1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
dev_base_seq_inc(struct net * net)186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
dev_name_hash(struct net * net,const char * name)191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
dev_index_hash(struct net * net,int ifindex)198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
rps_lock(struct softnet_data * sd)203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
rps_unlock(struct softnet_data * sd)210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
list_netdevice(struct net_device * dev)218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
unlist_netdevice(struct net_device * dev)237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
netdev_lock_pos(unsigned short dev_type)307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
netdev_set_addr_lockdep_class(struct net_device * dev)328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
netdev_set_addr_lockdep_class(struct net_device * dev)342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
ptype_head(const struct packet_type * pt)369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
dev_add_pack(struct packet_type * pt)390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
__dev_remove_pack(struct packet_type * pt)413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
dev_remove_pack(struct packet_type * pt)445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
dev_add_offload(struct packet_offload * po)466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
__dev_remove_offload(struct packet_offload * po)489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
dev_remove_offload(struct packet_offload * po)520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
netdev_boot_setup_add(char * name,struct ifmap * map)546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
netdev_boot_setup_check(struct net_device * dev)573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
netdev_boot_base(const char * prefix,int unit)603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
netdev_boot_setup(char * str)627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
__dev_get_by_name(struct net * net,const char * name)671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
dev_get_by_name_rcu(struct net * net,const char * name)696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
dev_get_by_name(struct net * net,const char * name)721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
__dev_get_by_index(struct net * net,int ifindex)746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
dev_get_by_index_rcu(struct net * net,int ifindex)770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
dev_get_by_index(struct net * net,int ifindex)795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
netdev_get_name(struct net * net,char * name,int ifindex)818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
__dev_getfirstbyhwtype(struct net * net,unsigned short type)870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
dev_getfirstbyhwtype(struct net * net,unsigned short type)883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * __dev_get_by_flags - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rtnl_lock(), and result refcount is unchanged.
908 */
909
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ASSERT_RTNL();
916
917 ret = NULL;
918 for_each_netdev(net, dev) {
919 if (((dev->flags ^ if_flags) & mask) == 0) {
920 ret = dev;
921 break;
922 }
923 }
924 return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927
928 /**
929 * dev_valid_name - check if name is okay for network device
930 * @name: name string
931 *
932 * Network device names need to be valid file names to
933 * to allow sysfs to work. We also disallow any kind of
934 * whitespace.
935 */
dev_valid_name(const char * name)936 bool dev_valid_name(const char *name)
937 {
938 if (*name == '\0')
939 return false;
940 if (strlen(name) >= IFNAMSIZ)
941 return false;
942 if (!strcmp(name, ".") || !strcmp(name, ".."))
943 return false;
944
945 while (*name) {
946 if (*name == '/' || *name == ':' || isspace(*name))
947 return false;
948 name++;
949 }
950 return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953
954 /**
955 * __dev_alloc_name - allocate a name for a device
956 * @net: network namespace to allocate the device name in
957 * @name: name format string
958 * @buf: scratch buffer and result name string
959 *
960 * Passed a format string - eg "lt%d" it will try and find a suitable
961 * id. It scans list of devices to build up a free map, then chooses
962 * the first empty slot. The caller must hold the dev_base or rtnl lock
963 * while allocating the name and adding the device in order to avoid
964 * duplicates.
965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966 * Returns the number of the unit assigned or a negative errno code.
967 */
968
__dev_alloc_name(struct net * net,const char * name,char * buf)969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971 int i = 0;
972 const char *p;
973 const int max_netdevices = 8*PAGE_SIZE;
974 unsigned long *inuse;
975 struct net_device *d;
976
977 p = strnchr(name, IFNAMSIZ-1, '%');
978 if (p) {
979 /*
980 * Verify the string as this thing may have come from
981 * the user. There must be either one "%d" and no other "%"
982 * characters.
983 */
984 if (p[1] != 'd' || strchr(p + 2, '%'))
985 return -EINVAL;
986
987 /* Use one page as a bit array of possible slots */
988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 if (!inuse)
990 return -ENOMEM;
991
992 for_each_netdev(net, d) {
993 if (!sscanf(d->name, name, &i))
994 continue;
995 if (i < 0 || i >= max_netdevices)
996 continue;
997
998 /* avoid cases where sscanf is not exact inverse of printf */
999 snprintf(buf, IFNAMSIZ, name, i);
1000 if (!strncmp(buf, d->name, IFNAMSIZ))
1001 set_bit(i, inuse);
1002 }
1003
1004 i = find_first_zero_bit(inuse, max_netdevices);
1005 free_page((unsigned long) inuse);
1006 }
1007
1008 if (buf != name)
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!__dev_get_by_name(net, buf))
1011 return i;
1012
1013 /* It is possible to run out of possible slots
1014 * when the name is long and there isn't enough space left
1015 * for the digits, or if all bits are used.
1016 */
1017 return -ENFILE;
1018 }
1019
1020 /**
1021 * dev_alloc_name - allocate a name for a device
1022 * @dev: device
1023 * @name: name format string
1024 *
1025 * Passed a format string - eg "lt%d" it will try and find a suitable
1026 * id. It scans list of devices to build up a free map, then chooses
1027 * the first empty slot. The caller must hold the dev_base or rtnl lock
1028 * while allocating the name and adding the device in order to avoid
1029 * duplicates.
1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031 * Returns the number of the unit assigned or a negative errno code.
1032 */
1033
dev_alloc_name(struct net_device * dev,const char * name)1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036 char buf[IFNAMSIZ];
1037 struct net *net;
1038 int ret;
1039
1040 BUG_ON(!dev_net(dev));
1041 net = dev_net(dev);
1042 ret = __dev_alloc_name(net, name, buf);
1043 if (ret >= 0)
1044 strlcpy(dev->name, buf, IFNAMSIZ);
1045 return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1049 static int dev_alloc_name_ns(struct net *net,
1050 struct net_device *dev,
1051 const char *name)
1052 {
1053 char buf[IFNAMSIZ];
1054 int ret;
1055
1056 ret = __dev_alloc_name(net, name, buf);
1057 if (ret >= 0)
1058 strlcpy(dev->name, buf, IFNAMSIZ);
1059 return ret;
1060 }
1061
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1062 int dev_get_valid_name(struct net *net, struct net_device *dev,
1063 const char *name)
1064 {
1065 BUG_ON(!net);
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 if (strchr(name, '%'))
1071 return dev_alloc_name_ns(net, dev, name);
1072 else if (__dev_get_by_name(net, name))
1073 return -EEXIST;
1074 else if (dev->name != name)
1075 strlcpy(dev->name, name, IFNAMSIZ);
1076
1077 return 0;
1078 }
1079 EXPORT_SYMBOL(dev_get_valid_name);
1080
1081 /**
1082 * dev_change_name - change name of a device
1083 * @dev: device
1084 * @newname: name (or format string) must be at least IFNAMSIZ
1085 *
1086 * Change name of a device, can pass format strings "eth%d".
1087 * for wildcarding.
1088 */
dev_change_name(struct net_device * dev,const char * newname)1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091 unsigned char old_assign_type;
1092 char oldname[IFNAMSIZ];
1093 int err = 0;
1094 int ret;
1095 struct net *net;
1096
1097 ASSERT_RTNL();
1098 BUG_ON(!dev_net(dev));
1099
1100 net = dev_net(dev);
1101 if (dev->flags & IFF_UP)
1102 return -EBUSY;
1103
1104 write_seqcount_begin(&devnet_rename_seq);
1105
1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return 0;
1109 }
1110
1111 memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113 err = dev_get_valid_name(net, dev, newname);
1114 if (err < 0) {
1115 write_seqcount_end(&devnet_rename_seq);
1116 return err;
1117 }
1118
1119 if (oldname[0] && !strchr(oldname, '%'))
1120 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122 old_assign_type = dev->name_assign_type;
1123 dev->name_assign_type = NET_NAME_RENAMED;
1124
1125 rollback:
1126 ret = device_rename(&dev->dev, dev->name);
1127 if (ret) {
1128 memcpy(dev->name, oldname, IFNAMSIZ);
1129 dev->name_assign_type = old_assign_type;
1130 write_seqcount_end(&devnet_rename_seq);
1131 return ret;
1132 }
1133
1134 write_seqcount_end(&devnet_rename_seq);
1135
1136 netdev_adjacent_rename_links(dev, oldname);
1137
1138 write_lock_bh(&dev_base_lock);
1139 hlist_del_rcu(&dev->name_hlist);
1140 write_unlock_bh(&dev_base_lock);
1141
1142 synchronize_rcu();
1143
1144 write_lock_bh(&dev_base_lock);
1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 write_unlock_bh(&dev_base_lock);
1147
1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 ret = notifier_to_errno(ret);
1150
1151 if (ret) {
1152 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153 if (err >= 0) {
1154 err = ret;
1155 write_seqcount_begin(&devnet_rename_seq);
1156 memcpy(dev->name, oldname, IFNAMSIZ);
1157 memcpy(oldname, newname, IFNAMSIZ);
1158 dev->name_assign_type = old_assign_type;
1159 old_assign_type = NET_NAME_RENAMED;
1160 goto rollback;
1161 } else {
1162 pr_err("%s: name change rollback failed: %d\n",
1163 dev->name, ret);
1164 }
1165 }
1166
1167 return err;
1168 }
1169
1170 /**
1171 * dev_set_alias - change ifalias of a device
1172 * @dev: device
1173 * @alias: name up to IFALIASZ
1174 * @len: limit of bytes to copy from info
1175 *
1176 * Set ifalias for a device,
1177 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180 char *new_ifalias;
1181
1182 ASSERT_RTNL();
1183
1184 if (len >= IFALIASZ)
1185 return -EINVAL;
1186
1187 if (!len) {
1188 kfree(dev->ifalias);
1189 dev->ifalias = NULL;
1190 return 0;
1191 }
1192
1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 if (!new_ifalias)
1195 return -ENOMEM;
1196 dev->ifalias = new_ifalias;
1197 memcpy(dev->ifalias, alias, len);
1198 dev->ifalias[len] = 0;
1199
1200 return len;
1201 }
1202
1203
1204 /**
1205 * netdev_features_change - device changes features
1206 * @dev: device to cause notification
1207 *
1208 * Called to indicate a device has changed features.
1209 */
netdev_features_change(struct net_device * dev)1210 void netdev_features_change(struct net_device *dev)
1211 {
1212 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1213 }
1214 EXPORT_SYMBOL(netdev_features_change);
1215
1216 /**
1217 * netdev_state_change - device changes state
1218 * @dev: device to cause notification
1219 *
1220 * Called to indicate a device has changed state. This function calls
1221 * the notifier chains for netdev_chain and sends a NEWLINK message
1222 * to the routing socket.
1223 */
netdev_state_change(struct net_device * dev)1224 void netdev_state_change(struct net_device *dev)
1225 {
1226 if (dev->flags & IFF_UP) {
1227 struct netdev_notifier_change_info change_info;
1228
1229 change_info.flags_changed = 0;
1230 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1231 &change_info.info);
1232 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1233 }
1234 }
1235 EXPORT_SYMBOL(netdev_state_change);
1236
1237 /**
1238 * netdev_notify_peers - notify network peers about existence of @dev
1239 * @dev: network device
1240 *
1241 * Generate traffic such that interested network peers are aware of
1242 * @dev, such as by generating a gratuitous ARP. This may be used when
1243 * a device wants to inform the rest of the network about some sort of
1244 * reconfiguration such as a failover event or virtual machine
1245 * migration.
1246 */
netdev_notify_peers(struct net_device * dev)1247 void netdev_notify_peers(struct net_device *dev)
1248 {
1249 rtnl_lock();
1250 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1251 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1252 rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255
__dev_open(struct net_device * dev)1256 static int __dev_open(struct net_device *dev)
1257 {
1258 const struct net_device_ops *ops = dev->netdev_ops;
1259 int ret;
1260
1261 ASSERT_RTNL();
1262
1263 if (!netif_device_present(dev))
1264 return -ENODEV;
1265
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1269 */
1270 netpoll_poll_disable(dev);
1271
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1274 if (ret)
1275 return ret;
1276
1277 set_bit(__LINK_STATE_START, &dev->state);
1278
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
1281
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1284
1285 netpoll_poll_enable(dev);
1286
1287 if (ret)
1288 clear_bit(__LINK_STATE_START, &dev->state);
1289 else {
1290 dev->flags |= IFF_UP;
1291 dev_set_rx_mode(dev);
1292 dev_activate(dev);
1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1294 }
1295
1296 return ret;
1297 }
1298
1299 /**
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1302 *
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1307 *
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1310 */
dev_open(struct net_device * dev)1311 int dev_open(struct net_device *dev)
1312 {
1313 int ret;
1314
1315 if (dev->flags & IFF_UP)
1316 return 0;
1317
1318 ret = __dev_open(dev);
1319 if (ret < 0)
1320 return ret;
1321
1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325 return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328
__dev_close_many(struct list_head * head)1329 static int __dev_close_many(struct list_head *head)
1330 {
1331 struct net_device *dev;
1332
1333 ASSERT_RTNL();
1334 might_sleep();
1335
1336 list_for_each_entry(dev, head, close_list) {
1337 /* Temporarily disable netpoll until the interface is down */
1338 netpoll_poll_disable(dev);
1339
1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1346 *
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1349 */
1350 smp_mb__after_atomic(); /* Commit netif_running(). */
1351 }
1352
1353 dev_deactivate_many(head);
1354
1355 list_for_each_entry(dev, head, close_list) {
1356 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358 /*
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1361 *
1362 * We allow it to be called even after a DETACH hot-plug
1363 * event.
1364 */
1365 if (ops->ndo_stop)
1366 ops->ndo_stop(dev);
1367
1368 dev->flags &= ~IFF_UP;
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373 }
1374
__dev_close(struct net_device * dev)1375 static int __dev_close(struct net_device *dev)
1376 {
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385 }
1386
dev_close_many(struct list_head * head)1387 static int dev_close_many(struct list_head *head)
1388 {
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
dev_close(struct net_device * dev)1416 int dev_close(struct net_device *dev)
1417 {
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
dev_disable_lro(struct net_device * dev)1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 /*
1441 * If we're trying to disable lro on a vlan device
1442 * use the underlying physical device instead
1443 */
1444 if (is_vlan_dev(dev))
1445 dev = vlan_dev_real_dev(dev);
1446
1447 /* the same for macvlan devices */
1448 if (netif_is_macvlan(dev))
1449 dev = macvlan_dev_real_dev(dev);
1450
1451 dev->wanted_features &= ~NETIF_F_LRO;
1452 netdev_update_features(dev);
1453
1454 if (unlikely(dev->features & NETIF_F_LRO))
1455 netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460 struct net_device *dev)
1461 {
1462 struct netdev_notifier_info info;
1463
1464 netdev_notifier_info_init(&info, dev);
1465 return nb->notifier_call(nb, val, &info);
1466 }
1467
1468 static int dev_boot_phase = 1;
1469
1470 /**
1471 * register_netdevice_notifier - register a network notifier block
1472 * @nb: notifier
1473 *
1474 * Register a notifier to be called when network device events occur.
1475 * The notifier passed is linked into the kernel structures and must
1476 * not be reused until it has been unregistered. A negative errno code
1477 * is returned on a failure.
1478 *
1479 * When registered all registration and up events are replayed
1480 * to the new notifier to allow device to have a race free
1481 * view of the network device list.
1482 */
1483
register_netdevice_notifier(struct notifier_block * nb)1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486 struct net_device *dev;
1487 struct net_device *last;
1488 struct net *net;
1489 int err;
1490
1491 rtnl_lock();
1492 err = raw_notifier_chain_register(&netdev_chain, nb);
1493 if (err)
1494 goto unlock;
1495 if (dev_boot_phase)
1496 goto unlock;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500 err = notifier_to_errno(err);
1501 if (err)
1502 goto rollback;
1503
1504 if (!(dev->flags & IFF_UP))
1505 continue;
1506
1507 call_netdevice_notifier(nb, NETDEV_UP, dev);
1508 }
1509 }
1510
1511 unlock:
1512 rtnl_unlock();
1513 return err;
1514
1515 rollback:
1516 last = dev;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 if (dev == last)
1520 goto outroll;
1521
1522 if (dev->flags & IFF_UP) {
1523 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524 dev);
1525 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526 }
1527 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528 }
1529 }
1530
1531 outroll:
1532 raw_notifier_chain_unregister(&netdev_chain, nb);
1533 goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536
1537 /**
1538 * unregister_netdevice_notifier - unregister a network notifier block
1539 * @nb: notifier
1540 *
1541 * Unregister a notifier previously registered by
1542 * register_netdevice_notifier(). The notifier is unlinked into the
1543 * kernel structures and may then be reused. A negative errno code
1544 * is returned on a failure.
1545 *
1546 * After unregistering unregister and down device events are synthesized
1547 * for all devices on the device list to the removed notifier to remove
1548 * the need for special case cleanup code.
1549 */
1550
unregister_netdevice_notifier(struct notifier_block * nb)1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553 struct net_device *dev;
1554 struct net *net;
1555 int err;
1556
1557 rtnl_lock();
1558 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559 if (err)
1560 goto unlock;
1561
1562 for_each_net(net) {
1563 for_each_netdev(net, dev) {
1564 if (dev->flags & IFF_UP) {
1565 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566 dev);
1567 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568 }
1569 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570 }
1571 }
1572 unlock:
1573 rtnl_unlock();
1574 return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577
1578 /**
1579 * call_netdevice_notifiers_info - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 * @info: notifier information data
1583 *
1584 * Call all network notifier blocks. Parameters and return value
1585 * are as for raw_notifier_call_chain().
1586 */
1587
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1588 static int call_netdevice_notifiers_info(unsigned long val,
1589 struct net_device *dev,
1590 struct netdev_notifier_info *info)
1591 {
1592 ASSERT_RTNL();
1593 netdev_notifier_info_init(info, dev);
1594 return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596
1597 /**
1598 * call_netdevice_notifiers - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 *
1602 * Call all network notifier blocks. Parameters and return value
1603 * are as for raw_notifier_call_chain().
1604 */
1605
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608 struct netdev_notifier_info info;
1609
1610 return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 static atomic_t netstamp_needed_deferred;
netstamp_clear(struct work_struct * work)1617 static void netstamp_clear(struct work_struct *work)
1618 {
1619 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1620
1621 while (deferred--)
1622 static_key_slow_dec(&netstamp_needed);
1623 }
1624 static DECLARE_WORK(netstamp_work, netstamp_clear);
1625 #endif
1626
net_enable_timestamp(void)1627 void net_enable_timestamp(void)
1628 {
1629 static_key_slow_inc(&netstamp_needed);
1630 }
1631 EXPORT_SYMBOL(net_enable_timestamp);
1632
net_disable_timestamp(void)1633 void net_disable_timestamp(void)
1634 {
1635 #ifdef HAVE_JUMP_LABEL
1636 /* net_disable_timestamp() can be called from non process context */
1637 atomic_inc(&netstamp_needed_deferred);
1638 schedule_work(&netstamp_work);
1639 #else
1640 static_key_slow_dec(&netstamp_needed);
1641 #endif
1642 }
1643 EXPORT_SYMBOL(net_disable_timestamp);
1644
net_timestamp_set(struct sk_buff * skb)1645 static inline void net_timestamp_set(struct sk_buff *skb)
1646 {
1647 skb->tstamp.tv64 = 0;
1648 if (static_key_false(&netstamp_needed))
1649 __net_timestamp(skb);
1650 }
1651
1652 #define net_timestamp_check(COND, SKB) \
1653 if (static_key_false(&netstamp_needed)) { \
1654 if ((COND) && !(SKB)->tstamp.tv64) \
1655 __net_timestamp(SKB); \
1656 } \
1657
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659 {
1660 unsigned int len;
1661
1662 if (!(dev->flags & IFF_UP))
1663 return false;
1664
1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 if (skb->len <= len)
1667 return true;
1668
1669 /* if TSO is enabled, we don't care about the length as the packet
1670 * could be forwarded without being segmented before
1671 */
1672 if (skb_is_gso(skb))
1673 return true;
1674
1675 return false;
1676 }
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694
1695 skb_scrub_packet(skb, true);
1696 skb->protocol = eth_type_trans(skb, dev);
1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702
1703 /**
1704 * dev_forward_skb - loopback an skb to another netif
1705 *
1706 * @dev: destination network device
1707 * @skb: buffer to forward
1708 *
1709 * return values:
1710 * NET_RX_SUCCESS (no congestion)
1711 * NET_RX_DROP (packet was dropped, but freed)
1712 *
1713 * dev_forward_skb can be used for injecting an skb from the
1714 * start_xmit function of one device into the receive queue
1715 * of another device.
1716 *
1717 * The receiving device may be in another namespace, so
1718 * we have to clear all information in the skb that could
1719 * impact namespace isolation.
1720 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722 {
1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1724 }
1725 EXPORT_SYMBOL_GPL(dev_forward_skb);
1726
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1727 static inline int deliver_skb(struct sk_buff *skb,
1728 struct packet_type *pt_prev,
1729 struct net_device *orig_dev)
1730 {
1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732 return -ENOMEM;
1733 atomic_inc(&skb->users);
1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735 }
1736
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738 {
1739 if (!ptype->af_packet_priv || !skb->sk)
1740 return false;
1741
1742 if (ptype->id_match)
1743 return ptype->id_match(ptype, skb->sk);
1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745 return true;
1746
1747 return false;
1748 }
1749
1750 /*
1751 * Support routine. Sends outgoing frames to any network
1752 * taps currently in use.
1753 */
1754
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1756 {
1757 struct packet_type *ptype;
1758 struct sk_buff *skb2 = NULL;
1759 struct packet_type *pt_prev = NULL;
1760
1761 rcu_read_lock();
1762 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 /* Never send packets back to the socket
1764 * they originated from - MvS (miquels@drinkel.ow.org)
1765 */
1766 if ((ptype->dev == dev || !ptype->dev) &&
1767 (!skb_loop_sk(ptype, skb))) {
1768 if (pt_prev) {
1769 deliver_skb(skb2, pt_prev, skb->dev);
1770 pt_prev = ptype;
1771 continue;
1772 }
1773
1774 skb2 = skb_clone(skb, GFP_ATOMIC);
1775 if (!skb2)
1776 break;
1777
1778 net_timestamp_set(skb2);
1779
1780 /* skb->nh should be correctly
1781 set by sender, so that the second statement is
1782 just protection against buggy protocols.
1783 */
1784 skb_reset_mac_header(skb2);
1785
1786 if (skb_network_header(skb2) < skb2->data ||
1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 ntohs(skb2->protocol),
1790 dev->name);
1791 skb_reset_network_header(skb2);
1792 }
1793
1794 skb2->transport_header = skb2->network_header;
1795 skb2->pkt_type = PACKET_OUTGOING;
1796 pt_prev = ptype;
1797 }
1798 }
1799 if (pt_prev)
1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1801 rcu_read_unlock();
1802 }
1803
1804 /**
1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806 * @dev: Network device
1807 * @txq: number of queues available
1808 *
1809 * If real_num_tx_queues is changed the tc mappings may no longer be
1810 * valid. To resolve this verify the tc mapping remains valid and if
1811 * not NULL the mapping. With no priorities mapping to this
1812 * offset/count pair it will no longer be used. In the worst case TC0
1813 * is invalid nothing can be done so disable priority mappings. If is
1814 * expected that drivers will fix this mapping if they can before
1815 * calling netif_set_real_num_tx_queues.
