1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!ext4_has_metadata_csum(sb))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
ext4_superblock_csum_set(struct super_block * sb)149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!ext4_has_metadata_csum(sb))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
ext4_kvmalloc(size_t size,gfp_t flags)159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags | __GFP_NOWARN);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
ext4_kvzalloc(size_t size,gfp_t flags)169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags | __GFP_NOWARN);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
ext4_kvfree(void * ptr)179 void ext4_kvfree(void *ptr)
180 {
181 if (is_vmalloc_addr(ptr))
182 vfree(ptr);
183 else
184 kfree(ptr);
185
186 }
187
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
189 struct ext4_group_desc *bg)
190 {
191 return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 }
195
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
197 struct ext4_group_desc *bg)
198 {
199 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 }
203
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)204 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
205 struct ext4_group_desc *bg)
206 {
207 return le32_to_cpu(bg->bg_inode_table_lo) |
208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 }
211
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)212 __u32 ext4_free_group_clusters(struct super_block *sb,
213 struct ext4_group_desc *bg)
214 {
215 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 }
219
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)220 __u32 ext4_free_inodes_count(struct super_block *sb,
221 struct ext4_group_desc *bg)
222 {
223 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 }
227
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)228 __u32 ext4_used_dirs_count(struct super_block *sb,
229 struct ext4_group_desc *bg)
230 {
231 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 }
235
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)236 __u32 ext4_itable_unused_count(struct super_block *sb,
237 struct ext4_group_desc *bg)
238 {
239 return le16_to_cpu(bg->bg_itable_unused_lo) |
240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 }
243
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)244 void ext4_block_bitmap_set(struct super_block *sb,
245 struct ext4_group_desc *bg, ext4_fsblk_t blk)
246 {
247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 }
251
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)252 void ext4_inode_bitmap_set(struct super_block *sb,
253 struct ext4_group_desc *bg, ext4_fsblk_t blk)
254 {
255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 }
259
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)260 void ext4_inode_table_set(struct super_block *sb,
261 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 {
263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 }
267
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)268 void ext4_free_group_clusters_set(struct super_block *sb,
269 struct ext4_group_desc *bg, __u32 count)
270 {
271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 }
275
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)276 void ext4_free_inodes_set(struct super_block *sb,
277 struct ext4_group_desc *bg, __u32 count)
278 {
279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 }
283
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)284 void ext4_used_dirs_set(struct super_block *sb,
285 struct ext4_group_desc *bg, __u32 count)
286 {
287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 }
291
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)292 void ext4_itable_unused_set(struct super_block *sb,
293 struct ext4_group_desc *bg, __u32 count)
294 {
295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 }
299
300
__save_error_info(struct super_block * sb,const char * func,unsigned int line)301 static void __save_error_info(struct super_block *sb, const char *func,
302 unsigned int line)
303 {
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305
306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
307 if (bdev_read_only(sb->s_bdev))
308 return;
309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 es->s_last_error_time = cpu_to_le32(get_seconds());
311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 es->s_last_error_line = cpu_to_le32(line);
313 if (!es->s_first_error_time) {
314 es->s_first_error_time = es->s_last_error_time;
315 strncpy(es->s_first_error_func, func,
316 sizeof(es->s_first_error_func));
317 es->s_first_error_line = cpu_to_le32(line);
318 es->s_first_error_ino = es->s_last_error_ino;
319 es->s_first_error_block = es->s_last_error_block;
320 }
321 /*
322 * Start the daily error reporting function if it hasn't been
323 * started already
324 */
325 if (!es->s_error_count)
326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 le32_add_cpu(&es->s_error_count, 1);
328 }
329
save_error_info(struct super_block * sb,const char * func,unsigned int line)330 static void save_error_info(struct super_block *sb, const char *func,
331 unsigned int line)
332 {
333 __save_error_info(sb, func, line);
334 ext4_commit_super(sb, 1);
335 }
336
337 /*
338 * The del_gendisk() function uninitializes the disk-specific data
339 * structures, including the bdi structure, without telling anyone
340 * else. Once this happens, any attempt to call mark_buffer_dirty()
341 * (for example, by ext4_commit_super), will cause a kernel OOPS.
342 * This is a kludge to prevent these oops until we can put in a proper
343 * hook in del_gendisk() to inform the VFS and file system layers.
344 */
block_device_ejected(struct super_block * sb)345 static int block_device_ejected(struct super_block *sb)
346 {
347 struct inode *bd_inode = sb->s_bdev->bd_inode;
348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349
350 return bdi->dev == NULL;
351 }
352
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 struct super_block *sb = journal->j_private;
356 struct ext4_sb_info *sbi = EXT4_SB(sb);
357 int error = is_journal_aborted(journal);
358 struct ext4_journal_cb_entry *jce;
359
360 BUG_ON(txn->t_state == T_FINISHED);
361 spin_lock(&sbi->s_md_lock);
362 while (!list_empty(&txn->t_private_list)) {
363 jce = list_entry(txn->t_private_list.next,
364 struct ext4_journal_cb_entry, jce_list);
365 list_del_init(&jce->jce_list);
366 spin_unlock(&sbi->s_md_lock);
367 jce->jce_func(sb, jce, error);
368 spin_lock(&sbi->s_md_lock);
369 }
370 spin_unlock(&sbi->s_md_lock);
371 }
372
373 /* Deal with the reporting of failure conditions on a filesystem such as
374 * inconsistencies detected or read IO failures.
375 *
376 * On ext2, we can store the error state of the filesystem in the
377 * superblock. That is not possible on ext4, because we may have other
378 * write ordering constraints on the superblock which prevent us from
379 * writing it out straight away; and given that the journal is about to
380 * be aborted, we can't rely on the current, or future, transactions to
381 * write out the superblock safely.
382 *
383 * We'll just use the jbd2_journal_abort() error code to record an error in
384 * the journal instead. On recovery, the journal will complain about
385 * that error until we've noted it down and cleared it.
386 */
387
ext4_handle_error(struct super_block * sb)388 static void ext4_handle_error(struct super_block *sb)
389 {
390 if (sb->s_flags & MS_RDONLY)
391 return;
392
393 if (!test_opt(sb, ERRORS_CONT)) {
394 journal_t *journal = EXT4_SB(sb)->s_journal;
395
396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 if (journal)
398 jbd2_journal_abort(journal, -EIO);
399 }
400 if (test_opt(sb, ERRORS_RO)) {
401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 /*
403 * Make sure updated value of ->s_mount_flags will be visible
404 * before ->s_flags update
405 */
406 smp_wmb();
407 sb->s_flags |= MS_RDONLY;
408 }
409 if (test_opt(sb, ERRORS_PANIC)) {
410 if (EXT4_SB(sb)->s_journal &&
411 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
412 return;
413 panic("EXT4-fs (device %s): panic forced after error\n",
414 sb->s_id);
415 }
416 }
417
418 #define ext4_error_ratelimit(sb) \
419 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
420 "EXT4-fs error")
421
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)422 void __ext4_error(struct super_block *sb, const char *function,
423 unsigned int line, const char *fmt, ...)
424 {
425 struct va_format vaf;
426 va_list args;
427
428 if (ext4_error_ratelimit(sb)) {
429 va_start(args, fmt);
430 vaf.fmt = fmt;
431 vaf.va = &args;
432 printk(KERN_CRIT
433 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
434 sb->s_id, function, line, current->comm, &vaf);
435 va_end(args);
436 }
437 save_error_info(sb, function, line);
438 ext4_handle_error(sb);
439 }
440
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)441 void __ext4_error_inode(struct inode *inode, const char *function,
442 unsigned int line, ext4_fsblk_t block,
443 const char *fmt, ...)
444 {
445 va_list args;
446 struct va_format vaf;
447 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
448
449 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
450 es->s_last_error_block = cpu_to_le64(block);
451 if (ext4_error_ratelimit(inode->i_sb)) {
452 va_start(args, fmt);
453 vaf.fmt = fmt;
454 vaf.va = &args;
455 if (block)
456 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
457 "inode #%lu: block %llu: comm %s: %pV\n",
458 inode->i_sb->s_id, function, line, inode->i_ino,
459 block, current->comm, &vaf);
460 else
461 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
462 "inode #%lu: comm %s: %pV\n",
463 inode->i_sb->s_id, function, line, inode->i_ino,
464 current->comm, &vaf);
465 va_end(args);
466 }
467 save_error_info(inode->i_sb, function, line);
468 ext4_handle_error(inode->i_sb);
469 }
470
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)471 void __ext4_error_file(struct file *file, const char *function,
472 unsigned int line, ext4_fsblk_t block,
473 const char *fmt, ...)
474 {
475 va_list args;
476 struct va_format vaf;
477 struct ext4_super_block *es;
478 struct inode *inode = file_inode(file);
479 char pathname[80], *path;
480
481 es = EXT4_SB(inode->i_sb)->s_es;
482 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
483 if (ext4_error_ratelimit(inode->i_sb)) {
484 path = d_path(&(file->f_path), pathname, sizeof(pathname));
485 if (IS_ERR(path))
486 path = "(unknown)";
487 va_start(args, fmt);
488 vaf.fmt = fmt;
489 vaf.va = &args;
490 if (block)
491 printk(KERN_CRIT
492 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
493 "block %llu: comm %s: path %s: %pV\n",
494 inode->i_sb->s_id, function, line, inode->i_ino,
495 block, current->comm, path, &vaf);
496 else
497 printk(KERN_CRIT
498 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
499 "comm %s: path %s: %pV\n",
500 inode->i_sb->s_id, function, line, inode->i_ino,
501 current->comm, path, &vaf);
502 va_end(args);
503 }
504 save_error_info(inode->i_sb, function, line);
505 ext4_handle_error(inode->i_sb);
506 }
507
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])508 const char *ext4_decode_error(struct super_block *sb, int errno,
509 char nbuf[16])
510 {
511 char *errstr = NULL;
512
513 switch (errno) {
514 case -EIO:
515 errstr = "IO failure";
516 break;
517 case -ENOMEM:
518 errstr = "Out of memory";
519 break;
520 case -EROFS:
521 if (!sb || (EXT4_SB(sb)->s_journal &&
522 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
523 errstr = "Journal has aborted";
524 else
525 errstr = "Readonly filesystem";
526 break;
527 default:
528 /* If the caller passed in an extra buffer for unknown
529 * errors, textualise them now. Else we just return
530 * NULL. */
531 if (nbuf) {
532 /* Check for truncated error codes... */
533 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
534 errstr = nbuf;
535 }
536 break;
537 }
538
539 return errstr;
540 }
541
542 /* __ext4_std_error decodes expected errors from journaling functions
543 * automatically and invokes the appropriate error response. */
544
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)545 void __ext4_std_error(struct super_block *sb, const char *function,
546 unsigned int line, int errno)
547 {
548 char nbuf[16];
549 const char *errstr;
550
551 /* Special case: if the error is EROFS, and we're not already
552 * inside a transaction, then there's really no point in logging
553 * an error. */
554 if (errno == -EROFS && journal_current_handle() == NULL &&
555 (sb->s_flags & MS_RDONLY))
556 return;
557
558 if (ext4_error_ratelimit(sb)) {
559 errstr = ext4_decode_error(sb, errno, nbuf);
560 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
561 sb->s_id, function, line, errstr);
562 }
563
564 save_error_info(sb, function, line);
565 ext4_handle_error(sb);
566 }
567
568 /*
569 * ext4_abort is a much stronger failure handler than ext4_error. The
570 * abort function may be used to deal with unrecoverable failures such
571 * as journal IO errors or ENOMEM at a critical moment in log management.
572 *
573 * We unconditionally force the filesystem into an ABORT|READONLY state,
574 * unless the error response on the fs has been set to panic in which
575 * case we take the easy way out and panic immediately.
576 */
577
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)578 void __ext4_abort(struct super_block *sb, const char *function,
579 unsigned int line, const char *fmt, ...)
580 {
581 va_list args;
582
583 save_error_info(sb, function, line);
584 va_start(args, fmt);
585 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
586 function, line);
587 vprintk(fmt, args);
588 printk("\n");
589 va_end(args);
590
591 if ((sb->s_flags & MS_RDONLY) == 0) {
592 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
593 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
594 /*
595 * Make sure updated value of ->s_mount_flags will be visible
596 * before ->s_flags update
597 */
598 smp_wmb();
599 sb->s_flags |= MS_RDONLY;
600 if (EXT4_SB(sb)->s_journal)
601 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
602 save_error_info(sb, function, line);
603 }
604 if (test_opt(sb, ERRORS_PANIC)) {
605 if (EXT4_SB(sb)->s_journal &&
606 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
607 return;
608 panic("EXT4-fs panic from previous error\n");
609 }
610 }
611
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)612 void __ext4_msg(struct super_block *sb,
613 const char *prefix, const char *fmt, ...)
614 {
615 struct va_format vaf;
616 va_list args;
617
618 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
619 return;
620
621 va_start(args, fmt);
622 vaf.fmt = fmt;
623 vaf.va = &args;
624 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
625 va_end(args);
626 }
627
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)628 void __ext4_warning(struct super_block *sb, const char *function,
629 unsigned int line, const char *fmt, ...)
630 {
631 struct va_format vaf;
632 va_list args;
633
634 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
635 "EXT4-fs warning"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
642 sb->s_id, function, line, &vaf);
643 va_end(args);
644 }
645
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)646 void __ext4_grp_locked_error(const char *function, unsigned int line,
647 struct super_block *sb, ext4_group_t grp,
648 unsigned long ino, ext4_fsblk_t block,
649 const char *fmt, ...)
650 __releases(bitlock)
651 __acquires(bitlock)
652 {
653 struct va_format vaf;
654 va_list args;
655 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
656
657 es->s_last_error_ino = cpu_to_le32(ino);
658 es->s_last_error_block = cpu_to_le64(block);
659 __save_error_info(sb, function, line);
660
661 if (ext4_error_ratelimit(sb)) {
662 va_start(args, fmt);
663 vaf.fmt = fmt;
664 vaf.va = &args;
665 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
666 sb->s_id, function, line, grp);
667 if (ino)
668 printk(KERN_CONT "inode %lu: ", ino);
669 if (block)
670 printk(KERN_CONT "block %llu:",
671 (unsigned long long) block);
672 printk(KERN_CONT "%pV\n", &vaf);
673 va_end(args);
674 }
675
676 if (test_opt(sb, ERRORS_CONT)) {
677 ext4_commit_super(sb, 0);
678 return;
679 }
680
681 ext4_unlock_group(sb, grp);
682 ext4_handle_error(sb);
683 /*
684 * We only get here in the ERRORS_RO case; relocking the group
685 * may be dangerous, but nothing bad will happen since the
686 * filesystem will have already been marked read/only and the
687 * journal has been aborted. We return 1 as a hint to callers
688 * who might what to use the return value from
689 * ext4_grp_locked_error() to distinguish between the
690 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
691 * aggressively from the ext4 function in question, with a
692 * more appropriate error code.
693 */
694 ext4_lock_group(sb, grp);
695 return;
696 }
697
ext4_update_dynamic_rev(struct super_block * sb)698 void ext4_update_dynamic_rev(struct super_block *sb)
699 {
700 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
701
702 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
703 return;
704
705 ext4_warning(sb,
706 "updating to rev %d because of new feature flag, "
707 "running e2fsck is recommended",
708 EXT4_DYNAMIC_REV);
709
710 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
711 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
712 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
713 /* leave es->s_feature_*compat flags alone */
714 /* es->s_uuid will be set by e2fsck if empty */
715
716 /*
717 * The rest of the superblock fields should be zero, and if not it
718 * means they are likely already in use, so leave them alone. We
719 * can leave it up to e2fsck to clean up any inconsistencies there.
