skb(skb);
3362 	return NET_RX_DROP;
3363 }
3364 
netif_rx_internal(struct sk_buff * skb)3365 static int netif_rx_internal(struct sk_buff *skb)
3366 {
3367 	int ret;
3368 
3369 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3370 
3371 	trace_netif_rx(skb);
3372 #ifdef CONFIG_RPS
3373 	if (static_key_false(&rps_needed)) {
3374 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3375 		int cpu;
3376 
3377 		preempt_disable();
3378 		rcu_read_lock();
3379 
3380 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3381 		if (cpu < 0)
3382 			cpu = smp_processor_id();
3383 
3384 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3385 
3386 		rcu_read_unlock();
3387 		preempt_enable();
3388 	} else
3389 #endif
3390 	{
3391 		unsigned int qtail;
3392 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3393 		put_cpu();
3394 	}
3395 	return ret;
3396 }
3397 
3398 /**
3399  *	netif_rx	-	post buffer to the network code
3400  *	@skb: buffer to post
3401  *
3402  *	This function receives a packet from a device driver and queues it for
3403  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3404  *	may be dropped during processing for congestion control or by the
3405  *	protocol layers.
3406  *
3407  *	return values:
3408  *	NET_RX_SUCCESS	(no congestion)
3409  *	NET_RX_DROP     (packet was dropped)
3410  *
3411  */
3412 
netif_rx(struct sk_buff * skb)3413 int netif_rx(struct sk_buff *skb)
3414 {
3415 	trace_netif_rx_entry(skb);
3416 
3417 	return netif_rx_internal(skb);
3418 }
3419 EXPORT_SYMBOL(netif_rx);
3420 
netif_rx_ni(struct sk_buff * skb)3421 int netif_rx_ni(struct sk_buff *skb)
3422 {
3423 	int err;
3424 
3425 	trace_netif_rx_ni_entry(skb);
3426 
3427 	preempt_disable();
3428 	err = netif_rx_internal(skb);
3429 	if (local_softirq_pending())
3430 		do_softirq();
3431 	preempt_enable();
3432 
3433 	return err;
3434 }
3435 EXPORT_SYMBOL(netif_rx_ni);
3436 
net_tx_action(struct softirq_action * h)3437 static void net_tx_action(struct softirq_action *h)
3438 {
3439 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3440 
3441 	if (sd->completion_queue) {
3442 		struct sk_buff *clist;
3443 
3444 		local_irq_disable();
3445 		clist = sd->completion_queue;
3446 		sd->completion_queue = NULL;
3447 		local_irq_enable();
3448 
3449 		while (clist) {
3450 			struct sk_buff *skb = clist;
3451 			clist = clist->next;
3452 
3453 			WARN_ON(atomic_read(&skb->users));
3454 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3455 				trace_consume_skb(skb);
3456 			else
3457 				trace_kfree_skb(skb, net_tx_action);
3458 			__kfree_skb(skb);
3459 		}
3460 	}
3461 
3462 	if (sd->output_queue) {
3463 		struct Qdisc *head;
3464 
3465 		local_irq_disable();
3466 		head = sd->output_queue;
3467 		sd->output_queue = NULL;
3468 		sd->output_queue_tailp = &sd->output_queue;
3469 		local_irq_enable();
3470 
3471 		while (head) {
3472 			struct Qdisc *q = head;
3473 			spinlock_t *root_lock;
3474 
3475 			head = head->next_sched;
3476 
3477 			root_lock = qdisc_lock(q);
3478 			if (spin_trylock(root_lock)) {
3479 				smp_mb__before_atomic();
3480 				clear_bit(__QDISC_STATE_SCHED,
3481 					  &q->state);
3482 				qdisc_run(q);
3483 				spin_unlock(root_lock);
3484 			} else {
3485 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3486 					      &q->state)) {
3487 					__netif_reschedule(q);
3488 				} else {
3489 					smp_mb__before_atomic();
3490 					clear_bit(__QDISC_STATE_SCHED,
3491 						  &q->state);
3492 				}
3493 			}
3494 		}
3495 	}
3496 }
3497 
3498 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3499     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3500 /* This hook is defined here for ATM LANE */
3501 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3502 			     unsigned char *addr) __read_mostly;
3503 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3504 #endif
3505 
3506 #ifdef CONFIG_NET_CLS_ACT
3507 /* TODO: Maybe we should just force sch_ingress to be compiled in
3508  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3509  * a compare and 2 stores extra right now if we dont have it on
3510  * but have CONFIG_NET_CLS_ACT
3511  * NOTE: This doesn't stop any functionality; if you dont have
3512  * the ingress scheduler, you just can't add policies on ingress.
3513  *
3514  */
ing_filter(struct sk_buff * skb,struct netdev_queue * rxq)3515 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3516 {
3517 	struct net_device *dev = skb->dev;
3518 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3519 	int result = TC_ACT_OK;
3520 	struct Qdisc *q;
3521 
3522 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3523 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3524 				     skb->skb_iif, dev->ifindex);
3525 		return TC_ACT_SHOT;
3526 	}
3527 
3528 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3529 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3530 
3531 	q = rcu_dereference(rxq->qdisc);
3532 	if (q != &noop_qdisc) {
3533 		spin_lock(qdisc_lock(q));
3534 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3535 			result = qdisc_enqueue_root(skb, q);
3536 		spin_unlock(qdisc_lock(q));
3537 	}
3538 
3539 	return result;
3540 }
3541 
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3542 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3543 					 struct packet_type **pt_prev,
3544 					 int *ret, struct net_device *orig_dev)
3545 {
3546 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3547 
3548 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3549 		goto out;
3550 
3551 	if (*pt_prev) {
3552 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3553 		*pt_prev = NULL;
3554 	}
3555 
3556 	switch (ing_filter(skb, rxq)) {
3557 	case TC_ACT_SHOT:
3558 	case TC_ACT_STOLEN:
3559 		kfree_skb(skb);
3560 		return NULL;
3561 	}
3562 
3563 out:
3564 	skb->tc_verd = 0;
3565 	return skb;
3566 }
3567 #endif
3568 
3569 /**
3570  *	netdev_rx_handler_register - register receive handler
3571  *	@dev: device to register a handler for
3572  *	@rx_handler: receive handler to register
3573  *	@rx_handler_data: data pointer that is used by rx handler
3574  *
3575  *	Register a receive handler for a device. This handler will then be
3576  *	called from __netif_receive_skb. A negative errno code is returned
3577  *	on a failure.
3578  *
3579  *	The caller must hold the rtnl_mutex.
3580  *
3581  *	For a general description of rx_handler, see enum rx_handler_result.
3582  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3583 int netdev_rx_handler_register(struct net_device *dev,
3584 			       rx_handler_func_t *rx_handler,
3585 			       void *rx_handler_data)
3586 {
3587 	ASSERT_RTNL();
3588 
3589 	if (dev->rx_handler)
3590 		return -EBUSY;
3591 
3592 	/* Note: rx_handler_data must be set before rx_handler */
3593 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3594 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3595 
3596 	return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3599 
3600 /**
3601  *	netdev_rx_handler_unregister - unregister receive handler
3602  *	@dev: device to unregister a handler from
3603  *
3604  *	Unregister a receive handler from a device.
3605  *
3606  *	The caller must hold the rtnl_mutex.
3607  */
netdev_rx_handler_unregister(struct net_device * dev)3608 void netdev_rx_handler_unregister(struct net_device *dev)
3609 {
3610 
3611 	ASSERT_RTNL();
3612 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3613 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3614 	 * section has a guarantee to see a non NULL rx_handler_data
3615 	 * as well.
3616 	 */
3617 	synchronize_net();
3618 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3619 }
3620 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3621 
3622 /*
3623  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3624  * the special handling of PFMEMALLOC skbs.
3625  */
skb_pfmemalloc_protocol(struct sk_buff * skb)3626 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3627 {
3628 	switch (skb->protocol) {
3629 	case htons(ETH_P_ARP):
3630 	case htons(ETH_P_IP):
3631 	case htons(ETH_P_IPV6):
3632 	case htons(ETH_P_8021Q):
3633 	case htons(ETH_P_8021AD):
3634 		return true;
3635 	default:
3636 		return false;
3637 	}
3638 }
3639 
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)3640 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3641 {
3642 	struct packet_type *ptype, *pt_prev;
3643 	rx_handler_func_t *rx_handler;
3644 	struct net_device *orig_dev;
3645 	struct net_device *null_or_dev;
3646 	bool deliver_exact = false;
3647 	int ret = NET_RX_DROP;
3648 	__be16 type;
3649 
3650 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3651 
3652 	trace_netif_receive_skb(skb);
3653 
3654 	orig_dev = skb->dev;
3655 
3656 	skb_reset_network_header(skb);
3657 	if (!skb_transport_header_was_set(skb))
3658 		skb_reset_transport_header(skb);
3659 	skb_reset_mac_len(skb);
3660 
3661 	pt_prev = NULL;
3662 
3663 another_round:
3664 	skb->skb_iif = skb->dev->ifindex;
3665 
3666 	__this_cpu_inc(softnet_data.processed);
3667 
3668 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3669 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3670 		skb = skb_vlan_untag(skb);
3671 		if (unlikely(!skb))
3672 			goto out;
3673 	}
3674 
3675 #ifdef CONFIG_NET_CLS_ACT
3676 	if (skb->tc_verd & TC_NCLS) {
3677 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3678 		goto ncls;
3679 	}
3680 #endif
3681 
3682 	if (pfmemalloc)
3683 		goto skip_taps;
3684 
3685 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3686 		if (!ptype->dev || ptype->dev == skb->dev) {
3687 			if (pt_prev)
3688 				ret = deliver_skb(skb, pt_prev, orig_dev);
3689 			pt_prev = ptype;
3690 		}
3691 	}
3692 
3693 skip_taps:
3694 #ifdef CONFIG_NET_CLS_ACT
3695 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3696 	if (!skb)
3697 		goto out;
3698 ncls:
3699 #endif
3700 
3701 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3702 		goto drop;
3703 
3704 	if (vlan_tx_tag_present(skb)) {
3705 		if (pt_prev) {
3706 			ret = deliver_skb(skb, pt_prev, orig_dev);
3707 			pt_prev = NULL;
3708 		}
3709 		if (vlan_do_receive(&skb))
3710 			goto another_round;
3711 		else if (unlikely(!skb))
3712 			goto out;
3713 	}
3714 
3715 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3716 	if (rx_handler) {
3717 		if (pt_prev) {
3718 			ret = deliver_skb(skb, pt_prev, orig_dev);
3719 			pt_prev = NULL;
3720 		}
3721 		switch (rx_handler(&skb)) {
3722 		case RX_HANDLER_CONSUMED:
3723 			ret = NET_RX_SUCCESS;
3724 			goto out;
3725 		case RX_HANDLER_ANOTHER:
3726 			goto another_round;
3727 		case RX_HANDLER_EXACT:
3728 			deliver_exact = true;
3729 		case RX_HANDLER_PASS:
3730 			break;
3731 		default:
3732 			BUG();
3733 		}
3734 	}
3735 
3736 	if (unlikely(vlan_tx_tag_present(skb))) {
3737 		if (vlan_tx_tag_get_id(skb))
3738 			skb->pkt_type = PACKET_OTHERHOST;
3739 		/* Note: we might in the future use prio bits
3740 		 * and set skb->priority like in vlan_do_receive()
3741 		 * For the time being, just ignore Priority Code Point
3742 		 */
3743 		skb->vlan_tci = 0;
3744 	}
3745 
3746 	/* deliver only exact match when indicated */
3747 	null_or_dev = deliver_exact ? skb->dev : NULL;
3748 
3749 	type = skb->protocol;
3750 	list_for_each_entry_rcu(ptype,
3751 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3752 		if (ptype->type == type &&
3753 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3754 		     ptype->dev == orig_dev)) {
3755 			if (pt_prev)
3756 				ret = deliver_skb(skb, pt_prev, orig_dev);
3757 			pt_prev = ptype;
3758 		}
3759 	}
3760 
3761 	if (pt_prev) {
3762 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3763 			goto drop;
3764 		else
3765 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3766 	} else {
3767 drop:
3768 		atomic_long_inc(&skb->dev->rx_dropped);
3769 		kfree_skb(skb);
3770 		/* Jamal, now you will not able to escape explaining
3771 		 * me how you were going to use this. :-)
3772 		 */
3773 		ret = NET_RX_DROP;
3774 	}
3775 
3776 out:
3777 	return ret;
3778 }
3779 
__netif_receive_skb(struct sk_buff * skb)3780 static int __netif_receive_skb(struct sk_buff *skb)
3781 {
3782 	int ret;
3783 
3784 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3785 		unsigned long pflags = current->flags;
3786 
3787 		/*
3788 		 * PFMEMALLOC skbs are special, they should
3789 		 * - be delivered to SOCK_MEMALLOC sockets only
3790 		 * - stay away from userspace
3791 		 * - have bounded memory usage
3792 		 *
3793 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3794 		 * context down to all allocation sites.
3795 		 */
3796 		current->flags |= PF_MEMALLOC;
3797 		ret = __netif_receive_skb_core(skb, true);
3798 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3799 	} else
3800 		ret = __netif_receive_skb_core(skb, false);
3801 
3802 	return ret;
3803 }
3804 
netif_receive_skb_internal(struct sk_buff * skb)3805 static int netif_receive_skb_internal(struct sk_buff *skb)
3806 {
3807 	int ret;
3808 
3809 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3810 
3811 	if (skb_defer_rx_timestamp(skb))
3812 		return NET_RX_SUCCESS;
3813 
3814 	rcu_read_lock();
3815 
3816 #ifdef CONFIG_RPS
3817 	if (static_key_false(&rps_needed)) {
3818 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3819 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3820 
3821 		if (cpu >= 0) {
3822 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3823 			rcu_read_unlock();
3824 			return ret;
3825 		}
3826 	}
3827 #endif
3828 	ret = __netif_receive_skb(skb);
3829 	rcu_read_unlock();
3830 	return ret;
3831 }
3832 
3833 /**
3834  *	netif_receive_skb - process receive buffer from network
3835  *	@skb: buffer to process
3836  *
3837  *	netif_receive_skb() is the main receive data processing function.
3838  *	It always succeeds. The buffer may be dropped during processing
3839  *	for congestion control or by the protocol layers.
3840  *
3841  *	This function may only be called from softirq context and interrupts
3842  *	should be enabled.
3843  *
3844  *	Return values (usually ignored):
3845  *	NET_RX_SUCCESS: no congestion
3846  *	NET_RX_DROP: packet was dropped
3847  */
netif_receive_skb(struct sk_buff * skb)3848 int netif_receive_skb(struct sk_buff *skb)
3849 {
3850 	trace_netif_receive_skb_entry(skb);
3851 
3852 	return netif_receive_skb_internal(skb);
3853 }
3854 EXPORT_SYMBOL(netif_receive_skb);
3855 
3856 /* Network device is going away, flush any packets still pending
3857  * Called with irqs disabled.