1816 */
netif_setup_tc(struct net_device * dev,unsigned int txq)1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1818 {
1819 int i;
1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821
1822 /* If TC0 is invalidated disable TC mapping */
1823 if (tc->offset + tc->count > txq) {
1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1825 dev->num_tc = 0;
1826 return;
1827 }
1828
1829 /* Invalidated prio to tc mappings set to TC0 */
1830 for (i = 1; i < TC_BITMASK + 1; i++) {
1831 int q = netdev_get_prio_tc_map(dev, i);
1832
1833 tc = &dev->tc_to_txq[q];
1834 if (tc->offset + tc->count > txq) {
1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836 i, q);
1837 netdev_set_prio_tc_map(dev, i, 0);
1838 }
1839 }
1840 }
1841
1842 #ifdef CONFIG_XPS
1843 static DEFINE_MUTEX(xps_map_mutex);
1844 #define xmap_dereference(P) \
1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846
remove_xps_queue(struct xps_dev_maps * dev_maps,int cpu,u16 index)1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848 int cpu, u16 index)
1849 {
1850 struct xps_map *map = NULL;
1851 int pos;
1852
1853 if (dev_maps)
1854 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1855
1856 for (pos = 0; map && pos < map->len; pos++) {
1857 if (map->queues[pos] == index) {
1858 if (map->len > 1) {
1859 map->queues[pos] = map->queues[--map->len];
1860 } else {
1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862 kfree_rcu(map, rcu);
1863 map = NULL;
1864 }
1865 break;
1866 }
1867 }
1868
1869 return map;
1870 }
1871
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1873 {
1874 struct xps_dev_maps *dev_maps;
1875 int cpu, i;
1876 bool active = false;
1877
1878 mutex_lock(&xps_map_mutex);
1879 dev_maps = xmap_dereference(dev->xps_maps);
1880
1881 if (!dev_maps)
1882 goto out_no_maps;
1883
1884 for_each_possible_cpu(cpu) {
1885 for (i = index; i < dev->num_tx_queues; i++) {
1886 if (!remove_xps_queue(dev_maps, cpu, i))
1887 break;
1888 }
1889 if (i == dev->num_tx_queues)
1890 active = true;
1891 }
1892
1893 if (!active) {
1894 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 kfree_rcu(dev_maps, rcu);
1896 }
1897
1898 for (i = index; i < dev->num_tx_queues; i++)
1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900 NUMA_NO_NODE);
1901
1902 out_no_maps:
1903 mutex_unlock(&xps_map_mutex);
1904 }
1905
expand_xps_map(struct xps_map * map,int cpu,u16 index)1906 static struct xps_map *expand_xps_map(struct xps_map *map,
1907 int cpu, u16 index)
1908 {
1909 struct xps_map *new_map;
1910 int alloc_len = XPS_MIN_MAP_ALLOC;
1911 int i, pos;
1912
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] != index)
1915 continue;
1916 return map;
1917 }
1918
1919 /* Need to add queue to this CPU's existing map */
1920 if (map) {
1921 if (pos < map->alloc_len)
1922 return map;
1923
1924 alloc_len = map->alloc_len * 2;
1925 }
1926
1927 /* Need to allocate new map to store queue on this CPU's map */
1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929 cpu_to_node(cpu));
1930 if (!new_map)
1931 return NULL;
1932
1933 for (i = 0; i < pos; i++)
1934 new_map->queues[i] = map->queues[i];
1935 new_map->alloc_len = alloc_len;
1936 new_map->len = pos;
1937
1938 return new_map;
1939 }
1940
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942 u16 index)
1943 {
1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945 struct xps_map *map, *new_map;
1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947 int cpu, numa_node_id = -2;
1948 bool active = false;
1949
1950 mutex_lock(&xps_map_mutex);
1951
1952 dev_maps = xmap_dereference(dev->xps_maps);
1953
1954 /* allocate memory for queue storage */
1955 for_each_online_cpu(cpu) {
1956 if (!cpumask_test_cpu(cpu, mask))
1957 continue;
1958
1959 if (!new_dev_maps)
1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961 if (!new_dev_maps) {
1962 mutex_unlock(&xps_map_mutex);
1963 return -ENOMEM;
1964 }
1965
1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967 NULL;
1968
1969 map = expand_xps_map(map, cpu, index);
1970 if (!map)
1971 goto error;
1972
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 }
1975
1976 if (!new_dev_maps)
1977 goto out_no_new_maps;
1978
1979 for_each_possible_cpu(cpu) {
1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 /* add queue to CPU maps */
1982 int pos = 0;
1983
1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 while ((pos < map->len) && (map->queues[pos] != index))
1986 pos++;
1987
1988 if (pos == map->len)
1989 map->queues[map->len++] = index;
1990 #ifdef CONFIG_NUMA
1991 if (numa_node_id == -2)
1992 numa_node_id = cpu_to_node(cpu);
1993 else if (numa_node_id != cpu_to_node(cpu))
1994 numa_node_id = -1;
1995 #endif
1996 } else if (dev_maps) {
1997 /* fill in the new device map from the old device map */
1998 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2000 }
2001
2002 }
2003
2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005
2006 /* Cleanup old maps */
2007 if (dev_maps) {
2008 for_each_possible_cpu(cpu) {
2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 if (map && map != new_map)
2012 kfree_rcu(map, rcu);
2013 }
2014
2015 kfree_rcu(dev_maps, rcu);
2016 }
2017
2018 dev_maps = new_dev_maps;
2019 active = true;
2020
2021 out_no_new_maps:
2022 /* update Tx queue numa node */
2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 (numa_node_id >= 0) ? numa_node_id :
2025 NUMA_NO_NODE);
2026
2027 if (!dev_maps)
2028 goto out_no_maps;
2029
2030 /* removes queue from unused CPUs */
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033 continue;
2034
2035 if (remove_xps_queue(dev_maps, cpu, index))
2036 active = true;
2037 }
2038
2039 /* free map if not active */
2040 if (!active) {
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045 out_no_maps:
2046 mutex_unlock(&xps_map_mutex);
2047
2048 return 0;
2049 error:
2050 /* remove any maps that we added */
2051 for_each_possible_cpu(cpu) {
2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054 NULL;
2055 if (new_map && new_map != map)
2056 kfree(new_map);
2057 }
2058
2059 mutex_unlock(&xps_map_mutex);
2060
2061 kfree(new_dev_maps);
2062 return -ENOMEM;
2063 }
2064 EXPORT_SYMBOL(netif_set_xps_queue);
2065
2066 #endif
2067 /*
2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2072 {
2073 int rc;
2074
2075 if (txq < 1 || txq > dev->num_tx_queues)
2076 return -EINVAL;
2077
2078 if (dev->reg_state == NETREG_REGISTERED ||
2079 dev->reg_state == NETREG_UNREGISTERING) {
2080 ASSERT_RTNL();
2081
2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083 txq);
2084 if (rc)
2085 return rc;
2086
2087 if (dev->num_tc)
2088 netif_setup_tc(dev, txq);
2089
2090 if (txq < dev->real_num_tx_queues) {
2091 qdisc_reset_all_tx_gt(dev, txq);
2092 #ifdef CONFIG_XPS
2093 netif_reset_xps_queues_gt(dev, txq);
2094 #endif
2095 }
2096 }
2097
2098 dev->real_num_tx_queues = txq;
2099 return 0;
2100 }
2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2102
2103 #ifdef CONFIG_SYSFS
2104 /**
2105 * netif_set_real_num_rx_queues - set actual number of RX queues used
2106 * @dev: Network device
2107 * @rxq: Actual number of RX queues
2108 *
2109 * This must be called either with the rtnl_lock held or before
2110 * registration of the net device. Returns 0 on success, or a
2111 * negative error code. If called before registration, it always
2112 * succeeds.
2113 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115 {
2116 int rc;
2117
2118 if (rxq < 1 || rxq > dev->num_rx_queues)
2119 return -EINVAL;
2120
2121 if (dev->reg_state == NETREG_REGISTERED) {
2122 ASSERT_RTNL();
2123
2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125 rxq);
2126 if (rc)
2127 return rc;
2128 }
2129
2130 dev->real_num_rx_queues = rxq;
2131 return 0;
2132 }
2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134 #endif
2135
2136 /**
2137 * netif_get_num_default_rss_queues - default number of RSS queues
2138 *
2139 * This routine should set an upper limit on the number of RSS queues
2140 * used by default by multiqueue devices.
2141 */
netif_get_num_default_rss_queues(void)2142 int netif_get_num_default_rss_queues(void)
2143 {
2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145 }
2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147
__netif_reschedule(struct Qdisc * q)2148 static inline void __netif_reschedule(struct Qdisc *q)
2149 {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = this_cpu_ptr(&softnet_data);
2155 q->next_sched = NULL;
2156 *sd->output_queue_tailp = q;
2157 sd->output_queue_tailp = &q->next_sched;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160 }
2161
__netif_schedule(struct Qdisc * q)2162 void __netif_schedule(struct Qdisc *q)
2163 {
2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 __netif_reschedule(q);
2166 }
2167 EXPORT_SYMBOL(__netif_schedule);
2168
2169 struct dev_kfree_skb_cb {
2170 enum skb_free_reason reason;
2171 };
2172
get_kfree_skb_cb(const struct sk_buff * skb)2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2174 {
2175 return (struct dev_kfree_skb_cb *)skb->cb;
2176 }
2177
netif_schedule_queue(struct netdev_queue * txq)2178 void netif_schedule_queue(struct netdev_queue *txq)
2179 {
2180 rcu_read_lock();
2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2182 struct Qdisc *q = rcu_dereference(txq->qdisc);
2183
2184 __netif_schedule(q);
2185 }
2186 rcu_read_unlock();
2187 }
2188 EXPORT_SYMBOL(netif_schedule_queue);
2189
2190 /**
2191 * netif_wake_subqueue - allow sending packets on subqueue
2192 * @dev: network device
2193 * @queue_index: sub queue index
2194 *
2195 * Resume individual transmit queue of a device with multiple transmit queues.
2196 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2197 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2198 {
2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2200
2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2202 struct Qdisc *q;
2203
2204 rcu_read_lock();
2205 q = rcu_dereference(txq->qdisc);
2206 __netif_schedule(q);
2207 rcu_read_unlock();
2208 }
2209 }
2210 EXPORT_SYMBOL(netif_wake_subqueue);
2211
netif_tx_wake_queue(struct netdev_queue * dev_queue)2212 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2213 {
2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2215 struct Qdisc *q;
2216
2217 rcu_read_lock();
2218 q = rcu_dereference(dev_queue->qdisc);
2219 __netif_schedule(q);
2220 rcu_read_unlock();
2221 }
2222 }
2223 EXPORT_SYMBOL(netif_tx_wake_queue);
2224
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2225 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2226 {
2227 unsigned long flags;
2228
2229 if (unlikely(!skb))
2230 return;
2231
2232 if (likely(atomic_read(&skb->users) == 1)) {
2233 smp_rmb();
2234 atomic_set(&skb->users, 0);
2235 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2236 return;
2237 }
2238 get_kfree_skb_cb(skb)->reason = reason;
2239 local_irq_save(flags);
2240 skb->next = __this_cpu_read(softnet_data.completion_queue);
2241 __this_cpu_write(softnet_data.completion_queue, skb);
2242 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2243 local_irq_restore(flags);
2244 }
2245 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2246
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2247 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2248 {
2249 if (in_irq() || irqs_disabled())
2250 __dev_kfree_skb_irq(skb, reason);
2251 else
2252 dev_kfree_skb(skb);
2253 }
2254 EXPORT_SYMBOL(__dev_kfree_skb_any);
2255
2256
2257 /**
2258 * netif_device_detach - mark device as removed
2259 * @dev: network device
2260 *
2261 * Mark device as removed from system and therefore no longer available.
2262 */
netif_device_detach(struct net_device * dev)2263 void netif_device_detach(struct net_device *dev)
2264 {
2265 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2266 netif_running(dev)) {
2267 netif_tx_stop_all_queues(dev);
2268 }
2269 }
2270 EXPORT_SYMBOL(netif_device_detach);
2271
2272 /**
2273 * netif_device_attach - mark device as attached
2274 * @dev: network device
2275 *
2276 * Mark device as attached from system and restart if needed.
2277 */
netif_device_attach(struct net_device * dev)2278 void netif_device_attach(struct net_device *dev)
2279 {
2280 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2281 netif_running(dev)) {
2282 netif_tx_wake_all_queues(dev);
2283 __netdev_watchdog_up(dev);
2284 }
2285 }
2286 EXPORT_SYMBOL(netif_device_attach);
2287
skb_warn_bad_offload(const struct sk_buff * skb)2288 static void skb_warn_bad_offload(const struct sk_buff *skb)
2289 {
2290 static const netdev_features_t null_features = 0;
2291 struct net_device *dev = skb->dev;
2292 const char *driver = "";
2293
2294 if (!net_ratelimit())
2295 return;
2296
2297 if (dev && dev->dev.parent)
2298 driver = dev_driver_string(dev->dev.parent);
2299
2300 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2301 "gso_type=%d ip_summed=%d\n",
2302 driver, dev ? &dev->features : &null_features,
2303 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2304 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2305 skb_shinfo(skb)->gso_type, skb->ip_summed);
2306 }
2307
2308 /*
2309 * Invalidate hardware checksum when packet is to be mangled, and
2310 * complete checksum manually on outgoing path.
2311 */
skb_checksum_help(struct sk_buff * skb)2312 int skb_checksum_help(struct sk_buff *skb)
2313 {
2314 __wsum csum;
2315 int ret = 0, offset;
2316
2317 if (skb->ip_summed == CHECKSUM_COMPLETE)
2318 goto out_set_summed;
2319
2320 if (unlikely(skb_shinfo(skb)->gso_size)) {
2321 skb_warn_bad_offload(skb);
2322 return -EINVAL;
2323 }
2324
2325 /* Before computing a checksum, we should make sure no frag could
2326 * be modified by an external entity : checksum could be wrong.
2327 */
2328 if (skb_has_shared_frag(skb)) {
2329 ret = __skb_linearize(skb);
2330 if (ret)
2331 goto out;
2332 }
2333
2334 offset = skb_checksum_start_offset(skb);
2335 BUG_ON(offset >= skb_headlen(skb));
2336 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2337
2338 offset += skb->csum_offset;
2339 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2340
2341 if (skb_cloned(skb) &&
2342 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2343 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2344 if (ret)
2345 goto out;
2346 }
2347
2348 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2349 out_set_summed:
2350 skb->ip_summed = CHECKSUM_NONE;
2351 out:
2352 return ret;
2353 }
2354 EXPORT_SYMBOL(skb_checksum_help);
2355
skb_network_protocol(struct sk_buff * skb,int * depth)2356 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2357 {
2358 unsigned int vlan_depth = skb->mac_len;
2359 __be16 type = skb->protocol;
2360
2361 /* Tunnel gso handlers can set protocol to ethernet. */
2362 if (type == htons(ETH_P_TEB)) {
2363 struct ethhdr *eth;
2364
2365 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2366 return 0;
2367
2368 eth = (struct ethhdr *)skb_mac_header(skb);
2369 type = eth->h_proto;
2370 }
2371
2372 /* if skb->protocol is 802.1Q/AD then the header should already be
2373 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2374 * ETH_HLEN otherwise
2375 */
2376 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2377 if (vlan_depth) {
2378 if (WARN_ON(vlan_depth < VLAN_HLEN))
2379 return 0;
2380 vlan_depth -= VLAN_HLEN;
2381 } else {
2382 vlan_depth = ETH_HLEN;
2383 }
2384 do {
2385 struct vlan_hdr *vh;
2386
2387 if (unlikely(!pskb_may_pull(skb,
2388 vlan_depth + VLAN_HLEN)))
2389 return 0;
2390
2391 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2392 type = vh->h_vlan_encapsulated_proto;
2393 vlan_depth += VLAN_HLEN;
2394 } while (type == htons(ETH_P_8021Q) ||
2395 type == htons(ETH_P_8021AD));
2396 }
2397
2398 *depth = vlan_depth;
2399
2400 return type;
2401 }
2402
2403 /**
2404 * skb_mac_gso_segment - mac layer segmentation handler.
2405 * @skb: buffer to segment
2406 * @features: features for the output path (see dev->features)
2407 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2408 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2409 netdev_features_t features)
2410 {
2411 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2412 struct packet_offload *ptype;
2413 int vlan_depth = skb->mac_len;
2414 __be16 type = skb_network_protocol(skb, &vlan_depth);
2415
2416 if (unlikely(!type))
2417 return ERR_PTR(-EINVAL);
2418
2419 __skb_pull(skb, vlan_depth);
2420
2421 rcu_read_lock();
2422 list_for_each_entry_rcu(ptype, &offload_base, list) {
2423 if (ptype->type == type && ptype->callbacks.gso_segment) {
2424 segs = ptype->callbacks.gso_segment(skb, features);
2425 break;
2426 }
2427 }
2428 rcu_read_unlock();
2429
2430 __skb_push(skb, skb->data - skb_mac_header(skb));
2431
2432 return segs;
2433 }
2434 EXPORT_SYMBOL(skb_mac_gso_segment);
2435
2436
2437 /* openvswitch calls this on rx path, so we need a different check.
2438 */
skb_needs_check(struct sk_buff * skb,bool tx_path)2439 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2440 {
2441 if (tx_path)
2442 return skb->ip_summed != CHECKSUM_PARTIAL &&
2443 skb->ip_summed != CHECKSUM_UNNECESSARY;
2444
2445 return skb->ip_summed == CHECKSUM_NONE;
2446 }
2447
2448 /**
2449 * __skb_gso_segment - Perform segmentation on skb.
2450 * @skb: buffer to segment
2451 * @features: features for the output path (see dev->features)
2452 * @tx_path: whether it is called in TX path
2453 *
2454 * This function segments the given skb and returns a list of segments.
2455 *
2456 * It may return NULL if the skb requires no segmentation. This is
2457 * only possible when GSO is used for verifying header integrity.
2458 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2459 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460 netdev_features_t features, bool tx_path)
2461 {
2462 struct sk_buff *segs;
2463
2464 if (unlikely(skb_needs_check(skb, tx_path))) {
2465 int err;
2466
2467 /* We're going to init ->check field in TCP or UDP header */
2468 err = skb_cow_head(skb, 0);
2469 if (err < 0)
2470 return ERR_PTR(err);
2471 }
2472
2473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2474 SKB_GSO_CB(skb)->encap_level = 0;
2475
2476 skb_reset_mac_header(skb);
2477 skb_reset_mac_len(skb);
2478
2479 segs = skb_mac_gso_segment(skb, features);
2480
2481 if (unlikely(skb_needs_check(skb, tx_path)))
2482 skb_warn_bad_offload(skb);
2483
2484 return segs;
2485 }
2486 EXPORT_SYMBOL(__skb_gso_segment);
2487
2488 /* Take action when hardware reception checksum errors are detected. */
2489 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2490 void netdev_rx_csum_fault(struct net_device *dev)
2491 {
2492 if (net_ratelimit()) {
2493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2494 dump_stack();
2495 }
2496 }
2497 EXPORT_SYMBOL(netdev_rx_csum_fault);
2498 #endif
2499
2500 /* Actually, we should eliminate this check as soon as we know, that:
2501 * 1. IOMMU is present and allows to map all the memory.
2502 * 2. No high memory really exists on this machine.
2503 */
2504
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2505 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2506 {
2507 #ifdef CONFIG_HIGHMEM
2508 int i;
2509 if (!(dev->features & NETIF_F_HIGHDMA)) {
2510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 if (PageHighMem(skb_frag_page(frag)))
2513 return 1;
2514 }
2515 }
2516
2517 if (PCI_DMA_BUS_IS_PHYS) {
2518 struct device *pdev = dev->dev.parent;
2519
2520 if (!pdev)
2521 return 0;
2522 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2523 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2524 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2525 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2526 return 1;
2527 }
2528 }
2529 #endif
2530 return 0;
2531 }
2532
2533 /* If MPLS offload request, verify we are testing hardware MPLS features
2534 * instead of standard features for the netdev.
2535 */
2536 #ifdef CONFIG_NET_MPLS_GSO
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2537 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2538 netdev_features_t features,
2539 __be16 type)
2540 {
2541 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2542 features &= skb->dev->mpls_features;
2543
2544 return features;
2545 }
2546 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2547 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2548 netdev_features_t features,
2549 __be16 type)
2550 {
2551 return features;
2552 }
2553 #endif
2554
harmonize_features(struct sk_buff * skb,netdev_features_t features)2555 static netdev_features_t harmonize_features(struct sk_buff *skb,
2556 netdev_features_t features)
2557 {
2558 int tmp;
2559 __be16 type;
2560
2561 type = skb_network_protocol(skb, &tmp);
2562 features = net_mpls_features(skb, features, type);
2563
2564 if (skb->ip_summed != CHECKSUM_NONE &&
2565 !can_checksum_protocol(features, type)) {
2566 features &= ~NETIF_F_ALL_CSUM;
2567 } else if (illegal_highdma(skb->dev, skb)) {
2568 features &= ~NETIF_F_SG;
2569 }
2570
2571 return features;
2572 }
2573
netif_skb_features(struct sk_buff * skb)2574 netdev_features_t netif_skb_features(struct sk_buff *skb)
2575 {
2576 struct net_device *dev = skb->dev;
2577 netdev_features_t features = dev->features;
2578 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2579 __be16 protocol = skb->protocol;
2580
2581 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2582 features &= ~NETIF_F_GSO_MASK;
2583
2584 /* If encapsulation offload request, verify we are testing
2585 * hardware encapsulation features instead of standard
2586 * features for the netdev
2587 */
2588 if (skb->encapsulation)
2589 features &= dev->hw_enc_features;
2590
2591 if (!vlan_tx_tag_present(skb)) {
2592 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2593 protocol == htons(ETH_P_8021AD))) {
2594 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2595 protocol = veh->h_vlan_encapsulated_proto;
2596 } else {
2597 goto finalize;
2598 }
2599 }
2600
2601 features = netdev_intersect_features(features,
2602 dev->vlan_features |
2603 NETIF_F_HW_VLAN_CTAG_TX |
2604 NETIF_F_HW_VLAN_STAG_TX);
2605
2606 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2607 features = netdev_intersect_features(features,
2608 NETIF_F_SG |
2609 NETIF_F_HIGHDMA |
2610 NETIF_F_FRAGLIST |
2611 NETIF_F_GEN_CSUM |
2612 NETIF_F_HW_VLAN_CTAG_TX |
2613 NETIF_F_HW_VLAN_STAG_TX);
2614
2615 finalize:
2616 if (dev->netdev_ops->ndo_features_check)
2617 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2618 features);
2619
2620 return harmonize_features(skb, features);
2621 }
2622 EXPORT_SYMBOL(netif_skb_features);
2623
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2624 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2625 struct netdev_queue *txq, bool more)
2626 {
2627 unsigned int len;
2628 int rc;
2629
2630 if (!list_empty(&ptype_all))
2631 dev_queue_xmit_nit(skb, dev);
2632
2633 len = skb->len;
2634 trace_net_dev_start_xmit(skb, dev);
2635 rc = netdev_start_xmit(skb, dev, txq, more);
2636 trace_net_dev_xmit(skb, rc, dev, len);
2637
2638 return rc;
2639 }
2640
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)2641 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2642 struct netdev_queue *txq, int *ret)
2643 {
2644 struct sk_buff *skb = first;
2645 int rc = NETDEV_TX_OK;
2646
2647 while (skb) {
2648 struct sk_buff *next = skb->next;
2649
2650 skb->next = NULL;
2651 rc = xmit_one(skb, dev, txq, next != NULL);
2652 if (unlikely(!dev_xmit_complete(rc))) {
2653 skb->next = next;
2654 goto out;
2655 }
2656
2657 skb = next;
2658 if (netif_xmit_stopped(txq) && skb) {
2659 rc = NETDEV_TX_BUSY;
2660 break;
2661 }
2662 }
2663
2664 out:
2665 *ret = rc;
2666 return skb;
2667 }
2668
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)2669 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2670 netdev_features_t features)
2671 {
2672 if (vlan_tx_tag_present(skb) &&
2673 !vlan_hw_offload_capable(features, skb->vlan_proto))
2674 skb = __vlan_hwaccel_push_inside(skb);
2675 return skb;
2676 }
2677
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2678 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2679 {
2680 netdev_features_t features;
2681
2682 if (skb->next)
2683 return skb;
2684
2685 features = netif_skb_features(skb);
2686 skb = validate_xmit_vlan(skb, features);
2687 if (unlikely(!skb))
2688 goto out_null;
2689
2690 if (netif_needs_gso(dev, skb, features)) {
2691 struct sk_buff *segs;
2692
2693 segs = skb_gso_segment(skb, features);
2694 if (IS_ERR(segs)) {
2695 goto out_kfree_skb;
2696 } else if (segs) {
2697 consume_skb(skb);
2698 skb = segs;
2699 }
2700 } else {
2701 if (skb_needs_linearize(skb, features) &&
2702 __skb_linearize(skb))
2703 goto out_kfree_skb;
2704
2705 /* If packet is not checksummed and device does not
2706 * support checksumming for this protocol, complete
2707 * checksumming here.