720 */
721 }
722
723 /*
724 * Open the external journal device
725 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)726 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
727 {
728 struct block_device *bdev;
729 char b[BDEVNAME_SIZE];
730
731 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
732 if (IS_ERR(bdev))
733 goto fail;
734 return bdev;
735
736 fail:
737 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
738 __bdevname(dev, b), PTR_ERR(bdev));
739 return NULL;
740 }
741
742 /*
743 * Release the journal device
744 */
ext4_blkdev_put(struct block_device * bdev)745 static void ext4_blkdev_put(struct block_device *bdev)
746 {
747 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
748 }
749
ext4_blkdev_remove(struct ext4_sb_info * sbi)750 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
751 {
752 struct block_device *bdev;
753 bdev = sbi->journal_bdev;
754 if (bdev) {
755 ext4_blkdev_put(bdev);
756 sbi->journal_bdev = NULL;
757 }
758 }
759
orphan_list_entry(struct list_head * l)760 static inline struct inode *orphan_list_entry(struct list_head *l)
761 {
762 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
763 }
764
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)765 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
766 {
767 struct list_head *l;
768
769 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
770 le32_to_cpu(sbi->s_es->s_last_orphan));
771
772 printk(KERN_ERR "sb_info orphan list:\n");
773 list_for_each(l, &sbi->s_orphan) {
774 struct inode *inode = orphan_list_entry(l);
775 printk(KERN_ERR " "
776 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
777 inode->i_sb->s_id, inode->i_ino, inode,
778 inode->i_mode, inode->i_nlink,
779 NEXT_ORPHAN(inode));
780 }
781 }
782
ext4_put_super(struct super_block * sb)783 static void ext4_put_super(struct super_block *sb)
784 {
785 struct ext4_sb_info *sbi = EXT4_SB(sb);
786 struct ext4_super_block *es = sbi->s_es;
787 int i, err;
788
789 ext4_unregister_li_request(sb);
790 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
791
792 flush_workqueue(sbi->rsv_conversion_wq);
793 destroy_workqueue(sbi->rsv_conversion_wq);
794
795 if (sbi->s_journal) {
796 err = jbd2_journal_destroy(sbi->s_journal);
797 sbi->s_journal = NULL;
798 if (err < 0)
799 ext4_abort(sb, "Couldn't clean up the journal");
800 }
801
802 ext4_es_unregister_shrinker(sbi);
803 del_timer_sync(&sbi->s_err_report);
804 ext4_release_system_zone(sb);
805 ext4_mb_release(sb);
806 ext4_ext_release(sb);
807 ext4_xattr_put_super(sb);
808
809 if (!(sb->s_flags & MS_RDONLY)) {
810 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
811 es->s_state = cpu_to_le16(sbi->s_mount_state);
812 }
813 if (!(sb->s_flags & MS_RDONLY))
814 ext4_commit_super(sb, 1);
815
816 if (sbi->s_proc) {
817 remove_proc_entry("options", sbi->s_proc);
818 remove_proc_entry(sb->s_id, ext4_proc_root);
819 }
820 kobject_del(&sbi->s_kobj);
821
822 for (i = 0; i < sbi->s_gdb_count; i++)
823 brelse(sbi->s_group_desc[i]);
824 ext4_kvfree(sbi->s_group_desc);
825 ext4_kvfree(sbi->s_flex_groups);
826 percpu_counter_destroy(&sbi->s_freeclusters_counter);
827 percpu_counter_destroy(&sbi->s_freeinodes_counter);
828 percpu_counter_destroy(&sbi->s_dirs_counter);
829 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
830 brelse(sbi->s_sbh);
831 #ifdef CONFIG_QUOTA
832 for (i = 0; i < EXT4_MAXQUOTAS; i++)
833 kfree(sbi->s_qf_names[i]);
834 #endif
835
836 /* Debugging code just in case the in-memory inode orphan list
837 * isn't empty. The on-disk one can be non-empty if we've
838 * detected an error and taken the fs readonly, but the
839 * in-memory list had better be clean by this point. */
840 if (!list_empty(&sbi->s_orphan))
841 dump_orphan_list(sb, sbi);
842 J_ASSERT(list_empty(&sbi->s_orphan));
843
844 sync_blockdev(sb->s_bdev);
845 invalidate_bdev(sb->s_bdev);
846 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
847 /*
848 * Invalidate the journal device's buffers. We don't want them
849 * floating about in memory - the physical journal device may
850 * hotswapped, and it breaks the `ro-after' testing code.
851 */
852 sync_blockdev(sbi->journal_bdev);
853 invalidate_bdev(sbi->journal_bdev);
854 ext4_blkdev_remove(sbi);
855 }
856 if (sbi->s_mb_cache) {
857 ext4_xattr_destroy_cache(sbi->s_mb_cache);
858 sbi->s_mb_cache = NULL;
859 }
860 if (sbi->s_mmp_tsk)
861 kthread_stop(sbi->s_mmp_tsk);
862 sb->s_fs_info = NULL;
863 /*
864 * Now that we are completely done shutting down the
865 * superblock, we need to actually destroy the kobject.
866 */
867 kobject_put(&sbi->s_kobj);
868 wait_for_completion(&sbi->s_kobj_unregister);
869 if (sbi->s_chksum_driver)
870 crypto_free_shash(sbi->s_chksum_driver);
871 kfree(sbi->s_blockgroup_lock);
872 kfree(sbi);
873 }
874
875 static struct kmem_cache *ext4_inode_cachep;
876
877 /*
878 * Called inside transaction, so use GFP_NOFS
879 */
ext4_alloc_inode(struct super_block * sb)880 static struct inode *ext4_alloc_inode(struct super_block *sb)
881 {
882 struct ext4_inode_info *ei;
883
884 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
885 if (!ei)
886 return NULL;
887
888 ei->vfs_inode.i_version = 1;
889 spin_lock_init(&ei->i_raw_lock);
890 INIT_LIST_HEAD(&ei->i_prealloc_list);
891 spin_lock_init(&ei->i_prealloc_lock);
892 ext4_es_init_tree(&ei->i_es_tree);
893 rwlock_init(&ei->i_es_lock);
894 INIT_LIST_HEAD(&ei->i_es_lru);
895 ei->i_es_all_nr = 0;
896 ei->i_es_lru_nr = 0;
897 ei->i_touch_when = 0;
898 ei->i_reserved_data_blocks = 0;
899 ei->i_reserved_meta_blocks = 0;
900 ei->i_allocated_meta_blocks = 0;
901 ei->i_da_metadata_calc_len = 0;
902 ei->i_da_metadata_calc_last_lblock = 0;
903 spin_lock_init(&(ei->i_block_reservation_lock));
904 #ifdef CONFIG_QUOTA
905 ei->i_reserved_quota = 0;
906 #endif
907 ei->jinode = NULL;
908 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
909 spin_lock_init(&ei->i_completed_io_lock);
910 ei->i_sync_tid = 0;
911 ei->i_datasync_tid = 0;
912 atomic_set(&ei->i_ioend_count, 0);
913 atomic_set(&ei->i_unwritten, 0);
914 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
915 #ifdef CONFIG_EXT4_FS_ENCRYPTION
916 ei->i_crypt_info = NULL;
917 #endif
918 return &ei->vfs_inode;
919 }
920
ext4_drop_inode(struct inode * inode)921 static int ext4_drop_inode(struct inode *inode)
922 {
923 int drop = generic_drop_inode(inode);
924
925 trace_ext4_drop_inode(inode, drop);
926 return drop;
927 }
928
ext4_i_callback(struct rcu_head * head)929 static void ext4_i_callback(struct rcu_head *head)
930 {
931 struct inode *inode = container_of(head, struct inode, i_rcu);
932 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
933 }
934
ext4_destroy_inode(struct inode * inode)935 static void ext4_destroy_inode(struct inode *inode)
936 {
937 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
938 ext4_msg(inode->i_sb, KERN_ERR,
939 "Inode %lu (%p): orphan list check failed!",
940 inode->i_ino, EXT4_I(inode));
941 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
942 EXT4_I(inode), sizeof(struct ext4_inode_info),
943 true);
944 dump_stack();
945 }
946 call_rcu(&inode->i_rcu, ext4_i_callback);
947 }
948
init_once(void * foo)949 static void init_once(void *foo)
950 {
951 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
952
953 INIT_LIST_HEAD(&ei->i_orphan);
954 init_rwsem(&ei->xattr_sem);
955 init_rwsem(&ei->i_data_sem);
956 inode_init_once(&ei->vfs_inode);
957 }
958
init_inodecache(void)959 static int __init init_inodecache(void)
960 {
961 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
962 sizeof(struct ext4_inode_info),
963 0, (SLAB_RECLAIM_ACCOUNT|
964 SLAB_MEM_SPREAD),
965 init_once);
966 if (ext4_inode_cachep == NULL)
967 return -ENOMEM;
968 return 0;
969 }
970
destroy_inodecache(void)971 static void destroy_inodecache(void)
972 {
973 /*
974 * Make sure all delayed rcu free inodes are flushed before we
975 * destroy cache.
976 */
977 rcu_barrier();
978 kmem_cache_destroy(ext4_inode_cachep);
979 }
980
ext4_clear_inode(struct inode * inode)981 void ext4_clear_inode(struct inode *inode)
982 {
983 invalidate_inode_buffers(inode);
984 clear_inode(inode);
985 dquot_drop(inode);
986 ext4_discard_preallocations(inode);
987 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
988 ext4_es_lru_del(inode);
989 if (EXT4_I(inode)->jinode) {
990 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
991 EXT4_I(inode)->jinode);
992 jbd2_free_inode(EXT4_I(inode)->jinode);
993 EXT4_I(inode)->jinode = NULL;
994 }
995 #ifdef CONFIG_EXT4_FS_ENCRYPTION
996 if (EXT4_I(inode)->i_crypt_info)
997 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
998 #endif
999 }
1000
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1001 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1002 u64 ino, u32 generation)
1003 {
1004 struct inode *inode;
1005
1006 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1007 return ERR_PTR(-ESTALE);
1008 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1009 return ERR_PTR(-ESTALE);
1010
1011 /* iget isn't really right if the inode is currently unallocated!!
1012 *
1013 * ext4_read_inode will return a bad_inode if the inode had been
1014 * deleted, so we should be safe.
1015 *
1016 * Currently we don't know the generation for parent directory, so
1017 * a generation of 0 means "accept any"
1018 */
1019 inode = ext4_iget_normal(sb, ino);
1020 if (IS_ERR(inode))
1021 return ERR_CAST(inode);
1022 if (generation && inode->i_generation != generation) {
1023 iput(inode);
1024 return ERR_PTR(-ESTALE);
1025 }
1026
1027 return inode;
1028 }
1029
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1030 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1031 int fh_len, int fh_type)
1032 {
1033 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1034 ext4_nfs_get_inode);
1035 }
1036
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1037 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1038 int fh_len, int fh_type)
1039 {
1040 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1041 ext4_nfs_get_inode);
1042 }
1043
1044 /*
1045 * Try to release metadata pages (indirect blocks, directories) which are
1046 * mapped via the block device. Since these pages could have journal heads
1047 * which would prevent try_to_free_buffers() from freeing them, we must use
1048 * jbd2 layer's try_to_free_buffers() function to release them.
1049 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1050 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1051 gfp_t wait)
1052 {
1053 journal_t *journal = EXT4_SB(sb)->s_journal;
1054
1055 WARN_ON(PageChecked(page));
1056 if (!page_has_buffers(page))
1057 return 0;
1058 if (journal)
1059 return jbd2_journal_try_to_free_buffers(journal, page,
1060 wait & ~__GFP_WAIT);
1061 return try_to_free_buffers(page);
1062 }
1063
1064 #ifdef CONFIG_QUOTA
1065 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1066 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1067
1068 static int ext4_write_dquot(struct dquot *dquot);
1069 static int ext4_acquire_dquot(struct dquot *dquot);
1070 static int ext4_release_dquot(struct dquot *dquot);
1071 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1072 static int ext4_write_info(struct super_block *sb, int type);
1073 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1074 struct path *path);
1075 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1076 int format_id);
1077 static int ext4_quota_off(struct super_block *sb, int type);
1078 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1079 static int ext4_quota_on_mount(struct super_block *sb, int type);
1080 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1081 size_t len, loff_t off);
1082 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1083 const char *data, size_t len, loff_t off);
1084 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1085 unsigned int flags);
1086 static int ext4_enable_quotas(struct super_block *sb);
1087
1088 static const struct dquot_operations ext4_quota_operations = {
1089 .get_reserved_space = ext4_get_reserved_space,
1090 .write_dquot = ext4_write_dquot,
1091 .acquire_dquot = ext4_acquire_dquot,
1092 .release_dquot = ext4_release_dquot,
1093 .mark_dirty = ext4_mark_dquot_dirty,
1094 .write_info = ext4_write_info,
1095 .alloc_dquot = dquot_alloc,
1096 .destroy_dquot = dquot_destroy,
1097 };
1098
1099 static const struct quotactl_ops ext4_qctl_operations = {
1100 .quota_on = ext4_quota_on,
1101 .quota_off = ext4_quota_off,
1102 .quota_sync = dquot_quota_sync,
1103 .get_info = dquot_get_dqinfo,
1104 .set_info = dquot_set_dqinfo,
1105 .get_dqblk = dquot_get_dqblk,
1106 .set_dqblk = dquot_set_dqblk
1107 };
1108
1109 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1110 .quota_on_meta = ext4_quota_on_sysfile,
1111 .quota_off = ext4_quota_off_sysfile,
1112 .quota_sync = dquot_quota_sync,
1113 .get_info = dquot_get_dqinfo,
1114 .set_info = dquot_set_dqinfo,
1115 .get_dqblk = dquot_get_dqblk,
1116 .set_dqblk = dquot_set_dqblk
1117 };
1118 #endif
1119
1120 static const struct super_operations ext4_sops = {
1121 .alloc_inode = ext4_alloc_inode,
1122 .destroy_inode = ext4_destroy_inode,
1123 .write_inode = ext4_write_inode,
1124 .dirty_inode = ext4_dirty_inode,
1125 .drop_inode = ext4_drop_inode,
1126 .evict_inode = ext4_evict_inode,
1127 .put_super = ext4_put_super,
1128 .sync_fs = ext4_sync_fs,
1129 .freeze_fs = ext4_freeze,
1130 .unfreeze_fs = ext4_unfreeze,
1131 .statfs = ext4_statfs,
1132 .remount_fs = ext4_remount,
1133 .show_options = ext4_show_options,
1134 #ifdef CONFIG_QUOTA
1135 .quota_read = ext4_quota_read,
1136 .quota_write = ext4_quota_write,
1137 #endif
1138 .bdev_try_to_free_page = bdev_try_to_free_page,
1139 };
1140
1141 static const struct export_operations ext4_export_ops = {
1142 .fh_to_dentry = ext4_fh_to_dentry,
1143 .fh_to_parent = ext4_fh_to_parent,
1144 .get_parent = ext4_get_parent,
1145 };
1146
1147 enum {
1148 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1149 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1150 Opt_nouid32, Opt_debug, Opt_removed,
1151 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1152 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1153 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1154 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1155 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1156 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1157 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1158 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1159 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1160 Opt_usrquota, Opt_grpquota, Opt_i_version,
1161 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1162 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1163 Opt_inode_readahead_blks, Opt_journal_ioprio,
1164 Opt_dioread_nolock, Opt_dioread_lock,
1165 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1166 Opt_max_dir_size_kb,
1167 };
1168
1169 static const match_table_t tokens = {
1170 {Opt_bsd_df, "bsddf"},
1171 {Opt_minix_df, "minixdf"},
1172 {Opt_grpid, "grpid"},
1173 {Opt_grpid, "bsdgroups"},
1174 {Opt_nogrpid, "nogrpid"},
1175 {Opt_nogrpid, "sysvgroups"},
1176 {Opt_resgid, "resgid=%u"},
1177 {Opt_resuid, "resuid=%u"},
1178 {Opt_sb, "sb=%u"},
1179 {Opt_err_cont, "errors=continue"},
1180 {Opt_err_panic, "errors=panic"},
1181 {Opt_err_ro, "errors=remount-ro"},
1182 {Opt_nouid32, "nouid32"},
1183 {Opt_debug, "debug"},
1184 {Opt_removed, "oldalloc"},
1185 {Opt_removed, "orlov"},
1186 {Opt_user_xattr, "user_xattr"},
1187 {Opt_nouser_xattr, "nouser_xattr"},
1188 {Opt_acl, "acl"},
1189 {Opt_noacl, "noacl"},
1190 {Opt_noload, "norecovery"},
1191 {Opt_noload, "noload"},
1192 {Opt_removed, "nobh"},
1193 {Opt_removed, "bh"},
1194 {Opt_commit, "commit=%u"},
1195 {Opt_min_batch_time, "min_batch_time=%u"},
1196 {Opt_max_batch_time, "max_batch_time=%u"},
1197 {Opt_journal_dev, "journal_dev=%u"},
1198 {Opt_journal_path, "journal_path=%s"},
1199 {Opt_journal_checksum, "journal_checksum"},
1200 {Opt_journal_async_commit, "journal_async_commit"},
1201 {Opt_abort, "abort"},
1202 {Opt_data_journal, "data=journal"},
1203 {Opt_data_ordered, "data=ordered"},
1204 {Opt_data_writeback, "data=writeback"},
1205 {Opt_data_err_abort, "data_err=abort"},
1206 {Opt_data_err_ignore, "data_err=ignore"},