3858  */
flush_backlog(void * arg)3859 static void flush_backlog(void *arg)
3860 {
3861 	struct net_device *dev = arg;
3862 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3863 	struct sk_buff *skb, *tmp;
3864 
3865 	rps_lock(sd);
3866 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3867 		if (skb->dev == dev) {
3868 			__skb_unlink(skb, &sd->input_pkt_queue);
3869 			kfree_skb(skb);
3870 			input_queue_head_incr(sd);
3871 		}
3872 	}
3873 	rps_unlock(sd);
3874 
3875 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3876 		if (skb->dev == dev) {
3877 			__skb_unlink(skb, &sd->process_queue);
3878 			kfree_skb(skb);
3879 			input_queue_head_incr(sd);
3880 		}
3881 	}
3882 }
3883 
napi_gro_complete(struct sk_buff * skb)3884 static int napi_gro_complete(struct sk_buff *skb)
3885 {
3886 	struct packet_offload *ptype;
3887 	__be16 type = skb->protocol;
3888 	struct list_head *head = &offload_base;
3889 	int err = -ENOENT;
3890 
3891 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3892 
3893 	if (NAPI_GRO_CB(skb)->count == 1) {
3894 		skb_shinfo(skb)->gso_size = 0;
3895 		goto out;
3896 	}
3897 
3898 	rcu_read_lock();
3899 	list_for_each_entry_rcu(ptype, head, list) {
3900 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3901 			continue;
3902 
3903 		err = ptype->callbacks.gro_complete(skb, 0);
3904 		break;
3905 	}
3906 	rcu_read_unlock();
3907 
3908 	if (err) {
3909 		WARN_ON(&ptype->list == head);
3910 		kfree_skb(skb);
3911 		return NET_RX_SUCCESS;
3912 	}
3913 
3914 out:
3915 	return netif_receive_skb_internal(skb);
3916 }
3917 
3918 /* napi->gro_list contains packets ordered by age.
3919  * youngest packets at the head of it.
3920  * Complete skbs in reverse order to reduce latencies.
3921  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)3922 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3923 {
3924 	struct sk_buff *skb, *prev = NULL;
3925 
3926 	/* scan list and build reverse chain */
3927 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3928 		skb->prev = prev;
3929 		prev = skb;
3930 	}
3931 
3932 	for (skb = prev; skb; skb = prev) {
3933 		skb->next = NULL;
3934 
3935 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3936 			return;
3937 
3938 		prev = skb->prev;
3939 		napi_gro_complete(skb);
3940 		napi->gro_count--;
3941 	}
3942 
3943 	napi->gro_list = NULL;
3944 }
3945 EXPORT_SYMBOL(napi_gro_flush);
3946 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)3947 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3948 {
3949 	struct sk_buff *p;
3950 	unsigned int maclen = skb->dev->hard_header_len;
3951 	u32 hash = skb_get_hash_raw(skb);
3952 
3953 	for (p = napi->gro_list; p; p = p->next) {
3954 		unsigned long diffs;
3955 
3956 		NAPI_GRO_CB(p)->flush = 0;
3957 
3958 		if (hash != skb_get_hash_raw(p)) {
3959 			NAPI_GRO_CB(p)->same_flow = 0;
3960 			continue;
3961 		}
3962 
3963 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3964 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3965 		if (maclen == ETH_HLEN)
3966 			diffs |= compare_ether_header(skb_mac_header(p),
3967 						      skb_mac_header(skb));
3968 		else if (!diffs)
3969 			diffs = memcmp(skb_mac_header(p),
3970 				       skb_mac_header(skb),
3971 				       maclen);
3972 		NAPI_GRO_CB(p)->same_flow = !diffs;
3973 	}
3974 }
3975 
skb_gro_reset_offset(struct sk_buff * skb)3976 static void skb_gro_reset_offset(struct sk_buff *skb)
3977 {
3978 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3979 	const skb_frag_t *frag0 = &pinfo->frags[0];
3980 
3981 	NAPI_GRO_CB(skb)->data_offset = 0;
3982 	NAPI_GRO_CB(skb)->frag0 = NULL;
3983 	NAPI_GRO_CB(skb)->frag0_len = 0;
3984 
3985 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3986 	    pinfo->nr_frags &&
3987 	    !PageHighMem(skb_frag_page(frag0))) {
3988 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3989 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3990 	}
3991 }
3992 
gro_pull_from_frag0(struct sk_buff * skb,int grow)3993 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3994 {
3995 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3996 
3997 	BUG_ON(skb->end - skb->tail < grow);
3998 
3999 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4000 
4001 	skb->data_len -= grow;
4002 	skb->tail += grow;
4003 
4004 	pinfo->frags[0].page_offset += grow;
4005 	skb_frag_size_sub(&pinfo->frags[0], grow);
4006 
4007 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4008 		skb_frag_unref(skb, 0);
4009 		memmove(pinfo->frags, pinfo->frags + 1,
4010 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4011 	}
4012 }
4013 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4014 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4015 {
4016 	struct sk_buff **pp = NULL;
4017 	struct packet_offload *ptype;
4018 	__be16 type = skb->protocol;
4019 	struct list_head *head = &offload_base;
4020 	int same_flow;
4021 	enum gro_result ret;
4022 	int grow;
4023 
4024 	if (!(skb->dev->features & NETIF_F_GRO))
4025 		goto normal;
4026 
4027 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4028 		goto normal;
4029 
4030 	gro_list_prepare(napi, skb);
4031 
4032 	rcu_read_lock();
4033 	list_for_each_entry_rcu(ptype, head, list) {
4034 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4035 			continue;
4036 
4037 		skb_set_network_header(skb, skb_gro_offset(skb));
4038 		skb_reset_mac_len(skb);
4039 		NAPI_GRO_CB(skb)->same_flow = 0;
4040 		NAPI_GRO_CB(skb)->flush = 0;
4041 		NAPI_GRO_CB(skb)->free = 0;
4042 		NAPI_GRO_CB(skb)->encap_mark = 0;
4043 
4044 		/* Setup for GRO checksum validation */
4045 		switch (skb->ip_summed) {
4046 		case CHECKSUM_COMPLETE:
4047 			NAPI_GRO_CB(skb)->csum = skb->csum;
4048 			NAPI_GRO_CB(skb)->csum_valid = 1;
4049 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4050 			break;
4051 		case CHECKSUM_UNNECESSARY:
4052 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4053 			NAPI_GRO_CB(skb)->csum_valid = 0;
4054 			break;
4055 		default:
4056 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4057 			NAPI_GRO_CB(skb)->csum_valid = 0;
4058 		}
4059 
4060 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4061 		break;
4062 	}
4063 	rcu_read_unlock();
4064 
4065 	if (&ptype->list == head)
4066 		goto normal;
4067 
4068 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4069 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4070 
4071 	if (pp) {
4072 		struct sk_buff *nskb = *pp;
4073 
4074 		*pp = nskb->next;
4075 		nskb->next = NULL;
4076 		napi_gro_complete(nskb);
4077 		napi->gro_count--;
4078 	}
4079 
4080 	if (same_flow)
4081 		goto ok;
4082 
4083 	if (NAPI_GRO_CB(skb)->flush)
4084 		goto normal;
4085 
4086 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4087 		struct sk_buff *nskb = napi->gro_list;
4088 
4089 		/* locate the end of the list to select the 'oldest' flow */
4090 		while (nskb->next) {
4091 			pp = &nskb->next;
4092 			nskb = *pp;
4093 		}
4094 		*pp = NULL;
4095 		nskb->next = NULL;
4096 		napi_gro_complete(nskb);
4097 	} else {
4098 		napi->gro_count++;
4099 	}
4100 	NAPI_GRO_CB(skb)->count = 1;
4101 	NAPI_GRO_CB(skb)->age = jiffies;
4102 	NAPI_GRO_CB(skb)->last = skb;
4103 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4104 	skb->next = napi->gro_list;
4105 	napi->gro_list = skb;
4106 	ret = GRO_HELD;
4107 
4108 pull:
4109 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4110 	if (grow > 0)
4111 		gro_pull_from_frag0(skb, grow);
4112 ok:
4113 	return ret;
4114 
4115 normal:
4116 	ret = GRO_NORMAL;
4117 	goto pull;
4118 }
4119 
gro_find_receive_by_type(__be16 type)4120 struct packet_offload *gro_find_receive_by_type(__be16 type)
4121 {
4122 	struct list_head *offload_head = &offload_base;
4123 	struct packet_offload *ptype;
4124 
4125 	list_for_each_entry_rcu(ptype, offload_head, list) {
4126 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4127 			continue;
4128 		return ptype;
4129 	}
4130 	return NULL;
4131 }
4132 EXPORT_SYMBOL(gro_find_receive_by_type);
4133 
gro_find_complete_by_type(__be16 type)4134 struct packet_offload *gro_find_complete_by_type(__be16 type)
4135 {
4136 	struct list_head *offload_head = &offload_base;
4137 	struct packet_offload *ptype;
4138 
4139 	list_for_each_entry_rcu(ptype, offload_head, list) {
4140 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4141 			continue;
4142 		return ptype;
4143 	}
4144 	return NULL;
4145 }
4146 EXPORT_SYMBOL(gro_find_complete_by_type);
4147 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4148 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4149 {
4150 	switch (ret) {
4151 	case GRO_NORMAL:
4152 		if (netif_receive_skb_internal(skb))
4153 			ret = GRO_DROP;
4154 		break;
4155 
4156 	case GRO_DROP:
4157 		kfree_skb(skb);
4158 		break;
4159 
4160 	case GRO_MERGED_FREE:
4161 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4162 			kmem_cache_free(skbuff_head_cache, skb);
4163 		else
4164 			__kfree_skb(skb);
4165 		break;
4166 
4167 	case GRO_HELD:
4168 	case GRO_MERGED:
4169 		break;
4170 	}
4171 
4172 	return ret;
4173 }
4174 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4175 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4176 {
4177 	trace_napi_gro_receive_entry(skb);
4178 
4179 	skb_gro_reset_offset(skb);
4180 
4181 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4182 }
4183 EXPORT_SYMBOL(napi_gro_receive);
4184 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4185 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4186 {
4187 	if (unlikely(skb->pfmemalloc)) {
4188 		consume_skb(skb);
4189 		return;
4190 	}
4191 	__skb_pull(skb, skb_headlen(skb));
4192 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4193 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4194 	skb->vlan_tci = 0;
4195 	skb->dev = napi->dev;
4196 	skb->skb_iif = 0;
4197 	skb->encapsulation = 0;
4198 	skb_shinfo(skb)->gso_type = 0;
4199 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4200 
4201 	napi->skb = skb;
4202 }
4203 
napi_get_frags(struct napi_struct * napi)4204 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4205 {
4206 	struct sk_buff *skb = napi->skb;
4207 
4208 	if (!skb) {
4209 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4210 		napi->skb = skb;
4211 	}
4212 	return skb;
4213 }
4214 EXPORT_SYMBOL(napi_get_frags);
4215 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)4216 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4217 				      struct sk_buff *skb,
4218 				      gro_result_t ret)
4219 {
4220 	switch (ret) {
4221 	case GRO_NORMAL:
4222 	case GRO_HELD:
4223 		__skb_push(skb, ETH_HLEN);
4224 		skb->protocol = eth_type_trans(skb, skb->dev);
4225 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4226 			ret = GRO_DROP;
4227 		break;
4228 
4229 	case GRO_DROP:
4230 	case GRO_MERGED_FREE:
4231 		napi_reuse_skb(napi, skb);
4232 		break;
4233 
4234 	case GRO_MERGED:
4235 		break;
4236 	}
4237 
4238 	return ret;
4239 }
4240 
4241 /* Upper GRO stack assumes network header starts at gro_offset=0
4242  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4243  * We copy ethernet header into skb->data to have a common layout.
4244  */
napi_frags_skb(struct napi_struct * napi)4245 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4246 {
4247 	struct sk_buff *skb = napi->skb;
4248 	const struct ethhdr *eth;
4249 	unsigned int hlen = sizeof(*eth);
4250 
4251 	napi->skb = NULL;
4252 
4253 	skb_reset_mac_header(skb);
4254 	skb_gro_reset_offset(skb);
4255 
4256 	eth = skb_gro_header_fast(skb, 0);
4257 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4258 		eth = skb_gro_header_slow(skb, hlen, 0);
4259 		if (unlikely(!eth)) {
4260 			napi_reuse_skb(napi, skb);
4261 			return NULL;
4262 		}
4263 	} else {
4264 		gro_pull_from_frag0(skb, hlen);
4265 		NAPI_GRO_CB(skb)->frag0 += hlen;
4266 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4267 	}
4268 	__skb_pull(skb, hlen);
4269 
4270 	/*
4271 	 * This works because the only protocols we care about don't require
4272 	 * special handling.
4273 	 * We'll fix it up properly in napi_frags_finish()
4274 	 */
4275 	skb->protocol = eth->h_proto;
4276 
4277 	return skb;
4278 }
4279 
napi_gro_frags(struct napi_struct * napi)4280 gro_result_t napi_gro_frags(struct napi_struct *napi)
4281 {
4282 	struct sk_buff *skb = napi_frags_skb(napi);
4283 
4284 	if (!skb)
4285 		return GRO_DROP;
4286 
4287 	trace_napi_gro_frags_entry(skb);
4288 
4289 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4290 }
4291 EXPORT_SYMBOL(napi_gro_frags);
4292 
4293 /* Compute the checksum from gro_offset and return the folded value
4294  * after adding in any pseudo checksum.
4295  */
__skb_gro_checksum_complete(struct sk_buff * skb)4296 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4297 {
4298 	__wsum wsum;
4299 	__sum16 sum;
4300 
4301 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4302 
4303 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4304 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4305 	if (likely(!sum)) {
4306 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4307 		    !skb->csum_complete_sw)
4308 			netdev_rx_csum_fault(skb->dev);
4309 	}
4310 
4311 	NAPI_GRO_CB(skb)->csum = wsum;
4312 	NAPI_GRO_CB(skb)->csum_valid = 1;
4313 
4314 	return sum;
4315 }
4316 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4317 
4318 /*
4319  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4320  * Note: called with local irq disabled, but exits with local irq enabled.
4321  */
net_rps_action_and_irq_enable(struct softnet_data * sd)4322 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4323 {
4324 #ifdef CONFIG_RPS
4325 	struct softnet_data *remsd = sd->rps_ipi_list;
4326 
4327 	if (remsd) {
4328 		sd->rps_ipi_list = NULL;
4329 
4330 		local_irq_enable();
4331 
4332 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4333 		while (remsd) {
4334 			struct softnet_data *next = remsd->rps_ipi_next;
4335 
4336 			if (cpu_online(remsd->cpu))
4337 				smp_call_function_single_async(remsd->cpu,
4338 							   &remsd->csd);
4339 			remsd = next;
4340 		}
4341 	} else
4342 #endif
4343 		local_irq_enable();
4344 }
4345 
process_backlog(struct napi_struct * napi,int quota)4346 static int process_backlog(struct napi_struct *napi, int quota)
4347 {
4348 	int work = 0;
4349 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4350 
4351 #ifdef CONFIG_RPS
4352 	/* Check if we have pending ipi, its better to send them now,
4353 	 * not waiting net_rx_action() end.
4354 	 */
4355 	if (sd->rps_ipi_list) {
4356 		local_irq_disable();
4357 		net_rps_action_and_irq_enable(sd);
4358 	}
4359 #endif
4360 	napi->weight = weight_p;
4361 	local_irq_disable();
4362 	while (1) {
4363 		struct sk_buff *skb;
4364 
4365 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4366 			rcu_read_lock();
4367 			local_irq_enable();
4368 			__netif_receive_skb(skb);
4369 			rcu_read_unlock();
4370 			local_irq_disable();
4371 			input_queue_head_incr(sd);
4372 			if (++work >= quota) {
4373 				local_irq_enable();
4374 				return work;
4375 			}
4376 		}
4377 
4378 		rps_lock(sd);
4379 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4380 			/*
4381 			 * Inline a custom version of __napi_complete().
4382 			 * only current cpu owns and manipulates this napi,
4383 			 * and NAPI_STATE_SCHED is the only possible flag set
4384 			 * on backlog.
4385 			 * We can use a plain write instead of clear_bit(),
4386 			 * and we dont need an smp_mb() memory barrier.