2708 */
2709 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2710 if (skb->encapsulation)
2711 skb_set_inner_transport_header(skb,
2712 skb_checksum_start_offset(skb));
2713 else
2714 skb_set_transport_header(skb,
2715 skb_checksum_start_offset(skb));
2716 if (!(features & NETIF_F_ALL_CSUM) &&
2717 skb_checksum_help(skb))
2718 goto out_kfree_skb;
2719 }
2720 }
2721
2722 return skb;
2723
2724 out_kfree_skb:
2725 kfree_skb(skb);
2726 out_null:
2727 return NULL;
2728 }
2729
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)2730 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2731 {
2732 struct sk_buff *next, *head = NULL, *tail;
2733
2734 for (; skb != NULL; skb = next) {
2735 next = skb->next;
2736 skb->next = NULL;
2737
2738 /* in case skb wont be segmented, point to itself */
2739 skb->prev = skb;
2740
2741 skb = validate_xmit_skb(skb, dev);
2742 if (!skb)
2743 continue;
2744
2745 if (!head)
2746 head = skb;
2747 else
2748 tail->next = skb;
2749 /* If skb was segmented, skb->prev points to
2750 * the last segment. If not, it still contains skb.
2751 */
2752 tail = skb->prev;
2753 }
2754 return head;
2755 }
2756 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2757
qdisc_pkt_len_init(struct sk_buff * skb)2758 static void qdisc_pkt_len_init(struct sk_buff *skb)
2759 {
2760 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2761
2762 qdisc_skb_cb(skb)->pkt_len = skb->len;
2763
2764 /* To get more precise estimation of bytes sent on wire,
2765 * we add to pkt_len the headers size of all segments
2766 */
2767 if (shinfo->gso_size) {
2768 unsigned int hdr_len;
2769 u16 gso_segs = shinfo->gso_segs;
2770
2771 /* mac layer + network layer */
2772 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2773
2774 /* + transport layer */
2775 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
2776 const struct tcphdr *th;
2777 struct tcphdr _tcphdr;
2778
2779 th = skb_header_pointer(skb, skb_transport_offset(skb),
2780 sizeof(_tcphdr), &_tcphdr);
2781 if (likely(th))
2782 hdr_len += __tcp_hdrlen(th);
2783 } else {
2784 struct udphdr _udphdr;
2785
2786 if (skb_header_pointer(skb, skb_transport_offset(skb),
2787 sizeof(_udphdr), &_udphdr))
2788 hdr_len += sizeof(struct udphdr);
2789 }
2790
2791 if (shinfo->gso_type & SKB_GSO_DODGY)
2792 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2793 shinfo->gso_size);
2794
2795 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2796 }
2797 }
2798
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2799 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2800 struct net_device *dev,
2801 struct netdev_queue *txq)
2802 {
2803 spinlock_t *root_lock = qdisc_lock(q);
2804 bool contended;
2805 int rc;
2806
2807 qdisc_pkt_len_init(skb);
2808 qdisc_calculate_pkt_len(skb, q);
2809 /*
2810 * Heuristic to force contended enqueues to serialize on a
2811 * separate lock before trying to get qdisc main lock.
2812 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2813 * often and dequeue packets faster.
2814 */
2815 contended = qdisc_is_running(q);
2816 if (unlikely(contended))
2817 spin_lock(&q->busylock);
2818
2819 spin_lock(root_lock);
2820 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2821 kfree_skb(skb);
2822 rc = NET_XMIT_DROP;
2823 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2824 qdisc_run_begin(q)) {
2825 /*
2826 * This is a work-conserving queue; there are no old skbs
2827 * waiting to be sent out; and the qdisc is not running -
2828 * xmit the skb directly.
2829 */
2830
2831 qdisc_bstats_update(q, skb);
2832
2833 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2834 if (unlikely(contended)) {
2835 spin_unlock(&q->busylock);
2836 contended = false;
2837 }
2838 __qdisc_run(q);
2839 } else
2840 qdisc_run_end(q);
2841
2842 rc = NET_XMIT_SUCCESS;
2843 } else {
2844 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2845 if (qdisc_run_begin(q)) {
2846 if (unlikely(contended)) {
2847 spin_unlock(&q->busylock);
2848 contended = false;
2849 }
2850 __qdisc_run(q);
2851 }
2852 }
2853 spin_unlock(root_lock);
2854 if (unlikely(contended))
2855 spin_unlock(&q->busylock);
2856 return rc;
2857 }
2858
2859 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)2860 static void skb_update_prio(struct sk_buff *skb)
2861 {
2862 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2863
2864 if (!skb->priority && skb->sk && map) {
2865 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2866
2867 if (prioidx < map->priomap_len)
2868 skb->priority = map->priomap[prioidx];
2869 }
2870 }
2871 #else
2872 #define skb_update_prio(skb)
2873 #endif
2874
2875 DEFINE_PER_CPU(int, xmit_recursion);
2876 EXPORT_SYMBOL(xmit_recursion);
2877
2878 #define RECURSION_LIMIT 10
2879
2880 /**
2881 * dev_loopback_xmit - loop back @skb
2882 * @skb: buffer to transmit
2883 */
dev_loopback_xmit(struct sk_buff * skb)2884 int dev_loopback_xmit(struct sk_buff *skb)
2885 {
2886 skb_reset_mac_header(skb);
2887 __skb_pull(skb, skb_network_offset(skb));
2888 skb->pkt_type = PACKET_LOOPBACK;
2889 skb->ip_summed = CHECKSUM_UNNECESSARY;
2890 WARN_ON(!skb_dst(skb));
2891 skb_dst_force(skb);
2892 netif_rx_ni(skb);
2893 return 0;
2894 }
2895 EXPORT_SYMBOL(dev_loopback_xmit);
2896
2897 /**
2898 * __dev_queue_xmit - transmit a buffer
2899 * @skb: buffer to transmit
2900 * @accel_priv: private data used for L2 forwarding offload
2901 *
2902 * Queue a buffer for transmission to a network device. The caller must
2903 * have set the device and priority and built the buffer before calling
2904 * this function. The function can be called from an interrupt.
2905 *
2906 * A negative errno code is returned on a failure. A success does not
2907 * guarantee the frame will be transmitted as it may be dropped due
2908 * to congestion or traffic shaping.
2909 *
2910 * -----------------------------------------------------------------------------------
2911 * I notice this method can also return errors from the queue disciplines,
2912 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2913 * be positive.
2914 *
2915 * Regardless of the return value, the skb is consumed, so it is currently
2916 * difficult to retry a send to this method. (You can bump the ref count
2917 * before sending to hold a reference for retry if you are careful.)
2918 *
2919 * When calling this method, interrupts MUST be enabled. This is because
2920 * the BH enable code must have IRQs enabled so that it will not deadlock.
2921 * --BLG
2922 */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)2923 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2924 {
2925 struct net_device *dev = skb->dev;
2926 struct netdev_queue *txq;
2927 struct Qdisc *q;
2928 int rc = -ENOMEM;
2929
2930 skb_reset_mac_header(skb);
2931
2932 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2933 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2934
2935 /* Disable soft irqs for various locks below. Also
2936 * stops preemption for RCU.
2937 */
2938 rcu_read_lock_bh();
2939
2940 skb_update_prio(skb);
2941
2942 /* If device/qdisc don't need skb->dst, release it right now while
2943 * its hot in this cpu cache.
2944 */
2945 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2946 skb_dst_drop(skb);
2947 else
2948 skb_dst_force(skb);
2949
2950 txq = netdev_pick_tx(dev, skb, accel_priv);
2951 q = rcu_dereference_bh(txq->qdisc);
2952
2953 #ifdef CONFIG_NET_CLS_ACT
2954 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2955 #endif
2956 trace_net_dev_queue(skb);
2957 if (q->enqueue) {
2958 rc = __dev_xmit_skb(skb, q, dev, txq);
2959 goto out;
2960 }
2961
2962 /* The device has no queue. Common case for software devices:
2963 loopback, all the sorts of tunnels...
2964
2965 Really, it is unlikely that netif_tx_lock protection is necessary
2966 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2967 counters.)
2968 However, it is possible, that they rely on protection
2969 made by us here.
2970
2971 Check this and shot the lock. It is not prone from deadlocks.
2972 Either shot noqueue qdisc, it is even simpler 8)
2973 */
2974 if (dev->flags & IFF_UP) {
2975 int cpu = smp_processor_id(); /* ok because BHs are off */
2976
2977 if (txq->xmit_lock_owner != cpu) {
2978
2979 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2980 goto recursion_alert;
2981
2982 skb = validate_xmit_skb(skb, dev);
2983 if (!skb)
2984 goto drop;
2985
2986 HARD_TX_LOCK(dev, txq, cpu);
2987
2988 if (!netif_xmit_stopped(txq)) {
2989 __this_cpu_inc(xmit_recursion);
2990 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2991 __this_cpu_dec(xmit_recursion);
2992 if (dev_xmit_complete(rc)) {
2993 HARD_TX_UNLOCK(dev, txq);
2994 goto out;
2995 }
2996 }
2997 HARD_TX_UNLOCK(dev, txq);
2998 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2999 dev->name);
3000 } else {
3001 /* Recursion is detected! It is possible,
3002 * unfortunately
3003 */
3004 recursion_alert:
3005 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3006 dev->name);
3007 }
3008 }
3009
3010 rc = -ENETDOWN;
3011 drop:
3012 rcu_read_unlock_bh();
3013
3014 atomic_long_inc(&dev->tx_dropped);
3015 kfree_skb_list(skb);
3016 return rc;
3017 out:
3018 rcu_read_unlock_bh();
3019 return rc;
3020 }
3021
dev_queue_xmit(struct sk_buff * skb)3022 int dev_queue_xmit(struct sk_buff *skb)
3023 {
3024 return __dev_queue_xmit(skb, NULL);
3025 }
3026 EXPORT_SYMBOL(dev_queue_xmit);
3027
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3028 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3029 {
3030 return __dev_queue_xmit(skb, accel_priv);
3031 }
3032 EXPORT_SYMBOL(dev_queue_xmit_accel);
3033
3034
3035 /*=======================================================================
3036 Receiver routines
3037 =======================================================================*/
3038
3039 int netdev_max_backlog __read_mostly = 1000;
3040 EXPORT_SYMBOL(netdev_max_backlog);
3041
3042 int netdev_tstamp_prequeue __read_mostly = 1;
3043 int netdev_budget __read_mostly = 300;
3044 int weight_p __read_mostly = 64; /* old backlog weight */
3045
3046 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3047 static inline void ____napi_schedule(struct softnet_data *sd,
3048 struct napi_struct *napi)
3049 {
3050 list_add_tail(&napi->poll_list, &sd->poll_list);
3051 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3052 }
3053
3054 #ifdef CONFIG_RPS
3055
3056 /* One global table that all flow-based protocols share. */
3057 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3058 EXPORT_SYMBOL(rps_sock_flow_table);
3059
3060 struct static_key rps_needed __read_mostly;
3061
3062 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3063 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3064 struct rps_dev_flow *rflow, u16 next_cpu)
3065 {
3066 if (next_cpu != RPS_NO_CPU) {
3067 #ifdef CONFIG_RFS_ACCEL
3068 struct netdev_rx_queue *rxqueue;
3069 struct rps_dev_flow_table *flow_table;
3070 struct rps_dev_flow *old_rflow;
3071 u32 flow_id;
3072 u16 rxq_index;
3073 int rc;
3074
3075 /* Should we steer this flow to a different hardware queue? */
3076 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3077 !(dev->features & NETIF_F_NTUPLE))
3078 goto out;
3079 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3080 if (rxq_index == skb_get_rx_queue(skb))
3081 goto out;
3082
3083 rxqueue = dev->_rx + rxq_index;
3084 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3085 if (!flow_table)
3086 goto out;
3087 flow_id = skb_get_hash(skb) & flow_table->mask;
3088 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3089 rxq_index, flow_id);
3090 if (rc < 0)
3091 goto out;
3092 old_rflow = rflow;
3093 rflow = &flow_table->flows[flow_id];
3094 rflow->filter = rc;
3095 if (old_rflow->filter == rflow->filter)
3096 old_rflow->filter = RPS_NO_FILTER;
3097 out:
3098 #endif
3099 rflow->last_qtail =
3100 per_cpu(softnet_data, next_cpu).input_queue_head;
3101 }
3102
3103 rflow->cpu = next_cpu;
3104 return rflow;
3105 }
3106
3107 /*
3108 * get_rps_cpu is called from netif_receive_skb and returns the target
3109 * CPU from the RPS map of the receiving queue for a given skb.
3110 * rcu_read_lock must be held on entry.
3111 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3112 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3113 struct rps_dev_flow **rflowp)
3114 {
3115 struct netdev_rx_queue *rxqueue;
3116 struct rps_map *map;
3117 struct rps_dev_flow_table *flow_table;
3118 struct rps_sock_flow_table *sock_flow_table;
3119 int cpu = -1;
3120 u16 tcpu;
3121 u32 hash;
3122
3123 if (skb_rx_queue_recorded(skb)) {
3124 u16 index = skb_get_rx_queue(skb);
3125 if (unlikely(index >= dev->real_num_rx_queues)) {
3126 WARN_ONCE(dev->real_num_rx_queues > 1,
3127 "%s received packet on queue %u, but number "
3128 "of RX queues is %u\n",
3129 dev->name, index, dev->real_num_rx_queues);
3130 goto done;
3131 }
3132 rxqueue = dev->_rx + index;
3133 } else
3134 rxqueue = dev->_rx;
3135
3136 map = rcu_dereference(rxqueue->rps_map);
3137 if (map) {
3138 if (map->len == 1 &&
3139 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3140 tcpu = map->cpus[0];
3141 if (cpu_online(tcpu))
3142 cpu = tcpu;
3143 goto done;
3144 }
3145 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3146 goto done;
3147 }
3148
3149 skb_reset_network_header(skb);
3150 hash = skb_get_hash(skb);
3151 if (!hash)
3152 goto done;
3153
3154 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3155 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3156 if (flow_table && sock_flow_table) {
3157 u16 next_cpu;
3158 struct rps_dev_flow *rflow;
3159
3160 rflow = &flow_table->flows[hash & flow_table->mask];
3161 tcpu = rflow->cpu;
3162
3163 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3164
3165 /*
3166 * If the desired CPU (where last recvmsg was done) is
3167 * different from current CPU (one in the rx-queue flow
3168 * table entry), switch if one of the following holds:
3169 * - Current CPU is unset (equal to RPS_NO_CPU).
3170 * - Current CPU is offline.
3171 * - The current CPU's queue tail has advanced beyond the
3172 * last packet that was enqueued using this table entry.
3173 * This guarantees that all previous packets for the flow
3174 * have been dequeued, thus preserving in order delivery.
3175 */
3176 if (unlikely(tcpu != next_cpu) &&
3177 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3178 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3179 rflow->last_qtail)) >= 0)) {
3180 tcpu = next_cpu;
3181 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3182 }
3183
3184 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3185 *rflowp = rflow;
3186 cpu = tcpu;
3187 goto done;
3188 }
3189 }
3190
3191 if (map) {
3192 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3193 if (cpu_online(tcpu)) {
3194 cpu = tcpu;
3195 goto done;
3196 }
3197 }
3198
3199 done:
3200 return cpu;
3201 }
3202
3203 #ifdef CONFIG_RFS_ACCEL
3204
3205 /**
3206 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3207 * @dev: Device on which the filter was set
3208 * @rxq_index: RX queue index
3209 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3210 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3211 *
3212 * Drivers that implement ndo_rx_flow_steer() should periodically call
3213 * this function for each installed filter and remove the filters for
3214 * which it returns %true.
3215 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3216 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3217 u32 flow_id, u16 filter_id)
3218 {
3219 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3220 struct rps_dev_flow_table *flow_table;
3221 struct rps_dev_flow *rflow;
3222 bool expire = true;
3223 int cpu;
3224
3225 rcu_read_lock();
3226 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3227 if (flow_table && flow_id <= flow_table->mask) {
3228 rflow = &flow_table->flows[flow_id];
3229 cpu = ACCESS_ONCE(rflow->cpu);
3230 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3231 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3232 rflow->last_qtail) <
3233 (int)(10 * flow_table->mask)))
3234 expire = false;
3235 }
3236 rcu_read_unlock();
3237 return expire;
3238 }
3239 EXPORT_SYMBOL(rps_may_expire_flow);
3240
3241 #endif /* CONFIG_RFS_ACCEL */
3242
3243 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3244 static void rps_trigger_softirq(void *data)
3245 {
3246 struct softnet_data *sd = data;
3247
3248 ____napi_schedule(sd, &sd->backlog);
3249 sd->received_rps++;
3250 }
3251
3252 #endif /* CONFIG_RPS */
3253
3254 /*
3255 * Check if this softnet_data structure is another cpu one
3256 * If yes, queue it to our IPI list and return 1
3257 * If no, return 0
3258 */
rps_ipi_queued(struct softnet_data * sd)3259 static int rps_ipi_queued(struct softnet_data *sd)
3260 {
3261 #ifdef CONFIG_RPS
3262 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3263
3264 if (sd != mysd) {
3265 sd->rps_ipi_next = mysd->rps_ipi_list;
3266 mysd->rps_ipi_list = sd;
3267
3268 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3269 return 1;
3270 }
3271 #endif /* CONFIG_RPS */
3272 return 0;
3273 }
3274
3275 #ifdef CONFIG_NET_FLOW_LIMIT
3276 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3277 #endif
3278
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3279 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3280 {
3281 #ifdef CONFIG_NET_FLOW_LIMIT
3282 struct sd_flow_limit *fl;
3283 struct softnet_data *sd;
3284 unsigned int old_flow, new_flow;
3285
3286 if (qlen < (netdev_max_backlog >> 1))
3287 return false;
3288
3289 sd = this_cpu_ptr(&softnet_data);
3290
3291 rcu_read_lock();
3292 fl = rcu_dereference(sd->flow_limit);
3293 if (fl) {
3294 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3295 old_flow = fl->history[fl->history_head];
3296 fl->history[fl->history_head] = new_flow;
3297
3298 fl->history_head++;
3299 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3300
3301 if (likely(fl->buckets[old_flow]))
3302 fl->buckets[old_flow]--;
3303
3304 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3305 fl->count++;
3306 rcu_read_unlock();
3307 return true;
3308 }
3309 }
3310 rcu_read_unlock();
3311 #endif
3312 return false;
3313 }
3314
3315 /*
3316 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3317 * queue (may be a remote CPU queue).
3318 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3319 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3320 unsigned int *qtail)
3321 {
3322 struct softnet_data *sd;
3323 unsigned long flags;
3324 unsigned int qlen;
3325
3326 sd = &per_cpu(softnet_data, cpu);
3327
3328 local_irq_save(flags);
3329
3330 rps_lock(sd);
3331 if (!netif_running(skb->dev))
3332 goto drop;
3333 qlen = skb_queue_len(&sd->input_pkt_queue);
3334 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3335 if (skb_queue_len(&sd->input_pkt_queue)) {
3336 enqueue:
3337 __skb_queue_tail(&sd->input_pkt_queue, skb);
3338 input_queue_tail_incr_save(sd, qtail);
3339 rps_unlock(sd);
3340 local_irq_restore(flags);
3341 return NET_RX_SUCCESS;
3342 }
3343
3344 /* Schedule NAPI for backlog device
3345 * We can use non atomic operation since we own the queue lock
3346 */
3347 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3348 if (!rps_ipi_queued(sd))
3349 ____napi_schedule(sd, &sd->backlog);
3350 }
3351 goto enqueue;
3352 }
3353
3354 drop:
3355 sd->dropped++;
3356 rps_unlock(sd);
3357
3358 local_irq_restore(flags);
3359
3360 atomic_long_inc(&skb->dev->rx_dropped);
3361 kfree_skb(skb);
3362 return NET_RX_DROP;
3363 }
3364
netif_rx_internal(struct sk_buff * skb)3365 static int netif_rx_internal(struct sk_buff *skb)
3366 {
3367 int ret;
3368
3369 net_timestamp_check(netdev_tstamp_prequeue, skb);
3370
3371 trace_netif_rx(skb);
3372 #ifdef CONFIG_RPS
3373 if (static_key_false(&rps_needed)) {
3374 struct rps_dev_flow voidflow, *rflow = &voidflow;
3375 int cpu;
3376
3377 preempt_disable();
3378 rcu_read_lock();
3379
3380 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3381 if (cpu < 0)
3382 cpu = smp_processor_id();
3383
3384 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3385
3386 rcu_read_unlock();
3387 preempt_enable();
3388 } else
3389 #endif
3390 {
3391 unsigned int qtail;
3392 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3393 put_cpu();
3394 }
3395 return ret;
3396 }
3397
3398 /**
3399 * netif_rx - post buffer to the network code
3400 * @skb: buffer to post
3401 *
3402 * This function receives a packet from a device driver and queues it for
3403 * the upper (protocol) levels to process. It always succeeds. The buffer
3404 * may be dropped during processing for congestion control or by the
3405 * protocol layers.