1207 {Opt_offusrjquota, "usrjquota="},
1208 {Opt_usrjquota, "usrjquota=%s"},
1209 {Opt_offgrpjquota, "grpjquota="},
1210 {Opt_grpjquota, "grpjquota=%s"},
1211 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1212 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1213 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1214 {Opt_grpquota, "grpquota"},
1215 {Opt_noquota, "noquota"},
1216 {Opt_quota, "quota"},
1217 {Opt_usrquota, "usrquota"},
1218 {Opt_barrier, "barrier=%u"},
1219 {Opt_barrier, "barrier"},
1220 {Opt_nobarrier, "nobarrier"},
1221 {Opt_i_version, "i_version"},
1222 {Opt_stripe, "stripe=%u"},
1223 {Opt_delalloc, "delalloc"},
1224 {Opt_nodelalloc, "nodelalloc"},
1225 {Opt_removed, "mblk_io_submit"},
1226 {Opt_removed, "nomblk_io_submit"},
1227 {Opt_block_validity, "block_validity"},
1228 {Opt_noblock_validity, "noblock_validity"},
1229 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1230 {Opt_journal_ioprio, "journal_ioprio=%u"},
1231 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1232 {Opt_auto_da_alloc, "auto_da_alloc"},
1233 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1234 {Opt_dioread_nolock, "dioread_nolock"},
1235 {Opt_dioread_lock, "dioread_lock"},
1236 {Opt_discard, "discard"},
1237 {Opt_nodiscard, "nodiscard"},
1238 {Opt_init_itable, "init_itable=%u"},
1239 {Opt_init_itable, "init_itable"},
1240 {Opt_noinit_itable, "noinit_itable"},
1241 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1242 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1243 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1244 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1245 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1246 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1247 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1248 {Opt_err, NULL},
1249 };
1250
get_sb_block(void ** data)1251 static ext4_fsblk_t get_sb_block(void **data)
1252 {
1253 ext4_fsblk_t sb_block;
1254 char *options = (char *) *data;
1255
1256 if (!options || strncmp(options, "sb=", 3) != 0)
1257 return 1; /* Default location */
1258
1259 options += 3;
1260 /* TODO: use simple_strtoll with >32bit ext4 */
1261 sb_block = simple_strtoul(options, &options, 0);
1262 if (*options && *options != ',') {
1263 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1264 (char *) *data);
1265 return 1;
1266 }
1267 if (*options == ',')
1268 options++;
1269 *data = (void *) options;
1270
1271 return sb_block;
1272 }
1273
1274 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1275 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1276 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1277
1278 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1279 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1280 {
1281 struct ext4_sb_info *sbi = EXT4_SB(sb);
1282 char *qname;
1283 int ret = -1;
1284
1285 if (sb_any_quota_loaded(sb) &&
1286 !sbi->s_qf_names[qtype]) {
1287 ext4_msg(sb, KERN_ERR,
1288 "Cannot change journaled "
1289 "quota options when quota turned on");
1290 return -1;
1291 }
1292 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1293 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1294 "ignored when QUOTA feature is enabled");
1295 return 1;
1296 }
1297 qname = match_strdup(args);
1298 if (!qname) {
1299 ext4_msg(sb, KERN_ERR,
1300 "Not enough memory for storing quotafile name");
1301 return -1;
1302 }
1303 if (sbi->s_qf_names[qtype]) {
1304 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1305 ret = 1;
1306 else
1307 ext4_msg(sb, KERN_ERR,
1308 "%s quota file already specified",
1309 QTYPE2NAME(qtype));
1310 goto errout;
1311 }
1312 if (strchr(qname, '/')) {
1313 ext4_msg(sb, KERN_ERR,
1314 "quotafile must be on filesystem root");
1315 goto errout;
1316 }
1317 sbi->s_qf_names[qtype] = qname;
1318 set_opt(sb, QUOTA);
1319 return 1;
1320 errout:
1321 kfree(qname);
1322 return ret;
1323 }
1324
clear_qf_name(struct super_block * sb,int qtype)1325 static int clear_qf_name(struct super_block *sb, int qtype)
1326 {
1327
1328 struct ext4_sb_info *sbi = EXT4_SB(sb);
1329
1330 if (sb_any_quota_loaded(sb) &&
1331 sbi->s_qf_names[qtype]) {
1332 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1333 " when quota turned on");
1334 return -1;
1335 }
1336 kfree(sbi->s_qf_names[qtype]);
1337 sbi->s_qf_names[qtype] = NULL;
1338 return 1;
1339 }
1340 #endif
1341
1342 #define MOPT_SET 0x0001
1343 #define MOPT_CLEAR 0x0002
1344 #define MOPT_NOSUPPORT 0x0004
1345 #define MOPT_EXPLICIT 0x0008
1346 #define MOPT_CLEAR_ERR 0x0010
1347 #define MOPT_GTE0 0x0020
1348 #ifdef CONFIG_QUOTA
1349 #define MOPT_Q 0
1350 #define MOPT_QFMT 0x0040
1351 #else
1352 #define MOPT_Q MOPT_NOSUPPORT
1353 #define MOPT_QFMT MOPT_NOSUPPORT
1354 #endif
1355 #define MOPT_DATAJ 0x0080
1356 #define MOPT_NO_EXT2 0x0100
1357 #define MOPT_NO_EXT3 0x0200
1358 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1359 #define MOPT_STRING 0x0400
1360
1361 static const struct mount_opts {
1362 int token;
1363 int mount_opt;
1364 int flags;
1365 } ext4_mount_opts[] = {
1366 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1367 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1368 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1369 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1370 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1371 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1372 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1373 MOPT_EXT4_ONLY | MOPT_SET},
1374 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1375 MOPT_EXT4_ONLY | MOPT_CLEAR},
1376 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1377 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1378 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1379 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1380 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1381 MOPT_EXT4_ONLY | MOPT_CLEAR},
1382 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1383 MOPT_EXT4_ONLY | MOPT_SET},
1384 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1385 EXT4_MOUNT_JOURNAL_CHECKSUM),
1386 MOPT_EXT4_ONLY | MOPT_SET},
1387 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1388 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1389 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1390 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1391 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1392 MOPT_NO_EXT2 | MOPT_SET},
1393 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1394 MOPT_NO_EXT2 | MOPT_CLEAR},
1395 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1396 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1397 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1398 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1399 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1400 {Opt_commit, 0, MOPT_GTE0},
1401 {Opt_max_batch_time, 0, MOPT_GTE0},
1402 {Opt_min_batch_time, 0, MOPT_GTE0},
1403 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1404 {Opt_init_itable, 0, MOPT_GTE0},
1405 {Opt_stripe, 0, MOPT_GTE0},
1406 {Opt_resuid, 0, MOPT_GTE0},
1407 {Opt_resgid, 0, MOPT_GTE0},
1408 {Opt_journal_dev, 0, MOPT_GTE0},
1409 {Opt_journal_path, 0, MOPT_STRING},
1410 {Opt_journal_ioprio, 0, MOPT_GTE0},
1411 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1412 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1413 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1414 MOPT_NO_EXT2 | MOPT_DATAJ},
1415 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1416 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1417 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1418 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1419 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1420 #else
1421 {Opt_acl, 0, MOPT_NOSUPPORT},
1422 {Opt_noacl, 0, MOPT_NOSUPPORT},
1423 #endif
1424 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1425 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1426 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1427 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1428 MOPT_SET | MOPT_Q},
1429 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1430 MOPT_SET | MOPT_Q},
1431 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1432 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1433 {Opt_usrjquota, 0, MOPT_Q},
1434 {Opt_grpjquota, 0, MOPT_Q},
1435 {Opt_offusrjquota, 0, MOPT_Q},
1436 {Opt_offgrpjquota, 0, MOPT_Q},
1437 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1438 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1439 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1440 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1441 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1442 {Opt_err, 0, 0}
1443 };
1444
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1445 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1446 substring_t *args, unsigned long *journal_devnum,
1447 unsigned int *journal_ioprio, int is_remount)
1448 {
1449 struct ext4_sb_info *sbi = EXT4_SB(sb);
1450 const struct mount_opts *m;
1451 kuid_t uid;
1452 kgid_t gid;
1453 int arg = 0;
1454
1455 #ifdef CONFIG_QUOTA
1456 if (token == Opt_usrjquota)
1457 return set_qf_name(sb, USRQUOTA, &args[0]);
1458 else if (token == Opt_grpjquota)
1459 return set_qf_name(sb, GRPQUOTA, &args[0]);
1460 else if (token == Opt_offusrjquota)
1461 return clear_qf_name(sb, USRQUOTA);
1462 else if (token == Opt_offgrpjquota)
1463 return clear_qf_name(sb, GRPQUOTA);
1464 #endif
1465 switch (token) {
1466 case Opt_noacl:
1467 case Opt_nouser_xattr:
1468 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1469 break;
1470 case Opt_sb:
1471 return 1; /* handled by get_sb_block() */
1472 case Opt_removed:
1473 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1474 return 1;
1475 case Opt_abort:
1476 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1477 return 1;
1478 case Opt_i_version:
1479 sb->s_flags |= MS_I_VERSION;
1480 return 1;
1481 }
1482
1483 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1484 if (token == m->token)
1485 break;
1486
1487 if (m->token == Opt_err) {
1488 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1489 "or missing value", opt);
1490 return -1;
1491 }
1492
1493 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1494 ext4_msg(sb, KERN_ERR,
1495 "Mount option \"%s\" incompatible with ext2", opt);
1496 return -1;
1497 }
1498 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1499 ext4_msg(sb, KERN_ERR,
1500 "Mount option \"%s\" incompatible with ext3", opt);
1501 return -1;
1502 }
1503
1504 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1505 return -1;
1506 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1507 return -1;
1508 if (m->flags & MOPT_EXPLICIT)
1509 set_opt2(sb, EXPLICIT_DELALLOC);
1510 if (m->flags & MOPT_CLEAR_ERR)
1511 clear_opt(sb, ERRORS_MASK);
1512 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1513 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1514 "options when quota turned on");
1515 return -1;
1516 }
1517
1518 if (m->flags & MOPT_NOSUPPORT) {
1519 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1520 } else if (token == Opt_commit) {
1521 if (arg == 0)
1522 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1523 sbi->s_commit_interval = HZ * arg;
1524 } else if (token == Opt_max_batch_time) {
1525 sbi->s_max_batch_time = arg;
1526 } else if (token == Opt_min_batch_time) {
1527 sbi->s_min_batch_time = arg;
1528 } else if (token == Opt_inode_readahead_blks) {
1529 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1530 ext4_msg(sb, KERN_ERR,
1531 "EXT4-fs: inode_readahead_blks must be "
1532 "0 or a power of 2 smaller than 2^31");
1533 return -1;
1534 }
1535 sbi->s_inode_readahead_blks = arg;
1536 } else if (token == Opt_init_itable) {
1537 set_opt(sb, INIT_INODE_TABLE);
1538 if (!args->from)
1539 arg = EXT4_DEF_LI_WAIT_MULT;
1540 sbi->s_li_wait_mult = arg;
1541 } else if (token == Opt_max_dir_size_kb) {
1542 sbi->s_max_dir_size_kb = arg;
1543 } else if (token == Opt_stripe) {
1544 sbi->s_stripe = arg;
1545 } else if (token == Opt_resuid) {
1546 uid = make_kuid(current_user_ns(), arg);
1547 if (!uid_valid(uid)) {
1548 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1549 return -1;
1550 }
1551 sbi->s_resuid = uid;
1552 } else if (token == Opt_resgid) {
1553 gid = make_kgid(current_user_ns(), arg);
1554 if (!gid_valid(gid)) {
1555 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1556 return -1;
1557 }
1558 sbi->s_resgid = gid;
1559 } else if (token == Opt_journal_dev) {
1560 if (is_remount) {
1561 ext4_msg(sb, KERN_ERR,
1562 "Cannot specify journal on remount");
1563 return -1;
1564 }
1565 *journal_devnum = arg;
1566 } else if (token == Opt_journal_path) {
1567 char *journal_path;
1568 struct inode *journal_inode;
1569 struct path path;
1570 int error;
1571
1572 if (is_remount) {
1573 ext4_msg(sb, KERN_ERR,
1574 "Cannot specify journal on remount");
1575 return -1;
1576 }
1577 journal_path = match_strdup(&args[0]);
1578 if (!journal_path) {
1579 ext4_msg(sb, KERN_ERR, "error: could not dup "
1580 "journal device string");
1581 return -1;
1582 }
1583
1584 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1585 if (error) {
1586 ext4_msg(sb, KERN_ERR, "error: could not find "
1587 "journal device path: error %d", error);
1588 kfree(journal_path);
1589 return -1;
1590 }
1591
1592 journal_inode = path.dentry->d_inode;
1593 if (!S_ISBLK(journal_inode->i_mode)) {
1594 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1595 "is not a block device", journal_path);
1596 path_put(&path);
1597 kfree(journal_path);
1598 return -1;
1599 }
1600
1601 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1602 path_put(&path);
1603 kfree(journal_path);
1604 } else if (token == Opt_journal_ioprio) {
1605 if (arg > 7) {
1606 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1607 " (must be 0-7)");
1608 return -1;
1609 }
1610 *journal_ioprio =
1611 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1612 } else if (token == Opt_test_dummy_encryption) {
1613 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1614 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1615 ext4_msg(sb, KERN_WARNING,
1616 "Test dummy encryption mode enabled");
1617 #else
1618 ext4_msg(sb, KERN_WARNING,
1619 "Test dummy encryption mount option ignored");
1620 #endif
1621 } else if (m->flags & MOPT_DATAJ) {
1622 if (is_remount) {
1623 if (!sbi->s_journal)
1624 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1625 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1626 ext4_msg(sb, KERN_ERR,
1627 "Cannot change data mode on remount");
1628 return -1;
1629 }
1630 } else {
1631 clear_opt(sb, DATA_FLAGS);
1632 sbi->s_mount_opt |= m->mount_opt;
1633 }
1634 #ifdef CONFIG_QUOTA
1635 } else if (m->flags & MOPT_QFMT) {
1636 if (sb_any_quota_loaded(sb) &&
1637 sbi->s_jquota_fmt != m->mount_opt) {
1638 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1639 "quota options when quota turned on");
1640 return -1;
1641 }
1642 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1643 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1644 ext4_msg(sb, KERN_INFO,
1645 "Quota format mount options ignored "
1646 "when QUOTA feature is enabled");
1647 return 1;
1648 }
1649 sbi->s_jquota_fmt = m->mount_opt;
1650 #endif
1651 } else {
1652 if (!args->from)
1653 arg = 1;
1654 if (m->flags & MOPT_CLEAR)
1655 arg = !arg;
1656 else if (unlikely(!(m->flags & MOPT_SET))) {
1657 ext4_msg(sb, KERN_WARNING,
1658 "buggy handling of option %s", opt);
1659 WARN_ON(1);
1660 return -1;
1661 }
1662 if (arg != 0)
1663 sbi->s_mount_opt |= m->mount_opt;
1664 else
1665 sbi->s_mount_opt &= ~m->mount_opt;
1666 }
1667 return 1;
1668 }
1669
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)1670 static int parse_options(char *options, struct super_block *sb,
1671 unsigned long *journal_devnum,
1672 unsigned int *journal_ioprio,
1673 int is_remount)
1674 {
1675 struct ext4_sb_info *sbi = EXT4_SB(sb);
1676 char *p;
1677 substring_t args[MAX_OPT_ARGS];
1678 int token;
1679
1680 if (!options)
1681 return 1;
1682
1683 while ((p = strsep(&options, ",")) != NULL) {
1684 if (!*p)
1685 continue;
1686 /*
1687 * Initialize args struct so we know whether arg was
1688 * found; some options take optional arguments.