4387 			 */
4388 			list_del(&napi->poll_list);
4389 			napi->state = 0;
4390 			rps_unlock(sd);
4391 
4392 			break;
4393 		}
4394 
4395 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4396 					   &sd->process_queue);
4397 		rps_unlock(sd);
4398 	}
4399 	local_irq_enable();
4400 
4401 	return work;
4402 }
4403 
4404 /**
4405  * __napi_schedule - schedule for receive
4406  * @n: entry to schedule
4407  *
4408  * The entry's receive function will be scheduled to run
4409  */
__napi_schedule(struct napi_struct * n)4410 void __napi_schedule(struct napi_struct *n)
4411 {
4412 	unsigned long flags;
4413 
4414 	local_irq_save(flags);
4415 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4416 	local_irq_restore(flags);
4417 }
4418 EXPORT_SYMBOL(__napi_schedule);
4419 
__napi_complete(struct napi_struct * n)4420 void __napi_complete(struct napi_struct *n)
4421 {
4422 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4423 	BUG_ON(n->gro_list);
4424 
4425 	list_del(&n->poll_list);
4426 	smp_mb__before_atomic();
4427 	clear_bit(NAPI_STATE_SCHED, &n->state);
4428 }
4429 EXPORT_SYMBOL(__napi_complete);
4430 
napi_complete(struct napi_struct * n)4431 void napi_complete(struct napi_struct *n)
4432 {
4433 	unsigned long flags;
4434 
4435 	/*
4436 	 * don't let napi dequeue from the cpu poll list
4437 	 * just in case its running on a different cpu
4438 	 */
4439 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4440 		return;
4441 
4442 	napi_gro_flush(n, false);
4443 	local_irq_save(flags);
4444 	__napi_complete(n);
4445 	local_irq_restore(flags);
4446 }
4447 EXPORT_SYMBOL(napi_complete);
4448 
4449 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)4450 struct napi_struct *napi_by_id(unsigned int napi_id)
4451 {
4452 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4453 	struct napi_struct *napi;
4454 
4455 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4456 		if (napi->napi_id == napi_id)
4457 			return napi;
4458 
4459 	return NULL;
4460 }
4461 EXPORT_SYMBOL_GPL(napi_by_id);
4462 
napi_hash_add(struct napi_struct * napi)4463 void napi_hash_add(struct napi_struct *napi)
4464 {
4465 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4466 
4467 		spin_lock(&napi_hash_lock);
4468 
4469 		/* 0 is not a valid id, we also skip an id that is taken
4470 		 * we expect both events to be extremely rare
4471 		 */
4472 		napi->napi_id = 0;
4473 		while (!napi->napi_id) {
4474 			napi->napi_id = ++napi_gen_id;
4475 			if (napi_by_id(napi->napi_id))
4476 				napi->napi_id = 0;
4477 		}
4478 
4479 		hlist_add_head_rcu(&napi->napi_hash_node,
4480 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4481 
4482 		spin_unlock(&napi_hash_lock);
4483 	}
4484 }
4485 EXPORT_SYMBOL_GPL(napi_hash_add);
4486 
4487 /* Warning : caller is responsible to make sure rcu grace period
4488  * is respected before freeing memory containing @napi
4489  */
napi_hash_del(struct napi_struct * napi)4490 void napi_hash_del(struct napi_struct *napi)
4491 {
4492 	spin_lock(&napi_hash_lock);
4493 
4494 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4495 		hlist_del_rcu(&napi->napi_hash_node);
4496 
4497 	spin_unlock(&napi_hash_lock);
4498 }
4499 EXPORT_SYMBOL_GPL(napi_hash_del);
4500 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)4501 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4502 		    int (*poll)(struct napi_struct *, int), int weight)
4503 {
4504 	INIT_LIST_HEAD(&napi->poll_list);
4505 	napi->gro_count = 0;
4506 	napi->gro_list = NULL;
4507 	napi->skb = NULL;
4508 	napi->poll = poll;
4509 	if (weight > NAPI_POLL_WEIGHT)
4510 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4511 			    weight, dev->name);
4512 	napi->weight = weight;
4513 	list_add(&napi->dev_list, &dev->napi_list);
4514 	napi->dev = dev;
4515 #ifdef CONFIG_NETPOLL
4516 	spin_lock_init(&napi->poll_lock);
4517 	napi->poll_owner = -1;
4518 #endif
4519 	set_bit(NAPI_STATE_SCHED, &napi->state);
4520 }
4521 EXPORT_SYMBOL(netif_napi_add);
4522 
netif_napi_del(struct napi_struct * napi)4523 void netif_napi_del(struct napi_struct *napi)
4524 {
4525 	list_del_init(&napi->dev_list);
4526 	napi_free_frags(napi);
4527 
4528 	kfree_skb_list(napi->gro_list);
4529 	napi->gro_list = NULL;
4530 	napi->gro_count = 0;
4531 }
4532 EXPORT_SYMBOL(netif_napi_del);
4533 
net_rx_action(struct softirq_action * h)4534 static void net_rx_action(struct softirq_action *h)
4535 {
4536 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4537 	unsigned long time_limit = jiffies + 2;
4538 	int budget = netdev_budget;
4539 	void *have;
4540 
4541 	local_irq_disable();
4542 
4543 	while (!list_empty(&sd->poll_list)) {
4544 		struct napi_struct *n;
4545 		int work, weight;
4546 
4547 		/* If softirq window is exhuasted then punt.
4548 		 * Allow this to run for 2 jiffies since which will allow
4549 		 * an average latency of 1.5/HZ.
4550 		 */
4551 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4552 			goto softnet_break;
4553 
4554 		local_irq_enable();
4555 
4556 		/* Even though interrupts have been re-enabled, this
4557 		 * access is safe because interrupts can only add new
4558 		 * entries to the tail of this list, and only ->poll()
4559 		 * calls can remove this head entry from the list.
4560 		 */
4561 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4562 
4563 		have = netpoll_poll_lock(n);
4564 
4565 		weight = n->weight;
4566 
4567 		/* This NAPI_STATE_SCHED test is for avoiding a race
4568 		 * with netpoll's poll_napi().  Only the entity which
4569 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4570 		 * actually make the ->poll() call.  Therefore we avoid
4571 		 * accidentally calling ->poll() when NAPI is not scheduled.
4572 		 */
4573 		work = 0;
4574 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4575 			work = n->poll(n, weight);
4576 			trace_napi_poll(n);
4577 		}
4578 
4579 		WARN_ON_ONCE(work > weight);
4580 
4581 		budget -= work;
4582 
4583 		local_irq_disable();
4584 
4585 		/* Drivers must not modify the NAPI state if they
4586 		 * consume the entire weight.  In such cases this code
4587 		 * still "owns" the NAPI instance and therefore can
4588 		 * move the instance around on the list at-will.
4589 		 */
4590 		if (unlikely(work == weight)) {
4591 			if (unlikely(napi_disable_pending(n))) {
4592 				local_irq_enable();
4593 				napi_complete(n);
4594 				local_irq_disable();
4595 			} else {
4596 				if (n->gro_list) {
4597 					/* flush too old packets
4598 					 * If HZ < 1000, flush all packets.
4599 					 */
4600 					local_irq_enable();
4601 					napi_gro_flush(n, HZ >= 1000);
4602 					local_irq_disable();
4603 				}
4604 				list_move_tail(&n->poll_list, &sd->poll_list);
4605 			}
4606 		}
4607 
4608 		netpoll_poll_unlock(have);
4609 	}
4610 out:
4611 	net_rps_action_and_irq_enable(sd);
4612 
4613 	return;
4614 
4615 softnet_break:
4616 	sd->time_squeeze++;
4617 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4618 	goto out;
4619 }
4620 
4621 struct netdev_adjacent {
4622 	struct net_device *dev;
4623 
4624 	/* upper master flag, there can only be one master device per list */
4625 	bool master;
4626 
4627 	/* counter for the number of times this device was added to us */
4628 	u16 ref_nr;
4629 
4630 	/* private field for the users */
4631 	void *private;
4632 
4633 	struct list_head list;
4634 	struct rcu_head rcu;
4635 };
4636 
__netdev_find_adj(struct net_device * dev,struct net_device * adj_dev,struct list_head * adj_list)4637 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4638 						 struct net_device *adj_dev,
4639 						 struct list_head *adj_list)
4640 {
4641 	struct netdev_adjacent *adj;
4642 
4643 	list_for_each_entry(adj, adj_list, list) {
4644 		if (adj->dev == adj_dev)
4645 			return adj;
4646 	}
4647 	return NULL;
4648 }
4649 
4650 /**
4651  * netdev_has_upper_dev - Check if device is linked to an upper device
4652  * @dev: device
4653  * @upper_dev: upper device to check
4654  *
4655  * Find out if a device is linked to specified upper device and return true
4656  * in case it is. Note that this checks only immediate upper device,
4657  * not through a complete stack of devices. The caller must hold the RTNL lock.
4658  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)4659 bool netdev_has_upper_dev(struct net_device *dev,
4660 			  struct net_device *upper_dev)
4661 {
4662 	ASSERT_RTNL();
4663 
4664 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4665 }
4666 EXPORT_SYMBOL(netdev_has_upper_dev);
4667 
4668 /**
4669  * netdev_has_any_upper_dev - Check if device is linked to some device
4670  * @dev: device
4671  *
4672  * Find out if a device is linked to an upper device and return true in case
4673  * it is. The caller must hold the RTNL lock.
4674  */
netdev_has_any_upper_dev(struct net_device * dev)4675 static bool netdev_has_any_upper_dev(struct net_device *dev)
4676 {
4677 	ASSERT_RTNL();
4678 
4679 	return !list_empty(&dev->all_adj_list.upper);
4680 }
4681 
4682 /**
4683  * netdev_master_upper_dev_get - Get master upper device
4684  * @dev: device
4685  *
4686  * Find a master upper device and return pointer to it or NULL in case
4687  * it's not there. The caller must hold the RTNL lock.
4688  */
netdev_master_upper_dev_get(struct net_device * dev)4689 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4690 {
4691 	struct netdev_adjacent *upper;
4692 
4693 	ASSERT_RTNL();
4694 
4695 	if (list_empty(&dev->adj_list.upper))
4696 		return NULL;
4697 
4698 	upper = list_first_entry(&dev->adj_list.upper,
4699 				 struct netdev_adjacent, list);
4700 	if (likely(upper->master))
4701 		return upper->dev;
4702 	return NULL;
4703 }
4704 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4705 
netdev_adjacent_get_private(struct list_head * adj_list)4706 void *netdev_adjacent_get_private(struct list_head *adj_list)
4707 {
4708 	struct netdev_adjacent *adj;
4709 
4710 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4711 
4712 	return adj->private;
4713 }
4714 EXPORT_SYMBOL(netdev_adjacent_get_private);
4715 
4716 /**
4717  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4718  * @dev: device
4719  * @iter: list_head ** of the current position
4720  *
4721  * Gets the next device from the dev's upper list, starting from iter
4722  * position. The caller must hold RCU read lock.
4723  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4724 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4725 						 struct list_head **iter)
4726 {
4727 	struct netdev_adjacent *upper;
4728 
4729 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4730 
4731 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4732 
4733 	if (&upper->list == &dev->adj_list.upper)
4734 		return NULL;
4735 
4736 	*iter = &upper->list;
4737 
4738 	return upper->dev;
4739 }
4740 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4741 
4742 /**
4743  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4744  * @dev: device
4745  * @iter: list_head ** of the current position
4746  *
4747  * Gets the next device from the dev's upper list, starting from iter
4748  * position. The caller must hold RCU read lock.
4749  */
netdev_all_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4750 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4751 						     struct list_head **iter)
4752 {
4753 	struct netdev_adjacent *upper;
4754 
4755 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4756 
4757 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4758 
4759 	if (&upper->list == &dev->all_adj_list.upper)
4760 		return NULL;
4761 
4762 	*iter = &upper->list;
4763 
4764 	return upper->dev;
4765 }
4766 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4767 
4768 /**
4769  * netdev_lower_get_next_private - Get the next ->private from the
4770  *				   lower neighbour list
4771  * @dev: device
4772  * @iter: list_head ** of the current position
4773  *
4774  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4775  * list, starting from iter position. The caller must hold either hold the
4776  * RTNL lock or its own locking that guarantees that the neighbour lower
4777  * list will remain unchainged.
4778  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)4779 void *netdev_lower_get_next_private(struct net_device *dev,
4780 				    struct list_head **iter)
4781 {
4782 	struct netdev_adjacent *lower;
4783 
4784 	lower = list_entry(*iter, struct netdev_adjacent, list);
4785 
4786 	if (&lower->list == &dev->adj_list.lower)
4787 		return NULL;
4788 
4789 	*iter = lower->list.next;
4790 
4791 	return lower->private;
4792 }
4793 EXPORT_SYMBOL(netdev_lower_get_next_private);
4794 
4795 /**
4796  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4797  *				       lower neighbour list, RCU
4798  *				       variant
4799  * @dev: device
4800  * @iter: list_head ** of the current position
4801  *
4802  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4803  * list, starting from iter position. The caller must hold RCU read lock.
4804  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)4805 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4806 					struct list_head **iter)
4807 {
4808 	struct netdev_adjacent *lower;
4809 
4810 	WARN_ON_ONCE(!rcu_read_lock_held());
4811 
4812 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4813 
4814 	if (&lower->list == &dev->adj_list.lower)
4815 		return NULL;
4816 
4817 	*iter = &lower->list;
4818 
4819 	return lower->private;
4820 }
4821 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4822 
4823 /**
4824  * netdev_lower_get_next - Get the next device from the lower neighbour
4825  *                         list
4826  * @dev: device
4827  * @iter: list_head ** of the current position
4828  *
4829  * Gets the next netdev_adjacent from the dev's lower neighbour
4830  * list, starting from iter position. The caller must hold RTNL lock or
4831  * its own locking that guarantees that the neighbour lower
4832  * list will remain unchainged.
4833  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)4834 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4835 {
4836 	struct netdev_adjacent *lower;
4837 
4838 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4839 
4840 	if (&lower->list == &dev->adj_list.lower)
4841 		return NULL;
4842 
4843 	*iter = &lower->list;
4844 
4845 	return lower->dev;
4846 }
4847 EXPORT_SYMBOL(netdev_lower_get_next);
4848 
4849 /**
4850  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4851  *				       lower neighbour list, RCU
4852  *				       variant
4853  * @dev: device
4854  *
4855  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4856  * list. The caller must hold RCU read lock.
4857  */
netdev_lower_get_first_private_rcu(struct net_device * dev)4858 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4859 {
4860 	struct netdev_adjacent *lower;
4861 
4862 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4863 			struct netdev_adjacent, list);
4864 	if (lower)
4865 		return lower->private;
4866 	return NULL;
4867 }
4868 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4869 
4870 /**
4871  * netdev_master_upper_dev_get_rcu - Get master upper device
4872  * @dev: device
4873  *
4874  * Find a master upper device and return pointer to it or NULL in case
4875  * it's not there. The caller must hold the RCU read lock.