3406 *
3407 * return values:
3408 * NET_RX_SUCCESS (no congestion)
3409 * NET_RX_DROP (packet was dropped)
3410 *
3411 */
3412
netif_rx(struct sk_buff * skb)3413 int netif_rx(struct sk_buff *skb)
3414 {
3415 trace_netif_rx_entry(skb);
3416
3417 return netif_rx_internal(skb);
3418 }
3419 EXPORT_SYMBOL(netif_rx);
3420
netif_rx_ni(struct sk_buff * skb)3421 int netif_rx_ni(struct sk_buff *skb)
3422 {
3423 int err;
3424
3425 trace_netif_rx_ni_entry(skb);
3426
3427 preempt_disable();
3428 err = netif_rx_internal(skb);
3429 if (local_softirq_pending())
3430 do_softirq();
3431 preempt_enable();
3432
3433 return err;
3434 }
3435 EXPORT_SYMBOL(netif_rx_ni);
3436
net_tx_action(struct softirq_action * h)3437 static void net_tx_action(struct softirq_action *h)
3438 {
3439 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3440
3441 if (sd->completion_queue) {
3442 struct sk_buff *clist;
3443
3444 local_irq_disable();
3445 clist = sd->completion_queue;
3446 sd->completion_queue = NULL;
3447 local_irq_enable();
3448
3449 while (clist) {
3450 struct sk_buff *skb = clist;
3451 clist = clist->next;
3452
3453 WARN_ON(atomic_read(&skb->users));
3454 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3455 trace_consume_skb(skb);
3456 else
3457 trace_kfree_skb(skb, net_tx_action);
3458 __kfree_skb(skb);
3459 }
3460 }
3461
3462 if (sd->output_queue) {
3463 struct Qdisc *head;
3464
3465 local_irq_disable();
3466 head = sd->output_queue;
3467 sd->output_queue = NULL;
3468 sd->output_queue_tailp = &sd->output_queue;
3469 local_irq_enable();
3470
3471 while (head) {
3472 struct Qdisc *q = head;
3473 spinlock_t *root_lock;
3474
3475 head = head->next_sched;
3476
3477 root_lock = qdisc_lock(q);
3478 if (spin_trylock(root_lock)) {
3479 smp_mb__before_atomic();
3480 clear_bit(__QDISC_STATE_SCHED,
3481 &q->state);
3482 qdisc_run(q);
3483 spin_unlock(root_lock);
3484 } else {
3485 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3486 &q->state)) {
3487 __netif_reschedule(q);
3488 } else {
3489 smp_mb__before_atomic();
3490 clear_bit(__QDISC_STATE_SCHED,
3491 &q->state);
3492 }
3493 }
3494 }
3495 }
3496 }
3497
3498 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3499 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3500 /* This hook is defined here for ATM LANE */
3501 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3502 unsigned char *addr) __read_mostly;
3503 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3504 #endif
3505
3506 #ifdef CONFIG_NET_CLS_ACT
3507 /* TODO: Maybe we should just force sch_ingress to be compiled in
3508 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3509 * a compare and 2 stores extra right now if we dont have it on
3510 * but have CONFIG_NET_CLS_ACT
3511 * NOTE: This doesn't stop any functionality; if you dont have
3512 * the ingress scheduler, you just can't add policies on ingress.
3513 *
3514 */
ing_filter(struct sk_buff * skb,struct netdev_queue * rxq)3515 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3516 {
3517 struct net_device *dev = skb->dev;
3518 u32 ttl = G_TC_RTTL(skb->tc_verd);
3519 int result = TC_ACT_OK;
3520 struct Qdisc *q;
3521
3522 if (unlikely(MAX_RED_LOOP < ttl++)) {
3523 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3524 skb->skb_iif, dev->ifindex);
3525 return TC_ACT_SHOT;
3526 }
3527
3528 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3529 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3530
3531 q = rcu_dereference(rxq->qdisc);
3532 if (q != &noop_qdisc) {
3533 spin_lock(qdisc_lock(q));
3534 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3535 result = qdisc_enqueue_root(skb, q);
3536 spin_unlock(qdisc_lock(q));
3537 }
3538
3539 return result;
3540 }
3541
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3542 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3543 struct packet_type **pt_prev,
3544 int *ret, struct net_device *orig_dev)
3545 {
3546 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3547
3548 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3549 goto out;
3550
3551 if (*pt_prev) {
3552 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3553 *pt_prev = NULL;
3554 }
3555
3556 switch (ing_filter(skb, rxq)) {
3557 case TC_ACT_SHOT:
3558 case TC_ACT_STOLEN:
3559 kfree_skb(skb);
3560 return NULL;
3561 }
3562
3563 out:
3564 skb->tc_verd = 0;
3565 return skb;
3566 }
3567 #endif
3568
3569 /**
3570 * netdev_rx_handler_register - register receive handler
3571 * @dev: device to register a handler for
3572 * @rx_handler: receive handler to register
3573 * @rx_handler_data: data pointer that is used by rx handler
3574 *
3575 * Register a receive handler for a device. This handler will then be
3576 * called from __netif_receive_skb. A negative errno code is returned
3577 * on a failure.
3578 *
3579 * The caller must hold the rtnl_mutex.
3580 *
3581 * For a general description of rx_handler, see enum rx_handler_result.
3582 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3583 int netdev_rx_handler_register(struct net_device *dev,
3584 rx_handler_func_t *rx_handler,
3585 void *rx_handler_data)
3586 {
3587 ASSERT_RTNL();
3588
3589 if (dev->rx_handler)
3590 return -EBUSY;
3591
3592 /* Note: rx_handler_data must be set before rx_handler */
3593 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3594 rcu_assign_pointer(dev->rx_handler, rx_handler);
3595
3596 return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3599
3600 /**
3601 * netdev_rx_handler_unregister - unregister receive handler
3602 * @dev: device to unregister a handler from
3603 *
3604 * Unregister a receive handler from a device.
3605 *
3606 * The caller must hold the rtnl_mutex.
3607 */
netdev_rx_handler_unregister(struct net_device * dev)3608 void netdev_rx_handler_unregister(struct net_device *dev)
3609 {
3610
3611 ASSERT_RTNL();
3612 RCU_INIT_POINTER(dev->rx_handler, NULL);
3613 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3614 * section has a guarantee to see a non NULL rx_handler_data
3615 * as well.
3616 */
3617 synchronize_net();
3618 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3619 }
3620 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3621
3622 /*
3623 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3624 * the special handling of PFMEMALLOC skbs.
3625 */
skb_pfmemalloc_protocol(struct sk_buff * skb)3626 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3627 {
3628 switch (skb->protocol) {
3629 case htons(ETH_P_ARP):
3630 case htons(ETH_P_IP):
3631 case htons(ETH_P_IPV6):
3632 case htons(ETH_P_8021Q):
3633 case htons(ETH_P_8021AD):
3634 return true;
3635 default:
3636 return false;
3637 }
3638 }
3639
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)3640 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3641 {
3642 struct packet_type *ptype, *pt_prev;
3643 rx_handler_func_t *rx_handler;
3644 struct net_device *orig_dev;
3645 struct net_device *null_or_dev;
3646 bool deliver_exact = false;
3647 int ret = NET_RX_DROP;
3648 __be16 type;
3649
3650 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3651
3652 trace_netif_receive_skb(skb);
3653
3654 orig_dev = skb->dev;
3655
3656 skb_reset_network_header(skb);
3657 if (!skb_transport_header_was_set(skb))
3658 skb_reset_transport_header(skb);
3659 skb_reset_mac_len(skb);
3660
3661 pt_prev = NULL;
3662
3663 another_round:
3664 skb->skb_iif = skb->dev->ifindex;
3665
3666 __this_cpu_inc(softnet_data.processed);
3667
3668 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3669 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3670 skb = skb_vlan_untag(skb);
3671 if (unlikely(!skb))
3672 goto out;
3673 }
3674
3675 #ifdef CONFIG_NET_CLS_ACT
3676 if (skb->tc_verd & TC_NCLS) {
3677 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3678 goto ncls;
3679 }
3680 #endif
3681
3682 if (pfmemalloc)
3683 goto skip_taps;
3684
3685 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3686 if (!ptype->dev || ptype->dev == skb->dev) {
3687 if (pt_prev)
3688 ret = deliver_skb(skb, pt_prev, orig_dev);
3689 pt_prev = ptype;
3690 }
3691 }
3692
3693 skip_taps:
3694 #ifdef CONFIG_NET_CLS_ACT
3695 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3696 if (!skb)
3697 goto out;
3698 ncls:
3699 #endif
3700
3701 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3702 goto drop;
3703
3704 if (vlan_tx_tag_present(skb)) {
3705 if (pt_prev) {
3706 ret = deliver_skb(skb, pt_prev, orig_dev);
3707 pt_prev = NULL;
3708 }
3709 if (vlan_do_receive(&skb))
3710 goto another_round;
3711 else if (unlikely(!skb))
3712 goto out;
3713 }
3714
3715 rx_handler = rcu_dereference(skb->dev->rx_handler);
3716 if (rx_handler) {
3717 if (pt_prev) {
3718 ret = deliver_skb(skb, pt_prev, orig_dev);
3719 pt_prev = NULL;
3720 }
3721 switch (rx_handler(&skb)) {
3722 case RX_HANDLER_CONSUMED:
3723 ret = NET_RX_SUCCESS;
3724 goto out;
3725 case RX_HANDLER_ANOTHER:
3726 goto another_round;
3727 case RX_HANDLER_EXACT:
3728 deliver_exact = true;
3729 case RX_HANDLER_PASS:
3730 break;
3731 default:
3732 BUG();
3733 }
3734 }
3735
3736 if (unlikely(vlan_tx_tag_present(skb))) {
3737 if (vlan_tx_tag_get_id(skb))
3738 skb->pkt_type = PACKET_OTHERHOST;
3739 /* Note: we might in the future use prio bits
3740 * and set skb->priority like in vlan_do_receive()
3741 * For the time being, just ignore Priority Code Point
3742 */
3743 skb->vlan_tci = 0;
3744 }
3745
3746 /* deliver only exact match when indicated */
3747 null_or_dev = deliver_exact ? skb->dev : NULL;
3748
3749 type = skb->protocol;
3750 list_for_each_entry_rcu(ptype,
3751 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3752 if (ptype->type == type &&
3753 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3754 ptype->dev == orig_dev)) {
3755 if (pt_prev)
3756 ret = deliver_skb(skb, pt_prev, orig_dev);
3757 pt_prev = ptype;
3758 }
3759 }
3760
3761 if (pt_prev) {
3762 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3763 goto drop;
3764 else
3765 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3766 } else {
3767 drop:
3768 atomic_long_inc(&skb->dev->rx_dropped);
3769 kfree_skb(skb);
3770 /* Jamal, now you will not able to escape explaining
3771 * me how you were going to use this. :-)
3772 */
3773 ret = NET_RX_DROP;
3774 }
3775
3776 out:
3777 return ret;
3778 }
3779
__netif_receive_skb(struct sk_buff * skb)3780 static int __netif_receive_skb(struct sk_buff *skb)
3781 {
3782 int ret;
3783
3784 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3785 unsigned long pflags = current->flags;
3786
3787 /*
3788 * PFMEMALLOC skbs are special, they should
3789 * - be delivered to SOCK_MEMALLOC sockets only
3790 * - stay away from userspace
3791 * - have bounded memory usage
3792 *
3793 * Use PF_MEMALLOC as this saves us from propagating the allocation
3794 * context down to all allocation sites.
3795 */
3796 current->flags |= PF_MEMALLOC;
3797 ret = __netif_receive_skb_core(skb, true);
3798 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3799 } else
3800 ret = __netif_receive_skb_core(skb, false);
3801
3802 return ret;
3803 }
3804
netif_receive_skb_internal(struct sk_buff * skb)3805 static int netif_receive_skb_internal(struct sk_buff *skb)
3806 {
3807 int ret;
3808
3809 net_timestamp_check(netdev_tstamp_prequeue, skb);
3810
3811 if (skb_defer_rx_timestamp(skb))
3812 return NET_RX_SUCCESS;
3813
3814 rcu_read_lock();
3815
3816 #ifdef CONFIG_RPS
3817 if (static_key_false(&rps_needed)) {
3818 struct rps_dev_flow voidflow, *rflow = &voidflow;
3819 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3820
3821 if (cpu >= 0) {
3822 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3823 rcu_read_unlock();
3824 return ret;
3825 }
3826 }
3827 #endif
3828 ret = __netif_receive_skb(skb);
3829 rcu_read_unlock();
3830 return ret;
3831 }
3832
3833 /**
3834 * netif_receive_skb - process receive buffer from network
3835 * @skb: buffer to process
3836 *
3837 * netif_receive_skb() is the main receive data processing function.
3838 * It always succeeds. The buffer may be dropped during processing
3839 * for congestion control or by the protocol layers.
3840 *
3841 * This function may only be called from softirq context and interrupts
3842 * should be enabled.
3843 *
3844 * Return values (usually ignored):
3845 * NET_RX_SUCCESS: no congestion
3846 * NET_RX_DROP: packet was dropped
3847 */
netif_receive_skb(struct sk_buff * skb)3848 int netif_receive_skb(struct sk_buff *skb)
3849 {
3850 trace_netif_receive_skb_entry(skb);
3851
3852 return netif_receive_skb_internal(skb);
3853 }
3854 EXPORT_SYMBOL(netif_receive_skb);
3855
3856 /* Network device is going away, flush any packets still pending
3857 * Called with irqs disabled.
3858 */
flush_backlog(void * arg)3859 static void flush_backlog(void *arg)
3860 {
3861 struct net_device *dev = arg;
3862 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3863 struct sk_buff *skb, *tmp;
3864
3865 rps_lock(sd);
3866 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3867 if (skb->dev == dev) {
3868 __skb_unlink(skb, &sd->input_pkt_queue);
3869 kfree_skb(skb);
3870 input_queue_head_incr(sd);
3871 }
3872 }
3873 rps_unlock(sd);
3874
3875 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3876 if (skb->dev == dev) {
3877 __skb_unlink(skb, &sd->process_queue);
3878 kfree_skb(skb);
3879 input_queue_head_incr(sd);
3880 }
3881 }
3882 }
3883
napi_gro_complete(struct sk_buff * skb)3884 static int napi_gro_complete(struct sk_buff *skb)
3885 {
3886 struct packet_offload *ptype;
3887 __be16 type = skb->protocol;
3888 struct list_head *head = &offload_base;
3889 int err = -ENOENT;
3890
3891 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3892
3893 if (NAPI_GRO_CB(skb)->count == 1) {
3894 skb_shinfo(skb)->gso_size = 0;
3895 goto out;
3896 }
3897
3898 rcu_read_lock();
3899 list_for_each_entry_rcu(ptype, head, list) {
3900 if (ptype->type != type || !ptype->callbacks.gro_complete)
3901 continue;
3902
3903 err = ptype->callbacks.gro_complete(skb, 0);
3904 break;
3905 }
3906 rcu_read_unlock();
3907
3908 if (err) {
3909 WARN_ON(&ptype->list == head);
3910 kfree_skb(skb);
3911 return NET_RX_SUCCESS;
3912 }
3913
3914 out:
3915 return netif_receive_skb_internal(skb);
3916 }
3917
3918 /* napi->gro_list contains packets ordered by age.
3919 * youngest packets at the head of it.
3920 * Complete skbs in reverse order to reduce latencies.
3921 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)3922 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3923 {
3924 struct sk_buff *skb, *prev = NULL;
3925
3926 /* scan list and build reverse chain */
3927 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3928 skb->prev = prev;
3929 prev = skb;
3930 }
3931
3932 for (skb = prev; skb; skb = prev) {
3933 skb->next = NULL;
3934
3935 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3936 return;
3937
3938 prev = skb->prev;
3939 napi_gro_complete(skb);
3940 napi->gro_count--;
3941 }
3942
3943 napi->gro_list = NULL;
3944 }
3945 EXPORT_SYMBOL(napi_gro_flush);
3946
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)3947 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3948 {
3949 struct sk_buff *p;
3950 unsigned int maclen = skb->dev->hard_header_len;
3951 u32 hash = skb_get_hash_raw(skb);
3952
3953 for (p = napi->gro_list; p; p = p->next) {
3954 unsigned long diffs;
3955
3956 NAPI_GRO_CB(p)->flush = 0;
3957
3958 if (hash != skb_get_hash_raw(p)) {
3959 NAPI_GRO_CB(p)->same_flow = 0;
3960 continue;
3961 }
3962
3963 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3964 diffs |= p->vlan_tci ^ skb->vlan_tci;
3965 if (maclen == ETH_HLEN)
3966 diffs |= compare_ether_header(skb_mac_header(p),
3967 skb_mac_header(skb));
3968 else if (!diffs)
3969 diffs = memcmp(skb_mac_header(p),
3970 skb_mac_header(skb),
3971 maclen);
3972 NAPI_GRO_CB(p)->same_flow = !diffs;
3973 }
3974 }
3975
skb_gro_reset_offset(struct sk_buff * skb)3976 static void skb_gro_reset_offset(struct sk_buff *skb)
3977 {
3978 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3979 const skb_frag_t *frag0 = &pinfo->frags[0];
3980
3981 NAPI_GRO_CB(skb)->data_offset = 0;
3982 NAPI_GRO_CB(skb)->frag0 = NULL;
3983 NAPI_GRO_CB(skb)->frag0_len = 0;
3984
3985 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3986 pinfo->nr_frags &&
3987 !PageHighMem(skb_frag_page(frag0))) {
3988 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3989 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3990 }
3991 }
3992
gro_pull_from_frag0(struct sk_buff * skb,int grow)3993 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3994 {
3995 struct skb_shared_info *pinfo = skb_shinfo(skb);
3996
3997 BUG_ON(skb->end - skb->tail < grow);
3998
3999 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4000
4001 skb->data_len -= grow;
4002 skb->tail += grow;
4003
4004 pinfo->frags[0].page_offset += grow;
4005 skb_frag_size_sub(&pinfo->frags[0], grow);
4006
4007 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4008 skb_frag_unref(skb, 0);
4009 memmove(pinfo->frags, pinfo->frags + 1,
4010 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4011 }
4012 }
4013
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4014 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4015 {
4016 struct sk_buff **pp = NULL;
4017 struct packet_offload *ptype;
4018 __be16 type = skb->protocol;
4019 struct list_head *head = &offload_base;
4020 int same_flow;
4021 enum gro_result ret;
4022 int grow;
4023
4024 if (!(skb->dev->features & NETIF_F_GRO))
4025 goto normal;
4026
4027 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4028 goto normal;
4029
4030 gro_list_prepare(napi, skb);
4031
4032 rcu_read_lock();
4033 list_for_each_entry_rcu(ptype, head, list) {
4034 if (ptype->type != type || !ptype->callbacks.gro_receive)
4035 continue;
4036
4037 skb_set_network_header(skb, skb_gro_offset(skb));
4038 skb_reset_mac_len(skb);
4039 NAPI_GRO_CB(skb)->same_flow = 0;
4040 NAPI_GRO_CB(skb)->flush = 0;
4041 NAPI_GRO_CB(skb)->free = 0;
4042 NAPI_GRO_CB(skb)->encap_mark = 0;
4043
4044 /* Setup for GRO checksum validation */
4045 switch (skb->ip_summed) {
4046 case CHECKSUM_COMPLETE:
4047 NAPI_GRO_CB(skb)->csum = skb->csum;
4048 NAPI_GRO_CB(skb)->csum_valid = 1;
4049 NAPI_GRO_CB(skb)->csum_cnt = 0;
4050 break;
4051 case CHECKSUM_UNNECESSARY:
4052 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4053 NAPI_GRO_CB(skb)->csum_valid = 0;
4054 break;
4055 default:
4056 NAPI_GRO_CB(skb)->csum_cnt = 0;
4057 NAPI_GRO_CB(skb)->csum_valid = 0;
4058 }
4059
4060 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4061 break;
4062 }
4063 rcu_read_unlock();
4064
4065 if (&ptype->list == head)
4066 goto normal;
4067
4068 same_flow = NAPI_GRO_CB(skb)->same_flow;
4069 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4070
4071 if (pp) {
4072 struct sk_buff *nskb = *pp;
4073
4074 *pp = nskb->next;
4075 nskb->next = NULL;
4076 napi_gro_complete(nskb);
4077 napi->gro_count--;
4078 }
4079
4080 if (same_flow)
4081 goto ok;
4082
4083 if (NAPI_GRO_CB(skb)->flush)
4084 goto normal;
4085
4086 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4087 struct sk_buff *nskb = napi->gro_list;
4088
4089 /* locate the end of the list to select the 'oldest' flow */
4090 while (nskb->next) {
4091 pp = &nskb->next;
4092 nskb = *pp;
4093 }
4094 *pp = NULL;
4095 nskb->next = NULL;
4096 napi_gro_complete(nskb);
4097 } else {
4098 napi->gro_count++;
4099 }
4100 NAPI_GRO_CB(skb)->count = 1;
4101 NAPI_GRO_CB(skb)->age = jiffies;
4102 NAPI_GRO_CB(skb)->last = skb;
4103 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4104 skb->next = napi->gro_list;
4105 napi->gro_list = skb;
4106 ret = GRO_HELD;
4107
4108 pull:
4109 grow = skb_gro_offset(skb) - skb_headlen(skb);
4110 if (grow > 0)
4111 gro_pull_from_frag0(skb, grow);
4112 ok:
4113 return ret;
4114
4115 normal:
4116 ret = GRO_NORMAL;
4117 goto pull;
4118 }
4119
gro_find_receive_by_type(__be16 type)4120 struct packet_offload *gro_find_receive_by_type(__be16 type)
4121 {
4122 struct list_head *offload_head = &offload_base;
4123 struct packet_offload *ptype;
4124
4125 list_for_each_entry_rcu(ptype, offload_head, list) {
4126 if (ptype->type != type || !ptype->callbacks.gro_receive)
4127 continue;
4128 return ptype;
4129 }
4130 return NULL;
4131 }
4132 EXPORT_SYMBOL(gro_find_receive_by_type);
4133
gro_find_complete_by_type(__be16 type)4134 struct packet_offload *gro_find_complete_by_type(__be16 type)
4135 {
4136 struct list_head *offload_head = &offload_base;
4137 struct packet_offload *ptype;
4138
4139 list_for_each_entry_rcu(ptype, offload_head, list) {
4140 if (ptype->type != type || !ptype->callbacks.gro_complete)
4141 continue;
4142 return ptype;
4143 }
4144 return NULL;
4145 }
4146 EXPORT_SYMBOL(gro_find_complete_by_type);
4147
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4148 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4149 {
4150 switch (ret) {
4151 case GRO_NORMAL:
4152 if (netif_receive_skb_internal(skb))
4153 ret = GRO_DROP;
4154 break;
4155
4156 case GRO_DROP:
4157 kfree_skb(skb);
4158 break;
4159
4160 case GRO_MERGED_FREE:
4161 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4162 kmem_cache_free(skbuff_head_cache, skb);
4163 else
4164 __kfree_skb(skb);
4165 break;
4166
4167 case GRO_HELD:
4168 case GRO_MERGED:
4169 break;
4170 }
4171
4172 return ret;
4173 }
4174
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4175 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4176 {
4177 trace_napi_gro_receive_entry(skb);
4178
4179 skb_gro_reset_offset(skb);
4180
4181 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4182 }
4183 EXPORT_SYMBOL(napi_gro_receive);
4184
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4185 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4186 {
4187 if (unlikely(skb->pfmemalloc)) {
4188 consume_skb(skb);
4189 return;
4190 }
4191 __skb_pull(skb, skb_headlen(skb));
4192 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4193 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4194 skb->vlan_tci = 0;
4195 skb->dev = napi->dev;
4196 skb->skb_iif = 0;
4197 skb->encapsulation = 0;
4198 skb_shinfo(skb)->gso_type = 0;
4199 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4200
4201 napi->skb = skb;
4202 }
4203
napi_get_frags(struct napi_struct * napi)4204 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4205 {
4206 struct sk_buff *skb = napi->skb;
4207
4208 if (!skb) {
4209 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4210 napi->skb = skb;
4211 }
4212 return skb;
4213 }
4214 EXPORT_SYMBOL(napi_get_frags);
4215
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)4216 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4217 struct sk_buff *skb,
4218 gro_result_t ret)
4219 {
4220 switch (ret) {
4221 case GRO_NORMAL:
4222 case GRO_HELD:
4223 __skb_push(skb, ETH_HLEN);
4224 skb->protocol = eth_type_trans(skb, skb->dev);
4225 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4226 ret = GRO_DROP;
4227 break;
4228
4229 case GRO_DROP:
4230 case GRO_MERGED_FREE:
4231 napi_reuse_skb(napi, skb);
4232 break;
4233
4234 case GRO_MERGED:
4235 break;
4236 }
4237
4238 return ret;
4239 }
4240
4241 /* Upper GRO stack assumes network header starts at gro_offset=0
4242 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4243 * We copy ethernet header into skb->data to have a common layout.