1689 */
1690 args[0].to = args[0].from = NULL;
1691 token = match_token(p, tokens, args);
1692 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1693 journal_ioprio, is_remount) < 0)
1694 return 0;
1695 }
1696 #ifdef CONFIG_QUOTA
1697 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1698 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1699 ext4_msg(sb, KERN_INFO, "Quota feature enabled, usrquota and grpquota "
1700 "mount options ignored.");
1701 clear_opt(sb, USRQUOTA);
1702 clear_opt(sb, GRPQUOTA);
1703 } else if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1704 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1705 clear_opt(sb, USRQUOTA);
1706
1707 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1708 clear_opt(sb, GRPQUOTA);
1709
1710 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1711 ext4_msg(sb, KERN_ERR, "old and new quota "
1712 "format mixing");
1713 return 0;
1714 }
1715
1716 if (!sbi->s_jquota_fmt) {
1717 ext4_msg(sb, KERN_ERR, "journaled quota format "
1718 "not specified");
1719 return 0;
1720 }
1721 }
1722 #endif
1723 if (test_opt(sb, DIOREAD_NOLOCK)) {
1724 int blocksize =
1725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1726
1727 if (blocksize < PAGE_CACHE_SIZE) {
1728 ext4_msg(sb, KERN_ERR, "can't mount with "
1729 "dioread_nolock if block size != PAGE_SIZE");
1730 return 0;
1731 }
1732 }
1733 return 1;
1734 }
1735
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)1736 static inline void ext4_show_quota_options(struct seq_file *seq,
1737 struct super_block *sb)
1738 {
1739 #if defined(CONFIG_QUOTA)
1740 struct ext4_sb_info *sbi = EXT4_SB(sb);
1741
1742 if (sbi->s_jquota_fmt) {
1743 char *fmtname = "";
1744
1745 switch (sbi->s_jquota_fmt) {
1746 case QFMT_VFS_OLD:
1747 fmtname = "vfsold";
1748 break;
1749 case QFMT_VFS_V0:
1750 fmtname = "vfsv0";
1751 break;
1752 case QFMT_VFS_V1:
1753 fmtname = "vfsv1";
1754 break;
1755 }
1756 seq_printf(seq, ",jqfmt=%s", fmtname);
1757 }
1758
1759 if (sbi->s_qf_names[USRQUOTA])
1760 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1761
1762 if (sbi->s_qf_names[GRPQUOTA])
1763 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1764 #endif
1765 }
1766
token2str(int token)1767 static const char *token2str(int token)
1768 {
1769 const struct match_token *t;
1770
1771 for (t = tokens; t->token != Opt_err; t++)
1772 if (t->token == token && !strchr(t->pattern, '='))
1773 break;
1774 return t->pattern;
1775 }
1776
1777 /*
1778 * Show an option if
1779 * - it's set to a non-default value OR
1780 * - if the per-sb default is different from the global default
1781 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)1782 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1783 int nodefs)
1784 {
1785 struct ext4_sb_info *sbi = EXT4_SB(sb);
1786 struct ext4_super_block *es = sbi->s_es;
1787 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1788 const struct mount_opts *m;
1789 char sep = nodefs ? '\n' : ',';
1790
1791 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1792 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1793
1794 if (sbi->s_sb_block != 1)
1795 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1796
1797 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1798 int want_set = m->flags & MOPT_SET;
1799 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1800 (m->flags & MOPT_CLEAR_ERR))
1801 continue;
1802 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1803 continue; /* skip if same as the default */
1804 if ((want_set &&
1805 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1806 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1807 continue; /* select Opt_noFoo vs Opt_Foo */
1808 SEQ_OPTS_PRINT("%s", token2str(m->token));
1809 }
1810
1811 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1812 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1813 SEQ_OPTS_PRINT("resuid=%u",
1814 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1815 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1816 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1817 SEQ_OPTS_PRINT("resgid=%u",
1818 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1819 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1820 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1821 SEQ_OPTS_PUTS("errors=remount-ro");
1822 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1823 SEQ_OPTS_PUTS("errors=continue");
1824 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1825 SEQ_OPTS_PUTS("errors=panic");
1826 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1827 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1828 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1829 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1830 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1831 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1832 if (sb->s_flags & MS_I_VERSION)
1833 SEQ_OPTS_PUTS("i_version");
1834 if (nodefs || sbi->s_stripe)
1835 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1836 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1837 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1838 SEQ_OPTS_PUTS("data=journal");
1839 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1840 SEQ_OPTS_PUTS("data=ordered");
1841 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1842 SEQ_OPTS_PUTS("data=writeback");
1843 }
1844 if (nodefs ||
1845 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1846 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1847 sbi->s_inode_readahead_blks);
1848
1849 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1850 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1851 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1852 if (nodefs || sbi->s_max_dir_size_kb)
1853 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1854
1855 ext4_show_quota_options(seq, sb);
1856 return 0;
1857 }
1858
ext4_show_options(struct seq_file * seq,struct dentry * root)1859 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1860 {
1861 return _ext4_show_options(seq, root->d_sb, 0);
1862 }
1863
options_seq_show(struct seq_file * seq,void * offset)1864 static int options_seq_show(struct seq_file *seq, void *offset)
1865 {
1866 struct super_block *sb = seq->private;
1867 int rc;
1868
1869 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1870 rc = _ext4_show_options(seq, sb, 1);
1871 seq_puts(seq, "\n");
1872 return rc;
1873 }
1874
options_open_fs(struct inode * inode,struct file * file)1875 static int options_open_fs(struct inode *inode, struct file *file)
1876 {
1877 return single_open(file, options_seq_show, PDE_DATA(inode));
1878 }
1879
1880 static const struct file_operations ext4_seq_options_fops = {
1881 .owner = THIS_MODULE,
1882 .open = options_open_fs,
1883 .read = seq_read,
1884 .llseek = seq_lseek,
1885 .release = single_release,
1886 };
1887
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1888 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1889 int read_only)
1890 {
1891 struct ext4_sb_info *sbi = EXT4_SB(sb);
1892 int res = 0;
1893
1894 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1895 ext4_msg(sb, KERN_ERR, "revision level too high, "
1896 "forcing read-only mode");
1897 res = MS_RDONLY;
1898 }
1899 if (read_only)
1900 goto done;
1901 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1902 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1903 "running e2fsck is recommended");
1904 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1905 ext4_msg(sb, KERN_WARNING,
1906 "warning: mounting fs with errors, "
1907 "running e2fsck is recommended");
1908 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1909 le16_to_cpu(es->s_mnt_count) >=
1910 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1911 ext4_msg(sb, KERN_WARNING,
1912 "warning: maximal mount count reached, "
1913 "running e2fsck is recommended");
1914 else if (le32_to_cpu(es->s_checkinterval) &&
1915 (le32_to_cpu(es->s_lastcheck) +
1916 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1917 ext4_msg(sb, KERN_WARNING,
1918 "warning: checktime reached, "
1919 "running e2fsck is recommended");
1920 if (!sbi->s_journal)
1921 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1922 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1923 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1924 le16_add_cpu(&es->s_mnt_count, 1);
1925 es->s_mtime = cpu_to_le32(get_seconds());
1926 ext4_update_dynamic_rev(sb);
1927 if (sbi->s_journal)
1928 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1929
1930 ext4_commit_super(sb, 1);
1931 done:
1932 if (test_opt(sb, DEBUG))
1933 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1934 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1935 sb->s_blocksize,
1936 sbi->s_groups_count,
1937 EXT4_BLOCKS_PER_GROUP(sb),
1938 EXT4_INODES_PER_GROUP(sb),
1939 sbi->s_mount_opt, sbi->s_mount_opt2);
1940
1941 cleancache_init_fs(sb);
1942 return res;
1943 }
1944
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)1945 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1946 {
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 struct flex_groups *new_groups;
1949 int size;
1950
1951 if (!sbi->s_log_groups_per_flex)
1952 return 0;
1953
1954 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1955 if (size <= sbi->s_flex_groups_allocated)
1956 return 0;
1957
1958 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1959 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1960 if (!new_groups) {
1961 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1962 size / (int) sizeof(struct flex_groups));
1963 return -ENOMEM;
1964 }
1965
1966 if (sbi->s_flex_groups) {
1967 memcpy(new_groups, sbi->s_flex_groups,
1968 (sbi->s_flex_groups_allocated *
1969 sizeof(struct flex_groups)));
1970 ext4_kvfree(sbi->s_flex_groups);
1971 }
1972 sbi->s_flex_groups = new_groups;
1973 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1974 return 0;
1975 }
1976
ext4_fill_flex_info(struct super_block * sb)1977 static int ext4_fill_flex_info(struct super_block *sb)
1978 {
1979 struct ext4_sb_info *sbi = EXT4_SB(sb);
1980 struct ext4_group_desc *gdp = NULL;
1981 ext4_group_t flex_group;
1982 int i, err;
1983
1984 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1985 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1986 sbi->s_log_groups_per_flex = 0;
1987 return 1;
1988 }
1989
1990 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1991 if (err)
1992 goto failed;
1993
1994 for (i = 0; i < sbi->s_groups_count; i++) {
1995 gdp = ext4_get_group_desc(sb, i, NULL);
1996
1997 flex_group = ext4_flex_group(sbi, i);
1998 atomic_add(ext4_free_inodes_count(sb, gdp),
1999 &sbi->s_flex_groups[flex_group].free_inodes);
2000 atomic64_add(ext4_free_group_clusters(sb, gdp),
2001 &sbi->s_flex_groups[flex_group].free_clusters);
2002 atomic_add(ext4_used_dirs_count(sb, gdp),
2003 &sbi->s_flex_groups[flex_group].used_dirs);
2004 }
2005
2006 return 1;
2007 failed:
2008 return 0;
2009 }
2010
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2011 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2012 struct ext4_group_desc *gdp)
2013 {
2014 int offset;
2015 __u16 crc = 0;
2016 __le32 le_group = cpu_to_le32(block_group);
2017
2018 if (ext4_has_metadata_csum(sbi->s_sb)) {
2019 /* Use new metadata_csum algorithm */
2020 __le16 save_csum;
2021 __u32 csum32;
2022
2023 save_csum = gdp->bg_checksum;
2024 gdp->bg_checksum = 0;
2025 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2026 sizeof(le_group));
2027 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2028 sbi->s_desc_size);
2029 gdp->bg_checksum = save_csum;
2030
2031 crc = csum32 & 0xFFFF;
2032 goto out;
2033 }
2034
2035 /* old crc16 code */
2036 if (!(sbi->s_es->s_feature_ro_compat &
2037 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2038 return 0;
2039
2040 offset = offsetof(struct ext4_group_desc, bg_checksum);
2041
2042 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2043 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2044 crc = crc16(crc, (__u8 *)gdp, offset);
2045 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2046 /* for checksum of struct ext4_group_desc do the rest...*/
2047 if ((sbi->s_es->s_feature_incompat &
2048 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2049 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2050 crc = crc16(crc, (__u8 *)gdp + offset,
2051 le16_to_cpu(sbi->s_es->s_desc_size) -
2052 offset);
2053
2054 out:
2055 return cpu_to_le16(crc);
2056 }
2057
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2058 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2059 struct ext4_group_desc *gdp)
2060 {
2061 if (ext4_has_group_desc_csum(sb) &&
2062 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2063 block_group, gdp)))
2064 return 0;
2065
2066 return 1;
2067 }
2068
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2069 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2070 struct ext4_group_desc *gdp)
2071 {
2072 if (!ext4_has_group_desc_csum(sb))
2073 return;
2074 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2075 }
2076
2077 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2078 static int ext4_check_descriptors(struct super_block *sb,
2079 ext4_fsblk_t sb_block,
2080 ext4_group_t *first_not_zeroed)
2081 {
2082 struct ext4_sb_info *sbi = EXT4_SB(sb);
2083 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2084 ext4_fsblk_t last_block;
2085 ext4_fsblk_t block_bitmap;
2086 ext4_fsblk_t inode_bitmap;
2087 ext4_fsblk_t inode_table;
2088 int flexbg_flag = 0;
2089 ext4_group_t i, grp = sbi->s_groups_count;
2090
2091 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2092 flexbg_flag = 1;
2093
2094 ext4_debug("Checking group descriptors");
2095
2096 for (i = 0; i < sbi->s_groups_count; i++) {
2097 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2098
2099 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2100 last_block = ext4_blocks_count(sbi->s_es) - 1;
2101 else
2102 last_block = first_block +
2103 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2104
2105 if ((grp == sbi->s_groups_count) &&
2106 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2107 grp = i;
2108
2109 block_bitmap = ext4_block_bitmap(sb, gdp);
2110 if (block_bitmap == sb_block) {
2111 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2112 "Block bitmap for group %u overlaps "
2113 "superblock", i);
2114 }
2115 if (block_bitmap < first_block || block_bitmap > last_block) {
2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 "Block bitmap for group %u not in group "
2118 "(block %llu)!", i, block_bitmap);
2119 return 0;
2120 }
2121 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2122 if (inode_bitmap == sb_block) {
2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 "Inode bitmap for group %u overlaps "
2125 "superblock", i);
2126 }
2127 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2128 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2129 "Inode bitmap for group %u not in group "
2130 "(block %llu)!", i, inode_bitmap);
2131 return 0;
2132 }
2133 inode_table = ext4_inode_table(sb, gdp);
2134 if (inode_table == sb_block) {
2135 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2136 "Inode table for group %u overlaps "
2137 "superblock", i);
2138 }
2139 if (inode_table < first_block ||
2140 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2141 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2142 "Inode table for group %u not in group "
2143 "(block %llu)!", i, inode_table);
2144 return 0;
2145 }
2146 ext4_lock_group(sb, i);
2147 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2148 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2149 "Checksum for group %u failed (%u!=%u)",
2150 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2151 gdp)), le16_to_cpu(gdp->bg_checksum));
2152 if (!(sb->s_flags & MS_RDONLY)) {
2153 ext4_unlock_group(sb, i);
2154 return 0;
2155 }
2156 }
2157 ext4_unlock_group(sb, i);
2158 if (!flexbg_flag)
2159 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2160 }
2161 if (NULL != first_not_zeroed)
2162 *first_not_zeroed = grp;
2163 return 1;
2164 }
2165
2166 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2167 * the superblock) which were deleted from all directories, but held open by
2168 * a process at the time of a crash. We walk the list and try to delete these
2169 * inodes at recovery time (only with a read-write filesystem).
2170 *
2171 * In order to keep the orphan inode chain consistent during traversal (in
2172 * case of crash during recovery), we link each inode into the superblock
2173 * orphan list_head and handle it the same way as an inode deletion during
2174 * normal operation (which journals the operations for us).