4876  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)4877 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4878 {
4879 	struct netdev_adjacent *upper;
4880 
4881 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4882 				       struct netdev_adjacent, list);
4883 	if (upper && likely(upper->master))
4884 		return upper->dev;
4885 	return NULL;
4886 }
4887 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4888 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)4889 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4890 			      struct net_device *adj_dev,
4891 			      struct list_head *dev_list)
4892 {
4893 	char linkname[IFNAMSIZ+7];
4894 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4895 		"upper_%s" : "lower_%s", adj_dev->name);
4896 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4897 				 linkname);
4898 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)4899 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4900 			       char *name,
4901 			       struct list_head *dev_list)
4902 {
4903 	char linkname[IFNAMSIZ+7];
4904 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4905 		"upper_%s" : "lower_%s", name);
4906 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4907 }
4908 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)4909 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4910 						 struct net_device *adj_dev,
4911 						 struct list_head *dev_list)
4912 {
4913 	return (dev_list == &dev->adj_list.upper ||
4914 		dev_list == &dev->adj_list.lower) &&
4915 		net_eq(dev_net(dev), dev_net(adj_dev));
4916 }
4917 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list,void * private,bool master)4918 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4919 					struct net_device *adj_dev,
4920 					u16 ref_nr,
4921 					struct list_head *dev_list,
4922 					void *private, bool master)
4923 {
4924 	struct netdev_adjacent *adj;
4925 	int ret;
4926 
4927 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4928 
4929 	if (adj) {
4930 		adj->ref_nr += ref_nr;
4931 		return 0;
4932 	}
4933 
4934 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4935 	if (!adj)
4936 		return -ENOMEM;
4937 
4938 	adj->dev = adj_dev;
4939 	adj->master = master;
4940 	adj->ref_nr = ref_nr;
4941 	adj->private = private;
4942 	dev_hold(adj_dev);
4943 
4944 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4945 		 adj_dev->name, dev->name, adj_dev->name);
4946 
4947 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4948 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4949 		if (ret)
4950 			goto free_adj;
4951 	}
4952 
4953 	/* Ensure that master link is always the first item in list. */
4954 	if (master) {
4955 		ret = sysfs_create_link(&(dev->dev.kobj),
4956 					&(adj_dev->dev.kobj), "master");
4957 		if (ret)
4958 			goto remove_symlinks;
4959 
4960 		list_add_rcu(&adj->list, dev_list);
4961 	} else {
4962 		list_add_tail_rcu(&adj->list, dev_list);
4963 	}
4964 
4965 	return 0;
4966 
4967 remove_symlinks:
4968 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4969 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4970 free_adj:
4971 	kfree(adj);
4972 	dev_put(adj_dev);
4973 
4974 	return ret;
4975 }
4976 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)4977 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4978 					 struct net_device *adj_dev,
4979 					 u16 ref_nr,
4980 					 struct list_head *dev_list)
4981 {
4982 	struct netdev_adjacent *adj;
4983 
4984 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4985 
4986 	if (!adj) {
4987 		pr_err("tried to remove device %s from %s\n",
4988 		       dev->name, adj_dev->name);
4989 		BUG();
4990 	}
4991 
4992 	if (adj->ref_nr > ref_nr) {
4993 		pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
4994 			 ref_nr, adj->ref_nr-ref_nr);
4995 		adj->ref_nr -= ref_nr;
4996 		return;
4997 	}
4998 
4999 	if (adj->master)
5000 		sysfs_remove_link(&(dev->dev.kobj), "master");
5001 
5002 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5003 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5004 
5005 	list_del_rcu(&adj->list);
5006 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5007 		 adj_dev->name, dev->name, adj_dev->name);
5008 	dev_put(adj_dev);
5009 	kfree_rcu(adj, rcu);
5010 }
5011 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list,void * private,bool master)5012 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5013 					    struct net_device *upper_dev,
5014 					    u16 ref_nr,
5015 					    struct list_head *up_list,
5016 					    struct list_head *down_list,
5017 					    void *private, bool master)
5018 {
5019 	int ret;
5020 
5021 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5022 					   private, master);
5023 	if (ret)
5024 		return ret;
5025 
5026 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5027 					   private, false);
5028 	if (ret) {
5029 		__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5030 		return ret;
5031 	}
5032 
5033 	return 0;
5034 }
5035 
__netdev_adjacent_dev_link(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr)5036 static int __netdev_adjacent_dev_link(struct net_device *dev,
5037 				      struct net_device *upper_dev,
5038 				      u16 ref_nr)
5039 {
5040 	return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5041 						&dev->all_adj_list.upper,
5042 						&upper_dev->all_adj_list.lower,
5043 						NULL, false);
5044 }
5045 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)5046 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5047 					       struct net_device *upper_dev,
5048 					       u16 ref_nr,
5049 					       struct list_head *up_list,
5050 					       struct list_head *down_list)
5051 {
5052 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5053 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5054 }
5055 
__netdev_adjacent_dev_unlink(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr)5056 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5057 					 struct net_device *upper_dev,
5058 					 u16 ref_nr)
5059 {
5060 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5061 					   &dev->all_adj_list.upper,
5062 					   &upper_dev->all_adj_list.lower);
5063 }
5064 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)5065 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5066 						struct net_device *upper_dev,
5067 						void *private, bool master)
5068 {
5069 	int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5070 
5071 	if (ret)
5072 		return ret;
5073 
5074 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5075 					       &dev->adj_list.upper,
5076 					       &upper_dev->adj_list.lower,
5077 					       private, master);
5078 	if (ret) {
5079 		__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5080 		return ret;
5081 	}
5082 
5083 	return 0;
5084 }
5085 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)5086 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5087 						   struct net_device *upper_dev)
5088 {
5089 	__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5090 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5091 					   &dev->adj_list.upper,
5092 					   &upper_dev->adj_list.lower);
5093 }
5094 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * private)5095 static int __netdev_upper_dev_link(struct net_device *dev,
5096 				   struct net_device *upper_dev, bool master,
5097 				   void *private)
5098 {
5099 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5100 	int ret = 0;
5101 
5102 	ASSERT_RTNL();
5103 
5104 	if (dev == upper_dev)
5105 		return -EBUSY;
5106 
5107 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5108 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5109 		return -EBUSY;
5110 
5111 	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5112 		return -EEXIST;
5113 
5114 	if (master && netdev_master_upper_dev_get(dev))
5115 		return -EBUSY;
5116 
5117 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5118 						   master);
5119 	if (ret)
5120 		return ret;
5121 
5122 	/* Now that we linked these devs, make all the upper_dev's
5123 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5124 	 * versa, and don't forget the devices itself. All of these
5125 	 * links are non-neighbours.
5126 	 */
5127 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5128 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5129 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5130 				 i->dev->name, j->dev->name);
5131 			ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5132 			if (ret)
5133 				goto rollback_mesh;
5134 		}
5135 	}
5136 
5137 	/* add dev to every upper_dev's upper device */
5138 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5139 		pr_debug("linking %s's upper device %s with %s\n",
5140 			 upper_dev->name, i->dev->name, dev->name);
5141 		ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5142 		if (ret)
5143 			goto rollback_upper_mesh;
5144 	}
5145 
5146 	/* add upper_dev to every dev's lower device */
5147 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5148 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5149 			 i->dev->name, upper_dev->name);
5150 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5151 		if (ret)
5152 			goto rollback_lower_mesh;
5153 	}
5154 
5155 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5156 	return 0;
5157 
5158 rollback_lower_mesh:
5159 	to_i = i;
5160 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5161 		if (i == to_i)
5162 			break;
5163 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5164 	}
5165 
5166 	i = NULL;
5167 
5168 rollback_upper_mesh:
5169 	to_i = i;
5170 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5171 		if (i == to_i)
5172 			break;
5173 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5174 	}
5175 
5176 	i = j = NULL;
5177 
5178 rollback_mesh:
5179 	to_i = i;
5180 	to_j = j;
5181 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5182 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5183 			if (i == to_i && j == to_j)
5184 				break;
5185 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5186 		}
5187 		if (i == to_i)
5188 			break;
5189 	}
5190 
5191 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5192 
5193 	return ret;
5194 }
5195 
5196 /**
5197  * netdev_upper_dev_link - Add a link to the upper device
5198  * @dev: device
5199  * @upper_dev: new upper device
5200  *
5201  * Adds a link to device which is upper to this one. The caller must hold
5202  * the RTNL lock. On a failure a negative errno code is returned.
5203  * On success the reference counts are adjusted and the function
5204  * returns zero.
5205  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5206 int netdev_upper_dev_link(struct net_device *dev,
5207 			  struct net_device *upper_dev)
5208 {
5209 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5210 }
5211 EXPORT_SYMBOL(netdev_upper_dev_link);
5212 
5213 /**
5214  * netdev_master_upper_dev_link - Add a master link to the upper device
5215  * @dev: device
5216  * @upper_dev: new upper device
5217  *
5218  * Adds a link to device which is upper to this one. In this case, only
5219  * one master upper device can be linked, although other non-master devices
5220  * might be linked as well. The caller must hold the RTNL lock.
5221  * On a failure a negative errno code is returned. On success the reference
5222  * counts are adjusted and the function returns zero.
5223  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5224 int netdev_master_upper_dev_link(struct net_device *dev,
5225 				 struct net_device *upper_dev)
5226 {
5227 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5228 }
5229 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5230 
netdev_master_upper_dev_link_private(struct net_device * dev,struct net_device * upper_dev,void * private)5231 int netdev_master_upper_dev_link_private(struct net_device *dev,
5232 					 struct net_device *upper_dev,
5233 					 void *private)
5234 {
5235 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5236 }
5237 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5238 
5239 /**
5240  * netdev_upper_dev_unlink - Removes a link to upper device
5241  * @dev: device
5242  * @upper_dev: new upper device
5243  *
5244  * Removes a link to device which is upper to this one. The caller must hold
5245  * the RTNL lock.
5246  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5247 void netdev_upper_dev_unlink(struct net_device *dev,
5248 			     struct net_device *upper_dev)
5249 {
5250 	struct netdev_adjacent *i, *j;
5251 	ASSERT_RTNL();
5252 
5253 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5254 
5255 	/* Here is the tricky part. We must remove all dev's lower
5256 	 * devices from all upper_dev's upper devices and vice
5257 	 * versa, to maintain the graph relationship.
5258 	 */
5259 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5260 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5261 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5262 
5263 	/* remove also the devices itself from lower/upper device
5264 	 * list
5265 	 */
5266 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5267 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5268 
5269 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5270 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5271 
5272 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5273 }
5274 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5275 
netdev_adjacent_add_links(struct net_device * dev)5276 void netdev_adjacent_add_links(struct net_device *dev)
5277 {
5278 	struct netdev_adjacent *iter;
5279 
5280 	struct net *net = dev_net(dev);
5281 
5282 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5283 		if (!net_eq(net,dev_net(iter->dev)))
5284 			continue;
5285 		netdev_adjacent_sysfs_add(iter->dev, dev,
5286 					  &iter->dev->adj_list.lower);
5287 		netdev_adjacent_sysfs_add(dev, iter->dev,
5288 					  &dev->adj_list.upper);
5289 	}
5290 
5291 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5292 		if (!net_eq(net,dev_net(iter->dev)))
5293 			continue;
5294 		netdev_adjacent_sysfs_add(iter->dev, dev,
5295 					  &iter->dev->adj_list.upper);
5296 		netdev_adjacent_sysfs_add(dev, iter->dev,
5297 					  &dev->adj_list.lower);
5298 	}
5299 }
5300 
netdev_adjacent_del_links(struct net_device * dev)5301 void netdev_adjacent_del_links(struct net_device *dev)
5302 {
5303 	struct netdev_adjacent *iter;
5304 
5305 	struct net *net = dev_net(dev);
5306 
5307 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5308 		if (!net_eq(net,dev_net(iter->dev)))
5309 			continue;
5310 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5311 					  &iter->dev->adj_list.lower);
5312 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5313 					  &dev->adj_list.upper);
5314 	}
5315 
5316 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5317 		if (!net_eq(net,dev_net(iter->dev)))
5318 			continue;
5319 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5320 					  &iter->dev->adj_list.upper);
5321 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5322 					  &dev->adj_list.lower);
5323 	}
5324 }
5325 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)5326 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5327 {
5328 	struct netdev_adjacent *iter;
5329 
5330 	struct net *net = dev_net(dev);
5331 
5332 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5333 		if (!net_eq(net,dev_net(iter->dev)))
5334 			continue;
5335 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5336 					  &iter->dev->adj_list.lower);
5337 		netdev_adjacent_sysfs_add(iter->dev, dev,
5338 					  &iter->dev->adj_list.lower);
5339 	}
5340 
5341 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5342 		if (!net_eq(net,dev_net(iter->dev)))
5343 			continue;
5344 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5345 					  &iter->dev->adj_list.upper);
5346 		netdev_adjacent_sysfs_add(iter->dev, dev,
5347 					  &iter->dev->adj_list.upper);
5348 	}
5349 }
5350 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)5351 void *netdev_lower_dev_get_private(struct net_device *dev,
5352 				   struct net_device *lower_dev)
5353 {
5354 	struct netdev_adjacent *lower;
5355 
5356 	if (!lower_dev)
5357 		return NULL;
5358 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5359 	if (!lower)
5360 		return NULL;
5361 
5362 	return lower->private;
5363 }
5364 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5365 
5366 
dev_get_nest_level(struct net_device * dev,bool (* type_check)(struct net_device * dev))5367 int dev_get_nest_level(struct net_device *dev,
5368 		       bool (*type_check)(struct net_device *dev))
5369 {
5370 	struct net_device *lower = NULL;
5371 	struct list_head *iter;
5372 	int max_nest = -1;
5373 	int nest;
5374 
5375 	ASSERT_RTNL();
5376 
5377 	netdev_for_each_lower_dev(dev, lower, iter) {
5378 		nest = dev_get_nest_level(lower, type_check);
5379 		if (max_nest < nest)
5380 			max_nest = nest;
5381 	}
5382 
5383 	if (type_check(dev))
5384 		max_nest++;
5385 
5386 	return max_nest;
5387 }
5388 EXPORT_SYMBOL(dev_get_nest_level);
5389 
dev_change_rx_flags(struct net_device * dev,int flags)5390 static void dev_change_rx_flags(struct net_device *dev, int flags)
5391 {
5392 	const struct net_device_ops *ops = dev->netdev_ops;
5393 
5394 	if (ops->ndo_change_rx_flags)
5395 		ops->ndo_change_rx_flags(dev, flags);
5396 }
5397 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)5398 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5399 {
5400 	unsigned int old_flags = dev->flags;
5401 	kuid_t uid;
5402 	kgid_t gid;
5403 
5404 	ASSERT_RTNL();
5405 
5406 	dev->flags |= IFF_PROMISC;
5407 	dev->promiscuity += inc;
5408 	if (dev->promiscuity == 0) {
5409 		/*
5410 		 * Avoid overflow.
5411 		 * If inc causes overflow, untouch promisc and return error.
5412 		 */
5413 		if (inc < 0)
5414 			dev->flags &= ~IFF_PROMISC;
5415 		else {
5416 			dev->promiscuity -= inc;
5417 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5418 				dev->name);
5419 			return -EOVERFLOW;
5420 		}
5421 	}
5422 	if (dev->flags != old_flags) {
5423 		pr_info("device %s %s promiscuous mode\n",
5424 			dev->name,
5425 			dev->flags & IFF_PROMISC ? "entered" : "left");
5426 		if (audit_enabled) {
5427 			current_uid_gid(&uid, &gid);
5428 			audit_log(current->audit_context, GFP_ATOMIC,
5429 				AUDIT_ANOM_PROMISCUOUS,
5430 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5431 				dev->name, (dev->flags & IFF_PROMISC),
5432 				(old_flags & IFF_PROMISC),
5433 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5434 				from_kuid(&init_user_ns, uid),
5435 				from_kgid(&init_user_ns, gid),
5436 				audit_get_sessionid(current));
5437 		}
5438 
5439 		dev_change_rx_flags(dev, IFF_PROMISC);
5440 	}
5441 	if (notify)
5442 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5443 	return 0;
5444 }
5445 
5446 /**
5447  *	dev_set_promiscuity	- update promiscuity count on a device
5448  *	@dev: device
5449  *	@inc: modifier
5450  *
5451  *	Add or remove promiscuity from a device. While the count in the device
5452  *	remains above zero the interface remains promiscuous. Once it hits zero
5453  *	the device reverts back to normal filtering operation. A negative inc
5454  *	value is used to drop promiscuity on the device.
5455  *	Return 0 if successful or a negative errno code on error.