4244 */
napi_frags_skb(struct napi_struct * napi)4245 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4246 {
4247 struct sk_buff *skb = napi->skb;
4248 const struct ethhdr *eth;
4249 unsigned int hlen = sizeof(*eth);
4250
4251 napi->skb = NULL;
4252
4253 skb_reset_mac_header(skb);
4254 skb_gro_reset_offset(skb);
4255
4256 eth = skb_gro_header_fast(skb, 0);
4257 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4258 eth = skb_gro_header_slow(skb, hlen, 0);
4259 if (unlikely(!eth)) {
4260 napi_reuse_skb(napi, skb);
4261 return NULL;
4262 }
4263 } else {
4264 gro_pull_from_frag0(skb, hlen);
4265 NAPI_GRO_CB(skb)->frag0 += hlen;
4266 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4267 }
4268 __skb_pull(skb, hlen);
4269
4270 /*
4271 * This works because the only protocols we care about don't require
4272 * special handling.
4273 * We'll fix it up properly in napi_frags_finish()
4274 */
4275 skb->protocol = eth->h_proto;
4276
4277 return skb;
4278 }
4279
napi_gro_frags(struct napi_struct * napi)4280 gro_result_t napi_gro_frags(struct napi_struct *napi)
4281 {
4282 struct sk_buff *skb = napi_frags_skb(napi);
4283
4284 if (!skb)
4285 return GRO_DROP;
4286
4287 trace_napi_gro_frags_entry(skb);
4288
4289 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4290 }
4291 EXPORT_SYMBOL(napi_gro_frags);
4292
4293 /* Compute the checksum from gro_offset and return the folded value
4294 * after adding in any pseudo checksum.
4295 */
__skb_gro_checksum_complete(struct sk_buff * skb)4296 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4297 {
4298 __wsum wsum;
4299 __sum16 sum;
4300
4301 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4302
4303 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4304 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4305 if (likely(!sum)) {
4306 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4307 !skb->csum_complete_sw)
4308 netdev_rx_csum_fault(skb->dev);
4309 }
4310
4311 NAPI_GRO_CB(skb)->csum = wsum;
4312 NAPI_GRO_CB(skb)->csum_valid = 1;
4313
4314 return sum;
4315 }
4316 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4317
4318 /*
4319 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4320 * Note: called with local irq disabled, but exits with local irq enabled.
4321 */
net_rps_action_and_irq_enable(struct softnet_data * sd)4322 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4323 {
4324 #ifdef CONFIG_RPS
4325 struct softnet_data *remsd = sd->rps_ipi_list;
4326
4327 if (remsd) {
4328 sd->rps_ipi_list = NULL;
4329
4330 local_irq_enable();
4331
4332 /* Send pending IPI's to kick RPS processing on remote cpus. */
4333 while (remsd) {
4334 struct softnet_data *next = remsd->rps_ipi_next;
4335
4336 if (cpu_online(remsd->cpu))
4337 smp_call_function_single_async(remsd->cpu,
4338 &remsd->csd);
4339 remsd = next;
4340 }
4341 } else
4342 #endif
4343 local_irq_enable();
4344 }
4345
process_backlog(struct napi_struct * napi,int quota)4346 static int process_backlog(struct napi_struct *napi, int quota)
4347 {
4348 int work = 0;
4349 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4350
4351 #ifdef CONFIG_RPS
4352 /* Check if we have pending ipi, its better to send them now,
4353 * not waiting net_rx_action() end.
4354 */
4355 if (sd->rps_ipi_list) {
4356 local_irq_disable();
4357 net_rps_action_and_irq_enable(sd);
4358 }
4359 #endif
4360 napi->weight = weight_p;
4361 local_irq_disable();
4362 while (1) {
4363 struct sk_buff *skb;
4364
4365 while ((skb = __skb_dequeue(&sd->process_queue))) {
4366 rcu_read_lock();
4367 local_irq_enable();
4368 __netif_receive_skb(skb);
4369 rcu_read_unlock();
4370 local_irq_disable();
4371 input_queue_head_incr(sd);
4372 if (++work >= quota) {
4373 local_irq_enable();
4374 return work;
4375 }
4376 }
4377
4378 rps_lock(sd);
4379 if (skb_queue_empty(&sd->input_pkt_queue)) {
4380 /*
4381 * Inline a custom version of __napi_complete().
4382 * only current cpu owns and manipulates this napi,
4383 * and NAPI_STATE_SCHED is the only possible flag set
4384 * on backlog.
4385 * We can use a plain write instead of clear_bit(),
4386 * and we dont need an smp_mb() memory barrier.
4387 */
4388 list_del(&napi->poll_list);
4389 napi->state = 0;
4390 rps_unlock(sd);
4391
4392 break;
4393 }
4394
4395 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4396 &sd->process_queue);
4397 rps_unlock(sd);
4398 }
4399 local_irq_enable();
4400
4401 return work;
4402 }
4403
4404 /**
4405 * __napi_schedule - schedule for receive
4406 * @n: entry to schedule
4407 *
4408 * The entry's receive function will be scheduled to run
4409 */
__napi_schedule(struct napi_struct * n)4410 void __napi_schedule(struct napi_struct *n)
4411 {
4412 unsigned long flags;
4413
4414 local_irq_save(flags);
4415 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4416 local_irq_restore(flags);
4417 }
4418 EXPORT_SYMBOL(__napi_schedule);
4419
__napi_complete(struct napi_struct * n)4420 void __napi_complete(struct napi_struct *n)
4421 {
4422 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4423 BUG_ON(n->gro_list);
4424
4425 list_del(&n->poll_list);
4426 smp_mb__before_atomic();
4427 clear_bit(NAPI_STATE_SCHED, &n->state);
4428 }
4429 EXPORT_SYMBOL(__napi_complete);
4430
napi_complete(struct napi_struct * n)4431 void napi_complete(struct napi_struct *n)
4432 {
4433 unsigned long flags;
4434
4435 /*
4436 * don't let napi dequeue from the cpu poll list
4437 * just in case its running on a different cpu
4438 */
4439 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4440 return;
4441
4442 napi_gro_flush(n, false);
4443 local_irq_save(flags);
4444 __napi_complete(n);
4445 local_irq_restore(flags);
4446 }
4447 EXPORT_SYMBOL(napi_complete);
4448
4449 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)4450 struct napi_struct *napi_by_id(unsigned int napi_id)
4451 {
4452 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4453 struct napi_struct *napi;
4454
4455 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4456 if (napi->napi_id == napi_id)
4457 return napi;
4458
4459 return NULL;
4460 }
4461 EXPORT_SYMBOL_GPL(napi_by_id);
4462
napi_hash_add(struct napi_struct * napi)4463 void napi_hash_add(struct napi_struct *napi)
4464 {
4465 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4466
4467 spin_lock(&napi_hash_lock);
4468
4469 /* 0 is not a valid id, we also skip an id that is taken
4470 * we expect both events to be extremely rare
4471 */
4472 napi->napi_id = 0;
4473 while (!napi->napi_id) {
4474 napi->napi_id = ++napi_gen_id;
4475 if (napi_by_id(napi->napi_id))
4476 napi->napi_id = 0;
4477 }
4478
4479 hlist_add_head_rcu(&napi->napi_hash_node,
4480 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4481
4482 spin_unlock(&napi_hash_lock);
4483 }
4484 }
4485 EXPORT_SYMBOL_GPL(napi_hash_add);
4486
4487 /* Warning : caller is responsible to make sure rcu grace period
4488 * is respected before freeing memory containing @napi
4489 */
napi_hash_del(struct napi_struct * napi)4490 void napi_hash_del(struct napi_struct *napi)
4491 {
4492 spin_lock(&napi_hash_lock);
4493
4494 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4495 hlist_del_rcu(&napi->napi_hash_node);
4496
4497 spin_unlock(&napi_hash_lock);
4498 }
4499 EXPORT_SYMBOL_GPL(napi_hash_del);
4500
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)4501 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4502 int (*poll)(struct napi_struct *, int), int weight)
4503 {
4504 INIT_LIST_HEAD(&napi->poll_list);
4505 napi->gro_count = 0;
4506 napi->gro_list = NULL;
4507 napi->skb = NULL;
4508 napi->poll = poll;
4509 if (weight > NAPI_POLL_WEIGHT)
4510 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4511 weight, dev->name);
4512 napi->weight = weight;
4513 list_add(&napi->dev_list, &dev->napi_list);
4514 napi->dev = dev;
4515 #ifdef CONFIG_NETPOLL
4516 spin_lock_init(&napi->poll_lock);
4517 napi->poll_owner = -1;
4518 #endif
4519 set_bit(NAPI_STATE_SCHED, &napi->state);
4520 }
4521 EXPORT_SYMBOL(netif_napi_add);
4522
netif_napi_del(struct napi_struct * napi)4523 void netif_napi_del(struct napi_struct *napi)
4524 {
4525 list_del_init(&napi->dev_list);
4526 napi_free_frags(napi);
4527
4528 kfree_skb_list(napi->gro_list);
4529 napi->gro_list = NULL;
4530 napi->gro_count = 0;
4531 }
4532 EXPORT_SYMBOL(netif_napi_del);
4533
net_rx_action(struct softirq_action * h)4534 static void net_rx_action(struct softirq_action *h)
4535 {
4536 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4537 unsigned long time_limit = jiffies + 2;
4538 int budget = netdev_budget;
4539 void *have;
4540
4541 local_irq_disable();
4542
4543 while (!list_empty(&sd->poll_list)) {
4544 struct napi_struct *n;
4545 int work, weight;
4546
4547 /* If softirq window is exhuasted then punt.
4548 * Allow this to run for 2 jiffies since which will allow
4549 * an average latency of 1.5/HZ.
4550 */
4551 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4552 goto softnet_break;
4553
4554 local_irq_enable();
4555
4556 /* Even though interrupts have been re-enabled, this
4557 * access is safe because interrupts can only add new
4558 * entries to the tail of this list, and only ->poll()
4559 * calls can remove this head entry from the list.
4560 */
4561 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4562
4563 have = netpoll_poll_lock(n);
4564
4565 weight = n->weight;
4566
4567 /* This NAPI_STATE_SCHED test is for avoiding a race
4568 * with netpoll's poll_napi(). Only the entity which
4569 * obtains the lock and sees NAPI_STATE_SCHED set will
4570 * actually make the ->poll() call. Therefore we avoid
4571 * accidentally calling ->poll() when NAPI is not scheduled.
4572 */
4573 work = 0;
4574 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4575 work = n->poll(n, weight);
4576 trace_napi_poll(n);
4577 }
4578
4579 WARN_ON_ONCE(work > weight);
4580
4581 budget -= work;
4582
4583 local_irq_disable();
4584
4585 /* Drivers must not modify the NAPI state if they
4586 * consume the entire weight. In such cases this code
4587 * still "owns" the NAPI instance and therefore can
4588 * move the instance around on the list at-will.
4589 */
4590 if (unlikely(work == weight)) {
4591 if (unlikely(napi_disable_pending(n))) {
4592 local_irq_enable();
4593 napi_complete(n);
4594 local_irq_disable();
4595 } else {
4596 if (n->gro_list) {
4597 /* flush too old packets
4598 * If HZ < 1000, flush all packets.
4599 */
4600 local_irq_enable();
4601 napi_gro_flush(n, HZ >= 1000);
4602 local_irq_disable();
4603 }
4604 list_move_tail(&n->poll_list, &sd->poll_list);
4605 }
4606 }
4607
4608 netpoll_poll_unlock(have);
4609 }
4610 out:
4611 net_rps_action_and_irq_enable(sd);
4612
4613 return;
4614
4615 softnet_break:
4616 sd->time_squeeze++;
4617 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4618 goto out;
4619 }
4620
4621 struct netdev_adjacent {
4622 struct net_device *dev;
4623
4624 /* upper master flag, there can only be one master device per list */
4625 bool master;
4626
4627 /* counter for the number of times this device was added to us */
4628 u16 ref_nr;
4629
4630 /* private field for the users */
4631 void *private;
4632
4633 struct list_head list;
4634 struct rcu_head rcu;
4635 };
4636
__netdev_find_adj(struct net_device * dev,struct net_device * adj_dev,struct list_head * adj_list)4637 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4638 struct net_device *adj_dev,
4639 struct list_head *adj_list)
4640 {
4641 struct netdev_adjacent *adj;
4642
4643 list_for_each_entry(adj, adj_list, list) {
4644 if (adj->dev == adj_dev)
4645 return adj;
4646 }
4647 return NULL;
4648 }
4649
4650 /**
4651 * netdev_has_upper_dev - Check if device is linked to an upper device
4652 * @dev: device
4653 * @upper_dev: upper device to check
4654 *
4655 * Find out if a device is linked to specified upper device and return true
4656 * in case it is. Note that this checks only immediate upper device,
4657 * not through a complete stack of devices. The caller must hold the RTNL lock.
4658 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)4659 bool netdev_has_upper_dev(struct net_device *dev,
4660 struct net_device *upper_dev)
4661 {
4662 ASSERT_RTNL();
4663
4664 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4665 }
4666 EXPORT_SYMBOL(netdev_has_upper_dev);
4667
4668 /**
4669 * netdev_has_any_upper_dev - Check if device is linked to some device
4670 * @dev: device
4671 *
4672 * Find out if a device is linked to an upper device and return true in case
4673 * it is. The caller must hold the RTNL lock.
4674 */
netdev_has_any_upper_dev(struct net_device * dev)4675 static bool netdev_has_any_upper_dev(struct net_device *dev)
4676 {
4677 ASSERT_RTNL();
4678
4679 return !list_empty(&dev->all_adj_list.upper);
4680 }
4681
4682 /**
4683 * netdev_master_upper_dev_get - Get master upper device
4684 * @dev: device
4685 *
4686 * Find a master upper device and return pointer to it or NULL in case
4687 * it's not there. The caller must hold the RTNL lock.
4688 */
netdev_master_upper_dev_get(struct net_device * dev)4689 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4690 {
4691 struct netdev_adjacent *upper;
4692
4693 ASSERT_RTNL();
4694
4695 if (list_empty(&dev->adj_list.upper))
4696 return NULL;
4697
4698 upper = list_first_entry(&dev->adj_list.upper,
4699 struct netdev_adjacent, list);
4700 if (likely(upper->master))
4701 return upper->dev;
4702 return NULL;
4703 }
4704 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4705
netdev_adjacent_get_private(struct list_head * adj_list)4706 void *netdev_adjacent_get_private(struct list_head *adj_list)
4707 {
4708 struct netdev_adjacent *adj;
4709
4710 adj = list_entry(adj_list, struct netdev_adjacent, list);
4711
4712 return adj->private;
4713 }
4714 EXPORT_SYMBOL(netdev_adjacent_get_private);
4715
4716 /**
4717 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4718 * @dev: device
4719 * @iter: list_head ** of the current position
4720 *
4721 * Gets the next device from the dev's upper list, starting from iter
4722 * position. The caller must hold RCU read lock.
4723 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4724 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4725 struct list_head **iter)
4726 {
4727 struct netdev_adjacent *upper;
4728
4729 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4730
4731 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4732
4733 if (&upper->list == &dev->adj_list.upper)
4734 return NULL;
4735
4736 *iter = &upper->list;
4737
4738 return upper->dev;
4739 }
4740 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4741
4742 /**
4743 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4744 * @dev: device
4745 * @iter: list_head ** of the current position
4746 *
4747 * Gets the next device from the dev's upper list, starting from iter
4748 * position. The caller must hold RCU read lock.
4749 */
netdev_all_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)4750 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4751 struct list_head **iter)
4752 {
4753 struct netdev_adjacent *upper;
4754
4755 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4756
4757 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4758
4759 if (&upper->list == &dev->all_adj_list.upper)
4760 return NULL;
4761
4762 *iter = &upper->list;
4763
4764 return upper->dev;
4765 }
4766 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4767
4768 /**
4769 * netdev_lower_get_next_private - Get the next ->private from the
4770 * lower neighbour list
4771 * @dev: device
4772 * @iter: list_head ** of the current position
4773 *
4774 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4775 * list, starting from iter position. The caller must hold either hold the
4776 * RTNL lock or its own locking that guarantees that the neighbour lower
4777 * list will remain unchainged.
4778 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)4779 void *netdev_lower_get_next_private(struct net_device *dev,
4780 struct list_head **iter)
4781 {
4782 struct netdev_adjacent *lower;
4783
4784 lower = list_entry(*iter, struct netdev_adjacent, list);
4785
4786 if (&lower->list == &dev->adj_list.lower)
4787 return NULL;
4788
4789 *iter = lower->list.next;
4790
4791 return lower->private;
4792 }
4793 EXPORT_SYMBOL(netdev_lower_get_next_private);
4794
4795 /**
4796 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4797 * lower neighbour list, RCU
4798 * variant
4799 * @dev: device
4800 * @iter: list_head ** of the current position
4801 *
4802 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4803 * list, starting from iter position. The caller must hold RCU read lock.
4804 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)4805 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4806 struct list_head **iter)
4807 {
4808 struct netdev_adjacent *lower;
4809
4810 WARN_ON_ONCE(!rcu_read_lock_held());
4811
4812 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4813
4814 if (&lower->list == &dev->adj_list.lower)
4815 return NULL;
4816
4817 *iter = &lower->list;
4818
4819 return lower->private;
4820 }
4821 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4822
4823 /**
4824 * netdev_lower_get_next - Get the next device from the lower neighbour
4825 * list
4826 * @dev: device
4827 * @iter: list_head ** of the current position
4828 *
4829 * Gets the next netdev_adjacent from the dev's lower neighbour
4830 * list, starting from iter position. The caller must hold RTNL lock or
4831 * its own locking that guarantees that the neighbour lower
4832 * list will remain unchainged.
4833 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)4834 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4835 {
4836 struct netdev_adjacent *lower;
4837
4838 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4839
4840 if (&lower->list == &dev->adj_list.lower)
4841 return NULL;
4842
4843 *iter = &lower->list;
4844
4845 return lower->dev;
4846 }
4847 EXPORT_SYMBOL(netdev_lower_get_next);
4848
4849 /**
4850 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4851 * lower neighbour list, RCU
4852 * variant
4853 * @dev: device
4854 *
4855 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4856 * list. The caller must hold RCU read lock.
4857 */
netdev_lower_get_first_private_rcu(struct net_device * dev)4858 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4859 {
4860 struct netdev_adjacent *lower;
4861
4862 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4863 struct netdev_adjacent, list);
4864 if (lower)
4865 return lower->private;
4866 return NULL;
4867 }
4868 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4869
4870 /**
4871 * netdev_master_upper_dev_get_rcu - Get master upper device
4872 * @dev: device
4873 *
4874 * Find a master upper device and return pointer to it or NULL in case
4875 * it's not there. The caller must hold the RCU read lock.
4876 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)4877 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4878 {
4879 struct netdev_adjacent *upper;
4880
4881 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4882 struct netdev_adjacent, list);
4883 if (upper && likely(upper->master))
4884 return upper->dev;
4885 return NULL;
4886 }
4887 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4888
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)4889 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4890 struct net_device *adj_dev,
4891 struct list_head *dev_list)
4892 {
4893 char linkname[IFNAMSIZ+7];
4894 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4895 "upper_%s" : "lower_%s", adj_dev->name);
4896 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4897 linkname);
4898 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)4899 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4900 char *name,
4901 struct list_head *dev_list)
4902 {
4903 char linkname[IFNAMSIZ+7];
4904 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4905 "upper_%s" : "lower_%s", name);
4906 sysfs_remove_link(&(dev->dev.kobj), linkname);
4907 }
4908
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)4909 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4910 struct net_device *adj_dev,
4911 struct list_head *dev_list)
4912 {
4913 return (dev_list == &dev->adj_list.upper ||
4914 dev_list == &dev->adj_list.lower) &&
4915 net_eq(dev_net(dev), dev_net(adj_dev));
4916 }
4917
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list,void * private,bool master)4918 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4919 struct net_device *adj_dev,
4920 u16 ref_nr,
4921 struct list_head *dev_list,
4922 void *private, bool master)
4923 {
4924 struct netdev_adjacent *adj;
4925 int ret;
4926
4927 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4928
4929 if (adj) {
4930 adj->ref_nr += ref_nr;
4931 return 0;
4932 }
4933
4934 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4935 if (!adj)
4936 return -ENOMEM;
4937
4938 adj->dev = adj_dev;
4939 adj->master = master;
4940 adj->ref_nr = ref_nr;
4941 adj->private = private;
4942 dev_hold(adj_dev);
4943
4944 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4945 adj_dev->name, dev->name, adj_dev->name);
4946
4947 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4948 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4949 if (ret)
4950 goto free_adj;
4951 }
4952
4953 /* Ensure that master link is always the first item in list. */
4954 if (master) {
4955 ret = sysfs_create_link(&(dev->dev.kobj),
4956 &(adj_dev->dev.kobj), "master");
4957 if (ret)
4958 goto remove_symlinks;
4959
4960 list_add_rcu(&adj->list, dev_list);
4961 } else {
4962 list_add_tail_rcu(&adj->list, dev_list);
4963 }
4964
4965 return 0;
4966
4967 remove_symlinks:
4968 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4969 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4970 free_adj:
4971 kfree(adj);
4972 dev_put(adj_dev);
4973
4974 return ret;
4975 }
4976
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)4977 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4978 struct net_device *adj_dev,
4979 u16 ref_nr,
4980 struct list_head *dev_list)
4981 {
4982 struct netdev_adjacent *adj;
4983
4984 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4985
4986 if (!adj) {
4987 pr_err("tried to remove device %s from %s\n",
4988 dev->name, adj_dev->name);
4989 BUG();
4990 }
4991
4992 if (adj->ref_nr > ref_nr) {
4993 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
4994 ref_nr, adj->ref_nr-ref_nr);
4995 adj->ref_nr -= ref_nr;
4996 return;
4997 }
4998
4999 if (adj->master)
5000 sysfs_remove_link(&(dev->dev.kobj), "master");
5001
5002 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5003 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5004
5005 list_del_rcu(&adj->list);
5006 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5007 adj_dev->name, dev->name, adj_dev->name);
5008 dev_put(adj_dev);
5009 kfree_rcu(adj, rcu);
5010 }
5011
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list,void * private,bool master)5012 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5013 struct net_device *upper_dev,
5014 u16 ref_nr,
5015 struct list_head *up_list,
5016 struct list_head *down_list,
5017 void *private, bool master)
5018 {
5019 int ret;
5020
5021 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5022 private, master);
5023 if (ret)
5024 return ret;
5025
5026 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5027 private, false);
5028 if (ret) {
5029 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5030 return ret;
5031 }
5032
5033 return 0;
5034 }
5035
__netdev_adjacent_dev_link(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr)5036 static int __netdev_adjacent_dev_link(struct net_device *dev,
5037 struct net_device *upper_dev,
5038 u16 ref_nr)
5039 {
5040 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5041 &dev->all_adj_list.upper,
5042 &upper_dev->all_adj_list.lower,
5043 NULL, false);
5044 }
5045
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)5046 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5047 struct net_device *upper_dev,
5048 u16 ref_nr,
5049 struct list_head *up_list,
5050 struct list_head *down_list)
5051 {
5052 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5053 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5054 }
5055
__netdev_adjacent_dev_unlink(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr)5056 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5057 struct net_device *upper_dev,
5058 u16 ref_nr)
5059 {
5060 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5061 &dev->all_adj_list.upper,
5062 &upper_dev->all_adj_list.lower);
5063 }
5064
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)5065 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5066 struct net_device *upper_dev,
5067 void *private, bool master)
5068 {
5069 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5070
5071 if (ret)
5072 return ret;
5073
5074 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5075 &dev->adj_list.upper,
5076 &upper_dev->adj_list.lower,
5077 private, master);
5078 if (ret) {
5079 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5080 return ret;
5081 }
5082
5083 return 0;
5084 }
5085
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)5086 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5087 struct net_device *upper_dev)
5088 {
5089 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5090 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5091 &dev->adj_list.upper,
5092 &upper_dev->adj_list.lower);
5093 }
5094
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * private)5095 static int __netdev_upper_dev_link(struct net_device *dev,
5096 struct net_device *upper_dev, bool master,
5097 void *private)
5098 {
5099 struct netdev_adjacent *i, *j, *to_i, *to_j;
5100 int ret = 0;
5101
5102 ASSERT_RTNL();
5103
5104 if (dev == upper_dev)
5105 return -EBUSY;
5106
5107 /* To prevent loops, check if dev is not upper device to upper_dev. */
5108 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5109 return -EBUSY;
5110
5111 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5112 return -EEXIST;
5113
5114 if (master && netdev_master_upper_dev_get(dev))
5115 return -EBUSY;
5116
5117 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5118 master);
5119 if (ret)
5120 return ret;
5121
5122 /* Now that we linked these devs, make all the upper_dev's
5123 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5124 * versa, and don't forget the devices itself. All of these
5125 * links are non-neighbours.