2175 *
2176 * We only do an iget() and an iput() on each inode, which is very safe if we
2177 * accidentally point at an in-use or already deleted inode. The worst that
2178 * can happen in this case is that we get a "bit already cleared" message from
2179 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2180 * e2fsck was run on this filesystem, and it must have already done the orphan
2181 * inode cleanup for us, so we can safely abort without any further action.
2182 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2183 static void ext4_orphan_cleanup(struct super_block *sb,
2184 struct ext4_super_block *es)
2185 {
2186 unsigned int s_flags = sb->s_flags;
2187 int nr_orphans = 0, nr_truncates = 0;
2188 #ifdef CONFIG_QUOTA
2189 int i;
2190 #endif
2191 if (!es->s_last_orphan) {
2192 jbd_debug(4, "no orphan inodes to clean up\n");
2193 return;
2194 }
2195
2196 if (bdev_read_only(sb->s_bdev)) {
2197 ext4_msg(sb, KERN_ERR, "write access "
2198 "unavailable, skipping orphan cleanup");
2199 return;
2200 }
2201
2202 /* Check if feature set would not allow a r/w mount */
2203 if (!ext4_feature_set_ok(sb, 0)) {
2204 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2205 "unknown ROCOMPAT features");
2206 return;
2207 }
2208
2209 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2210 /* don't clear list on RO mount w/ errors */
2211 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2212 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2213 "clearing orphan list.\n");
2214 es->s_last_orphan = 0;
2215 }
2216 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2217 return;
2218 }
2219
2220 if (s_flags & MS_RDONLY) {
2221 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2222 sb->s_flags &= ~MS_RDONLY;
2223 }
2224 #ifdef CONFIG_QUOTA
2225 /* Needed for iput() to work correctly and not trash data */
2226 sb->s_flags |= MS_ACTIVE;
2227 /* Turn on journaled quotas so that they are updated correctly */
2228 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2229 if (EXT4_SB(sb)->s_qf_names[i]) {
2230 int ret = ext4_quota_on_mount(sb, i);
2231 if (ret < 0)
2232 ext4_msg(sb, KERN_ERR,
2233 "Cannot turn on journaled "
2234 "quota: error %d", ret);
2235 }
2236 }
2237 #endif
2238
2239 while (es->s_last_orphan) {
2240 struct inode *inode;
2241
2242 /*
2243 * We may have encountered an error during cleanup; if
2244 * so, skip the rest.
2245 */
2246 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2247 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2248 es->s_last_orphan = 0;
2249 break;
2250 }
2251
2252 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2253 if (IS_ERR(inode)) {
2254 es->s_last_orphan = 0;
2255 break;
2256 }
2257
2258 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2259 dquot_initialize(inode);
2260 if (inode->i_nlink) {
2261 if (test_opt(sb, DEBUG))
2262 ext4_msg(sb, KERN_DEBUG,
2263 "%s: truncating inode %lu to %lld bytes",
2264 __func__, inode->i_ino, inode->i_size);
2265 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2266 inode->i_ino, inode->i_size);
2267 mutex_lock(&inode->i_mutex);
2268 truncate_inode_pages(inode->i_mapping, inode->i_size);
2269 ext4_truncate(inode);
2270 mutex_unlock(&inode->i_mutex);
2271 nr_truncates++;
2272 } else {
2273 if (test_opt(sb, DEBUG))
2274 ext4_msg(sb, KERN_DEBUG,
2275 "%s: deleting unreferenced inode %lu",
2276 __func__, inode->i_ino);
2277 jbd_debug(2, "deleting unreferenced inode %lu\n",
2278 inode->i_ino);
2279 nr_orphans++;
2280 }
2281 iput(inode); /* The delete magic happens here! */
2282 }
2283
2284 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2285
2286 if (nr_orphans)
2287 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2288 PLURAL(nr_orphans));
2289 if (nr_truncates)
2290 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2291 PLURAL(nr_truncates));
2292 #ifdef CONFIG_QUOTA
2293 /* Turn off journaled quotas if they were enabled for orphan cleanup */
2294 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2295 if (EXT4_SB(sb)->s_qf_names[i] && sb_dqopt(sb)->files[i])
2296 dquot_quota_off(sb, i);
2297 }
2298 #endif
2299 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2300 }
2301
2302 /*
2303 * Maximal extent format file size.
2304 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2305 * extent format containers, within a sector_t, and within i_blocks
2306 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2307 * so that won't be a limiting factor.
2308 *
2309 * However there is other limiting factor. We do store extents in the form
2310 * of starting block and length, hence the resulting length of the extent
2311 * covering maximum file size must fit into on-disk format containers as
2312 * well. Given that length is always by 1 unit bigger than max unit (because
2313 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2314 *
2315 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2316 */
ext4_max_size(int blkbits,int has_huge_files)2317 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2318 {
2319 loff_t res;
2320 loff_t upper_limit = MAX_LFS_FILESIZE;
2321
2322 /* small i_blocks in vfs inode? */
2323 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2324 /*
2325 * CONFIG_LBDAF is not enabled implies the inode
2326 * i_block represent total blocks in 512 bytes
2327 * 32 == size of vfs inode i_blocks * 8
2328 */
2329 upper_limit = (1LL << 32) - 1;
2330
2331 /* total blocks in file system block size */
2332 upper_limit >>= (blkbits - 9);
2333 upper_limit <<= blkbits;
2334 }
2335
2336 /*
2337 * 32-bit extent-start container, ee_block. We lower the maxbytes
2338 * by one fs block, so ee_len can cover the extent of maximum file
2339 * size
2340 */
2341 res = (1LL << 32) - 1;
2342 res <<= blkbits;
2343
2344 /* Sanity check against vm- & vfs- imposed limits */
2345 if (res > upper_limit)
2346 res = upper_limit;
2347
2348 return res;
2349 }
2350
2351 /*
2352 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2353 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2354 * We need to be 1 filesystem block less than the 2^48 sector limit.
2355 */
ext4_max_bitmap_size(int bits,int has_huge_files)2356 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2357 {
2358 loff_t res = EXT4_NDIR_BLOCKS;
2359 int meta_blocks;
2360 loff_t upper_limit;
2361 /* This is calculated to be the largest file size for a dense, block
2362 * mapped file such that the file's total number of 512-byte sectors,
2363 * including data and all indirect blocks, does not exceed (2^48 - 1).
2364 *
2365 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2366 * number of 512-byte sectors of the file.
2367 */
2368
2369 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2370 /*
2371 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2372 * the inode i_block field represents total file blocks in
2373 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2374 */
2375 upper_limit = (1LL << 32) - 1;
2376
2377 /* total blocks in file system block size */
2378 upper_limit >>= (bits - 9);
2379
2380 } else {
2381 /*
2382 * We use 48 bit ext4_inode i_blocks
2383 * With EXT4_HUGE_FILE_FL set the i_blocks
2384 * represent total number of blocks in
2385 * file system block size
2386 */
2387 upper_limit = (1LL << 48) - 1;
2388
2389 }
2390
2391 /* indirect blocks */
2392 meta_blocks = 1;
2393 /* double indirect blocks */
2394 meta_blocks += 1 + (1LL << (bits-2));
2395 /* tripple indirect blocks */
2396 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2397
2398 upper_limit -= meta_blocks;
2399 upper_limit <<= bits;
2400
2401 res += 1LL << (bits-2);
2402 res += 1LL << (2*(bits-2));
2403 res += 1LL << (3*(bits-2));
2404 res <<= bits;
2405 if (res > upper_limit)
2406 res = upper_limit;
2407
2408 if (res > MAX_LFS_FILESIZE)
2409 res = MAX_LFS_FILESIZE;
2410
2411 return res;
2412 }
2413
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2414 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2415 ext4_fsblk_t logical_sb_block, int nr)
2416 {
2417 struct ext4_sb_info *sbi = EXT4_SB(sb);
2418 ext4_group_t bg, first_meta_bg;
2419 int has_super = 0;
2420
2421 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2422
2423 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2424 nr < first_meta_bg)
2425 return logical_sb_block + nr + 1;
2426 bg = sbi->s_desc_per_block * nr;
2427 if (ext4_bg_has_super(sb, bg))
2428 has_super = 1;
2429
2430 /*
2431 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2432 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2433 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2434 * compensate.
2435 */
2436 if (sb->s_blocksize == 1024 && nr == 0 &&
2437 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2438 has_super++;
2439
2440 return (has_super + ext4_group_first_block_no(sb, bg));
2441 }
2442
2443 /**
2444 * ext4_get_stripe_size: Get the stripe size.
2445 * @sbi: In memory super block info
2446 *
2447 * If we have specified it via mount option, then
2448 * use the mount option value. If the value specified at mount time is
2449 * greater than the blocks per group use the super block value.
2450 * If the super block value is greater than blocks per group return 0.
2451 * Allocator needs it be less than blocks per group.
2452 *
2453 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2454 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2455 {
2456 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2457 unsigned long stripe_width =
2458 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2459 int ret;
2460
2461 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2462 ret = sbi->s_stripe;
2463 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2464 ret = stripe_width;
2465 else if (stride && stride <= sbi->s_blocks_per_group)
2466 ret = stride;
2467 else
2468 ret = 0;
2469
2470 /*
2471 * If the stripe width is 1, this makes no sense and
2472 * we set it to 0 to turn off stripe handling code.
2473 */
2474 if (ret <= 1)
2475 ret = 0;
2476
2477 return ret;
2478 }
2479
2480 /* sysfs supprt */
2481
2482 struct ext4_attr {
2483 struct attribute attr;
2484 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2485 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2486 const char *, size_t);
2487 union {
2488 int offset;
2489 int deprecated_val;
2490 } u;
2491 };
2492
parse_strtoull(const char * buf,unsigned long long max,unsigned long long * value)2493 static int parse_strtoull(const char *buf,
2494 unsigned long long max, unsigned long long *value)
2495 {
2496 int ret;
2497
2498 ret = kstrtoull(skip_spaces(buf), 0, value);
2499 if (!ret && *value > max)
2500 ret = -EINVAL;
2501 return ret;
2502 }
2503
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2504 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2505 struct ext4_sb_info *sbi,
2506 char *buf)
2507 {
2508 return snprintf(buf, PAGE_SIZE, "%llu\n",
2509 (s64) EXT4_C2B(sbi,
2510 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2511 }
2512
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2513 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2514 struct ext4_sb_info *sbi, char *buf)
2515 {
2516 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2517
2518 if (!sb->s_bdev->bd_part)
2519 return snprintf(buf, PAGE_SIZE, "0\n");
2520 return snprintf(buf, PAGE_SIZE, "%lu\n",
2521 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2522 sbi->s_sectors_written_start) >> 1);
2523 }
2524
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2525 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2526 struct ext4_sb_info *sbi, char *buf)
2527 {
2528 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2529
2530 if (!sb->s_bdev->bd_part)
2531 return snprintf(buf, PAGE_SIZE, "0\n");
2532 return snprintf(buf, PAGE_SIZE, "%llu\n",
2533 (unsigned long long)(sbi->s_kbytes_written +
2534 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2535 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2536 }
2537
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2538 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2539 struct ext4_sb_info *sbi,
2540 const char *buf, size_t count)
2541 {
2542 unsigned long t;
2543 int ret;
2544
2545 ret = kstrtoul(skip_spaces(buf), 0, &t);
2546 if (ret)
2547 return ret;
2548
2549 if (t && (!is_power_of_2(t) || t > 0x40000000))
2550 return -EINVAL;
2551
2552 sbi->s_inode_readahead_blks = t;
2553 return count;
2554 }
2555
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2556 static ssize_t sbi_ui_show(struct ext4_attr *a,
2557 struct ext4_sb_info *sbi, char *buf)
2558 {
2559 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2560
2561 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2562 }
2563
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2564 static ssize_t sbi_ui_store(struct ext4_attr *a,
2565 struct ext4_sb_info *sbi,
2566 const char *buf, size_t count)
2567 {
2568 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2569 unsigned long t;
2570 int ret;
2571
2572 ret = kstrtoul(skip_spaces(buf), 0, &t);
2573 if (ret)
2574 return ret;
2575 *ui = t;
2576 return count;
2577 }
2578
es_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2579 static ssize_t es_ui_show(struct ext4_attr *a,
2580 struct ext4_sb_info *sbi, char *buf)
2581 {
2582
2583 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2584 a->u.offset);
2585
2586 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2587 }
2588
reserved_clusters_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2589 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2590 struct ext4_sb_info *sbi, char *buf)
2591 {
2592 return snprintf(buf, PAGE_SIZE, "%llu\n",
2593 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2594 }
2595
reserved_clusters_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2596 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2597 struct ext4_sb_info *sbi,
2598 const char *buf, size_t count)
2599 {
2600 unsigned long long val;
2601 int ret;
2602
2603 if (parse_strtoull(buf, -1ULL, &val))
2604 return -EINVAL;
2605 ret = ext4_reserve_clusters(sbi, val);
2606
2607 return ret ? ret : count;
2608 }
2609
trigger_test_error(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2610 static ssize_t trigger_test_error(struct ext4_attr *a,
2611 struct ext4_sb_info *sbi,
2612 const char *buf, size_t count)
2613 {
2614 int len = count;
2615
2616 if (!capable(CAP_SYS_ADMIN))
2617 return -EPERM;
2618
2619 if (len && buf[len-1] == '\n')
2620 len--;
2621
2622 if (len)
2623 ext4_error(sbi->s_sb, "%.*s", len, buf);
2624 return count;
2625 }
2626
sbi_deprecated_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2627 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2628 struct ext4_sb_info *sbi, char *buf)
2629 {
2630 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2631 }
2632
2633 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2634 static struct ext4_attr ext4_attr_##_name = { \
2635 .attr = {.name = __stringify(_name), .mode = _mode }, \
2636 .show = _show, \
2637 .store = _store, \
2638 .u = { \
2639 .offset = offsetof(struct ext4_sb_info, _elname),\
2640 }, \
2641 }
2642
2643 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2644 static struct ext4_attr ext4_attr_##_name = { \
2645 .attr = {.name = __stringify(_name), .mode = _mode }, \
2646 .show = _show, \
2647 .store = _store, \
2648 .u = { \
2649 .offset = offsetof(struct ext4_super_block, _elname), \
2650 }, \
2651 }
2652
2653 #define EXT4_ATTR(name, mode, show, store) \
2654 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2655
2656 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2657 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2658 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2659
2660 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2661 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2662 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2663 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2664
2665 #define ATTR_LIST(name) &ext4_attr_##name.attr
2666 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2667 static struct ext4_attr ext4_attr_##_name = { \
2668 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2669 .show = sbi_deprecated_show, \
2670 .u = { \
2671 .deprecated_val = _val, \
2672 }, \
2673 }
2674
2675 EXT4_RO_ATTR(delayed_allocation_blocks);
2676 EXT4_RO_ATTR(session_write_kbytes);
2677 EXT4_RO_ATTR(lifetime_write_kbytes);
2678 EXT4_RW_ATTR(reserved_clusters);
2679 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2680 inode_readahead_blks_store, s_inode_readahead_blks);
2681 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2682 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2683 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2684 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2685 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2686 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2687 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2688 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2689 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2690 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2691 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2692 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2693 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2694 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2695 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2696 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2697 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2698 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2699 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2700
2701 static struct attribute *ext4_attrs[] = {
2702 ATTR_LIST(delayed_allocation_blocks),
2703 ATTR_LIST(session_write_kbytes),
2704 ATTR_LIST(lifetime_write_kbytes),
2705 ATTR_LIST(reserved_clusters),
2706 ATTR_LIST(inode_readahead_blks),
2707 ATTR_LIST(inode_goal),
2708 ATTR_LIST(mb_stats),
2709 ATTR_LIST(mb_max_to_scan),
2710 ATTR_LIST(mb_min_to_scan),
2711 ATTR_LIST(mb_order2_req),
2712 ATTR_LIST(mb_stream_req),
2713 ATTR_LIST(mb_group_prealloc),
2714 ATTR_LIST(max_writeback_mb_bump),
2715 ATTR_LIST(extent_max_zeroout_kb),
2716 ATTR_LIST(trigger_fs_error),
2717 ATTR_LIST(err_ratelimit_interval_ms),
2718 ATTR_LIST(err_ratelimit_burst),
2719 ATTR_LIST(warning_ratelimit_interval_ms),
2720 ATTR_LIST(warning_ratelimit_burst),
2721 ATTR_LIST(msg_ratelimit_interval_ms),
2722 ATTR_LIST(msg_ratelimit_burst),
2723 ATTR_LIST(errors_count),
2724 ATTR_LIST(first_error_time),
2725 ATTR_LIST(last_error_time),
2726 NULL,
2727 };
2728
2729 /* Features this copy of ext4 supports */
2730 EXT4_INFO_ATTR(lazy_itable_init);
2731 EXT4_INFO_ATTR(batched_discard);
2732 EXT4_INFO_ATTR(meta_bg_resize);
2733 EXT4_INFO_ATTR(encryption);
2734
2735 static struct attribute *ext4_feat_attrs[] = {
2736 ATTR_LIST(lazy_itable_init),
2737 ATTR_LIST(batched_discard),
2738 ATTR_LIST(meta_bg_resize),
2739 ATTR_LIST(encryption),
2740 NULL,
2741 };
2742
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2743 static ssize_t ext4_attr_show(struct kobject *kobj,
2744 struct attribute *attr, char *buf)
2745 {
2746 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2747 s_kobj);
2748 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2749
2750 return a->show ? a->show(a, sbi, buf) : 0;
2751 }
2752
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2753 static ssize_t ext4_attr_store(struct kobject *kobj,
2754 struct attribute *attr,
2755 const char *buf, size_t len)
2756 {
2757 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2758 s_kobj);
2759 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2760
2761 return a->store ? a->store(a, sbi, buf, len) : 0;
2762 }
2763
ext4_sb_release(struct kobject * kobj)2764 static void ext4_sb_release(struct kobject *kobj)
2765 {
2766 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2767 s_kobj);
2768 complete(&sbi->s_kobj_unregister);
2769 }
2770
2771 static const struct sysfs_ops ext4_attr_ops = {
2772 .show = ext4_attr_show,
2773 .store = ext4_attr_store,
2774 };
2775
2776 static struct kobj_type ext4_ktype = {
2777 .default_attrs = ext4_attrs,
2778 .sysfs_ops = &ext4_attr_ops,
2779 .release = ext4_sb_release,
2780 };
2781
ext4_feat_release(struct kobject * kobj)2782 static void ext4_feat_release(struct kobject *kobj)
2783 {
2784 complete(&ext4_feat->f_kobj_unregister);
2785 }
2786
ext4_feat_show(struct kobject * kobj,struct attribute * attr,char * buf)2787 static ssize_t ext4_feat_show(struct kobject *kobj,
2788 struct attribute *attr, char *buf)
2789 {
2790 return snprintf(buf, PAGE_SIZE, "supported\n");
2791 }
2792
2793 /*
2794 * We can not use ext4_attr_show/store because it relies on the kobject
2795 * being embedded in the ext4_sb_info structure which is definitely not
2796 * true in this case.