5456  */
dev_set_promiscuity(struct net_device * dev,int inc)5457 int dev_set_promiscuity(struct net_device *dev, int inc)
5458 {
5459 	unsigned int old_flags = dev->flags;
5460 	int err;
5461 
5462 	err = __dev_set_promiscuity(dev, inc, true);
5463 	if (err < 0)
5464 		return err;
5465 	if (dev->flags != old_flags)
5466 		dev_set_rx_mode(dev);
5467 	return err;
5468 }
5469 EXPORT_SYMBOL(dev_set_promiscuity);
5470 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)5471 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5472 {
5473 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5474 
5475 	ASSERT_RTNL();
5476 
5477 	dev->flags |= IFF_ALLMULTI;
5478 	dev->allmulti += inc;
5479 	if (dev->allmulti == 0) {
5480 		/*
5481 		 * Avoid overflow.
5482 		 * If inc causes overflow, untouch allmulti and return error.
5483 		 */
5484 		if (inc < 0)
5485 			dev->flags &= ~IFF_ALLMULTI;
5486 		else {
5487 			dev->allmulti -= inc;
5488 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5489 				dev->name);
5490 			return -EOVERFLOW;
5491 		}
5492 	}
5493 	if (dev->flags ^ old_flags) {
5494 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5495 		dev_set_rx_mode(dev);
5496 		if (notify)
5497 			__dev_notify_flags(dev, old_flags,
5498 					   dev->gflags ^ old_gflags);
5499 	}
5500 	return 0;
5501 }
5502 
5503 /**
5504  *	dev_set_allmulti	- update allmulti count on a device
5505  *	@dev: device
5506  *	@inc: modifier
5507  *
5508  *	Add or remove reception of all multicast frames to a device. While the
5509  *	count in the device remains above zero the interface remains listening
5510  *	to all interfaces. Once it hits zero the device reverts back to normal
5511  *	filtering operation. A negative @inc value is used to drop the counter
5512  *	when releasing a resource needing all multicasts.
5513  *	Return 0 if successful or a negative errno code on error.
5514  */
5515 
dev_set_allmulti(struct net_device * dev,int inc)5516 int dev_set_allmulti(struct net_device *dev, int inc)
5517 {
5518 	return __dev_set_allmulti(dev, inc, true);
5519 }
5520 EXPORT_SYMBOL(dev_set_allmulti);
5521 
5522 /*
5523  *	Upload unicast and multicast address lists to device and
5524  *	configure RX filtering. When the device doesn't support unicast
5525  *	filtering it is put in promiscuous mode while unicast addresses
5526  *	are present.
5527  */
__dev_set_rx_mode(struct net_device * dev)5528 void __dev_set_rx_mode(struct net_device *dev)
5529 {
5530 	const struct net_device_ops *ops = dev->netdev_ops;
5531 
5532 	/* dev_open will call this function so the list will stay sane. */
5533 	if (!(dev->flags&IFF_UP))
5534 		return;
5535 
5536 	if (!netif_device_present(dev))
5537 		return;
5538 
5539 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5540 		/* Unicast addresses changes may only happen under the rtnl,
5541 		 * therefore calling __dev_set_promiscuity here is safe.
5542 		 */
5543 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5544 			__dev_set_promiscuity(dev, 1, false);
5545 			dev->uc_promisc = true;
5546 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5547 			__dev_set_promiscuity(dev, -1, false);
5548 			dev->uc_promisc = false;
5549 		}
5550 	}
5551 
5552 	if (ops->ndo_set_rx_mode)
5553 		ops->ndo_set_rx_mode(dev);
5554 }
5555 
dev_set_rx_mode(struct net_device * dev)5556 void dev_set_rx_mode(struct net_device *dev)
5557 {
5558 	netif_addr_lock_bh(dev);
5559 	__dev_set_rx_mode(dev);
5560 	netif_addr_unlock_bh(dev);
5561 }
5562 
5563 /**
5564  *	dev_get_flags - get flags reported to userspace
5565  *	@dev: device
5566  *
5567  *	Get the combination of flag bits exported through APIs to userspace.
5568  */
dev_get_flags(const struct net_device * dev)5569 unsigned int dev_get_flags(const struct net_device *dev)
5570 {
5571 	unsigned int flags;
5572 
5573 	flags = (dev->flags & ~(IFF_PROMISC |
5574 				IFF_ALLMULTI |
5575 				IFF_RUNNING |
5576 				IFF_LOWER_UP |
5577 				IFF_DORMANT)) |
5578 		(dev->gflags & (IFF_PROMISC |
5579 				IFF_ALLMULTI));
5580 
5581 	if (netif_running(dev)) {
5582 		if (netif_oper_up(dev))
5583 			flags |= IFF_RUNNING;
5584 		if (netif_carrier_ok(dev))
5585 			flags |= IFF_LOWER_UP;
5586 		if (netif_dormant(dev))
5587 			flags |= IFF_DORMANT;
5588 	}
5589 
5590 	return flags;
5591 }
5592 EXPORT_SYMBOL(dev_get_flags);
5593 
__dev_change_flags(struct net_device * dev,unsigned int flags)5594 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5595 {
5596 	unsigned int old_flags = dev->flags;
5597 	int ret;
5598 
5599 	ASSERT_RTNL();
5600 
5601 	/*
5602 	 *	Set the flags on our device.
5603 	 */
5604 
5605 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5606 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5607 			       IFF_AUTOMEDIA)) |
5608 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5609 				    IFF_ALLMULTI));
5610 
5611 	/*
5612 	 *	Load in the correct multicast list now the flags have changed.
5613 	 */
5614 
5615 	if ((old_flags ^ flags) & IFF_MULTICAST)
5616 		dev_change_rx_flags(dev, IFF_MULTICAST);
5617 
5618 	dev_set_rx_mode(dev);
5619 
5620 	/*
5621 	 *	Have we downed the interface. We handle IFF_UP ourselves
5622 	 *	according to user attempts to set it, rather than blindly
5623 	 *	setting it.
5624 	 */
5625 
5626 	ret = 0;
5627 	if ((old_flags ^ flags) & IFF_UP)
5628 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5629 
5630 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5631 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5632 		unsigned int old_flags = dev->flags;
5633 
5634 		dev->gflags ^= IFF_PROMISC;
5635 
5636 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5637 			if (dev->flags != old_flags)
5638 				dev_set_rx_mode(dev);
5639 	}
5640 
5641 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5642 	   is important. Some (broken) drivers set IFF_PROMISC, when
5643 	   IFF_ALLMULTI is requested not asking us and not reporting.
5644 	 */
5645 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5646 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5647 
5648 		dev->gflags ^= IFF_ALLMULTI;
5649 		__dev_set_allmulti(dev, inc, false);
5650 	}
5651 
5652 	return ret;
5653 }
5654 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)5655 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5656 			unsigned int gchanges)
5657 {
5658 	unsigned int changes = dev->flags ^ old_flags;
5659 
5660 	if (gchanges)
5661 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5662 
5663 	if (changes & IFF_UP) {
5664 		if (dev->flags & IFF_UP)
5665 			call_netdevice_notifiers(NETDEV_UP, dev);
5666 		else
5667 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5668 	}
5669 
5670 	if (dev->flags & IFF_UP &&
5671 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5672 		struct netdev_notifier_change_info change_info;
5673 
5674 		change_info.flags_changed = changes;
5675 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5676 					      &change_info.info);
5677 	}
5678 }
5679 
5680 /**
5681  *	dev_change_flags - change device settings
5682  *	@dev: device
5683  *	@flags: device state flags
5684  *
5685  *	Change settings on device based state flags. The flags are
5686  *	in the userspace exported format.
5687  */
dev_change_flags(struct net_device * dev,unsigned int flags)5688 int dev_change_flags(struct net_device *dev, unsigned int flags)
5689 {
5690 	int ret;
5691 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5692 
5693 	ret = __dev_change_flags(dev, flags);
5694 	if (ret < 0)
5695 		return ret;
5696 
5697 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5698 	__dev_notify_flags(dev, old_flags, changes);
5699 	return ret;
5700 }
5701 EXPORT_SYMBOL(dev_change_flags);
5702 
__dev_set_mtu(struct net_device * dev,int new_mtu)5703 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5704 {
5705 	const struct net_device_ops *ops = dev->netdev_ops;
5706 
5707 	if (ops->ndo_change_mtu)
5708 		return ops->ndo_change_mtu(dev, new_mtu);
5709 
5710 	dev->mtu = new_mtu;
5711 	return 0;
5712 }
5713 
5714 /**
5715  *	dev_set_mtu - Change maximum transfer unit
5716  *	@dev: device
5717  *	@new_mtu: new transfer unit
5718  *
5719  *	Change the maximum transfer size of the network device.
5720  */
dev_set_mtu(struct net_device * dev,int new_mtu)5721 int dev_set_mtu(struct net_device *dev, int new_mtu)
5722 {
5723 	int err, orig_mtu;
5724 
5725 	if (new_mtu == dev->mtu)
5726 		return 0;
5727 
5728 	/*	MTU must be positive.	 */
5729 	if (new_mtu < 0)
5730 		return -EINVAL;
5731 
5732 	if (!netif_device_present(dev))
5733 		return -ENODEV;
5734 
5735 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5736 	err = notifier_to_errno(err);
5737 	if (err)
5738 		return err;
5739 
5740 	orig_mtu = dev->mtu;
5741 	err = __dev_set_mtu(dev, new_mtu);
5742 
5743 	if (!err) {
5744 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5745 		err = notifier_to_errno(err);
5746 		if (err) {
5747 			/* setting mtu back and notifying everyone again,
5748 			 * so that they have a chance to revert changes.
5749 			 */
5750 			__dev_set_mtu(dev, orig_mtu);
5751 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5752 		}
5753 	}
5754 	return err;
5755 }
5756 EXPORT_SYMBOL(dev_set_mtu);
5757 
5758 /**
5759  *	dev_set_group - Change group this device belongs to
5760  *	@dev: device
5761  *	@new_group: group this device should belong to
5762  */
dev_set_group(struct net_device * dev,int new_group)5763 void dev_set_group(struct net_device *dev, int new_group)
5764 {
5765 	dev->group = new_group;
5766 }
5767 EXPORT_SYMBOL(dev_set_group);
5768 
5769 /**
5770  *	dev_set_mac_address - Change Media Access Control Address
5771  *	@dev: device
5772  *	@sa: new address
5773  *
5774  *	Change the hardware (MAC) address of the device
5775  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)5776 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5777 {
5778 	const struct net_device_ops *ops = dev->netdev_ops;
5779 	int err;
5780 
5781 	if (!ops->ndo_set_mac_address)
5782 		return -EOPNOTSUPP;
5783 	if (sa->sa_family != dev->type)
5784 		return -EINVAL;
5785 	if (!netif_device_present(dev))
5786 		return -ENODEV;
5787 	err = ops->ndo_set_mac_address(dev, sa);
5788 	if (err)
5789 		return err;
5790 	dev->addr_assign_type = NET_ADDR_SET;
5791 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5792 	add_device_randomness(dev->dev_addr, dev->addr_len);
5793 	return 0;
5794 }
5795 EXPORT_SYMBOL(dev_set_mac_address);
5796 
5797 /**
5798  *	dev_change_carrier - Change device carrier
5799  *	@dev: device
5800  *	@new_carrier: new value
5801  *
5802  *	Change device carrier
5803  */
dev_change_carrier(struct net_device * dev,bool new_carrier)5804 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5805 {
5806 	const struct net_device_ops *ops = dev->netdev_ops;
5807 
5808 	if (!ops->ndo_change_carrier)
5809 		return -EOPNOTSUPP;
5810 	if (!netif_device_present(dev))
5811 		return -ENODEV;
5812 	return ops->ndo_change_carrier(dev, new_carrier);
5813 }
5814 EXPORT_SYMBOL(dev_change_carrier);
5815 
5816 /**
5817  *	dev_get_phys_port_id - Get device physical port ID
5818  *	@dev: device
5819  *	@ppid: port ID
5820  *
5821  *	Get device physical port ID
5822  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_port_id * ppid)5823 int dev_get_phys_port_id(struct net_device *dev,
5824 			 struct netdev_phys_port_id *ppid)
5825 {
5826 	const struct net_device_ops *ops = dev->netdev_ops;
5827 
5828 	if (!ops->ndo_get_phys_port_id)
5829 		return -EOPNOTSUPP;
5830 	return ops->ndo_get_phys_port_id(dev, ppid);
5831 }
5832 EXPORT_SYMBOL(dev_get_phys_port_id);
5833 
5834 /**
5835  *	dev_new_index	-	allocate an ifindex
5836  *	@net: the applicable net namespace
5837  *
5838  *	Returns a suitable unique value for a new device interface
5839  *	number.  The caller must hold the rtnl semaphore or the
5840  *	dev_base_lock to be sure it remains unique.
5841  */
dev_new_index(struct net * net)5842 static int dev_new_index(struct net *net)
5843 {
5844 	int ifindex = net->ifindex;
5845 	for (;;) {
5846 		if (++ifindex <= 0)
5847 			ifindex = 1;
5848 		if (!__dev_get_by_index(net, ifindex))
5849 			return net->ifindex = ifindex;
5850 	}
5851 }
5852 
5853 /* Delayed registration/unregisteration */
5854 static LIST_HEAD(net_todo_list);
5855 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5856 
net_set_todo(struct net_device * dev)5857 static void net_set_todo(struct net_device *dev)
5858 {
5859 	list_add_tail(&dev->todo_list, &net_todo_list);
5860 	dev_net(dev)->dev_unreg_count++;
5861 }
5862 
rollback_registered_many(struct list_head * head)5863 static void rollback_registered_many(struct list_head *head)
5864 {
5865 	struct net_device *dev, *tmp;
5866 	LIST_HEAD(close_head);
5867 
5868 	BUG_ON(dev_boot_phase);
5869 	ASSERT_RTNL();
5870 
5871 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5872 		/* Some devices call without registering
5873 		 * for initialization unwind. Remove those
5874 		 * devices and proceed with the remaining.
5875 		 */
5876 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5877 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5878 				 dev->name, dev);
5879 
5880 			WARN_ON(1);
5881 			list_del(&dev->unreg_list);
5882 			continue;
5883 		}
5884 		dev->dismantle = true;
5885 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5886 	}
5887 
5888 	/* If device is running, close it first. */
5889 	list_for_each_entry(dev, head, unreg_list)
5890 		list_add_tail(&dev->close_list, &close_head);
5891 	dev_close_many(&close_head);
5892 
5893 	list_for_each_entry(dev, head, unreg_list) {
5894 		/* And unlink it from device chain. */
5895 		unlist_netdevice(dev);
5896 
5897 		dev->reg_state = NETREG_UNREGISTERING;
5898 		on_each_cpu(flush_backlog, dev, 1);
5899 	}
5900 
5901 	synchronize_net();
5902 
5903 	list_for_each_entry(dev, head, unreg_list) {
5904 		/* Shutdown queueing discipline. */
5905 		dev_shutdown(dev);
5906 
5907 
5908 		/* Notify protocols, that we are about to destroy
5909 		   this device. They should clean all the things.