5126 */
5127 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5128 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5129 pr_debug("Interlinking %s with %s, non-neighbour\n",
5130 i->dev->name, j->dev->name);
5131 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5132 if (ret)
5133 goto rollback_mesh;
5134 }
5135 }
5136
5137 /* add dev to every upper_dev's upper device */
5138 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5139 pr_debug("linking %s's upper device %s with %s\n",
5140 upper_dev->name, i->dev->name, dev->name);
5141 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5142 if (ret)
5143 goto rollback_upper_mesh;
5144 }
5145
5146 /* add upper_dev to every dev's lower device */
5147 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5148 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5149 i->dev->name, upper_dev->name);
5150 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5151 if (ret)
5152 goto rollback_lower_mesh;
5153 }
5154
5155 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5156 return 0;
5157
5158 rollback_lower_mesh:
5159 to_i = i;
5160 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5161 if (i == to_i)
5162 break;
5163 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5164 }
5165
5166 i = NULL;
5167
5168 rollback_upper_mesh:
5169 to_i = i;
5170 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5171 if (i == to_i)
5172 break;
5173 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5174 }
5175
5176 i = j = NULL;
5177
5178 rollback_mesh:
5179 to_i = i;
5180 to_j = j;
5181 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5182 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5183 if (i == to_i && j == to_j)
5184 break;
5185 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5186 }
5187 if (i == to_i)
5188 break;
5189 }
5190
5191 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5192
5193 return ret;
5194 }
5195
5196 /**
5197 * netdev_upper_dev_link - Add a link to the upper device
5198 * @dev: device
5199 * @upper_dev: new upper device
5200 *
5201 * Adds a link to device which is upper to this one. The caller must hold
5202 * the RTNL lock. On a failure a negative errno code is returned.
5203 * On success the reference counts are adjusted and the function
5204 * returns zero.
5205 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5206 int netdev_upper_dev_link(struct net_device *dev,
5207 struct net_device *upper_dev)
5208 {
5209 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5210 }
5211 EXPORT_SYMBOL(netdev_upper_dev_link);
5212
5213 /**
5214 * netdev_master_upper_dev_link - Add a master link to the upper device
5215 * @dev: device
5216 * @upper_dev: new upper device
5217 *
5218 * Adds a link to device which is upper to this one. In this case, only
5219 * one master upper device can be linked, although other non-master devices
5220 * might be linked as well. The caller must hold the RTNL lock.
5221 * On a failure a negative errno code is returned. On success the reference
5222 * counts are adjusted and the function returns zero.
5223 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5224 int netdev_master_upper_dev_link(struct net_device *dev,
5225 struct net_device *upper_dev)
5226 {
5227 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5228 }
5229 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5230
netdev_master_upper_dev_link_private(struct net_device * dev,struct net_device * upper_dev,void * private)5231 int netdev_master_upper_dev_link_private(struct net_device *dev,
5232 struct net_device *upper_dev,
5233 void *private)
5234 {
5235 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5236 }
5237 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5238
5239 /**
5240 * netdev_upper_dev_unlink - Removes a link to upper device
5241 * @dev: device
5242 * @upper_dev: new upper device
5243 *
5244 * Removes a link to device which is upper to this one. The caller must hold
5245 * the RTNL lock.
5246 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5247 void netdev_upper_dev_unlink(struct net_device *dev,
5248 struct net_device *upper_dev)
5249 {
5250 struct netdev_adjacent *i, *j;
5251 ASSERT_RTNL();
5252
5253 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5254
5255 /* Here is the tricky part. We must remove all dev's lower
5256 * devices from all upper_dev's upper devices and vice
5257 * versa, to maintain the graph relationship.
5258 */
5259 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5260 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5261 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5262
5263 /* remove also the devices itself from lower/upper device
5264 * list
5265 */
5266 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5267 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5268
5269 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5270 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5271
5272 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5273 }
5274 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5275
netdev_adjacent_add_links(struct net_device * dev)5276 void netdev_adjacent_add_links(struct net_device *dev)
5277 {
5278 struct netdev_adjacent *iter;
5279
5280 struct net *net = dev_net(dev);
5281
5282 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5283 if (!net_eq(net,dev_net(iter->dev)))
5284 continue;
5285 netdev_adjacent_sysfs_add(iter->dev, dev,
5286 &iter->dev->adj_list.lower);
5287 netdev_adjacent_sysfs_add(dev, iter->dev,
5288 &dev->adj_list.upper);
5289 }
5290
5291 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5292 if (!net_eq(net,dev_net(iter->dev)))
5293 continue;
5294 netdev_adjacent_sysfs_add(iter->dev, dev,
5295 &iter->dev->adj_list.upper);
5296 netdev_adjacent_sysfs_add(dev, iter->dev,
5297 &dev->adj_list.lower);
5298 }
5299 }
5300
netdev_adjacent_del_links(struct net_device * dev)5301 void netdev_adjacent_del_links(struct net_device *dev)
5302 {
5303 struct netdev_adjacent *iter;
5304
5305 struct net *net = dev_net(dev);
5306
5307 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5308 if (!net_eq(net,dev_net(iter->dev)))
5309 continue;
5310 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5311 &iter->dev->adj_list.lower);
5312 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5313 &dev->adj_list.upper);
5314 }
5315
5316 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5317 if (!net_eq(net,dev_net(iter->dev)))
5318 continue;
5319 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5320 &iter->dev->adj_list.upper);
5321 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5322 &dev->adj_list.lower);
5323 }
5324 }
5325
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)5326 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5327 {
5328 struct netdev_adjacent *iter;
5329
5330 struct net *net = dev_net(dev);
5331
5332 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5333 if (!net_eq(net,dev_net(iter->dev)))
5334 continue;
5335 netdev_adjacent_sysfs_del(iter->dev, oldname,
5336 &iter->dev->adj_list.lower);
5337 netdev_adjacent_sysfs_add(iter->dev, dev,
5338 &iter->dev->adj_list.lower);
5339 }
5340
5341 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5342 if (!net_eq(net,dev_net(iter->dev)))
5343 continue;
5344 netdev_adjacent_sysfs_del(iter->dev, oldname,
5345 &iter->dev->adj_list.upper);
5346 netdev_adjacent_sysfs_add(iter->dev, dev,
5347 &iter->dev->adj_list.upper);
5348 }
5349 }
5350
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)5351 void *netdev_lower_dev_get_private(struct net_device *dev,
5352 struct net_device *lower_dev)
5353 {
5354 struct netdev_adjacent *lower;
5355
5356 if (!lower_dev)
5357 return NULL;
5358 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5359 if (!lower)
5360 return NULL;
5361
5362 return lower->private;
5363 }
5364 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5365
5366
dev_get_nest_level(struct net_device * dev,bool (* type_check)(struct net_device * dev))5367 int dev_get_nest_level(struct net_device *dev,
5368 bool (*type_check)(struct net_device *dev))
5369 {
5370 struct net_device *lower = NULL;
5371 struct list_head *iter;
5372 int max_nest = -1;
5373 int nest;
5374
5375 ASSERT_RTNL();
5376
5377 netdev_for_each_lower_dev(dev, lower, iter) {
5378 nest = dev_get_nest_level(lower, type_check);
5379 if (max_nest < nest)
5380 max_nest = nest;
5381 }
5382
5383 if (type_check(dev))
5384 max_nest++;
5385
5386 return max_nest;
5387 }
5388 EXPORT_SYMBOL(dev_get_nest_level);
5389
dev_change_rx_flags(struct net_device * dev,int flags)5390 static void dev_change_rx_flags(struct net_device *dev, int flags)
5391 {
5392 const struct net_device_ops *ops = dev->netdev_ops;
5393
5394 if (ops->ndo_change_rx_flags)
5395 ops->ndo_change_rx_flags(dev, flags);
5396 }
5397
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)5398 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5399 {
5400 unsigned int old_flags = dev->flags;
5401 kuid_t uid;
5402 kgid_t gid;
5403
5404 ASSERT_RTNL();
5405
5406 dev->flags |= IFF_PROMISC;
5407 dev->promiscuity += inc;
5408 if (dev->promiscuity == 0) {
5409 /*
5410 * Avoid overflow.
5411 * If inc causes overflow, untouch promisc and return error.
5412 */
5413 if (inc < 0)
5414 dev->flags &= ~IFF_PROMISC;
5415 else {
5416 dev->promiscuity -= inc;
5417 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5418 dev->name);
5419 return -EOVERFLOW;
5420 }
5421 }
5422 if (dev->flags != old_flags) {
5423 pr_info("device %s %s promiscuous mode\n",
5424 dev->name,
5425 dev->flags & IFF_PROMISC ? "entered" : "left");
5426 if (audit_enabled) {
5427 current_uid_gid(&uid, &gid);
5428 audit_log(current->audit_context, GFP_ATOMIC,
5429 AUDIT_ANOM_PROMISCUOUS,
5430 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5431 dev->name, (dev->flags & IFF_PROMISC),
5432 (old_flags & IFF_PROMISC),
5433 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5434 from_kuid(&init_user_ns, uid),
5435 from_kgid(&init_user_ns, gid),
5436 audit_get_sessionid(current));
5437 }
5438
5439 dev_change_rx_flags(dev, IFF_PROMISC);
5440 }
5441 if (notify)
5442 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5443 return 0;
5444 }
5445
5446 /**
5447 * dev_set_promiscuity - update promiscuity count on a device
5448 * @dev: device
5449 * @inc: modifier
5450 *
5451 * Add or remove promiscuity from a device. While the count in the device
5452 * remains above zero the interface remains promiscuous. Once it hits zero
5453 * the device reverts back to normal filtering operation. A negative inc
5454 * value is used to drop promiscuity on the device.
5455 * Return 0 if successful or a negative errno code on error.
5456 */
dev_set_promiscuity(struct net_device * dev,int inc)5457 int dev_set_promiscuity(struct net_device *dev, int inc)
5458 {
5459 unsigned int old_flags = dev->flags;
5460 int err;
5461
5462 err = __dev_set_promiscuity(dev, inc, true);
5463 if (err < 0)
5464 return err;
5465 if (dev->flags != old_flags)
5466 dev_set_rx_mode(dev);
5467 return err;
5468 }
5469 EXPORT_SYMBOL(dev_set_promiscuity);
5470
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)5471 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5472 {
5473 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5474
5475 ASSERT_RTNL();
5476
5477 dev->flags |= IFF_ALLMULTI;
5478 dev->allmulti += inc;
5479 if (dev->allmulti == 0) {
5480 /*
5481 * Avoid overflow.
5482 * If inc causes overflow, untouch allmulti and return error.
5483 */
5484 if (inc < 0)
5485 dev->flags &= ~IFF_ALLMULTI;
5486 else {
5487 dev->allmulti -= inc;
5488 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5489 dev->name);
5490 return -EOVERFLOW;
5491 }
5492 }
5493 if (dev->flags ^ old_flags) {
5494 dev_change_rx_flags(dev, IFF_ALLMULTI);
5495 dev_set_rx_mode(dev);
5496 if (notify)
5497 __dev_notify_flags(dev, old_flags,
5498 dev->gflags ^ old_gflags);
5499 }
5500 return 0;
5501 }
5502
5503 /**
5504 * dev_set_allmulti - update allmulti count on a device
5505 * @dev: device
5506 * @inc: modifier
5507 *
5508 * Add or remove reception of all multicast frames to a device. While the
5509 * count in the device remains above zero the interface remains listening
5510 * to all interfaces. Once it hits zero the device reverts back to normal
5511 * filtering operation. A negative @inc value is used to drop the counter
5512 * when releasing a resource needing all multicasts.
5513 * Return 0 if successful or a negative errno code on error.
5514 */
5515
dev_set_allmulti(struct net_device * dev,int inc)5516 int dev_set_allmulti(struct net_device *dev, int inc)
5517 {
5518 return __dev_set_allmulti(dev, inc, true);
5519 }
5520 EXPORT_SYMBOL(dev_set_allmulti);
5521
5522 /*
5523 * Upload unicast and multicast address lists to device and
5524 * configure RX filtering. When the device doesn't support unicast
5525 * filtering it is put in promiscuous mode while unicast addresses
5526 * are present.
5527 */
__dev_set_rx_mode(struct net_device * dev)5528 void __dev_set_rx_mode(struct net_device *dev)
5529 {
5530 const struct net_device_ops *ops = dev->netdev_ops;
5531
5532 /* dev_open will call this function so the list will stay sane. */
5533 if (!(dev->flags&IFF_UP))
5534 return;
5535
5536 if (!netif_device_present(dev))
5537 return;
5538
5539 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5540 /* Unicast addresses changes may only happen under the rtnl,
5541 * therefore calling __dev_set_promiscuity here is safe.
5542 */
5543 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5544 __dev_set_promiscuity(dev, 1, false);
5545 dev->uc_promisc = true;
5546 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5547 __dev_set_promiscuity(dev, -1, false);
5548 dev->uc_promisc = false;
5549 }
5550 }
5551
5552 if (ops->ndo_set_rx_mode)
5553 ops->ndo_set_rx_mode(dev);
5554 }
5555
dev_set_rx_mode(struct net_device * dev)5556 void dev_set_rx_mode(struct net_device *dev)
5557 {
5558 netif_addr_lock_bh(dev);
5559 __dev_set_rx_mode(dev);
5560 netif_addr_unlock_bh(dev);
5561 }
5562
5563 /**
5564 * dev_get_flags - get flags reported to userspace
5565 * @dev: device
5566 *
5567 * Get the combination of flag bits exported through APIs to userspace.
5568 */
dev_get_flags(const struct net_device * dev)5569 unsigned int dev_get_flags(const struct net_device *dev)
5570 {
5571 unsigned int flags;
5572
5573 flags = (dev->flags & ~(IFF_PROMISC |
5574 IFF_ALLMULTI |
5575 IFF_RUNNING |
5576 IFF_LOWER_UP |
5577 IFF_DORMANT)) |
5578 (dev->gflags & (IFF_PROMISC |
5579 IFF_ALLMULTI));
5580
5581 if (netif_running(dev)) {
5582 if (netif_oper_up(dev))
5583 flags |= IFF_RUNNING;
5584 if (netif_carrier_ok(dev))
5585 flags |= IFF_LOWER_UP;
5586 if (netif_dormant(dev))
5587 flags |= IFF_DORMANT;
5588 }
5589
5590 return flags;
5591 }
5592 EXPORT_SYMBOL(dev_get_flags);
5593
__dev_change_flags(struct net_device * dev,unsigned int flags)5594 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5595 {
5596 unsigned int old_flags = dev->flags;
5597 int ret;
5598
5599 ASSERT_RTNL();
5600
5601 /*
5602 * Set the flags on our device.
5603 */
5604
5605 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5606 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5607 IFF_AUTOMEDIA)) |
5608 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5609 IFF_ALLMULTI));
5610
5611 /*
5612 * Load in the correct multicast list now the flags have changed.
5613 */
5614
5615 if ((old_flags ^ flags) & IFF_MULTICAST)
5616 dev_change_rx_flags(dev, IFF_MULTICAST);
5617
5618 dev_set_rx_mode(dev);
5619
5620 /*
5621 * Have we downed the interface. We handle IFF_UP ourselves
5622 * according to user attempts to set it, rather than blindly
5623 * setting it.
5624 */
5625
5626 ret = 0;
5627 if ((old_flags ^ flags) & IFF_UP)
5628 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5629
5630 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5631 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5632 unsigned int old_flags = dev->flags;
5633
5634 dev->gflags ^= IFF_PROMISC;
5635
5636 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5637 if (dev->flags != old_flags)
5638 dev_set_rx_mode(dev);
5639 }
5640
5641 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5642 is important. Some (broken) drivers set IFF_PROMISC, when
5643 IFF_ALLMULTI is requested not asking us and not reporting.
5644 */
5645 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5646 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5647
5648 dev->gflags ^= IFF_ALLMULTI;
5649 __dev_set_allmulti(dev, inc, false);
5650 }
5651
5652 return ret;
5653 }
5654
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)5655 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5656 unsigned int gchanges)
5657 {
5658 unsigned int changes = dev->flags ^ old_flags;
5659
5660 if (gchanges)
5661 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5662
5663 if (changes & IFF_UP) {
5664 if (dev->flags & IFF_UP)
5665 call_netdevice_notifiers(NETDEV_UP, dev);
5666 else
5667 call_netdevice_notifiers(NETDEV_DOWN, dev);
5668 }
5669
5670 if (dev->flags & IFF_UP &&
5671 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5672 struct netdev_notifier_change_info change_info;
5673
5674 change_info.flags_changed = changes;
5675 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5676 &change_info.info);
5677 }
5678 }
5679
5680 /**
5681 * dev_change_flags - change device settings
5682 * @dev: device
5683 * @flags: device state flags
5684 *
5685 * Change settings on device based state flags. The flags are
5686 * in the userspace exported format.
5687 */
dev_change_flags(struct net_device * dev,unsigned int flags)5688 int dev_change_flags(struct net_device *dev, unsigned int flags)
5689 {
5690 int ret;
5691 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5692
5693 ret = __dev_change_flags(dev, flags);
5694 if (ret < 0)
5695 return ret;
5696
5697 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5698 __dev_notify_flags(dev, old_flags, changes);
5699 return ret;
5700 }
5701 EXPORT_SYMBOL(dev_change_flags);
5702
__dev_set_mtu(struct net_device * dev,int new_mtu)5703 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5704 {
5705 const struct net_device_ops *ops = dev->netdev_ops;
5706
5707 if (ops->ndo_change_mtu)
5708 return ops->ndo_change_mtu(dev, new_mtu);
5709
5710 dev->mtu = new_mtu;
5711 return 0;
5712 }
5713
5714 /**
5715 * dev_set_mtu - Change maximum transfer unit
5716 * @dev: device
5717 * @new_mtu: new transfer unit
5718 *
5719 * Change the maximum transfer size of the network device.
5720 */
dev_set_mtu(struct net_device * dev,int new_mtu)5721 int dev_set_mtu(struct net_device *dev, int new_mtu)
5722 {
5723 int err, orig_mtu;
5724
5725 if (new_mtu == dev->mtu)
5726 return 0;
5727
5728 /* MTU must be positive. */
5729 if (new_mtu < 0)
5730 return -EINVAL;
5731
5732 if (!netif_device_present(dev))
5733 return -ENODEV;
5734
5735 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5736 err = notifier_to_errno(err);
5737 if (err)
5738 return err;
5739
5740 orig_mtu = dev->mtu;
5741 err = __dev_set_mtu(dev, new_mtu);
5742
5743 if (!err) {
5744 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5745 err = notifier_to_errno(err);
5746 if (err) {
5747 /* setting mtu back and notifying everyone again,
5748 * so that they have a chance to revert changes.
5749 */
5750 __dev_set_mtu(dev, orig_mtu);
5751 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5752 }
5753 }
5754 return err;
5755 }
5756 EXPORT_SYMBOL(dev_set_mtu);
5757
5758 /**
5759 * dev_set_group - Change group this device belongs to
5760 * @dev: device
5761 * @new_group: group this device should belong to
5762 */
dev_set_group(struct net_device * dev,int new_group)5763 void dev_set_group(struct net_device *dev, int new_group)
5764 {
5765 dev->group = new_group;
5766 }
5767 EXPORT_SYMBOL(dev_set_group);
5768
5769 /**
5770 * dev_set_mac_address - Change Media Access Control Address
5771 * @dev: device
5772 * @sa: new address
5773 *
5774 * Change the hardware (MAC) address of the device
5775 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)5776 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5777 {
5778 const struct net_device_ops *ops = dev->netdev_ops;
5779 int err;
5780
5781 if (!ops->ndo_set_mac_address)
5782 return -EOPNOTSUPP;
5783 if (sa->sa_family != dev->type)
5784 return -EINVAL;
5785 if (!netif_device_present(dev))
5786 return -ENODEV;
5787 err = ops->ndo_set_mac_address(dev, sa);
5788 if (err)
5789 return err;
5790 dev->addr_assign_type = NET_ADDR_SET;
5791 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5792 add_device_randomness(dev->dev_addr, dev->addr_len);
5793 return 0;
5794 }
5795 EXPORT_SYMBOL(dev_set_mac_address);
5796
5797 /**
5798 * dev_change_carrier - Change device carrier
5799 * @dev: device
5800 * @new_carrier: new value
5801 *
5802 * Change device carrier
5803 */
dev_change_carrier(struct net_device * dev,bool new_carrier)5804 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5805 {
5806 const struct net_device_ops *ops = dev->netdev_ops;
5807
5808 if (!ops->ndo_change_carrier)
5809 return -EOPNOTSUPP;
5810 if (!netif_device_present(dev))
5811 return -ENODEV;
5812 return ops->ndo_change_carrier(dev, new_carrier);
5813 }
5814 EXPORT_SYMBOL(dev_change_carrier);
5815
5816 /**
5817 * dev_get_phys_port_id - Get device physical port ID
5818 * @dev: device
5819 * @ppid: port ID
5820 *
5821 * Get device physical port ID
5822 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_port_id * ppid)5823 int dev_get_phys_port_id(struct net_device *dev,
5824 struct netdev_phys_port_id *ppid)
5825 {
5826 const struct net_device_ops *ops = dev->netdev_ops;
5827
5828 if (!ops->ndo_get_phys_port_id)
5829 return -EOPNOTSUPP;
5830 return ops->ndo_get_phys_port_id(dev, ppid);
5831 }
5832 EXPORT_SYMBOL(dev_get_phys_port_id);
5833
5834 /**
5835 * dev_new_index - allocate an ifindex
5836 * @net: the applicable net namespace
5837 *
5838 * Returns a suitable unique value for a new device interface
5839 * number. The caller must hold the rtnl semaphore or the
5840 * dev_base_lock to be sure it remains unique.
5841 */
dev_new_index(struct net * net)5842 static int dev_new_index(struct net *net)
5843 {
5844 int ifindex = net->ifindex;
5845 for (;;) {
5846 if (++ifindex <= 0)
5847 ifindex = 1;
5848 if (!__dev_get_by_index(net, ifindex))
5849 return net->ifindex = ifindex;
5850 }
5851 }
5852
5853 /* Delayed registration/unregisteration */
5854 static LIST_HEAD(net_todo_list);
5855 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5856
net_set_todo(struct net_device * dev)5857 static void net_set_todo(struct net_device *dev)
5858 {
5859 list_add_tail(&dev->todo_list, &net_todo_list);
5860 dev_net(dev)->dev_unreg_count++;
5861 }
5862
rollback_registered_many(struct list_head * head)5863 static void rollback_registered_many(struct list_head *head)
5864 {
5865 struct net_device *dev, *tmp;
5866 LIST_HEAD(close_head);
5867
5868 BUG_ON(dev_boot_phase);
5869 ASSERT_RTNL();
5870
5871 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5872 /* Some devices call without registering
5873 * for initialization unwind. Remove those
5874 * devices and proceed with the remaining.