2797 */
2798 static const struct sysfs_ops ext4_feat_ops = {
2799 .show = ext4_feat_show,
2800 .store = NULL,
2801 };
2802
2803 static struct kobj_type ext4_feat_ktype = {
2804 .default_attrs = ext4_feat_attrs,
2805 .sysfs_ops = &ext4_feat_ops,
2806 .release = ext4_feat_release,
2807 };
2808
2809 /*
2810 * Check whether this filesystem can be mounted based on
2811 * the features present and the RDONLY/RDWR mount requested.
2812 * Returns 1 if this filesystem can be mounted as requested,
2813 * 0 if it cannot be.
2814 */
ext4_feature_set_ok(struct super_block * sb,int readonly)2815 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2816 {
2817 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2818 ext4_msg(sb, KERN_ERR,
2819 "Couldn't mount because of "
2820 "unsupported optional features (%x)",
2821 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2822 ~EXT4_FEATURE_INCOMPAT_SUPP));
2823 return 0;
2824 }
2825
2826 if (readonly)
2827 return 1;
2828
2829 /* Check that feature set is OK for a read-write mount */
2830 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2831 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2832 "unsupported optional features (%x)",
2833 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2834 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2835 return 0;
2836 }
2837 /*
2838 * Large file size enabled file system can only be mounted
2839 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2840 */
2841 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2842 if (sizeof(blkcnt_t) < sizeof(u64)) {
2843 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2844 "cannot be mounted RDWR without "
2845 "CONFIG_LBDAF");
2846 return 0;
2847 }
2848 }
2849 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2850 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2851 ext4_msg(sb, KERN_ERR,
2852 "Can't support bigalloc feature without "
2853 "extents feature\n");
2854 return 0;
2855 }
2856
2857 #ifndef CONFIG_QUOTA
2858 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2859 !readonly) {
2860 ext4_msg(sb, KERN_ERR,
2861 "Filesystem with quota feature cannot be mounted RDWR "
2862 "without CONFIG_QUOTA");
2863 return 0;
2864 }
2865 #endif /* CONFIG_QUOTA */
2866 return 1;
2867 }
2868
2869 /*
2870 * This function is called once a day if we have errors logged
2871 * on the file system
2872 */
print_daily_error_info(unsigned long arg)2873 static void print_daily_error_info(unsigned long arg)
2874 {
2875 struct super_block *sb = (struct super_block *) arg;
2876 struct ext4_sb_info *sbi;
2877 struct ext4_super_block *es;
2878
2879 sbi = EXT4_SB(sb);
2880 es = sbi->s_es;
2881
2882 if (es->s_error_count)
2883 /* fsck newer than v1.41.13 is needed to clean this condition. */
2884 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2885 le32_to_cpu(es->s_error_count));
2886 if (es->s_first_error_time) {
2887 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2888 sb->s_id, le32_to_cpu(es->s_first_error_time),
2889 (int) sizeof(es->s_first_error_func),
2890 es->s_first_error_func,
2891 le32_to_cpu(es->s_first_error_line));
2892 if (es->s_first_error_ino)
2893 printk(": inode %u",
2894 le32_to_cpu(es->s_first_error_ino));
2895 if (es->s_first_error_block)
2896 printk(": block %llu", (unsigned long long)
2897 le64_to_cpu(es->s_first_error_block));
2898 printk("\n");
2899 }
2900 if (es->s_last_error_time) {
2901 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2902 sb->s_id, le32_to_cpu(es->s_last_error_time),
2903 (int) sizeof(es->s_last_error_func),
2904 es->s_last_error_func,
2905 le32_to_cpu(es->s_last_error_line));
2906 if (es->s_last_error_ino)
2907 printk(": inode %u",
2908 le32_to_cpu(es->s_last_error_ino));
2909 if (es->s_last_error_block)
2910 printk(": block %llu", (unsigned long long)
2911 le64_to_cpu(es->s_last_error_block));
2912 printk("\n");
2913 }
2914 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2915 }
2916
2917 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2918 static int ext4_run_li_request(struct ext4_li_request *elr)
2919 {
2920 struct ext4_group_desc *gdp = NULL;
2921 ext4_group_t group, ngroups;
2922 struct super_block *sb;
2923 unsigned long timeout = 0;
2924 int ret = 0;
2925
2926 sb = elr->lr_super;
2927 ngroups = EXT4_SB(sb)->s_groups_count;
2928
2929 sb_start_write(sb);
2930 for (group = elr->lr_next_group; group < ngroups; group++) {
2931 gdp = ext4_get_group_desc(sb, group, NULL);
2932 if (!gdp) {
2933 ret = 1;
2934 break;
2935 }
2936
2937 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2938 break;
2939 }
2940
2941 if (group >= ngroups)
2942 ret = 1;
2943
2944 if (!ret) {
2945 timeout = jiffies;
2946 ret = ext4_init_inode_table(sb, group,
2947 elr->lr_timeout ? 0 : 1);
2948 if (elr->lr_timeout == 0) {
2949 timeout = (jiffies - timeout) *
2950 elr->lr_sbi->s_li_wait_mult;
2951 elr->lr_timeout = timeout;
2952 }
2953 elr->lr_next_sched = jiffies + elr->lr_timeout;
2954 elr->lr_next_group = group + 1;
2955 }
2956 sb_end_write(sb);
2957
2958 return ret;
2959 }
2960
2961 /*
2962 * Remove lr_request from the list_request and free the
2963 * request structure. Should be called with li_list_mtx held
2964 */
ext4_remove_li_request(struct ext4_li_request * elr)2965 static void ext4_remove_li_request(struct ext4_li_request *elr)
2966 {
2967 struct ext4_sb_info *sbi;
2968
2969 if (!elr)
2970 return;
2971
2972 sbi = elr->lr_sbi;
2973
2974 list_del(&elr->lr_request);
2975 sbi->s_li_request = NULL;
2976 kfree(elr);
2977 }
2978
ext4_unregister_li_request(struct super_block * sb)2979 static void ext4_unregister_li_request(struct super_block *sb)
2980 {
2981 mutex_lock(&ext4_li_mtx);
2982 if (!ext4_li_info) {
2983 mutex_unlock(&ext4_li_mtx);
2984 return;
2985 }
2986
2987 mutex_lock(&ext4_li_info->li_list_mtx);
2988 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2989 mutex_unlock(&ext4_li_info->li_list_mtx);
2990 mutex_unlock(&ext4_li_mtx);
2991 }
2992
2993 static struct task_struct *ext4_lazyinit_task;
2994
2995 /*
2996 * This is the function where ext4lazyinit thread lives. It walks
2997 * through the request list searching for next scheduled filesystem.
2998 * When such a fs is found, run the lazy initialization request
2999 * (ext4_rn_li_request) and keep track of the time spend in this
3000 * function. Based on that time we compute next schedule time of
3001 * the request. When walking through the list is complete, compute
3002 * next waking time and put itself into sleep.
3003 */
ext4_lazyinit_thread(void * arg)3004 static int ext4_lazyinit_thread(void *arg)
3005 {
3006 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3007 struct list_head *pos, *n;
3008 struct ext4_li_request *elr;
3009 unsigned long next_wakeup, cur;
3010
3011 BUG_ON(NULL == eli);
3012
3013 cont_thread:
3014 while (true) {
3015 next_wakeup = MAX_JIFFY_OFFSET;
3016
3017 mutex_lock(&eli->li_list_mtx);
3018 if (list_empty(&eli->li_request_list)) {
3019 mutex_unlock(&eli->li_list_mtx);
3020 goto exit_thread;
3021 }
3022
3023 list_for_each_safe(pos, n, &eli->li_request_list) {
3024 elr = list_entry(pos, struct ext4_li_request,
3025 lr_request);
3026
3027 if (time_after_eq(jiffies, elr->lr_next_sched)) {
3028 if (ext4_run_li_request(elr) != 0) {
3029 /* error, remove the lazy_init job */
3030 ext4_remove_li_request(elr);
3031 continue;
3032 }
3033 }
3034
3035 if (time_before(elr->lr_next_sched, next_wakeup))
3036 next_wakeup = elr->lr_next_sched;
3037 }
3038 mutex_unlock(&eli->li_list_mtx);
3039
3040 try_to_freeze();
3041
3042 cur = jiffies;
3043 if ((time_after_eq(cur, next_wakeup)) ||
3044 (MAX_JIFFY_OFFSET == next_wakeup)) {
3045 cond_resched();
3046 continue;
3047 }
3048
3049 schedule_timeout_interruptible(next_wakeup - cur);
3050
3051 if (kthread_should_stop()) {
3052 ext4_clear_request_list();
3053 goto exit_thread;
3054 }
3055 }
3056
3057 exit_thread:
3058 /*
3059 * It looks like the request list is empty, but we need
3060 * to check it under the li_list_mtx lock, to prevent any
3061 * additions into it, and of course we should lock ext4_li_mtx
3062 * to atomically free the list and ext4_li_info, because at
3063 * this point another ext4 filesystem could be registering
3064 * new one.
3065 */
3066 mutex_lock(&ext4_li_mtx);
3067 mutex_lock(&eli->li_list_mtx);
3068 if (!list_empty(&eli->li_request_list)) {
3069 mutex_unlock(&eli->li_list_mtx);
3070 mutex_unlock(&ext4_li_mtx);
3071 goto cont_thread;
3072 }
3073 mutex_unlock(&eli->li_list_mtx);
3074 kfree(ext4_li_info);
3075 ext4_li_info = NULL;
3076 mutex_unlock(&ext4_li_mtx);
3077
3078 return 0;
3079 }
3080
ext4_clear_request_list(void)3081 static void ext4_clear_request_list(void)
3082 {
3083 struct list_head *pos, *n;
3084 struct ext4_li_request *elr;
3085
3086 mutex_lock(&ext4_li_info->li_list_mtx);
3087 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3088 elr = list_entry(pos, struct ext4_li_request,
3089 lr_request);
3090 ext4_remove_li_request(elr);
3091 }
3092 mutex_unlock(&ext4_li_info->li_list_mtx);
3093 }
3094
ext4_run_lazyinit_thread(void)3095 static int ext4_run_lazyinit_thread(void)
3096 {
3097 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3098 ext4_li_info, "ext4lazyinit");
3099 if (IS_ERR(ext4_lazyinit_task)) {
3100 int err = PTR_ERR(ext4_lazyinit_task);
3101 ext4_clear_request_list();
3102 kfree(ext4_li_info);
3103 ext4_li_info = NULL;
3104 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3105 "initialization thread\n",
3106 err);
3107 return err;
3108 }
3109 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3110 return 0;
3111 }
3112
3113 /*
3114 * Check whether it make sense to run itable init. thread or not.
3115 * If there is at least one uninitialized inode table, return
3116 * corresponding group number, else the loop goes through all
3117 * groups and return total number of groups.
3118 */
ext4_has_uninit_itable(struct super_block * sb)3119 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3120 {
3121 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3122 struct ext4_group_desc *gdp = NULL;
3123
3124 for (group = 0; group < ngroups; group++) {
3125 gdp = ext4_get_group_desc(sb, group, NULL);
3126 if (!gdp)
3127 continue;
3128
3129 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3130 break;
3131 }
3132
3133 return group;
3134 }
3135
ext4_li_info_new(void)3136 static int ext4_li_info_new(void)
3137 {
3138 struct ext4_lazy_init *eli = NULL;
3139
3140 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3141 if (!eli)
3142 return -ENOMEM;
3143
3144 INIT_LIST_HEAD(&eli->li_request_list);
3145 mutex_init(&eli->li_list_mtx);
3146
3147 eli->li_state |= EXT4_LAZYINIT_QUIT;
3148
3149 ext4_li_info = eli;
3150
3151 return 0;
3152 }
3153
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3154 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3155 ext4_group_t start)
3156 {
3157 struct ext4_sb_info *sbi = EXT4_SB(sb);
3158 struct ext4_li_request *elr;
3159
3160 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3161 if (!elr)
3162 return NULL;
3163
3164 elr->lr_super = sb;
3165 elr->lr_sbi = sbi;
3166 elr->lr_next_group = start;
3167
3168 /*
3169 * Randomize first schedule time of the request to
3170 * spread the inode table initialization requests
3171 * better.
3172 */
3173 elr->lr_next_sched = jiffies + (prandom_u32() %
3174 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3175 return elr;
3176 }
3177
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3178 int ext4_register_li_request(struct super_block *sb,
3179 ext4_group_t first_not_zeroed)
3180 {
3181 struct ext4_sb_info *sbi = EXT4_SB(sb);
3182 struct ext4_li_request *elr = NULL;
3183 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3184 int ret = 0;
3185
3186 mutex_lock(&ext4_li_mtx);
3187 if (sbi->s_li_request != NULL) {
3188 /*
3189 * Reset timeout so it can be computed again, because
3190 * s_li_wait_mult might have changed.