5910 		*/
5911 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5912 
5913 		/*
5914 		 *	Flush the unicast and multicast chains
5915 		 */
5916 		dev_uc_flush(dev);
5917 		dev_mc_flush(dev);
5918 
5919 		if (dev->netdev_ops->ndo_uninit)
5920 			dev->netdev_ops->ndo_uninit(dev);
5921 
5922 		if (!dev->rtnl_link_ops ||
5923 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5924 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5925 
5926 		/* Notifier chain MUST detach us all upper devices. */
5927 		WARN_ON(netdev_has_any_upper_dev(dev));
5928 
5929 		/* Remove entries from kobject tree */
5930 		netdev_unregister_kobject(dev);
5931 #ifdef CONFIG_XPS
5932 		/* Remove XPS queueing entries */
5933 		netif_reset_xps_queues_gt(dev, 0);
5934 #endif
5935 	}
5936 
5937 	synchronize_net();
5938 
5939 	list_for_each_entry(dev, head, unreg_list)
5940 		dev_put(dev);
5941 }
5942 
rollback_registered(struct net_device * dev)5943 static void rollback_registered(struct net_device *dev)
5944 {
5945 	LIST_HEAD(single);
5946 
5947 	list_add(&dev->unreg_list, &single);
5948 	rollback_registered_many(&single);
5949 	list_del(&single);
5950 }
5951 
netdev_fix_features(struct net_device * dev,netdev_features_t features)5952 static netdev_features_t netdev_fix_features(struct net_device *dev,
5953 	netdev_features_t features)
5954 {
5955 	/* Fix illegal checksum combinations */
5956 	if ((features & NETIF_F_HW_CSUM) &&
5957 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5958 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5959 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5960 	}
5961 
5962 	/* TSO requires that SG is present as well. */
5963 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5964 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5965 		features &= ~NETIF_F_ALL_TSO;
5966 	}
5967 
5968 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5969 					!(features & NETIF_F_IP_CSUM)) {
5970 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5971 		features &= ~NETIF_F_TSO;
5972 		features &= ~NETIF_F_TSO_ECN;
5973 	}
5974 
5975 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5976 					 !(features & NETIF_F_IPV6_CSUM)) {
5977 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5978 		features &= ~NETIF_F_TSO6;
5979 	}
5980 
5981 	/* TSO ECN requires that TSO is present as well. */
5982 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5983 		features &= ~NETIF_F_TSO_ECN;
5984 
5985 	/* Software GSO depends on SG. */
5986 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5987 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5988 		features &= ~NETIF_F_GSO;
5989 	}
5990 
5991 	/* UFO needs SG and checksumming */
5992 	if (features & NETIF_F_UFO) {
5993 		/* maybe split UFO into V4 and V6? */
5994 		if (!((features & NETIF_F_GEN_CSUM) ||
5995 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5996 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5997 			netdev_dbg(dev,
5998 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5999 			features &= ~NETIF_F_UFO;
6000 		}
6001 
6002 		if (!(features & NETIF_F_SG)) {
6003 			netdev_dbg(dev,
6004 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6005 			features &= ~NETIF_F_UFO;
6006 		}
6007 	}
6008 
6009 #ifdef CONFIG_NET_RX_BUSY_POLL
6010 	if (dev->netdev_ops->ndo_busy_poll)
6011 		features |= NETIF_F_BUSY_POLL;
6012 	else
6013 #endif
6014 		features &= ~NETIF_F_BUSY_POLL;
6015 
6016 	return features;
6017 }
6018 
__netdev_update_features(struct net_device * dev)6019 int __netdev_update_features(struct net_device *dev)
6020 {
6021 	netdev_features_t features;
6022 	int err = 0;
6023 
6024 	ASSERT_RTNL();
6025 
6026 	features = netdev_get_wanted_features(dev);
6027 
6028 	if (dev->netdev_ops->ndo_fix_features)
6029 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6030 
6031 	/* driver might be less strict about feature dependencies */
6032 	features = netdev_fix_features(dev, features);
6033 
6034 	if (dev->features == features)
6035 		return 0;
6036 
6037 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6038 		&dev->features, &features);
6039 
6040 	if (dev->netdev_ops->ndo_set_features)
6041 		err = dev->netdev_ops->ndo_set_features(dev, features);
6042 
6043 	if (unlikely(err < 0)) {
6044 		netdev_err(dev,
6045 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6046 			err, &features, &dev->features);
6047 		return -1;
6048 	}
6049 
6050 	if (!err)
6051 		dev->features = features;
6052 
6053 	return 1;
6054 }
6055 
6056 /**
6057  *	netdev_update_features - recalculate device features
6058  *	@dev: the device to check
6059  *
6060  *	Recalculate dev->features set and send notifications if it
6061  *	has changed. Should be called after driver or hardware dependent
6062  *	conditions might have changed that influence the features.
6063  */
netdev_update_features(struct net_device * dev)6064 void netdev_update_features(struct net_device *dev)
6065 {
6066 	if (__netdev_update_features(dev))
6067 		netdev_features_change(dev);
6068 }
6069 EXPORT_SYMBOL(netdev_update_features);
6070 
6071 /**
6072  *	netdev_change_features - recalculate device features
6073  *	@dev: the device to check
6074  *
6075  *	Recalculate dev->features set and send notifications even
6076  *	if they have not changed. Should be called instead of
6077  *	netdev_update_features() if also dev->vlan_features might
6078  *	have changed to allow the changes to be propagated to stacked
6079  *	VLAN devices.
6080  */
netdev_change_features(struct net_device * dev)6081 void netdev_change_features(struct net_device *dev)
6082 {
6083 	__netdev_update_features(dev);
6084 	netdev_features_change(dev);
6085 }
6086 EXPORT_SYMBOL(netdev_change_features);
6087 
6088 /**
6089  *	netif_stacked_transfer_operstate -	transfer operstate
6090  *	@rootdev: the root or lower level device to transfer state from
6091  *	@dev: the device to transfer operstate to
6092  *
6093  *	Transfer operational state from root to device. This is normally
6094  *	called when a stacking relationship exists between the root
6095  *	device and the device(a leaf device).
6096  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)6097 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6098 					struct net_device *dev)
6099 {
6100 	if (rootdev->operstate == IF_OPER_DORMANT)
6101 		netif_dormant_on(dev);
6102 	else
6103 		netif_dormant_off(dev);
6104 
6105 	if (netif_carrier_ok(rootdev)) {
6106 		if (!netif_carrier_ok(dev))
6107 			netif_carrier_on(dev);
6108 	} else {
6109 		if (netif_carrier_ok(dev))
6110 			netif_carrier_off(dev);
6111 	}
6112 }
6113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6114 
6115 #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)6116 static int netif_alloc_rx_queues(struct net_device *dev)
6117 {
6118 	unsigned int i, count = dev->num_rx_queues;
6119 	struct netdev_rx_queue *rx;
6120 
6121 	BUG_ON(count < 1);
6122 
6123 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6124 	if (!rx)
6125 		return -ENOMEM;
6126 
6127 	dev->_rx = rx;
6128 
6129 	for (i = 0; i < count; i++)
6130 		rx[i].dev = dev;
6131 	return 0;
6132 }
6133 #endif
6134 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)6135 static void netdev_init_one_queue(struct net_device *dev,
6136 				  struct netdev_queue *queue, void *_unused)
6137 {
6138 	/* Initialize queue lock */
6139 	spin_lock_init(&queue->_xmit_lock);
6140 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6141 	queue->xmit_lock_owner = -1;
6142 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6143 	queue->dev = dev;
6144 #ifdef CONFIG_BQL
6145 	dql_init(&queue->dql, HZ);
6146 #endif
6147 }
6148 
netif_free_tx_queues(struct net_device * dev)6149 static void netif_free_tx_queues(struct net_device *dev)
6150 {
6151 	kvfree(dev->_tx);
6152 }
6153 
netif_alloc_netdev_queues(struct net_device * dev)6154 static int netif_alloc_netdev_queues(struct net_device *dev)
6155 {
6156 	unsigned int count = dev->num_tx_queues;
6157 	struct netdev_queue *tx;
6158 	size_t sz = count * sizeof(*tx);
6159 
6160 	if (count < 1 || count > 0xffff)
6161 		return -EINVAL;
6162 
6163 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6164 	if (!tx) {
6165 		tx = vzalloc(sz);
6166 		if (!tx)
6167 			return -ENOMEM;
6168 	}
6169 	dev->_tx = tx;
6170 
6171 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6172 	spin_lock_init(&dev->tx_global_lock);
6173 
6174 	return 0;
6175 }
6176 
6177 /**
6178  *	register_netdevice	- register a network device
6179  *	@dev: device to register
6180  *
6181  *	Take a completed network device structure and add it to the kernel
6182  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6183  *	chain. 0 is returned on success. A negative errno code is returned
6184  *	on a failure to set up the device, or if the name is a duplicate.
6185  *
6186  *	Callers must hold the rtnl semaphore. You may want
6187  *	register_netdev() instead of this.
6188  *
6189  *	BUGS:
6190  *	The locking appears insufficient to guarantee two parallel registers
6191  *	will not get the same name.
6192  */
6193 
register_netdevice(struct net_device * dev)6194 int register_netdevice(struct net_device *dev)
6195 {
6196 	int ret;
6197 	struct net *net = dev_net(dev);
6198 
6199 	BUG_ON(dev_boot_phase);
6200 	ASSERT_RTNL();
6201 
6202 	might_sleep();
6203 
6204 	/* When net_device's are persistent, this will be fatal. */
6205 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6206 	BUG_ON(!net);
6207 
6208 	spin_lock_init(&dev->addr_list_lock);
6209 	netdev_set_addr_lockdep_class(dev);
6210 
6211 	dev->iflink = -1;
6212 
6213 	ret = dev_get_valid_name(net, dev, dev->name);
6214 	if (ret < 0)
6215 		goto out;
6216 
6217 	/* Init, if this function is available */
6218 	if (dev->netdev_ops->ndo_init) {
6219 		ret = dev->netdev_ops->ndo_init(dev);
6220 		if (ret) {
6221 			if (ret > 0)
6222 				ret = -EIO;
6223 			goto out;
6224 		}
6225 	}
6226 
6227 	if (((dev->hw_features | dev->features) &
6228 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6229 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6230 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6231 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6232 		ret = -EINVAL;
6233 		goto err_uninit;
6234 	}
6235 
6236 	ret = -EBUSY;
6237 	if (!dev->ifindex)
6238 		dev->ifindex = dev_new_index(net);
6239 	else if (__dev_get_by_index(net, dev->ifindex))
6240 		goto err_uninit;
6241 
6242 	if (dev->iflink == -1)
6243 		dev->iflink = dev->ifindex;
6244 
6245 	/* Transfer changeable features to wanted_features and enable
6246 	 * software offloads (GSO and GRO).
6247 	 */
6248 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6249 	dev->features |= NETIF_F_SOFT_FEATURES;
6250 	dev->wanted_features = dev->features & dev->hw_features;
6251 
6252 	if (!(dev->flags & IFF_LOOPBACK)) {
6253 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6254 	}
6255 
6256 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6257 	 */
6258 	dev->vlan_features |= NETIF_F_HIGHDMA;
6259 
6260 	/* Make NETIF_F_SG inheritable to tunnel devices.
6261 	 */
6262 	dev->hw_enc_features |= NETIF_F_SG;
6263 
6264 	/* Make NETIF_F_SG inheritable to MPLS.
6265 	 */
6266 	dev->mpls_features |= NETIF_F_SG;
6267 
6268 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6269 	ret = notifier_to_errno(ret);
6270 	if (ret)
6271 		goto err_uninit;
6272 
6273 	ret = netdev_register_kobject(dev);
6274 	if (ret)
6275 		goto err_uninit;
6276 	dev->reg_state = NETREG_REGISTERED;
6277 
6278 	__netdev_update_features(dev);
6279 
6280 	/*
6281 	 *	Default initial state at registry is that the
6282 	 *	device is present.
6283 	 */
6284 
6285 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6286 
6287 	linkwatch_init_dev(dev);
6288 
6289 	dev_init_scheduler(dev);
6290 	dev_hold(dev);
6291 	list_netdevice(dev);
6292 	add_device_randomness(dev->dev_addr, dev->addr_len);
6293 
6294 	/* If the device has permanent device address, driver should
6295 	 * set dev_addr and also addr_assign_type should be set to
6296 	 * NET_ADDR_PERM (default value).
6297 	 */
6298 	if (dev->addr_assign_type == NET_ADDR_PERM)
6299 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6300 
6301 	/* Notify protocols, that a new device appeared. */
6302 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6303 	ret = notifier_to_errno(ret);
6304 	if (ret) {
6305 		rollback_registered(dev);
6306 		dev->reg_state = NETREG_UNREGISTERED;
6307 	}
6308 	/*
6309 	 *	Prevent userspace races by waiting until the network
6310 	 *	device is fully setup before sending notifications.
6311 	 */
6312 	if (!dev->rtnl_link_ops ||
6313 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6314 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6315 
6316 out:
6317 	return ret;
6318 
6319 err_uninit:
6320 	if (dev->netdev_ops->ndo_uninit)
6321 		dev->netdev_ops->ndo_uninit(dev);
6322 	goto out;
6323 }
6324 EXPORT_SYMBOL(register_netdevice);
6325 
6326 /**
6327  *	init_dummy_netdev	- init a dummy network device for NAPI
6328  *	@dev: device to init
6329  *
6330  *	This takes a network device structure and initialize the minimum
6331  *	amount of fields so it can be used to schedule NAPI polls without
6332  *	registering a full blown interface. This is to be used by drivers
6333  *	that need to tie several hardware interfaces to a single NAPI
6334  *	poll scheduler due to HW limitations.
6335  */
init_dummy_netdev(struct net_device * dev)6336 int init_dummy_netdev(struct net_device *dev)
6337 {
6338 	/* Clear everything. Note we don't initialize spinlocks
6339 	 * are they aren't supposed to be taken by any of the
6340 	 * NAPI code and this dummy netdev is supposed to be
6341 	 * only ever used for NAPI polls
6342 	 */
6343 	memset(dev, 0, sizeof(struct net_device));
6344 
6345 	/* make sure we BUG if trying to hit standard
6346 	 * register/unregister code path
6347 	 */
6348 	dev->reg_state = NETREG_DUMMY;
6349 
6350 	/* NAPI wants this */
6351 	INIT_LIST_HEAD(&dev->napi_list);
6352 
6353 	/* a dummy interface is started by default */
6354 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6355 	set_bit(__LINK_STATE_START, &dev->state);
6356 
6357 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6358 	 * because users of this 'device' dont need to change
6359 	 * its refcount.
6360 	 */
6361 
6362 	return 0;
6363 }
6364 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6365 
6366 
6367 /**
6368  *	register_netdev	- register a network device
6369  *	@dev: device to register
6370  *
6371  *	Take a completed network device structure and add it to the kernel
6372  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6373  *	chain. 0 is returned on success. A negative errno code is returned
6374  *	on a failure to set up the device, or if the name is a duplicate.
6375  *
6376  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6377  *	and expands the device name if you passed a format string to
6378  *	alloc_netdev.
6379  */
register_netdev(struct net_device * dev)6380 int register_netdev(struct net_device *dev)
6381 {
6382 	int err;
6383 
6384 	rtnl_lock();
6385 	err = register_netdevice(dev);
6386 	rtnl_unlock();
6387 	return err;
6388 }
6389 EXPORT_SYMBOL(register_netdev);
6390 
netdev_refcnt_read(const struct net_device * dev)6391 int netdev_refcnt_read(const struct net_device *dev)
6392 {
6393 	int i, refcnt = 0;
6394 
6395 	for_each_possible_cpu(i)
6396 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6397 	return refcnt;
6398 }
6399 EXPORT_SYMBOL(netdev_refcnt_read);
6400 
6401 /**
6402  * netdev_wait_allrefs - wait until all references are gone.
6403  * @dev: target net_device
6404  *
6405  * This is called when unregistering network devices.
6406  *
6407  * Any protocol or device that holds a reference should register
6408  * for netdevice notification, and cleanup and put back the
6409  * reference if they receive an UNREGISTER event.
6410  * We can get stuck here if buggy protocols don't correctly
6411  * call dev_put.