5875 */
5876 if (dev->reg_state == NETREG_UNINITIALIZED) {
5877 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5878 dev->name, dev);
5879
5880 WARN_ON(1);
5881 list_del(&dev->unreg_list);
5882 continue;
5883 }
5884 dev->dismantle = true;
5885 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5886 }
5887
5888 /* If device is running, close it first. */
5889 list_for_each_entry(dev, head, unreg_list)
5890 list_add_tail(&dev->close_list, &close_head);
5891 dev_close_many(&close_head);
5892
5893 list_for_each_entry(dev, head, unreg_list) {
5894 /* And unlink it from device chain. */
5895 unlist_netdevice(dev);
5896
5897 dev->reg_state = NETREG_UNREGISTERING;
5898 on_each_cpu(flush_backlog, dev, 1);
5899 }
5900
5901 synchronize_net();
5902
5903 list_for_each_entry(dev, head, unreg_list) {
5904 /* Shutdown queueing discipline. */
5905 dev_shutdown(dev);
5906
5907
5908 /* Notify protocols, that we are about to destroy
5909 this device. They should clean all the things.
5910 */
5911 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5912
5913 /*
5914 * Flush the unicast and multicast chains
5915 */
5916 dev_uc_flush(dev);
5917 dev_mc_flush(dev);
5918
5919 if (dev->netdev_ops->ndo_uninit)
5920 dev->netdev_ops->ndo_uninit(dev);
5921
5922 if (!dev->rtnl_link_ops ||
5923 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5924 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5925
5926 /* Notifier chain MUST detach us all upper devices. */
5927 WARN_ON(netdev_has_any_upper_dev(dev));
5928
5929 /* Remove entries from kobject tree */
5930 netdev_unregister_kobject(dev);
5931 #ifdef CONFIG_XPS
5932 /* Remove XPS queueing entries */
5933 netif_reset_xps_queues_gt(dev, 0);
5934 #endif
5935 }
5936
5937 synchronize_net();
5938
5939 list_for_each_entry(dev, head, unreg_list)
5940 dev_put(dev);
5941 }
5942
rollback_registered(struct net_device * dev)5943 static void rollback_registered(struct net_device *dev)
5944 {
5945 LIST_HEAD(single);
5946
5947 list_add(&dev->unreg_list, &single);
5948 rollback_registered_many(&single);
5949 list_del(&single);
5950 }
5951
netdev_fix_features(struct net_device * dev,netdev_features_t features)5952 static netdev_features_t netdev_fix_features(struct net_device *dev,
5953 netdev_features_t features)
5954 {
5955 /* Fix illegal checksum combinations */
5956 if ((features & NETIF_F_HW_CSUM) &&
5957 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5958 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5959 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5960 }
5961
5962 /* TSO requires that SG is present as well. */
5963 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5964 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5965 features &= ~NETIF_F_ALL_TSO;
5966 }
5967
5968 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5969 !(features & NETIF_F_IP_CSUM)) {
5970 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5971 features &= ~NETIF_F_TSO;
5972 features &= ~NETIF_F_TSO_ECN;
5973 }
5974
5975 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5976 !(features & NETIF_F_IPV6_CSUM)) {
5977 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5978 features &= ~NETIF_F_TSO6;
5979 }
5980
5981 /* TSO ECN requires that TSO is present as well. */
5982 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5983 features &= ~NETIF_F_TSO_ECN;
5984
5985 /* Software GSO depends on SG. */
5986 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5987 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5988 features &= ~NETIF_F_GSO;
5989 }
5990
5991 /* UFO needs SG and checksumming */
5992 if (features & NETIF_F_UFO) {
5993 /* maybe split UFO into V4 and V6? */
5994 if (!((features & NETIF_F_GEN_CSUM) ||
5995 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5996 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5997 netdev_dbg(dev,
5998 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5999 features &= ~NETIF_F_UFO;
6000 }
6001
6002 if (!(features & NETIF_F_SG)) {
6003 netdev_dbg(dev,
6004 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6005 features &= ~NETIF_F_UFO;
6006 }
6007 }
6008
6009 #ifdef CONFIG_NET_RX_BUSY_POLL
6010 if (dev->netdev_ops->ndo_busy_poll)
6011 features |= NETIF_F_BUSY_POLL;
6012 else
6013 #endif
6014 features &= ~NETIF_F_BUSY_POLL;
6015
6016 return features;
6017 }
6018
__netdev_update_features(struct net_device * dev)6019 int __netdev_update_features(struct net_device *dev)
6020 {
6021 netdev_features_t features;
6022 int err = 0;
6023
6024 ASSERT_RTNL();
6025
6026 features = netdev_get_wanted_features(dev);
6027
6028 if (dev->netdev_ops->ndo_fix_features)
6029 features = dev->netdev_ops->ndo_fix_features(dev, features);
6030
6031 /* driver might be less strict about feature dependencies */
6032 features = netdev_fix_features(dev, features);
6033
6034 if (dev->features == features)
6035 return 0;
6036
6037 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6038 &dev->features, &features);
6039
6040 if (dev->netdev_ops->ndo_set_features)
6041 err = dev->netdev_ops->ndo_set_features(dev, features);
6042
6043 if (unlikely(err < 0)) {
6044 netdev_err(dev,
6045 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6046 err, &features, &dev->features);
6047 return -1;
6048 }
6049
6050 if (!err)
6051 dev->features = features;
6052
6053 return 1;
6054 }
6055
6056 /**
6057 * netdev_update_features - recalculate device features
6058 * @dev: the device to check
6059 *
6060 * Recalculate dev->features set and send notifications if it
6061 * has changed. Should be called after driver or hardware dependent
6062 * conditions might have changed that influence the features.
6063 */
netdev_update_features(struct net_device * dev)6064 void netdev_update_features(struct net_device *dev)
6065 {
6066 if (__netdev_update_features(dev))
6067 netdev_features_change(dev);
6068 }
6069 EXPORT_SYMBOL(netdev_update_features);
6070
6071 /**
6072 * netdev_change_features - recalculate device features
6073 * @dev: the device to check
6074 *
6075 * Recalculate dev->features set and send notifications even
6076 * if they have not changed. Should be called instead of
6077 * netdev_update_features() if also dev->vlan_features might
6078 * have changed to allow the changes to be propagated to stacked
6079 * VLAN devices.
6080 */
netdev_change_features(struct net_device * dev)6081 void netdev_change_features(struct net_device *dev)
6082 {
6083 __netdev_update_features(dev);
6084 netdev_features_change(dev);
6085 }
6086 EXPORT_SYMBOL(netdev_change_features);
6087
6088 /**
6089 * netif_stacked_transfer_operstate - transfer operstate
6090 * @rootdev: the root or lower level device to transfer state from
6091 * @dev: the device to transfer operstate to
6092 *
6093 * Transfer operational state from root to device. This is normally
6094 * called when a stacking relationship exists between the root
6095 * device and the device(a leaf device).
6096 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)6097 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6098 struct net_device *dev)
6099 {
6100 if (rootdev->operstate == IF_OPER_DORMANT)
6101 netif_dormant_on(dev);
6102 else
6103 netif_dormant_off(dev);
6104
6105 if (netif_carrier_ok(rootdev)) {
6106 if (!netif_carrier_ok(dev))
6107 netif_carrier_on(dev);
6108 } else {
6109 if (netif_carrier_ok(dev))
6110 netif_carrier_off(dev);
6111 }
6112 }
6113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6114
6115 #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)6116 static int netif_alloc_rx_queues(struct net_device *dev)
6117 {
6118 unsigned int i, count = dev->num_rx_queues;
6119 struct netdev_rx_queue *rx;
6120
6121 BUG_ON(count < 1);
6122
6123 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6124 if (!rx)
6125 return -ENOMEM;
6126
6127 dev->_rx = rx;
6128
6129 for (i = 0; i < count; i++)
6130 rx[i].dev = dev;
6131 return 0;
6132 }
6133 #endif
6134
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)6135 static void netdev_init_one_queue(struct net_device *dev,
6136 struct netdev_queue *queue, void *_unused)
6137 {
6138 /* Initialize queue lock */
6139 spin_lock_init(&queue->_xmit_lock);
6140 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6141 queue->xmit_lock_owner = -1;
6142 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6143 queue->dev = dev;
6144 #ifdef CONFIG_BQL
6145 dql_init(&queue->dql, HZ);
6146 #endif
6147 }
6148
netif_free_tx_queues(struct net_device * dev)6149 static void netif_free_tx_queues(struct net_device *dev)
6150 {
6151 kvfree(dev->_tx);
6152 }
6153
netif_alloc_netdev_queues(struct net_device * dev)6154 static int netif_alloc_netdev_queues(struct net_device *dev)
6155 {
6156 unsigned int count = dev->num_tx_queues;
6157 struct netdev_queue *tx;
6158 size_t sz = count * sizeof(*tx);
6159
6160 if (count < 1 || count > 0xffff)
6161 return -EINVAL;
6162
6163 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6164 if (!tx) {
6165 tx = vzalloc(sz);
6166 if (!tx)
6167 return -ENOMEM;
6168 }
6169 dev->_tx = tx;
6170
6171 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6172 spin_lock_init(&dev->tx_global_lock);
6173
6174 return 0;
6175 }
6176
6177 /**
6178 * register_netdevice - register a network device
6179 * @dev: device to register
6180 *
6181 * Take a completed network device structure and add it to the kernel
6182 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6183 * chain. 0 is returned on success. A negative errno code is returned
6184 * on a failure to set up the device, or if the name is a duplicate.
6185 *
6186 * Callers must hold the rtnl semaphore. You may want
6187 * register_netdev() instead of this.
6188 *
6189 * BUGS:
6190 * The locking appears insufficient to guarantee two parallel registers
6191 * will not get the same name.
6192 */
6193
register_netdevice(struct net_device * dev)6194 int register_netdevice(struct net_device *dev)
6195 {
6196 int ret;
6197 struct net *net = dev_net(dev);
6198
6199 BUG_ON(dev_boot_phase);
6200 ASSERT_RTNL();
6201
6202 might_sleep();
6203
6204 /* When net_device's are persistent, this will be fatal. */
6205 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6206 BUG_ON(!net);
6207
6208 spin_lock_init(&dev->addr_list_lock);
6209 netdev_set_addr_lockdep_class(dev);
6210
6211 dev->iflink = -1;
6212
6213 ret = dev_get_valid_name(net, dev, dev->name);
6214 if (ret < 0)
6215 goto out;
6216
6217 /* Init, if this function is available */
6218 if (dev->netdev_ops->ndo_init) {
6219 ret = dev->netdev_ops->ndo_init(dev);
6220 if (ret) {
6221 if (ret > 0)
6222 ret = -EIO;
6223 goto out;
6224 }
6225 }
6226
6227 if (((dev->hw_features | dev->features) &
6228 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6229 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6230 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6231 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6232 ret = -EINVAL;
6233 goto err_uninit;
6234 }
6235
6236 ret = -EBUSY;
6237 if (!dev->ifindex)
6238 dev->ifindex = dev_new_index(net);
6239 else if (__dev_get_by_index(net, dev->ifindex))
6240 goto err_uninit;
6241
6242 if (dev->iflink == -1)
6243 dev->iflink = dev->ifindex;
6244
6245 /* Transfer changeable features to wanted_features and enable
6246 * software offloads (GSO and GRO).
6247 */
6248 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6249 dev->features |= NETIF_F_SOFT_FEATURES;
6250 dev->wanted_features = dev->features & dev->hw_features;
6251
6252 if (!(dev->flags & IFF_LOOPBACK)) {
6253 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6254 }
6255
6256 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6257 */
6258 dev->vlan_features |= NETIF_F_HIGHDMA;
6259
6260 /* Make NETIF_F_SG inheritable to tunnel devices.
6261 */
6262 dev->hw_enc_features |= NETIF_F_SG;
6263
6264 /* Make NETIF_F_SG inheritable to MPLS.
6265 */
6266 dev->mpls_features |= NETIF_F_SG;
6267
6268 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6269 ret = notifier_to_errno(ret);
6270 if (ret)
6271 goto err_uninit;
6272
6273 ret = netdev_register_kobject(dev);
6274 if (ret)
6275 goto err_uninit;
6276 dev->reg_state = NETREG_REGISTERED;
6277
6278 __netdev_update_features(dev);
6279
6280 /*
6281 * Default initial state at registry is that the
6282 * device is present.
6283 */
6284
6285 set_bit(__LINK_STATE_PRESENT, &dev->state);
6286
6287 linkwatch_init_dev(dev);
6288
6289 dev_init_scheduler(dev);
6290 dev_hold(dev);
6291 list_netdevice(dev);
6292 add_device_randomness(dev->dev_addr, dev->addr_len);
6293
6294 /* If the device has permanent device address, driver should
6295 * set dev_addr and also addr_assign_type should be set to
6296 * NET_ADDR_PERM (default value).
6297 */
6298 if (dev->addr_assign_type == NET_ADDR_PERM)
6299 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6300
6301 /* Notify protocols, that a new device appeared. */
6302 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6303 ret = notifier_to_errno(ret);
6304 if (ret) {
6305 rollback_registered(dev);
6306 dev->reg_state = NETREG_UNREGISTERED;
6307 }
6308 /*
6309 * Prevent userspace races by waiting until the network
6310 * device is fully setup before sending notifications.
6311 */
6312 if (!dev->rtnl_link_ops ||
6313 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6314 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6315
6316 out:
6317 return ret;
6318
6319 err_uninit:
6320 if (dev->netdev_ops->ndo_uninit)
6321 dev->netdev_ops->ndo_uninit(dev);
6322 goto out;
6323 }
6324 EXPORT_SYMBOL(register_netdevice);
6325
6326 /**
6327 * init_dummy_netdev - init a dummy network device for NAPI
6328 * @dev: device to init
6329 *
6330 * This takes a network device structure and initialize the minimum
6331 * amount of fields so it can be used to schedule NAPI polls without
6332 * registering a full blown interface. This is to be used by drivers
6333 * that need to tie several hardware interfaces to a single NAPI
6334 * poll scheduler due to HW limitations.
6335 */
init_dummy_netdev(struct net_device * dev)6336 int init_dummy_netdev(struct net_device *dev)
6337 {
6338 /* Clear everything. Note we don't initialize spinlocks
6339 * are they aren't supposed to be taken by any of the
6340 * NAPI code and this dummy netdev is supposed to be
6341 * only ever used for NAPI polls
6342 */
6343 memset(dev, 0, sizeof(struct net_device));
6344
6345 /* make sure we BUG if trying to hit standard
6346 * register/unregister code path
6347 */
6348 dev->reg_state = NETREG_DUMMY;
6349
6350 /* NAPI wants this */
6351 INIT_LIST_HEAD(&dev->napi_list);
6352
6353 /* a dummy interface is started by default */
6354 set_bit(__LINK_STATE_PRESENT, &dev->state);
6355 set_bit(__LINK_STATE_START, &dev->state);
6356
6357 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6358 * because users of this 'device' dont need to change
6359 * its refcount.
6360 */
6361
6362 return 0;
6363 }
6364 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6365
6366
6367 /**
6368 * register_netdev - register a network device
6369 * @dev: device to register
6370 *
6371 * Take a completed network device structure and add it to the kernel
6372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6373 * chain. 0 is returned on success. A negative errno code is returned
6374 * on a failure to set up the device, or if the name is a duplicate.
6375 *
6376 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6377 * and expands the device name if you passed a format string to
6378 * alloc_netdev.
6379 */
register_netdev(struct net_device * dev)6380 int register_netdev(struct net_device *dev)
6381 {
6382 int err;
6383
6384 rtnl_lock();
6385 err = register_netdevice(dev);
6386 rtnl_unlock();
6387 return err;
6388 }
6389 EXPORT_SYMBOL(register_netdev);
6390
netdev_refcnt_read(const struct net_device * dev)6391 int netdev_refcnt_read(const struct net_device *dev)
6392 {
6393 int i, refcnt = 0;
6394
6395 for_each_possible_cpu(i)
6396 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6397 return refcnt;
6398 }
6399 EXPORT_SYMBOL(netdev_refcnt_read);
6400
6401 /**
6402 * netdev_wait_allrefs - wait until all references are gone.
6403 * @dev: target net_device
6404 *
6405 * This is called when unregistering network devices.
6406 *
6407 * Any protocol or device that holds a reference should register
6408 * for netdevice notification, and cleanup and put back the
6409 * reference if they receive an UNREGISTER event.
6410 * We can get stuck here if buggy protocols don't correctly
6411 * call dev_put.
6412 */
netdev_wait_allrefs(struct net_device * dev)6413 static void netdev_wait_allrefs(struct net_device *dev)
6414 {
6415 unsigned long rebroadcast_time, warning_time;
6416 int refcnt;
6417
6418 linkwatch_forget_dev(dev);
6419
6420 rebroadcast_time = warning_time = jiffies;
6421 refcnt = netdev_refcnt_read(dev);
6422
6423 while (refcnt != 0) {
6424 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6425 rtnl_lock();
6426
6427 /* Rebroadcast unregister notification */
6428 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6429
6430 __rtnl_unlock();
6431 rcu_barrier();
6432 rtnl_lock();
6433
6434 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6435 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6436 &dev->state)) {
6437 /* We must not have linkwatch events
6438 * pending on unregister. If this
6439 * happens, we simply run the queue
6440 * unscheduled, resulting in a noop
6441 * for this device.
6442 */
6443 linkwatch_run_queue();
6444 }
6445
6446 __rtnl_unlock();
6447
6448 rebroadcast_time = jiffies;
6449 }
6450
6451 msleep(250);
6452
6453 refcnt = netdev_refcnt_read(dev);
6454
6455 if (time_after(jiffies, warning_time + 10 * HZ)) {
6456 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6457 dev->name, refcnt);
6458 warning_time = jiffies;
6459 }
6460 }
6461 }
6462
6463 /* The sequence is:
6464 *
6465 * rtnl_lock();
6466 * ...
6467 * register_netdevice(x1);
6468 * register_netdevice(x2);
6469 * ...
6470 * unregister_netdevice(y1);
6471 * unregister_netdevice(y2);
6472 * ...
6473 * rtnl_unlock();
6474 * free_netdev(y1);
6475 * free_netdev(y2);
6476 *
6477 * We are invoked by rtnl_unlock().
6478 * This allows us to deal with problems:
6479 * 1) We can delete sysfs objects which invoke hotplug
6480 * without deadlocking with linkwatch via keventd.
6481 * 2) Since we run with the RTNL semaphore not held, we can sleep
6482 * safely in order to wait for the netdev refcnt to drop to zero.
6483 *
6484 * We must not return until all unregister events added during
6485 * the interval the lock was held have been completed.
6486 */
netdev_run_todo(void)6487 void netdev_run_todo(void)
6488 {
6489 struct list_head list;
6490
6491 /* Snapshot list, allow later requests */
6492 list_replace_init(&net_todo_list, &list);
6493
6494 __rtnl_unlock();
6495
6496
6497 /* Wait for rcu callbacks to finish before next phase */
6498 if (!list_empty(&list))
6499 rcu_barrier();
6500
6501 while (!list_empty(&list)) {
6502 struct net_device *dev
6503 = list_first_entry(&list, struct net_device, todo_list);
6504 list_del(&dev->todo_list);
6505
6506 rtnl_lock();
6507 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6508 __rtnl_unlock();
6509
6510 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6511 pr_err("network todo '%s' but state %d\n",
6512 dev->name, dev->reg_state);
6513 dump_stack();
6514 continue;
6515 }
6516
6517 dev->reg_state = NETREG_UNREGISTERED;
6518
6519 netdev_wait_allrefs(dev);
6520
6521 /* paranoia */
6522 BUG_ON(netdev_refcnt_read(dev));
6523 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6524 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6525 WARN_ON(dev->dn_ptr);
6526
6527 if (dev->destructor)
6528 dev->destructor(dev);
6529
6530 /* Report a network device has been unregistered */
6531 rtnl_lock();
6532 dev_net(dev)->dev_unreg_count--;
6533 __rtnl_unlock();
6534 wake_up(&netdev_unregistering_wq);
6535
6536 /* Free network device */
6537 kobject_put(&dev->dev.kobj);
6538 }
6539 }
6540
6541 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6542 * fields in the same order, with only the type differing.
6543 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)6544 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6545 const struct net_device_stats *netdev_stats)
6546 {
6547 #if BITS_PER_LONG == 64
6548 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6549 memcpy(stats64, netdev_stats, sizeof(*stats64));
6550 #else
6551 size_t i, n = sizeof(*stats64) / sizeof(u64);
6552 const unsigned long *src = (const unsigned long *)netdev_stats;
6553 u64 *dst = (u64 *)stats64;
6554
6555 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6556 sizeof(*stats64) / sizeof(u64));
6557 for (i = 0; i < n; i++)
6558 dst[i] = src[i];
6559 #endif
6560 }
6561 EXPORT_SYMBOL(netdev_stats_to_stats64);
6562
6563 /**
6564 * dev_get_stats - get network device statistics
6565 * @dev: device to get statistics from
6566 * @storage: place to store stats
6567 *
6568 * Get network statistics from device. Return @storage.
6569 * The device driver may provide its own method by setting
6570 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6571 * otherwise the internal statistics structure is used.
6572 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)6573 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6574 struct rtnl_link_stats64 *storage)
6575 {
6576 const struct net_device_ops *ops = dev->netdev_ops;
6577
6578 if (ops->ndo_get_stats64) {
6579 memset(storage, 0, sizeof(*storage));
6580 ops->ndo_get_stats64(dev, storage);
6581 } else if (ops->ndo_get_stats) {
6582 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6583 } else {
6584 netdev_stats_to_stats64(storage, &dev->stats);
6585 }
6586 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
6587 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
6588 return storage;
6589 }
6590 EXPORT_SYMBOL(dev_get_stats);
6591
dev_ingress_queue_create(struct net_device * dev)6592 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6593 {
6594 struct netdev_queue *queue = dev_ingress_queue(dev);
6595
6596 #ifdef CONFIG_NET_CLS_ACT
6597 if (queue)
6598 return queue;
6599 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6600 if (!queue)
6601 return NULL;
6602 netdev_init_one_queue(dev, queue, NULL);
6603 queue->qdisc = &noop_qdisc;
6604 queue->qdisc_sleeping = &noop_qdisc;
6605 rcu_assign_pointer(dev->ingress_queue, queue);
6606 #endif
6607 return queue;
6608 }
6609
6610 static const struct ethtool_ops default_ethtool_ops;
6611
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)6612 void netdev_set_default_ethtool_ops(struct net_device *dev,
6613 const struct ethtool_ops *ops)
6614 {
6615 if (dev->ethtool_ops == &default_ethtool_ops)
6616 dev->ethtool_ops = ops;
6617 }
6618 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6619
netdev_freemem(struct net_device * dev)6620 void netdev_freemem(struct net_device *dev)
6621 {
6622 char *addr = (char *)dev - dev->padded;
6623
6624 kvfree(addr);
6625 }
6626
6627 /**
6628 * alloc_netdev_mqs - allocate network device
6629 * @sizeof_priv: size of private data to allocate space for
6630 * @name: device name format string
6631 * @name_assign_type: origin of device name
6632 * @setup: callback to initialize device
6633 * @txqs: the number of TX subqueues to allocate
6634 * @rxqs: the number of RX subqueues to allocate
6635 *
6636 * Allocates a struct net_device with private data area for driver use
6637 * and performs basic initialization. Also allocates subqueue structs
6638 * for each queue on the device.