3191 */
3192 sbi->s_li_request->lr_timeout = 0;
3193 goto out;
3194 }
3195
3196 if (first_not_zeroed == ngroups ||
3197 (sb->s_flags & MS_RDONLY) ||
3198 !test_opt(sb, INIT_INODE_TABLE))
3199 goto out;
3200
3201 elr = ext4_li_request_new(sb, first_not_zeroed);
3202 if (!elr) {
3203 ret = -ENOMEM;
3204 goto out;
3205 }
3206
3207 if (NULL == ext4_li_info) {
3208 ret = ext4_li_info_new();
3209 if (ret)
3210 goto out;
3211 }
3212
3213 mutex_lock(&ext4_li_info->li_list_mtx);
3214 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3215 mutex_unlock(&ext4_li_info->li_list_mtx);
3216
3217 sbi->s_li_request = elr;
3218 /*
3219 * set elr to NULL here since it has been inserted to
3220 * the request_list and the removal and free of it is
3221 * handled by ext4_clear_request_list from now on.
3222 */
3223 elr = NULL;
3224
3225 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3226 ret = ext4_run_lazyinit_thread();
3227 if (ret)
3228 goto out;
3229 }
3230 out:
3231 mutex_unlock(&ext4_li_mtx);
3232 if (ret)
3233 kfree(elr);
3234 return ret;
3235 }
3236
3237 /*
3238 * We do not need to lock anything since this is called on
3239 * module unload.
3240 */
ext4_destroy_lazyinit_thread(void)3241 static void ext4_destroy_lazyinit_thread(void)
3242 {
3243 /*
3244 * If thread exited earlier
3245 * there's nothing to be done.
3246 */
3247 if (!ext4_li_info || !ext4_lazyinit_task)
3248 return;
3249
3250 kthread_stop(ext4_lazyinit_task);
3251 }
3252
set_journal_csum_feature_set(struct super_block * sb)3253 static int set_journal_csum_feature_set(struct super_block *sb)
3254 {
3255 int ret = 1;
3256 int compat, incompat;
3257 struct ext4_sb_info *sbi = EXT4_SB(sb);
3258
3259 if (ext4_has_metadata_csum(sb)) {
3260 /* journal checksum v3 */
3261 compat = 0;
3262 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3263 } else {
3264 /* journal checksum v1 */
3265 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3266 incompat = 0;
3267 }
3268
3269 jbd2_journal_clear_features(sbi->s_journal,
3270 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3271 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3272 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3273 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3274 ret = jbd2_journal_set_features(sbi->s_journal,
3275 compat, 0,
3276 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3277 incompat);
3278 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3279 ret = jbd2_journal_set_features(sbi->s_journal,
3280 compat, 0,
3281 incompat);
3282 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3283 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3284 } else {
3285 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3286 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3287 }
3288
3289 return ret;
3290 }
3291
3292 /*
3293 * Note: calculating the overhead so we can be compatible with
3294 * historical BSD practice is quite difficult in the face of
3295 * clusters/bigalloc. This is because multiple metadata blocks from
3296 * different block group can end up in the same allocation cluster.
3297 * Calculating the exact overhead in the face of clustered allocation
3298 * requires either O(all block bitmaps) in memory or O(number of block
3299 * groups**2) in time. We will still calculate the superblock for
3300 * older file systems --- and if we come across with a bigalloc file
3301 * system with zero in s_overhead_clusters the estimate will be close to
3302 * correct especially for very large cluster sizes --- but for newer
3303 * file systems, it's better to calculate this figure once at mkfs
3304 * time, and store it in the superblock. If the superblock value is
3305 * present (even for non-bigalloc file systems), we will use it.
3306 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3307 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3308 char *buf)
3309 {
3310 struct ext4_sb_info *sbi = EXT4_SB(sb);
3311 struct ext4_group_desc *gdp;
3312 ext4_fsblk_t first_block, last_block, b;
3313 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3314 int s, j, count = 0;
3315
3316 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3317 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3318 sbi->s_itb_per_group + 2);
3319
3320 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3321 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3322 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3323 for (i = 0; i < ngroups; i++) {
3324 gdp = ext4_get_group_desc(sb, i, NULL);
3325 b = ext4_block_bitmap(sb, gdp);
3326 if (b >= first_block && b <= last_block) {
3327 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3328 count++;
3329 }
3330 b = ext4_inode_bitmap(sb, gdp);
3331 if (b >= first_block && b <= last_block) {
3332 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3333 count++;
3334 }
3335 b = ext4_inode_table(sb, gdp);
3336 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3337 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3338 int c = EXT4_B2C(sbi, b - first_block);
3339 ext4_set_bit(c, buf);
3340 count++;
3341 }
3342 if (i != grp)
3343 continue;
3344 s = 0;
3345 if (ext4_bg_has_super(sb, grp)) {
3346 ext4_set_bit(s++, buf);
3347 count++;
3348 }
3349 j = ext4_bg_num_gdb(sb, grp);
3350 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3351 ext4_error(sb, "Invalid number of block group "
3352 "descriptor blocks: %d", j);
3353 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3354 }
3355 count += j;
3356 for (; j > 0; j--)
3357 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3358 }
3359 if (!count)
3360 return 0;
3361 return EXT4_CLUSTERS_PER_GROUP(sb) -
3362 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3363 }
3364
3365 /*
3366 * Compute the overhead and stash it in sbi->s_overhead
3367 */
ext4_calculate_overhead(struct super_block * sb)3368 int ext4_calculate_overhead(struct super_block *sb)
3369 {
3370 struct ext4_sb_info *sbi = EXT4_SB(sb);
3371 struct ext4_super_block *es = sbi->s_es;
3372 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3373 ext4_fsblk_t overhead = 0;
3374 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3375
3376 if (!buf)
3377 return -ENOMEM;
3378
3379 /*
3380 * Compute the overhead (FS structures). This is constant
3381 * for a given filesystem unless the number of block groups
3382 * changes so we cache the previous value until it does.
3383 */
3384
3385 /*
3386 * All of the blocks before first_data_block are overhead
3387 */
3388 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3389
3390 /*
3391 * Add the overhead found in each block group
3392 */
3393 for (i = 0; i < ngroups; i++) {
3394 int blks;
3395
3396 blks = count_overhead(sb, i, buf);
3397 overhead += blks;
3398 if (blks)
3399 memset(buf, 0, PAGE_SIZE);
3400 cond_resched();
3401 }
3402 /* Add the journal blocks as well */
3403 if (sbi->s_journal)
3404 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3405
3406 sbi->s_overhead = overhead;
3407 smp_wmb();
3408 free_page((unsigned long) buf);
3409 return 0;
3410 }
3411
3412
ext4_calculate_resv_clusters(struct super_block * sb)3413 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3414 {
3415 ext4_fsblk_t resv_clusters;
3416
3417 /*
3418 * There's no need to reserve anything when we aren't using extents.
3419 * The space estimates are exact, there are no unwritten extents,
3420 * hole punching doesn't need new metadata... This is needed especially
3421 * to keep ext2/3 backward compatibility.
3422 */
3423 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3424 return 0;
3425 /*
3426 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3427 * This should cover the situations where we can not afford to run
3428 * out of space like for example punch hole, or converting
3429 * unwritten extents in delalloc path. In most cases such
3430 * allocation would require 1, or 2 blocks, higher numbers are
3431 * very rare.
3432 */
3433 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3434 EXT4_SB(sb)->s_cluster_bits;
3435
3436 do_div(resv_clusters, 50);
3437 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3438
3439 return resv_clusters;
3440 }
3441
3442
ext4_reserve_clusters(struct ext4_sb_info * sbi,ext4_fsblk_t count)3443 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3444 {
3445 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3446 sbi->s_cluster_bits;
3447
3448 if (count >= clusters)
3449 return -EINVAL;
3450
3451 atomic64_set(&sbi->s_resv_clusters, count);
3452 return 0;
3453 }
3454
ext4_fill_super(struct super_block * sb,void * data,int silent)3455 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3456 {
3457 char *orig_data = kstrdup(data, GFP_KERNEL);
3458 struct buffer_head *bh;
3459 struct ext4_super_block *es = NULL;
3460 struct ext4_sb_info *sbi;
3461 ext4_fsblk_t block;
3462 ext4_fsblk_t sb_block = get_sb_block(&data);
3463 ext4_fsblk_t logical_sb_block;
3464 unsigned long offset = 0;
3465 unsigned long journal_devnum = 0;
3466 unsigned long def_mount_opts;
3467 struct inode *root;
3468 char *cp;
3469 const char *descr;
3470 int ret = -ENOMEM;
3471 int blocksize, clustersize;
3472 unsigned int db_count;
3473 unsigned int i;
3474 int needs_recovery, has_huge_files, has_bigalloc;
3475 __u64 blocks_count;
3476 int err = 0;
3477 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3478 ext4_group_t first_not_zeroed;
3479
3480 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3481 if (!sbi)
3482 goto out_free_orig;
3483
3484 sbi->s_blockgroup_lock =
3485 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3486 if (!sbi->s_blockgroup_lock) {
3487 kfree(sbi);
3488 goto out_free_orig;
3489 }
3490 sb->s_fs_info = sbi;
3491 sbi->s_sb = sb;
3492 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3493 sbi->s_sb_block = sb_block;
3494 if (sb->s_bdev->bd_part)
3495 sbi->s_sectors_written_start =
3496 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3497
3498 /* Cleanup superblock name */
3499 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3500 *cp = '!';
3501
3502 /* -EINVAL is default */
3503 ret = -EINVAL;
3504 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3505 if (!blocksize) {
3506 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3507 goto out_fail;
3508 }
3509
3510 /*
3511 * The ext4 superblock will not be buffer aligned for other than 1kB
3512 * block sizes. We need to calculate the offset from buffer start.
3513 */
3514 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3515 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3516 offset = do_div(logical_sb_block, blocksize);
3517 } else {
3518 logical_sb_block = sb_block;
3519 }
3520
3521 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3522 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3523 goto out_fail;
3524 }
3525 /*
3526 * Note: s_es must be initialized as soon as possible because
3527 * some ext4 macro-instructions depend on its value
3528 */
3529 es = (struct ext4_super_block *) (bh->b_data + offset);
3530 sbi->s_es = es;
3531 sb->s_magic = le16_to_cpu(es->s_magic);
3532 if (sb->s_magic != EXT4_SUPER_MAGIC)
3533 goto cantfind_ext4;
3534 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3535
3536 /* Warn if metadata_csum and gdt_csum are both set. */
3537 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3538 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3539 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3540 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3541 "redundant flags; please run fsck.");
3542
3543 /* Check for a known checksum algorithm */
3544 if (!ext4_verify_csum_type(sb, es)) {
3545 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3546 "unknown checksum algorithm.");
3547 silent = 1;
3548 goto cantfind_ext4;
3549 }
3550
3551 /* Load the checksum driver */
3552 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3553 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3554 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3555 if (IS_ERR(sbi->s_chksum_driver)) {
3556 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3557 ret = PTR_ERR(sbi->s_chksum_driver);
3558 sbi->s_chksum_driver = NULL;
3559 goto failed_mount;
3560 }
3561 }
3562
3563 /* Check superblock checksum */
3564 if (!ext4_superblock_csum_verify(sb, es)) {
3565 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3566 "invalid superblock checksum. Run e2fsck?");
3567 silent = 1;
3568 goto cantfind_ext4;
3569 }
3570
3571 /* Precompute checksum seed for all metadata */
3572 if (ext4_has_metadata_csum(sb))
3573 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3574 sizeof(es->s_uuid));
3575
3576 /* Set defaults before we parse the mount options */
3577 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3578 set_opt(sb, INIT_INODE_TABLE);
3579 if (def_mount_opts & EXT4_DEFM_DEBUG)
3580 set_opt(sb, DEBUG);
3581 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3582 set_opt(sb, GRPID);
3583 if (def_mount_opts & EXT4_DEFM_UID16)
3584 set_opt(sb, NO_UID32);
3585 /* xattr user namespace & acls are now defaulted on */
3586 set_opt(sb, XATTR_USER);
3587 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3588 set_opt(sb, POSIX_ACL);
3589 #endif
3590 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3591 if (ext4_has_metadata_csum(sb))
3592 set_opt(sb, JOURNAL_CHECKSUM);
3593
3594 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3595 set_opt(sb, JOURNAL_DATA);
3596 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3597 set_opt(sb, ORDERED_DATA);
3598 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3599 set_opt(sb, WRITEBACK_DATA);
3600
3601 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3602 set_opt(sb, ERRORS_PANIC);
3603 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3604 set_opt(sb, ERRORS_CONT);
3605 else
3606 set_opt(sb, ERRORS_RO);
3607 /* block_validity enabled by default; disable with noblock_validity */
3608 set_opt(sb, BLOCK_VALIDITY);
3609 if (def_mount_opts & EXT4_DEFM_DISCARD)
3610 set_opt(sb, DISCARD);
3611
3612 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3613 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3614 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3615 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3616 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3617
3618 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3619 set_opt(sb, BARRIER);
3620
3621 /*
3622 * enable delayed allocation by default
3623 * Use -o nodelalloc to turn it off
3624 */
3625 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3626 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3627 set_opt(sb, DELALLOC);
3628
3629 /*
3630 * set default s_li_wait_mult for lazyinit, for the case there is
3631 * no mount option specified.
3632 */
3633 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3634
3635 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3636 &journal_devnum, &journal_ioprio, 0)) {
3637 ext4_msg(sb, KERN_WARNING,
3638 "failed to parse options in superblock: %s",
3639 sbi->s_es->s_mount_opts);
3640 }
3641 sbi->s_def_mount_opt = sbi->s_mount_opt;
3642 if (!parse_options((char *) data, sb, &journal_devnum,
3643 &journal_ioprio, 0))
3644 goto failed_mount;
3645
3646 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3647 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3648 "with data=journal disables delayed "
3649 "allocation and O_DIRECT support!\n");
3650 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3651 ext4_msg(sb, KERN_ERR, "can't mount with "
3652 "both data=journal and delalloc");
3653 goto failed_mount;
3654 }
3655 if (test_opt(sb, DIOREAD_NOLOCK)) {
3656 ext4_msg(sb, KERN_ERR, "can't mount with "
3657 "both data=journal and dioread_nolock");
3658 goto failed_mount;
3659 }
3660 if (test_opt(sb, DELALLOC))
3661 clear_opt(sb, DELALLOC);
3662 }
3663
3664 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3665 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3666
3667 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3668 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3669 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3670 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3671 ext4_msg(sb, KERN_WARNING,
3672 "feature flags set on rev 0 fs, "
3673 "running e2fsck is recommended");
3674
3675 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3676 set_opt2(sb, HURD_COMPAT);
3677 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3678 EXT4_FEATURE_INCOMPAT_64BIT)) {
3679 ext4_msg(sb, KERN_ERR,
3680 "The Hurd can't support 64-bit file systems");
3681 goto failed_mount;
3682 }
3683 }
3684
3685 if (IS_EXT2_SB(sb)) {
3686 if (ext2_feature_set_ok(sb))
3687 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3688 "using the ext4 subsystem");
3689 else {
3690 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3691 "to feature incompatibilities");
3692 goto failed_mount;
3693 }
3694 }
3695
3696 if (IS_EXT3_SB(sb)) {
3697 if (ext3_feature_set_ok(sb))
3698 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3699 "using the ext4 subsystem");
3700 else {
3701 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3702 "to feature incompatibilities");
3703 goto failed_mount;
3704 }
3705 }
3706
3707 /*
3708 * Check feature flags regardless of the revision level, since we
3709 * previously didn't change the revision level when setting the flags,
3710 * so there is a chance incompat flags are set on a rev 0 filesystem.