6412  */
netdev_wait_allrefs(struct net_device * dev)6413 static void netdev_wait_allrefs(struct net_device *dev)
6414 {
6415 	unsigned long rebroadcast_time, warning_time;
6416 	int refcnt;
6417 
6418 	linkwatch_forget_dev(dev);
6419 
6420 	rebroadcast_time = warning_time = jiffies;
6421 	refcnt = netdev_refcnt_read(dev);
6422 
6423 	while (refcnt != 0) {
6424 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6425 			rtnl_lock();
6426 
6427 			/* Rebroadcast unregister notification */
6428 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6429 
6430 			__rtnl_unlock();
6431 			rcu_barrier();
6432 			rtnl_lock();
6433 
6434 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6435 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6436 				     &dev->state)) {
6437 				/* We must not have linkwatch events
6438 				 * pending on unregister. If this
6439 				 * happens, we simply run the queue
6440 				 * unscheduled, resulting in a noop
6441 				 * for this device.
6442 				 */
6443 				linkwatch_run_queue();
6444 			}
6445 
6446 			__rtnl_unlock();
6447 
6448 			rebroadcast_time = jiffies;
6449 		}
6450 
6451 		msleep(250);
6452 
6453 		refcnt = netdev_refcnt_read(dev);
6454 
6455 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6456 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6457 				 dev->name, refcnt);
6458 			warning_time = jiffies;
6459 		}
6460 	}
6461 }
6462 
6463 /* The sequence is:
6464  *
6465  *	rtnl_lock();
6466  *	...
6467  *	register_netdevice(x1);
6468  *	register_netdevice(x2);
6469  *	...
6470  *	unregister_netdevice(y1);
6471  *	unregister_netdevice(y2);
6472  *      ...
6473  *	rtnl_unlock();
6474  *	free_netdev(y1);
6475  *	free_netdev(y2);
6476  *
6477  * We are invoked by rtnl_unlock().
6478  * This allows us to deal with problems:
6479  * 1) We can delete sysfs objects which invoke hotplug
6480  *    without deadlocking with linkwatch via keventd.
6481  * 2) Since we run with the RTNL semaphore not held, we can sleep
6482  *    safely in order to wait for the netdev refcnt to drop to zero.
6483  *
6484  * We must not return until all unregister events added during
6485  * the interval the lock was held have been completed.
6486  */
netdev_run_todo(void)6487 void netdev_run_todo(void)
6488 {
6489 	struct list_head list;
6490 
6491 	/* Snapshot list, allow later requests */
6492 	list_replace_init(&net_todo_list, &list);
6493 
6494 	__rtnl_unlock();
6495 
6496 
6497 	/* Wait for rcu callbacks to finish before next phase */
6498 	if (!list_empty(&list))
6499 		rcu_barrier();
6500 
6501 	while (!list_empty(&list)) {
6502 		struct net_device *dev
6503 			= list_first_entry(&list, struct net_device, todo_list);
6504 		list_del(&dev->todo_list);
6505 
6506 		rtnl_lock();
6507 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6508 		__rtnl_unlock();
6509 
6510 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6511 			pr_err("network todo '%s' but state %d\n",
6512 			       dev->name, dev->reg_state);
6513 			dump_stack();
6514 			continue;
6515 		}
6516 
6517 		dev->reg_state = NETREG_UNREGISTERED;
6518 
6519 		netdev_wait_allrefs(dev);
6520 
6521 		/* paranoia */
6522 		BUG_ON(netdev_refcnt_read(dev));
6523 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6524 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6525 		WARN_ON(dev->dn_ptr);
6526 
6527 		if (dev->destructor)
6528 			dev->destructor(dev);
6529 
6530 		/* Report a network device has been unregistered */
6531 		rtnl_lock();
6532 		dev_net(dev)->dev_unreg_count--;
6533 		__rtnl_unlock();
6534 		wake_up(&netdev_unregistering_wq);
6535 
6536 		/* Free network device */
6537 		kobject_put(&dev->dev.kobj);
6538 	}
6539 }
6540 
6541 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6542  * fields in the same order, with only the type differing.
6543  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)6544 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6545 			     const struct net_device_stats *netdev_stats)
6546 {
6547 #if BITS_PER_LONG == 64
6548 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6549 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6550 #else
6551 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6552 	const unsigned long *src = (const unsigned long *)netdev_stats;
6553 	u64 *dst = (u64 *)stats64;
6554 
6555 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6556 		     sizeof(*stats64) / sizeof(u64));
6557 	for (i = 0; i < n; i++)
6558 		dst[i] = src[i];
6559 #endif
6560 }
6561 EXPORT_SYMBOL(netdev_stats_to_stats64);
6562 
6563 /**
6564  *	dev_get_stats	- get network device statistics
6565  *	@dev: device to get statistics from
6566  *	@storage: place to store stats
6567  *
6568  *	Get network statistics from device. Return @storage.
6569  *	The device driver may provide its own method by setting
6570  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6571  *	otherwise the internal statistics structure is used.
6572  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)6573 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6574 					struct rtnl_link_stats64 *storage)
6575 {
6576 	const struct net_device_ops *ops = dev->netdev_ops;
6577 
6578 	if (ops->ndo_get_stats64) {
6579 		memset(storage, 0, sizeof(*storage));
6580 		ops->ndo_get_stats64(dev, storage);
6581 	} else if (ops->ndo_get_stats) {
6582 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6583 	} else {
6584 		netdev_stats_to_stats64(storage, &dev->stats);
6585 	}
6586 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
6587 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
6588 	return storage;
6589 }
6590 EXPORT_SYMBOL(dev_get_stats);
6591 
dev_ingress_queue_create(struct net_device * dev)6592 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6593 {
6594 	struct netdev_queue *queue = dev_ingress_queue(dev);
6595 
6596 #ifdef CONFIG_NET_CLS_ACT
6597 	if (queue)
6598 		return queue;
6599 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6600 	if (!queue)
6601 		return NULL;
6602 	netdev_init_one_queue(dev, queue, NULL);
6603 	queue->qdisc = &noop_qdisc;
6604 	queue->qdisc_sleeping = &noop_qdisc;
6605 	rcu_assign_pointer(dev->ingress_queue, queue);
6606 #endif
6607 	return queue;
6608 }
6609 
6610 static const struct ethtool_ops default_ethtool_ops;
6611 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)6612 void netdev_set_default_ethtool_ops(struct net_device *dev,
6613 				    const struct ethtool_ops *ops)
6614 {
6615 	if (dev->ethtool_ops == &default_ethtool_ops)
6616 		dev->ethtool_ops = ops;
6617 }
6618 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6619 
netdev_freemem(struct net_device * dev)6620 void netdev_freemem(struct net_device *dev)
6621 {
6622 	char *addr = (char *)dev - dev->padded;
6623 
6624 	kvfree(addr);
6625 }
6626 
6627 /**
6628  *	alloc_netdev_mqs - allocate network device
6629  *	@sizeof_priv:		size of private data to allocate space for
6630  *	@name:			device name format string
6631  *	@name_assign_type: 	origin of device name
6632  *	@setup:			callback to initialize device
6633  *	@txqs:			the number of TX subqueues to allocate
6634  *	@rxqs:			the number of RX subqueues to allocate
6635  *
6636  *	Allocates a struct net_device with private data area for driver use
6637  *	and performs basic initialization.  Also allocates subqueue structs
6638  *	for each queue on the device.
6639  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)6640 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6641 		unsigned char name_assign_type,
6642 		void (*setup)(struct net_device *),
6643 		unsigned int txqs, unsigned int rxqs)
6644 {
6645 	struct net_device *dev;
6646 	size_t alloc_size;
6647 	struct net_device *p;
6648 
6649 	BUG_ON(strlen(name) >= sizeof(dev->name));
6650 
6651 	if (txqs < 1) {
6652 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6653 		return NULL;
6654 	}
6655 
6656 #ifdef CONFIG_SYSFS
6657 	if (rxqs < 1) {
6658 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6659 		return NULL;
6660 	}
6661 #endif
6662 
6663 	alloc_size = sizeof(struct net_device);
6664 	if (sizeof_priv) {
6665 		/* ensure 32-byte alignment of private area */
6666 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6667 		alloc_size += sizeof_priv;
6668 	}
6669 	/* ensure 32-byte alignment of whole construct */
6670 	alloc_size += NETDEV_ALIGN - 1;
6671 
6672 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6673 	if (!p)
6674 		p = vzalloc(alloc_size);
6675 	if (!p)
6676 		return NULL;
6677 
6678 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6679 	dev->padded = (char *)dev - (char *)p;
6680 
6681 	dev->pcpu_refcnt = alloc_percpu(int);
6682 	if (!dev->pcpu_refcnt)
6683 		goto free_dev;
6684 
6685 	if (dev_addr_init(dev))
6686 		goto free_pcpu;
6687 
6688 	dev_mc_init(dev);
6689 	dev_uc_init(dev);
6690 
6691 	dev_net_set(dev, &init_net);
6692 
6693 	dev->gso_max_size = GSO_MAX_SIZE;
6694 	dev->gso_max_segs = GSO_MAX_SEGS;
6695 	dev->gso_min_segs = 0;
6696 
6697 	INIT_LIST_HEAD(&dev->napi_list);
6698 	INIT_LIST_HEAD(&dev->unreg_list);
6699 	INIT_LIST_HEAD(&dev->close_list);
6700 	INIT_LIST_HEAD(&dev->link_watch_list);
6701 	INIT_LIST_HEAD(&dev->adj_list.upper);
6702 	INIT_LIST_HEAD(&dev->adj_list.lower);
6703 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6704 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6705 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6706 	setup(dev);
6707 
6708 	dev->num_tx_queues = txqs;
6709 	dev->real_num_tx_queues = txqs;
6710 	if (netif_alloc_netdev_queues(dev))
6711 		goto free_all;
6712 
6713 #ifdef CONFIG_SYSFS
6714 	dev->num_rx_queues = rxqs;
6715 	dev->real_num_rx_queues = rxqs;
6716 	if (netif_alloc_rx_queues(dev))
6717 		goto free_all;
6718 #endif
6719 
6720 	strcpy(dev->name, name);
6721 	dev->name_assign_type = name_assign_type;
6722 	dev->group = INIT_NETDEV_GROUP;
6723 	if (!dev->ethtool_ops)
6724 		dev->ethtool_ops = &default_ethtool_ops;
6725 	return dev;
6726 
6727 free_all:
6728 	free_netdev(dev);
6729 	return NULL;
6730 
6731 free_pcpu:
6732 	free_percpu(dev->pcpu_refcnt);
6733 free_dev:
6734 	netdev_freemem(dev);
6735 	return NULL;
6736 }
6737 EXPORT_SYMBOL(alloc_netdev_mqs);
6738 
6739 /**
6740  *	free_netdev - free network device
6741  *	@dev: device
6742  *
6743  *	This function does the last stage of destroying an allocated device
6744  * 	interface. The reference to the device object is released.
6745  *	If this is the last reference then it will be freed.
6746  */
free_netdev(struct net_device * dev)6747 void free_netdev(struct net_device *dev)
6748 {
6749 	struct napi_struct *p, *n;
6750 
6751 	release_net(dev_net(dev));
6752 
6753 	netif_free_tx_queues(dev);
6754 #ifdef CONFIG_SYSFS
6755 	kfree(dev->_rx);
6756 #endif
6757 
6758 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6759 
6760 	/* Flush device addresses */
6761 	dev_addr_flush(dev);
6762 
6763 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6764 		netif_napi_del(p);
6765 
6766 	free_percpu(dev->pcpu_refcnt);
6767 	dev->pcpu_refcnt = NULL;
6768 
6769 	/*  Compatibility with error handling in drivers */
6770 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6771 		netdev_freemem(dev);
6772 		return;
6773 	}
6774 
6775 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6776 	dev->reg_state = NETREG_RELEASED;
6777 
6778 	/* will free via device release */
6779 	put_device(&dev->dev);
6780 }
6781 EXPORT_SYMBOL(free_netdev);
6782 
6783 /**
6784  *	synchronize_net -  Synchronize with packet receive processing
6785  *
6786  *	Wait for packets currently being received to be done.
6787  *	Does not block later packets from starting.
6788  */
synchronize_net(void)6789 void synchronize_net(void)
6790 {
6791 	might_sleep();
6792 	if (rtnl_is_locked())
6793 		synchronize_rcu_expedited();
6794 	else
6795 		synchronize_rcu();
6796 }
6797 EXPORT_SYMBOL(synchronize_net);
6798 
6799 /**
6800  *	unregister_netdevice_queue - remove device from the kernel
6801  *	@dev: device
6802  *	@head: list
6803  *
6804  *	This function shuts down a device interface and removes it
6805  *	from the kernel tables.
6806  *	If head not NULL, device is queued to be unregistered later.
6807  *
6808  *	Callers must hold the rtnl semaphore.  You may want
6809  *	unregister_netdev() instead of this.
6810  */
6811 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)6812 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6813 {
6814 	ASSERT_RTNL();
6815 
6816 	if (head) {
6817 		list_move_tail(&dev->unreg_list, head);
6818 	} else {
6819 		rollback_registered(dev);
6820 		/* Finish processing unregister after unlock */
6821 		net_set_todo(dev);
6822 	}
6823 }
6824 EXPORT_SYMBOL(unregister_netdevice_queue);
6825 
6826 /**
6827  *	unregister_netdevice_many - unregister many devices
6828  *	@head: list of devices
6829  *
6830  *  Note: As most callers use a stack allocated list_head,
6831  *  we force a list_del() to make sure stack wont be corrupted later.
6832  */
unregister_netdevice_many(struct list_head * head)6833 void unregister_netdevice_many(struct list_head *head)
6834 {
6835 	struct net_device *dev;
6836 
6837 	if (!list_empty(head)) {
6838 		rollback_registered_many(head);
6839 		list_for_each_entry(dev, head, unreg_list)
6840 			net_set_todo(dev);
6841 		list_del(head);
6842 	}
6843 }
6844 EXPORT_SYMBOL(unregister_netdevice_many);
6845 
6846 /**
6847  *	unregister_netdev - remove device from the kernel
6848  *	@dev: device
6849  *
6850  *	This function shuts down a device interface and removes it
6851  *	from the kernel tables.
6852  *
6853  *	This is just a wrapper for unregister_netdevice that takes
6854  *	the rtnl semaphore.  In general you want to use this and not
6855  *	unregister_netdevice.
6856  */
unregister_netdev(struct net_device * dev)6857 void unregister_netdev(struct net_device *dev)
6858 {
6859 	rtnl_lock();
6860 	unregister_netdevice(dev);
6861 	rtnl_unlock();
6862 }
6863 EXPORT_SYMBOL(unregister_netdev);
6864 
6865 /**
6866  *	dev_change_net_namespace - move device to different nethost namespace
6867  *	@dev: device
6868  *	@net: network namespace
6869  *	@pat: If not NULL name pattern to try if the current device name
6870  *	      is already taken in the destination network namespace.
6871  *
6872  *	This function shuts down a device interface and moves it
6873  *	to a new network namespace. On success 0 is returned, on
6874  *	a failure a netagive errno code is returned.
6875  *
6876  *	Callers must hold the rtnl semaphore.
6877  */
6878 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)6879 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6880 {
6881 	int err;
6882 
6883 	ASSERT_RTNL();
6884 
6885 	/* Don't allow namespace local devices to be moved. */
6886 	err = -EINVAL;
6887 	if (dev->features & NETIF_F_NETNS_LOCAL)
6888 		goto out;
6889 
6890 	/* Ensure the device has been registrered */
6891 	if (dev->reg_state != NETREG_REGISTERED)
6892 		goto out;
6893 
6894 	/* Get out if there is nothing todo */
6895 	err = 0;
6896 	if (net_eq(dev_net(dev), net))
6897 		goto out;
6898 
6899 	/* Pick the destination device name, and ensure
6900 	 * we can use it in the destination network namespace.