6639 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)6640 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6641 unsigned char name_assign_type,
6642 void (*setup)(struct net_device *),
6643 unsigned int txqs, unsigned int rxqs)
6644 {
6645 struct net_device *dev;
6646 size_t alloc_size;
6647 struct net_device *p;
6648
6649 BUG_ON(strlen(name) >= sizeof(dev->name));
6650
6651 if (txqs < 1) {
6652 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6653 return NULL;
6654 }
6655
6656 #ifdef CONFIG_SYSFS
6657 if (rxqs < 1) {
6658 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6659 return NULL;
6660 }
6661 #endif
6662
6663 alloc_size = sizeof(struct net_device);
6664 if (sizeof_priv) {
6665 /* ensure 32-byte alignment of private area */
6666 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6667 alloc_size += sizeof_priv;
6668 }
6669 /* ensure 32-byte alignment of whole construct */
6670 alloc_size += NETDEV_ALIGN - 1;
6671
6672 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6673 if (!p)
6674 p = vzalloc(alloc_size);
6675 if (!p)
6676 return NULL;
6677
6678 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6679 dev->padded = (char *)dev - (char *)p;
6680
6681 dev->pcpu_refcnt = alloc_percpu(int);
6682 if (!dev->pcpu_refcnt)
6683 goto free_dev;
6684
6685 if (dev_addr_init(dev))
6686 goto free_pcpu;
6687
6688 dev_mc_init(dev);
6689 dev_uc_init(dev);
6690
6691 dev_net_set(dev, &init_net);
6692
6693 dev->gso_max_size = GSO_MAX_SIZE;
6694 dev->gso_max_segs = GSO_MAX_SEGS;
6695 dev->gso_min_segs = 0;
6696
6697 INIT_LIST_HEAD(&dev->napi_list);
6698 INIT_LIST_HEAD(&dev->unreg_list);
6699 INIT_LIST_HEAD(&dev->close_list);
6700 INIT_LIST_HEAD(&dev->link_watch_list);
6701 INIT_LIST_HEAD(&dev->adj_list.upper);
6702 INIT_LIST_HEAD(&dev->adj_list.lower);
6703 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6704 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6705 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6706 setup(dev);
6707
6708 dev->num_tx_queues = txqs;
6709 dev->real_num_tx_queues = txqs;
6710 if (netif_alloc_netdev_queues(dev))
6711 goto free_all;
6712
6713 #ifdef CONFIG_SYSFS
6714 dev->num_rx_queues = rxqs;
6715 dev->real_num_rx_queues = rxqs;
6716 if (netif_alloc_rx_queues(dev))
6717 goto free_all;
6718 #endif
6719
6720 strcpy(dev->name, name);
6721 dev->name_assign_type = name_assign_type;
6722 dev->group = INIT_NETDEV_GROUP;
6723 if (!dev->ethtool_ops)
6724 dev->ethtool_ops = &default_ethtool_ops;
6725 return dev;
6726
6727 free_all:
6728 free_netdev(dev);
6729 return NULL;
6730
6731 free_pcpu:
6732 free_percpu(dev->pcpu_refcnt);
6733 free_dev:
6734 netdev_freemem(dev);
6735 return NULL;
6736 }
6737 EXPORT_SYMBOL(alloc_netdev_mqs);
6738
6739 /**
6740 * free_netdev - free network device
6741 * @dev: device
6742 *
6743 * This function does the last stage of destroying an allocated device
6744 * interface. The reference to the device object is released.
6745 * If this is the last reference then it will be freed.
6746 */
free_netdev(struct net_device * dev)6747 void free_netdev(struct net_device *dev)
6748 {
6749 struct napi_struct *p, *n;
6750
6751 release_net(dev_net(dev));
6752
6753 netif_free_tx_queues(dev);
6754 #ifdef CONFIG_SYSFS
6755 kfree(dev->_rx);
6756 #endif
6757
6758 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6759
6760 /* Flush device addresses */
6761 dev_addr_flush(dev);
6762
6763 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6764 netif_napi_del(p);
6765
6766 free_percpu(dev->pcpu_refcnt);
6767 dev->pcpu_refcnt = NULL;
6768
6769 /* Compatibility with error handling in drivers */
6770 if (dev->reg_state == NETREG_UNINITIALIZED) {
6771 netdev_freemem(dev);
6772 return;
6773 }
6774
6775 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6776 dev->reg_state = NETREG_RELEASED;
6777
6778 /* will free via device release */
6779 put_device(&dev->dev);
6780 }
6781 EXPORT_SYMBOL(free_netdev);
6782
6783 /**
6784 * synchronize_net - Synchronize with packet receive processing
6785 *
6786 * Wait for packets currently being received to be done.
6787 * Does not block later packets from starting.
6788 */
synchronize_net(void)6789 void synchronize_net(void)
6790 {
6791 might_sleep();
6792 if (rtnl_is_locked())
6793 synchronize_rcu_expedited();
6794 else
6795 synchronize_rcu();
6796 }
6797 EXPORT_SYMBOL(synchronize_net);
6798
6799 /**
6800 * unregister_netdevice_queue - remove device from the kernel
6801 * @dev: device
6802 * @head: list
6803 *
6804 * This function shuts down a device interface and removes it
6805 * from the kernel tables.
6806 * If head not NULL, device is queued to be unregistered later.
6807 *
6808 * Callers must hold the rtnl semaphore. You may want
6809 * unregister_netdev() instead of this.
6810 */
6811
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)6812 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6813 {
6814 ASSERT_RTNL();
6815
6816 if (head) {
6817 list_move_tail(&dev->unreg_list, head);
6818 } else {
6819 rollback_registered(dev);
6820 /* Finish processing unregister after unlock */
6821 net_set_todo(dev);
6822 }
6823 }
6824 EXPORT_SYMBOL(unregister_netdevice_queue);
6825
6826 /**
6827 * unregister_netdevice_many - unregister many devices
6828 * @head: list of devices
6829 *
6830 * Note: As most callers use a stack allocated list_head,
6831 * we force a list_del() to make sure stack wont be corrupted later.
6832 */
unregister_netdevice_many(struct list_head * head)6833 void unregister_netdevice_many(struct list_head *head)
6834 {
6835 struct net_device *dev;
6836
6837 if (!list_empty(head)) {
6838 rollback_registered_many(head);
6839 list_for_each_entry(dev, head, unreg_list)
6840 net_set_todo(dev);
6841 list_del(head);
6842 }
6843 }
6844 EXPORT_SYMBOL(unregister_netdevice_many);
6845
6846 /**
6847 * unregister_netdev - remove device from the kernel
6848 * @dev: device
6849 *
6850 * This function shuts down a device interface and removes it
6851 * from the kernel tables.
6852 *
6853 * This is just a wrapper for unregister_netdevice that takes
6854 * the rtnl semaphore. In general you want to use this and not
6855 * unregister_netdevice.
6856 */
unregister_netdev(struct net_device * dev)6857 void unregister_netdev(struct net_device *dev)
6858 {
6859 rtnl_lock();
6860 unregister_netdevice(dev);
6861 rtnl_unlock();
6862 }
6863 EXPORT_SYMBOL(unregister_netdev);
6864
6865 /**
6866 * dev_change_net_namespace - move device to different nethost namespace
6867 * @dev: device
6868 * @net: network namespace
6869 * @pat: If not NULL name pattern to try if the current device name
6870 * is already taken in the destination network namespace.
6871 *
6872 * This function shuts down a device interface and moves it
6873 * to a new network namespace. On success 0 is returned, on
6874 * a failure a netagive errno code is returned.
6875 *
6876 * Callers must hold the rtnl semaphore.
6877 */
6878
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)6879 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6880 {
6881 int err;
6882
6883 ASSERT_RTNL();
6884
6885 /* Don't allow namespace local devices to be moved. */
6886 err = -EINVAL;
6887 if (dev->features & NETIF_F_NETNS_LOCAL)
6888 goto out;
6889
6890 /* Ensure the device has been registrered */
6891 if (dev->reg_state != NETREG_REGISTERED)
6892 goto out;
6893
6894 /* Get out if there is nothing todo */
6895 err = 0;
6896 if (net_eq(dev_net(dev), net))
6897 goto out;
6898
6899 /* Pick the destination device name, and ensure
6900 * we can use it in the destination network namespace.
6901 */
6902 err = -EEXIST;
6903 if (__dev_get_by_name(net, dev->name)) {
6904 /* We get here if we can't use the current device name */
6905 if (!pat)
6906 goto out;
6907 if (dev_get_valid_name(net, dev, pat) < 0)
6908 goto out;
6909 }
6910
6911 /*
6912 * And now a mini version of register_netdevice unregister_netdevice.
6913 */
6914
6915 /* If device is running close it first. */
6916 dev_close(dev);
6917
6918 /* And unlink it from device chain */
6919 err = -ENODEV;
6920 unlist_netdevice(dev);
6921
6922 synchronize_net();
6923
6924 /* Shutdown queueing discipline. */
6925 dev_shutdown(dev);
6926
6927 /* Notify protocols, that we are about to destroy
6928 this device. They should clean all the things.
6929
6930 Note that dev->reg_state stays at NETREG_REGISTERED.
6931 This is wanted because this way 8021q and macvlan know
6932 the device is just moving and can keep their slaves up.
6933 */
6934 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6935 rcu_barrier();
6936 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6937 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6938
6939 /*
6940 * Flush the unicast and multicast chains
6941 */
6942 dev_uc_flush(dev);
6943 dev_mc_flush(dev);
6944
6945 /* Send a netdev-removed uevent to the old namespace */
6946 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6947 netdev_adjacent_del_links(dev);
6948
6949 /* Actually switch the network namespace */
6950 dev_net_set(dev, net);
6951
6952 /* If there is an ifindex conflict assign a new one */
6953 if (__dev_get_by_index(net, dev->ifindex)) {
6954 int iflink = (dev->iflink == dev->ifindex);
6955 dev->ifindex = dev_new_index(net);
6956 if (iflink)
6957 dev->iflink = dev->ifindex;
6958 }
6959
6960 /* Send a netdev-add uevent to the new namespace */
6961 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6962 netdev_adjacent_add_links(dev);
6963
6964 /* Fixup kobjects */
6965 err = device_rename(&dev->dev, dev->name);
6966 WARN_ON(err);
6967
6968 /* Add the device back in the hashes */
6969 list_netdevice(dev);
6970
6971 /* Notify protocols, that a new device appeared. */
6972 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6973
6974 /*
6975 * Prevent userspace races by waiting until the network
6976 * device is fully setup before sending notifications.
6977 */
6978 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6979
6980 synchronize_net();
6981 err = 0;
6982 out:
6983 return err;
6984 }
6985 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6986
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)6987 static int dev_cpu_callback(struct notifier_block *nfb,
6988 unsigned long action,
6989 void *ocpu)
6990 {
6991 struct sk_buff **list_skb;
6992 struct sk_buff *skb;
6993 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6994 struct softnet_data *sd, *oldsd;
6995
6996 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6997 return NOTIFY_OK;
6998
6999 local_irq_disable();
7000 cpu = smp_processor_id();
7001 sd = &per_cpu(softnet_data, cpu);
7002 oldsd = &per_cpu(softnet_data, oldcpu);
7003
7004 /* Find end of our completion_queue. */
7005 list_skb = &sd->completion_queue;
7006 while (*list_skb)
7007 list_skb = &(*list_skb)->next;
7008 /* Append completion queue from offline CPU. */
7009 *list_skb = oldsd->completion_queue;
7010 oldsd->completion_queue = NULL;
7011
7012 /* Append output queue from offline CPU. */
7013 if (oldsd->output_queue) {
7014 *sd->output_queue_tailp = oldsd->output_queue;
7015 sd->output_queue_tailp = oldsd->output_queue_tailp;
7016 oldsd->output_queue = NULL;
7017 oldsd->output_queue_tailp = &oldsd->output_queue;
7018 }
7019 /* Append NAPI poll list from offline CPU, with one exception :
7020 * process_backlog() must be called by cpu owning percpu backlog.
7021 * We properly handle process_queue & input_pkt_queue later.
7022 */
7023 while (!list_empty(&oldsd->poll_list)) {
7024 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7025 struct napi_struct,
7026 poll_list);
7027
7028 list_del_init(&napi->poll_list);
7029 if (napi->poll == process_backlog)
7030 napi->state = 0;
7031 else
7032 ____napi_schedule(sd, napi);
7033 }
7034
7035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7036 local_irq_enable();
7037
7038 /* Process offline CPU's input_pkt_queue */
7039 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7040 netif_rx_internal(skb);
7041 input_queue_head_incr(oldsd);
7042 }
7043 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7044 netif_rx_internal(skb);
7045 input_queue_head_incr(oldsd);
7046 }
7047
7048 return NOTIFY_OK;
7049 }
7050
7051
7052 /**
7053 * netdev_increment_features - increment feature set by one
7054 * @all: current feature set
7055 * @one: new feature set
7056 * @mask: mask feature set
7057 *
7058 * Computes a new feature set after adding a device with feature set
7059 * @one to the master device with current feature set @all. Will not
7060 * enable anything that is off in @mask. Returns the new feature set.
7061 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)7062 netdev_features_t netdev_increment_features(netdev_features_t all,
7063 netdev_features_t one, netdev_features_t mask)
7064 {
7065 if (mask & NETIF_F_GEN_CSUM)
7066 mask |= NETIF_F_ALL_CSUM;
7067 mask |= NETIF_F_VLAN_CHALLENGED;
7068
7069 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7070 all &= one | ~NETIF_F_ALL_FOR_ALL;
7071
7072 /* If one device supports hw checksumming, set for all. */
7073 if (all & NETIF_F_GEN_CSUM)
7074 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7075
7076 return all;
7077 }
7078 EXPORT_SYMBOL(netdev_increment_features);
7079
netdev_create_hash(void)7080 static struct hlist_head * __net_init netdev_create_hash(void)
7081 {
7082 int i;
7083 struct hlist_head *hash;
7084
7085 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7086 if (hash != NULL)
7087 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7088 INIT_HLIST_HEAD(&hash[i]);
7089
7090 return hash;
7091 }
7092
7093 /* Initialize per network namespace state */
netdev_init(struct net * net)7094 static int __net_init netdev_init(struct net *net)
7095 {
7096 if (net != &init_net)
7097 INIT_LIST_HEAD(&net->dev_base_head);
7098
7099 net->dev_name_head = netdev_create_hash();
7100 if (net->dev_name_head == NULL)
7101 goto err_name;
7102
7103 net->dev_index_head = netdev_create_hash();
7104 if (net->dev_index_head == NULL)
7105 goto err_idx;
7106
7107 return 0;
7108
7109 err_idx:
7110 kfree(net->dev_name_head);
7111 err_name:
7112 return -ENOMEM;
7113 }
7114
7115 /**
7116 * netdev_drivername - network driver for the device
7117 * @dev: network device
7118 *
7119 * Determine network driver for device.
7120 */
netdev_drivername(const struct net_device * dev)7121 const char *netdev_drivername(const struct net_device *dev)
7122 {
7123 const struct device_driver *driver;
7124 const struct device *parent;
7125 const char *empty = "";
7126
7127 parent = dev->dev.parent;
7128 if (!parent)
7129 return empty;
7130
7131 driver = parent->driver;
7132 if (driver && driver->name)
7133 return driver->name;
7134 return empty;
7135 }
7136
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)7137 static void __netdev_printk(const char *level, const struct net_device *dev,
7138 struct va_format *vaf)
7139 {
7140 if (dev && dev->dev.parent) {
7141 dev_printk_emit(level[1] - '0',
7142 dev->dev.parent,
7143 "%s %s %s%s: %pV",
7144 dev_driver_string(dev->dev.parent),
7145 dev_name(dev->dev.parent),
7146 netdev_name(dev), netdev_reg_state(dev),
7147 vaf);
7148 } else if (dev) {
7149 printk("%s%s%s: %pV",
7150 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7151 } else {
7152 printk("%s(NULL net_device): %pV", level, vaf);
7153 }
7154 }
7155
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)7156 void netdev_printk(const char *level, const struct net_device *dev,
7157 const char *format, ...)
7158 {
7159 struct va_format vaf;
7160 va_list args;
7161
7162 va_start(args, format);
7163
7164 vaf.fmt = format;
7165 vaf.va = &args;
7166
7167 __netdev_printk(level, dev, &vaf);
7168
7169 va_end(args);
7170 }
7171 EXPORT_SYMBOL(netdev_printk);
7172
7173 #define define_netdev_printk_level(func, level) \
7174 void func(const struct net_device *dev, const char *fmt, ...) \
7175 { \
7176 struct va_format vaf; \
7177 va_list args; \
7178 \
7179 va_start(args, fmt); \
7180 \
7181 vaf.fmt = fmt; \
7182 vaf.va = &args; \
7183 \
7184 __netdev_printk(level, dev, &vaf); \
7185 \
7186 va_end(args); \
7187 } \
7188 EXPORT_SYMBOL(func);
7189
7190 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7191 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7192 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7193 define_netdev_printk_level(netdev_err, KERN_ERR);
7194 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7195 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7196 define_netdev_printk_level(netdev_info, KERN_INFO);
7197
netdev_exit(struct net * net)7198 static void __net_exit netdev_exit(struct net *net)
7199 {
7200 kfree(net->dev_name_head);
7201 kfree(net->dev_index_head);
7202 }
7203
7204 static struct pernet_operations __net_initdata netdev_net_ops = {
7205 .init = netdev_init,
7206 .exit = netdev_exit,
7207 };
7208
default_device_exit(struct net * net)7209 static void __net_exit default_device_exit(struct net *net)
7210 {
7211 struct net_device *dev, *aux;
7212 /*
7213 * Push all migratable network devices back to the
7214 * initial network namespace
7215 */
7216 rtnl_lock();
7217 for_each_netdev_safe(net, dev, aux) {
7218 int err;
7219 char fb_name[IFNAMSIZ];
7220
7221 /* Ignore unmoveable devices (i.e. loopback) */
7222 if (dev->features & NETIF_F_NETNS_LOCAL)
7223 continue;
7224
7225 /* Leave virtual devices for the generic cleanup */
7226 if (dev->rtnl_link_ops)
7227 continue;
7228
7229 /* Push remaining network devices to init_net */
7230 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7231 err = dev_change_net_namespace(dev, &init_net, fb_name);
7232 if (err) {
7233 pr_emerg("%s: failed to move %s to init_net: %d\n",
7234 __func__, dev->name, err);
7235 BUG();
7236 }
7237 }
7238 rtnl_unlock();
7239 }
7240
rtnl_lock_unregistering(struct list_head * net_list)7241 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7242 {
7243 /* Return with the rtnl_lock held when there are no network
7244 * devices unregistering in any network namespace in net_list.
7245 */
7246 struct net *net;
7247 bool unregistering;
7248 DEFINE_WAIT(wait);
7249
7250 for (;;) {
7251 prepare_to_wait(&netdev_unregistering_wq, &wait,
7252 TASK_UNINTERRUPTIBLE);
7253 unregistering = false;
7254 rtnl_lock();
7255 list_for_each_entry(net, net_list, exit_list) {
7256 if (net->dev_unreg_count > 0) {
7257 unregistering = true;
7258 break;
7259 }
7260 }
7261 if (!unregistering)
7262 break;
7263 __rtnl_unlock();
7264 schedule();
7265 }
7266 finish_wait(&netdev_unregistering_wq, &wait);
7267 }
7268
default_device_exit_batch(struct list_head * net_list)7269 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7270 {
7271 /* At exit all network devices most be removed from a network
7272 * namespace. Do this in the reverse order of registration.
7273 * Do this across as many network namespaces as possible to
7274 * improve batching efficiency.
7275 */
7276 struct net_device *dev;
7277 struct net *net;
7278 LIST_HEAD(dev_kill_list);
7279
7280 /* To prevent network device cleanup code from dereferencing
7281 * loopback devices or network devices that have been freed
7282 * wait here for all pending unregistrations to complete,
7283 * before unregistring the loopback device and allowing the
7284 * network namespace be freed.
7285 *
7286 * The netdev todo list containing all network devices
7287 * unregistrations that happen in default_device_exit_batch
7288 * will run in the rtnl_unlock() at the end of
7289 * default_device_exit_batch.
7290 */
7291 rtnl_lock_unregistering(net_list);
7292 list_for_each_entry(net, net_list, exit_list) {
7293 for_each_netdev_reverse(net, dev) {
7294 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7295 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7296 else
7297 unregister_netdevice_queue(dev, &dev_kill_list);
7298 }
7299 }
7300 unregister_netdevice_many(&dev_kill_list);
7301 rtnl_unlock();
7302 }
7303
7304 static struct pernet_operations __net_initdata default_device_ops = {
7305 .exit = default_device_exit,
7306 .exit_batch = default_device_exit_batch,
7307 };
7308
7309 /*
7310 * Initialize the DEV module. At boot time this walks the device list and
7311 * unhooks any devices that fail to initialise (normally hardware not
7312 * present) and leaves us with a valid list of present and active devices.
7313 *
7314 */
7315
7316 /*
7317 * This is called single threaded during boot, so no need
7318 * to take the rtnl semaphore.
7319 */
net_dev_init(void)7320 static int __init net_dev_init(void)
7321 {
7322 int i, rc = -ENOMEM;
7323
7324 BUG_ON(!dev_boot_phase);
7325
7326 if (dev_proc_init())
7327 goto out;
7328
7329 if (netdev_kobject_init())
7330 goto out;
7331
7332 INIT_LIST_HEAD(&ptype_all);
7333 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7334 INIT_LIST_HEAD(&ptype_base[i]);
7335
7336 INIT_LIST_HEAD(&offload_base);
7337
7338 if (register_pernet_subsys(&netdev_net_ops))
7339 goto out;
7340
7341 /*
7342 * Initialise the packet receive queues.
7343 */
7344
7345 for_each_possible_cpu(i) {
7346 struct softnet_data *sd = &per_cpu(softnet_data, i);
7347
7348 skb_queue_head_init(&sd->input_pkt_queue);
7349 skb_queue_head_init(&sd->process_queue);
7350 INIT_LIST_HEAD(&sd->poll_list);
7351 sd->output_queue_tailp = &sd->output_queue;
7352 #ifdef CONFIG_RPS
7353 sd->csd.func = rps_trigger_softirq;
7354 sd->csd.info = sd;
7355 sd->cpu = i;
7356 #endif
7357
7358 sd->backlog.poll = process_backlog;
7359 sd->backlog.weight = weight_p;
7360 }
7361
7362 dev_boot_phase = 0;
7363
7364 /* The loopback device is special if any other network devices
7365 * is present in a network namespace the loopback device must
7366 * be present. Since we now dynamically allocate and free the
7367 * loopback device ensure this invariant is maintained by
7368 * keeping the loopback device as the first device on the
7369 * list of network devices. Ensuring the loopback devices
7370 * is the first device that appears and the last network device
7371 * that disappears.
7372 */
7373 if (register_pernet_device(&loopback_net_ops))
7374 goto out;
7375
7376 if (register_pernet_device(&default_device_ops))
7377 goto out;
7378
7379 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7380 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7381
7382 hotcpu_notifier(dev_cpu_callback, 0);
7383 dst_init();
7384 rc = 0;
7385 out:
7386 return rc;
7387 }
7388
7389 subsys_initcall(net_dev_init);
7390