6901 	 */
6902 	err = -EEXIST;
6903 	if (__dev_get_by_name(net, dev->name)) {
6904 		/* We get here if we can't use the current device name */
6905 		if (!pat)
6906 			goto out;
6907 		if (dev_get_valid_name(net, dev, pat) < 0)
6908 			goto out;
6909 	}
6910 
6911 	/*
6912 	 * And now a mini version of register_netdevice unregister_netdevice.
6913 	 */
6914 
6915 	/* If device is running close it first. */
6916 	dev_close(dev);
6917 
6918 	/* And unlink it from device chain */
6919 	err = -ENODEV;
6920 	unlist_netdevice(dev);
6921 
6922 	synchronize_net();
6923 
6924 	/* Shutdown queueing discipline. */
6925 	dev_shutdown(dev);
6926 
6927 	/* Notify protocols, that we are about to destroy
6928 	   this device. They should clean all the things.
6929 
6930 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6931 	   This is wanted because this way 8021q and macvlan know
6932 	   the device is just moving and can keep their slaves up.
6933 	*/
6934 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6935 	rcu_barrier();
6936 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6937 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6938 
6939 	/*
6940 	 *	Flush the unicast and multicast chains
6941 	 */
6942 	dev_uc_flush(dev);
6943 	dev_mc_flush(dev);
6944 
6945 	/* Send a netdev-removed uevent to the old namespace */
6946 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6947 	netdev_adjacent_del_links(dev);
6948 
6949 	/* Actually switch the network namespace */
6950 	dev_net_set(dev, net);
6951 
6952 	/* If there is an ifindex conflict assign a new one */
6953 	if (__dev_get_by_index(net, dev->ifindex)) {
6954 		int iflink = (dev->iflink == dev->ifindex);
6955 		dev->ifindex = dev_new_index(net);
6956 		if (iflink)
6957 			dev->iflink = dev->ifindex;
6958 	}
6959 
6960 	/* Send a netdev-add uevent to the new namespace */
6961 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6962 	netdev_adjacent_add_links(dev);
6963 
6964 	/* Fixup kobjects */
6965 	err = device_rename(&dev->dev, dev->name);
6966 	WARN_ON(err);
6967 
6968 	/* Add the device back in the hashes */
6969 	list_netdevice(dev);
6970 
6971 	/* Notify protocols, that a new device appeared. */
6972 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6973 
6974 	/*
6975 	 *	Prevent userspace races by waiting until the network
6976 	 *	device is fully setup before sending notifications.
6977 	 */
6978 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6979 
6980 	synchronize_net();
6981 	err = 0;
6982 out:
6983 	return err;
6984 }
6985 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6986 
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)6987 static int dev_cpu_callback(struct notifier_block *nfb,
6988 			    unsigned long action,
6989 			    void *ocpu)
6990 {
6991 	struct sk_buff **list_skb;
6992 	struct sk_buff *skb;
6993 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6994 	struct softnet_data *sd, *oldsd;
6995 
6996 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6997 		return NOTIFY_OK;
6998 
6999 	local_irq_disable();
7000 	cpu = smp_processor_id();
7001 	sd = &per_cpu(softnet_data, cpu);
7002 	oldsd = &per_cpu(softnet_data, oldcpu);
7003 
7004 	/* Find end of our completion_queue. */
7005 	list_skb = &sd->completion_queue;
7006 	while (*list_skb)
7007 		list_skb = &(*list_skb)->next;
7008 	/* Append completion queue from offline CPU. */
7009 	*list_skb = oldsd->completion_queue;
7010 	oldsd->completion_queue = NULL;
7011 
7012 	/* Append output queue from offline CPU. */
7013 	if (oldsd->output_queue) {
7014 		*sd->output_queue_tailp = oldsd->output_queue;
7015 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7016 		oldsd->output_queue = NULL;
7017 		oldsd->output_queue_tailp = &oldsd->output_queue;
7018 	}
7019 	/* Append NAPI poll list from offline CPU, with one exception :
7020 	 * process_backlog() must be called by cpu owning percpu backlog.
7021 	 * We properly handle process_queue & input_pkt_queue later.
7022 	 */
7023 	while (!list_empty(&oldsd->poll_list)) {
7024 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7025 							    struct napi_struct,
7026 							    poll_list);
7027 
7028 		list_del_init(&napi->poll_list);
7029 		if (napi->poll == process_backlog)
7030 			napi->state = 0;
7031 		else
7032 			____napi_schedule(sd, napi);
7033 	}
7034 
7035 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7036 	local_irq_enable();
7037 
7038 	/* Process offline CPU's input_pkt_queue */
7039 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7040 		netif_rx_internal(skb);
7041 		input_queue_head_incr(oldsd);
7042 	}
7043 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7044 		netif_rx_internal(skb);
7045 		input_queue_head_incr(oldsd);
7046 	}
7047 
7048 	return NOTIFY_OK;
7049 }
7050 
7051 
7052 /**
7053  *	netdev_increment_features - increment feature set by one
7054  *	@all: current feature set
7055  *	@one: new feature set
7056  *	@mask: mask feature set
7057  *
7058  *	Computes a new feature set after adding a device with feature set
7059  *	@one to the master device with current feature set @all.  Will not
7060  *	enable anything that is off in @mask. Returns the new feature set.
7061  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)7062 netdev_features_t netdev_increment_features(netdev_features_t all,
7063 	netdev_features_t one, netdev_features_t mask)
7064 {
7065 	if (mask & NETIF_F_GEN_CSUM)
7066 		mask |= NETIF_F_ALL_CSUM;
7067 	mask |= NETIF_F_VLAN_CHALLENGED;
7068 
7069 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7070 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7071 
7072 	/* If one device supports hw checksumming, set for all. */
7073 	if (all & NETIF_F_GEN_CSUM)
7074 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7075 
7076 	return all;
7077 }
7078 EXPORT_SYMBOL(netdev_increment_features);
7079 
netdev_create_hash(void)7080 static struct hlist_head * __net_init netdev_create_hash(void)
7081 {
7082 	int i;
7083 	struct hlist_head *hash;
7084 
7085 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7086 	if (hash != NULL)
7087 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7088 			INIT_HLIST_HEAD(&hash[i]);
7089 
7090 	return hash;
7091 }
7092 
7093 /* Initialize per network namespace state */
netdev_init(struct net * net)7094 static int __net_init netdev_init(struct net *net)
7095 {
7096 	if (net != &init_net)
7097 		INIT_LIST_HEAD(&net->dev_base_head);
7098 
7099 	net->dev_name_head = netdev_create_hash();
7100 	if (net->dev_name_head == NULL)
7101 		goto err_name;
7102 
7103 	net->dev_index_head = netdev_create_hash();
7104 	if (net->dev_index_head == NULL)
7105 		goto err_idx;
7106 
7107 	return 0;
7108 
7109 err_idx:
7110 	kfree(net->dev_name_head);
7111 err_name:
7112 	return -ENOMEM;
7113 }
7114 
7115 /**
7116  *	netdev_drivername - network driver for the device
7117  *	@dev: network device
7118  *
7119  *	Determine network driver for device.
7120  */
netdev_drivername(const struct net_device * dev)7121 const char *netdev_drivername(const struct net_device *dev)
7122 {
7123 	const struct device_driver *driver;
7124 	const struct device *parent;
7125 	const char *empty = "";
7126 
7127 	parent = dev->dev.parent;
7128 	if (!parent)
7129 		return empty;
7130 
7131 	driver = parent->driver;
7132 	if (driver && driver->name)
7133 		return driver->name;
7134 	return empty;
7135 }
7136 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)7137 static void __netdev_printk(const char *level, const struct net_device *dev,
7138 			    struct va_format *vaf)
7139 {
7140 	if (dev && dev->dev.parent) {
7141 		dev_printk_emit(level[1] - '0',
7142 				dev->dev.parent,
7143 				"%s %s %s%s: %pV",
7144 				dev_driver_string(dev->dev.parent),
7145 				dev_name(dev->dev.parent),
7146 				netdev_name(dev), netdev_reg_state(dev),
7147 				vaf);
7148 	} else if (dev) {
7149 		printk("%s%s%s: %pV",
7150 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7151 	} else {
7152 		printk("%s(NULL net_device): %pV", level, vaf);
7153 	}
7154 }
7155 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)7156 void netdev_printk(const char *level, const struct net_device *dev,
7157 		   const char *format, ...)
7158 {
7159 	struct va_format vaf;
7160 	va_list args;
7161 
7162 	va_start(args, format);
7163 
7164 	vaf.fmt = format;
7165 	vaf.va = &args;
7166 
7167 	__netdev_printk(level, dev, &vaf);
7168 
7169 	va_end(args);
7170 }
7171 EXPORT_SYMBOL(netdev_printk);
7172 
7173 #define define_netdev_printk_level(func, level)			\
7174 void func(const struct net_device *dev, const char *fmt, ...)	\
7175 {								\
7176 	struct va_format vaf;					\
7177 	va_list args;						\
7178 								\
7179 	va_start(args, fmt);					\
7180 								\
7181 	vaf.fmt = fmt;						\
7182 	vaf.va = &args;						\
7183 								\
7184 	__netdev_printk(level, dev, &vaf);			\
7185 								\
7186 	va_end(args);						\
7187 }								\
7188 EXPORT_SYMBOL(func);
7189 
7190 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7191 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7192 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7193 define_netdev_printk_level(netdev_err, KERN_ERR);
7194 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7195 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7196 define_netdev_printk_level(netdev_info, KERN_INFO);
7197 
netdev_exit(struct net * net)7198 static void __net_exit netdev_exit(struct net *net)
7199 {
7200 	kfree(net->dev_name_head);
7201 	kfree(net->dev_index_head);
7202 }
7203 
7204 static struct pernet_operations __net_initdata netdev_net_ops = {
7205 	.init = netdev_init,
7206 	.exit = netdev_exit,
7207 };
7208 
default_device_exit(struct net * net)7209 static void __net_exit default_device_exit(struct net *net)
7210 {
7211 	struct net_device *dev, *aux;
7212 	/*
7213 	 * Push all migratable network devices back to the
7214 	 * initial network namespace
7215 	 */
7216 	rtnl_lock();
7217 	for_each_netdev_safe(net, dev, aux) {
7218 		int err;
7219 		char fb_name[IFNAMSIZ];
7220 
7221 		/* Ignore unmoveable devices (i.e. loopback) */
7222 		if (dev->features & NETIF_F_NETNS_LOCAL)
7223 			continue;
7224 
7225 		/* Leave virtual devices for the generic cleanup */
7226 		if (dev->rtnl_link_ops)
7227 			continue;
7228 
7229 		/* Push remaining network devices to init_net */
7230 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7231 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7232 		if (err) {
7233 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7234 				 __func__, dev->name, err);
7235 			BUG();
7236 		}
7237 	}
7238 	rtnl_unlock();
7239 }
7240 
rtnl_lock_unregistering(struct list_head * net_list)7241 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7242 {
7243 	/* Return with the rtnl_lock held when there are no network
7244 	 * devices unregistering in any network namespace in net_list.
7245 	 */
7246 	struct net *net;
7247 	bool unregistering;
7248 	DEFINE_WAIT(wait);
7249 
7250 	for (;;) {
7251 		prepare_to_wait(&netdev_unregistering_wq, &wait,
7252 				TASK_UNINTERRUPTIBLE);
7253 		unregistering = false;
7254 		rtnl_lock();
7255 		list_for_each_entry(net, net_list, exit_list) {
7256 			if (net->dev_unreg_count > 0) {
7257 				unregistering = true;
7258 				break;
7259 			}
7260 		}
7261 		if (!unregistering)
7262 			break;
7263 		__rtnl_unlock();
7264 		schedule();
7265 	}
7266 	finish_wait(&netdev_unregistering_wq, &wait);
7267 }
7268 
default_device_exit_batch(struct list_head * net_list)7269 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7270 {
7271 	/* At exit all network devices most be removed from a network
7272 	 * namespace.  Do this in the reverse order of registration.
7273 	 * Do this across as many network namespaces as possible to
7274 	 * improve batching efficiency.
7275 	 */
7276 	struct net_device *dev;
7277 	struct net *net;
7278 	LIST_HEAD(dev_kill_list);
7279 
7280 	/* To prevent network device cleanup code from dereferencing
7281 	 * loopback devices or network devices that have been freed
7282 	 * wait here for all pending unregistrations to complete,
7283 	 * before unregistring the loopback device and allowing the
7284 	 * network namespace be freed.
7285 	 *
7286 	 * The netdev todo list containing all network devices
7287 	 * unregistrations that happen in default_device_exit_batch
7288 	 * will run in the rtnl_unlock() at the end of
7289 	 * default_device_exit_batch.
7290 	 */
7291 	rtnl_lock_unregistering(net_list);
7292 	list_for_each_entry(net, net_list, exit_list) {
7293 		for_each_netdev_reverse(net, dev) {
7294 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7295 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7296 			else
7297 				unregister_netdevice_queue(dev, &dev_kill_list);
7298 		}
7299 	}
7300 	unregister_netdevice_many(&dev_kill_list);
7301 	rtnl_unlock();
7302 }
7303 
7304 static struct pernet_operations __net_initdata default_device_ops = {
7305 	.exit = default_device_exit,
7306 	.exit_batch = default_device_exit_batch,
7307 };
7308 
7309 /*
7310  *	Initialize the DEV module. At boot time this walks the device list and
7311  *	unhooks any devices that fail to initialise (normally hardware not
7312  *	present) and leaves us with a valid list of present and active devices.
7313  *
7314  */
7315 
7316 /*
7317  *       This is called single threaded during boot, so no need
7318  *       to take the rtnl semaphore.
7319  */
net_dev_init(void)7320 static int __init net_dev_init(void)
7321 {
7322 	int i, rc = -ENOMEM;
7323 
7324 	BUG_ON(!dev_boot_phase);
7325 
7326 	if (dev_proc_init())
7327 		goto out;
7328 
7329 	if (netdev_kobject_init())
7330 		goto out;
7331 
7332 	INIT_LIST_HEAD(&ptype_all);
7333 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7334 		INIT_LIST_HEAD(&ptype_base[i]);
7335 
7336 	INIT_LIST_HEAD(&offload_base);
7337 
7338 	if (register_pernet_subsys(&netdev_net_ops))
7339 		goto out;
7340 
7341 	/*
7342 	 *	Initialise the packet receive queues.
7343 	 */
7344 
7345 	for_each_possible_cpu(i) {
7346 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7347 
7348 		skb_queue_head_init(&sd->input_pkt_queue);
7349 		skb_queue_head_init(&sd->process_queue);
7350 		INIT_LIST_HEAD(&sd->poll_list);
7351 		sd->output_queue_tailp = &sd->output_queue;
7352 #ifdef CONFIG_RPS
7353 		sd->csd.func = rps_trigger_softirq;
7354 		sd->csd.info = sd;
7355 		sd->cpu = i;
7356 #endif
7357 
7358 		sd->backlog.poll = process_backlog;
7359 		sd->backlog.weight = weight_p;
7360 	}
7361 
7362 	dev_boot_phase = 0;
7363 
7364 	/* The loopback device is special if any other network devices
7365 	 * is present in a network namespace the loopback device must
7366 	 * be present. Since we now dynamically allocate and free the
7367 	 * loopback device ensure this invariant is maintained by
7368 	 * keeping the loopback device as the first device on the
7369 	 * list of network devices.  Ensuring the loopback devices
7370 	 * is the first device that appears and the last network device
7371 	 * that disappears.
7372 	 */
7373 	if (register_pernet_device(&loopback_net_ops))
7374 		goto out;
7375 
7376 	if (register_pernet_device(&default_device_ops))
7377 		goto out;
7378 
7379 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7380 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7381 
7382 	hotcpu_notifier(dev_cpu_callback, 0);
7383 	dst_init();
7384 	rc = 0;
7385 out:
7386 	return rc;
7387 }
7388 
7389 subsys_initcall(net_dev_init);
7390