3711 */
3712 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3713 goto failed_mount;
3714
3715 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3716 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3717 blocksize > EXT4_MAX_BLOCK_SIZE) {
3718 ext4_msg(sb, KERN_ERR,
3719 "Unsupported filesystem blocksize %d (%d log_block_size)",
3720 blocksize, le32_to_cpu(es->s_log_block_size));
3721 goto failed_mount;
3722 }
3723 if (le32_to_cpu(es->s_log_block_size) >
3724 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3725 ext4_msg(sb, KERN_ERR,
3726 "Invalid log block size: %u",
3727 le32_to_cpu(es->s_log_block_size));
3728 goto failed_mount;
3729 }
3730
3731 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3732 es->s_encryption_level) {
3733 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3734 es->s_encryption_level);
3735 goto failed_mount;
3736 }
3737
3738 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3739 ext4_msg(sb, KERN_ERR,
3740 "Number of reserved GDT blocks insanely large: %d",
3741 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3742 goto failed_mount;
3743 }
3744
3745 if (sb->s_blocksize != blocksize) {
3746 /* Validate the filesystem blocksize */
3747 if (!sb_set_blocksize(sb, blocksize)) {
3748 ext4_msg(sb, KERN_ERR, "bad block size %d",
3749 blocksize);
3750 goto failed_mount;
3751 }
3752
3753 brelse(bh);
3754 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3755 offset = do_div(logical_sb_block, blocksize);
3756 bh = sb_bread_unmovable(sb, logical_sb_block);
3757 if (!bh) {
3758 ext4_msg(sb, KERN_ERR,
3759 "Can't read superblock on 2nd try");
3760 goto failed_mount;
3761 }
3762 es = (struct ext4_super_block *)(bh->b_data + offset);
3763 sbi->s_es = es;
3764 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3765 ext4_msg(sb, KERN_ERR,
3766 "Magic mismatch, very weird!");
3767 goto failed_mount;
3768 }
3769 }
3770
3771 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3772 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3773 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3774 has_huge_files);
3775 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3776
3777 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3778 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3779 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3780 } else {
3781 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3782 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3783 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3784 (!is_power_of_2(sbi->s_inode_size)) ||
3785 (sbi->s_inode_size > blocksize)) {
3786 ext4_msg(sb, KERN_ERR,
3787 "unsupported inode size: %d",
3788 sbi->s_inode_size);
3789 goto failed_mount;
3790 }
3791 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3792 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3793 }
3794
3795 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3796 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3797 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3798 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3799 !is_power_of_2(sbi->s_desc_size)) {
3800 ext4_msg(sb, KERN_ERR,
3801 "unsupported descriptor size %lu",
3802 sbi->s_desc_size);
3803 goto failed_mount;
3804 }
3805 } else
3806 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3807
3808 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3809 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3810
3811 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3812 if (sbi->s_inodes_per_block == 0)
3813 goto cantfind_ext4;
3814 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3815 sbi->s_inodes_per_group > blocksize * 8) {
3816 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3817 sbi->s_blocks_per_group);
3818 goto failed_mount;
3819 }
3820 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3821 sbi->s_inodes_per_block;
3822 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3823 sbi->s_sbh = bh;
3824 sbi->s_mount_state = le16_to_cpu(es->s_state);
3825 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3826 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3827
3828 for (i = 0; i < 4; i++)
3829 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3830 sbi->s_def_hash_version = es->s_def_hash_version;
3831 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3832 i = le32_to_cpu(es->s_flags);
3833 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3834 sbi->s_hash_unsigned = 3;
3835 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3836 #ifdef __CHAR_UNSIGNED__
3837 if (!(sb->s_flags & MS_RDONLY))
3838 es->s_flags |=
3839 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3840 sbi->s_hash_unsigned = 3;
3841 #else
3842 if (!(sb->s_flags & MS_RDONLY))
3843 es->s_flags |=
3844 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3845 #endif
3846 }
3847 }
3848
3849 /* Handle clustersize */
3850 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3851 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3852 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3853 if (has_bigalloc) {
3854 if (clustersize < blocksize) {
3855 ext4_msg(sb, KERN_ERR,
3856 "cluster size (%d) smaller than "
3857 "block size (%d)", clustersize, blocksize);
3858 goto failed_mount;
3859 }
3860 if (le32_to_cpu(es->s_log_cluster_size) >
3861 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3862 ext4_msg(sb, KERN_ERR,
3863 "Invalid log cluster size: %u",
3864 le32_to_cpu(es->s_log_cluster_size));
3865 goto failed_mount;
3866 }
3867 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3868 le32_to_cpu(es->s_log_block_size);
3869 sbi->s_clusters_per_group =
3870 le32_to_cpu(es->s_clusters_per_group);
3871 if (sbi->s_clusters_per_group > blocksize * 8) {
3872 ext4_msg(sb, KERN_ERR,
3873 "#clusters per group too big: %lu",
3874 sbi->s_clusters_per_group);
3875 goto failed_mount;
3876 }
3877 if (sbi->s_blocks_per_group !=
3878 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3879 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3880 "clusters per group (%lu) inconsistent",
3881 sbi->s_blocks_per_group,
3882 sbi->s_clusters_per_group);
3883 goto failed_mount;
3884 }
3885 } else {
3886 if (clustersize != blocksize) {
3887 ext4_warning(sb, "fragment/cluster size (%d) != "
3888 "block size (%d)", clustersize,
3889 blocksize);
3890 clustersize = blocksize;
3891 }
3892 if (sbi->s_blocks_per_group > blocksize * 8) {
3893 ext4_msg(sb, KERN_ERR,
3894 "#blocks per group too big: %lu",
3895 sbi->s_blocks_per_group);
3896 goto failed_mount;
3897 }
3898 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3899 sbi->s_cluster_bits = 0;
3900 }
3901 sbi->s_cluster_ratio = clustersize / blocksize;
3902
3903 /* Do we have standard group size of clustersize * 8 blocks ? */
3904 if (sbi->s_blocks_per_group == clustersize << 3)
3905 set_opt2(sb, STD_GROUP_SIZE);
3906
3907 /*
3908 * Test whether we have more sectors than will fit in sector_t,
3909 * and whether the max offset is addressable by the page cache.
3910 */
3911 err = generic_check_addressable(sb->s_blocksize_bits,
3912 ext4_blocks_count(es));
3913 if (err) {
3914 ext4_msg(sb, KERN_ERR, "filesystem"
3915 " too large to mount safely on this system");
3916 if (sizeof(sector_t) < 8)
3917 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3918 goto failed_mount;
3919 }
3920
3921 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3922 goto cantfind_ext4;
3923
3924 /* check blocks count against device size */
3925 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3926 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3927 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3928 "exceeds size of device (%llu blocks)",
3929 ext4_blocks_count(es), blocks_count);
3930 goto failed_mount;
3931 }
3932
3933 /*
3934 * It makes no sense for the first data block to be beyond the end
3935 * of the filesystem.
3936 */
3937 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3938 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3939 "block %u is beyond end of filesystem (%llu)",
3940 le32_to_cpu(es->s_first_data_block),
3941 ext4_blocks_count(es));
3942 goto failed_mount;
3943 }
3944 blocks_count = (ext4_blocks_count(es) -
3945 le32_to_cpu(es->s_first_data_block) +
3946 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3947 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3948 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3949 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3950 "(block count %llu, first data block %u, "
3951 "blocks per group %lu)", sbi->s_groups_count,
3952 ext4_blocks_count(es),
3953 le32_to_cpu(es->s_first_data_block),
3954 EXT4_BLOCKS_PER_GROUP(sb));
3955 goto failed_mount;
3956 }
3957 sbi->s_groups_count = blocks_count;
3958 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3959 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3960 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3961 EXT4_DESC_PER_BLOCK(sb);
3962 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG)) {
3963 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3964 ext4_msg(sb, KERN_WARNING,
3965 "first meta block group too large: %u "
3966 "(group descriptor block count %u)",
3967 le32_to_cpu(es->s_first_meta_bg), db_count);
3968 goto failed_mount;
3969 }
3970 }
3971 sbi->s_group_desc = ext4_kvmalloc(db_count *
3972 sizeof(struct buffer_head *),
3973 GFP_KERNEL);
3974 if (sbi->s_group_desc == NULL) {
3975 ext4_msg(sb, KERN_ERR, "not enough memory");
3976 ret = -ENOMEM;
3977 goto failed_mount;
3978 }
3979
3980 if (ext4_proc_root)
3981 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3982
3983 if (sbi->s_proc)
3984 proc_create_data("options", S_IRUGO, sbi->s_proc,
3985 &ext4_seq_options_fops, sb);
3986
3987 bgl_lock_init(sbi->s_blockgroup_lock);
3988
3989 for (i = 0; i < db_count; i++) {
3990 block = descriptor_loc(sb, logical_sb_block, i);
3991 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3992 if (!sbi->s_group_desc[i]) {
3993 ext4_msg(sb, KERN_ERR,
3994 "can't read group descriptor %d", i);
3995 db_count = i;
3996 goto failed_mount2;
3997 }
3998 }
3999 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4000 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4001 goto failed_mount2;
4002 }
4003
4004 sbi->s_gdb_count = db_count;
4005 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
4006 spin_lock_init(&sbi->s_next_gen_lock);
4007
4008 init_timer(&sbi->s_err_report);
4009 sbi->s_err_report.function = print_daily_error_info;
4010 sbi->s_err_report.data = (unsigned long) sb;
4011
4012 /* Register extent status tree shrinker */
4013 if (ext4_es_register_shrinker(sbi))
4014 goto failed_mount3;
4015
4016 sbi->s_stripe = ext4_get_stripe_size(sbi);
4017 sbi->s_extent_max_zeroout_kb = 32;
4018
4019 /*
4020 * set up enough so that it can read an inode
4021 */
4022 sb->s_op = &ext4_sops;
4023 sb->s_export_op = &ext4_export_ops;
4024 sb->s_xattr = ext4_xattr_handlers;
4025 #ifdef CONFIG_QUOTA
4026 sb->dq_op = &ext4_quota_operations;
4027 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4028 sb->s_qcop = &ext4_qctl_sysfile_operations;
4029 else
4030 sb->s_qcop = &ext4_qctl_operations;
4031 #endif
4032 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4033
4034 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4035 mutex_init(&sbi->s_orphan_lock);
4036
4037 sb->s_root = NULL;
4038
4039 needs_recovery = (es->s_last_orphan != 0 ||
4040 EXT4_HAS_INCOMPAT_FEATURE(sb,
4041 EXT4_FEATURE_INCOMPAT_RECOVER));
4042
4043 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4044 !(sb->s_flags & MS_RDONLY))
4045 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4046 goto failed_mount3a;
4047
4048 /*
4049 * The first inode we look at is the journal inode. Don't try
4050 * root first: it may be modified in the journal!
4051 */
4052 if (!test_opt(sb, NOLOAD) &&
4053 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4054 if (ext4_load_journal(sb, es, journal_devnum))
4055 goto failed_mount3a;
4056 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4057 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4058 ext4_msg(sb, KERN_ERR, "required journal recovery "
4059 "suppressed and not mounted read-only");
4060 goto failed_mount_wq;
4061 } else {
4062 clear_opt(sb, DATA_FLAGS);
4063 sbi->s_journal = NULL;
4064 needs_recovery = 0;
4065 goto no_journal;
4066 }
4067
4068 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4069 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4070 JBD2_FEATURE_INCOMPAT_64BIT)) {
4071 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4072 goto failed_mount_wq;
4073 }
4074
4075 if (!set_journal_csum_feature_set(sb)) {
4076 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4077 "feature set");
4078 goto failed_mount_wq;
4079 }
4080
4081 /* We have now updated the journal if required, so we can
4082 * validate the data journaling mode. */
4083 switch (test_opt(sb, DATA_FLAGS)) {
4084 case 0:
4085 /* No mode set, assume a default based on the journal
4086 * capabilities: ORDERED_DATA if the journal can
4087 * cope, else JOURNAL_DATA
4088 */
4089 if (jbd2_journal_check_available_features
4090 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4091 set_opt(sb, ORDERED_DATA);
4092 else
4093 set_opt(sb, JOURNAL_DATA);
4094 break;
4095
4096 case EXT4_MOUNT_ORDERED_DATA:
4097 case EXT4_MOUNT_WRITEBACK_DATA:
4098 if (!jbd2_journal_check_available_features
4099 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4100 ext4_msg(sb, KERN_ERR, "Journal does not support "
4101 "requested data journaling mode");
4102 goto failed_mount_wq;
4103 }
4104 default:
4105 break;
4106 }
4107 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4108
4109 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4110
4111 no_journal:
4112 if (ext4_mballoc_ready) {
4113 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4114 if (!sbi->s_mb_cache) {
4115 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4116 goto failed_mount_wq;
4117 }
4118 }
4119
4120 if ((DUMMY_ENCRYPTION_ENABLED(sbi) ||
4121 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) &&
4122 (blocksize != PAGE_CACHE_SIZE)) {
4123 ext4_msg(sb, KERN_ERR,
4124 "Unsupported blocksize for fs encryption");
4125 goto failed_mount_wq;
4126 }
4127
4128 if (DUMMY_ENCRYPTION_ENABLED(sbi) &&
4129 !(sb->s_flags & MS_RDONLY) &&
4130 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4131 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4132 ext4_commit_super(sb, 1);
4133 }
4134
4135 /*
4136 * Get the # of file system overhead blocks from the
4137 * superblock if present.
4138 */
4139 if (es->s_overhead_clusters)
4140 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4141 else {
4142 err = ext4_calculate_overhead(sb);
4143 if (err)
4144 goto failed_mount_wq;
4145 }
4146
4147 /*
4148 * The maximum number of concurrent works can be high and
4149 * concurrency isn't really necessary. Limit it to 1.
4150 */
4151 EXT4_SB(sb)->rsv_conversion_wq =
4152 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4153 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4154 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4155 ret = -ENOMEM;
4156 goto failed_mount4;
4157 }
4158
4159 /*
4160 * The jbd2_journal_load will have done any necessary log recovery,
4161 * so we can safely mount the rest of the filesystem now.
4162 */
4163
4164 root = ext4_iget(sb, EXT4_ROOT_INO);
4165 if (IS_ERR(root)) {
4166 ext4_msg(sb, KERN_ERR, "get root inode failed");
4167 ret = PTR_ERR(root);
4168 root = NULL;
4169 goto failed_mount4;
4170 }
4171 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4172 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4173 iput(root);
4174 goto failed_mount4;
4175 }
4176 sb->s_root = d_make_root(root);
4177 if (!sb->s_root) {
4178 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4179 ret = -ENOMEM;
4180 goto failed_mount4;
4181 }
4182
4183 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4184 sb->s_flags |= MS_RDONLY;
4185
4186 /* determine the minimum size of new large inodes, if present */
4187 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4188 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4189 EXT4_GOOD_OLD_INODE_SIZE;
4190 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4191 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4192 if (sbi->s_want_extra_isize <
4193 le16_to_cpu(es->s_want_extra_isize))
4194 sbi->s_want_extra_isize =
4195 le16_to_cpu(es->s_want_extra_isize);
4196 if (sbi->s_want_extra_isize <
4197 le16_to_cpu(es->s_min_extra_isize))
4198 sbi->s_want_extra_isize =
4199 le16_to_cpu(es->s_min_extra_isize);
4200 }
4201 }
4202 /* Check if enough inode space is available */
4203 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4204 sbi->s_inode_size) {
4205 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4206 EXT4_GOOD_OLD_INODE_SIZE;
4207 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4208 "available");
4209 }
4210
4211 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4212 if (err) {
4213 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4214 "reserved pool", ext4_calculate_resv_clusters(sb));
4215 goto failed_mount4a;
4216 }
4217
4218 err = ext4_setup_system_zone(sb);
4219 if (err) {
4220 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4221 "zone (%d)", err);
4222 goto failed_mount4a;
4223 }
4224
4225 ext4_ext_init(sb);
4226 err = ext4_mb_init(sb);
4227 if (err) {
4228 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4229 err);
4230 goto failed_mount5;
4231 }
4232
4233 block = ext4_count_free_clusters(sb);
4234 ext4_free_blocks_count_set(sbi->s_es,
4235 EXT4_C2B(sbi, block));
4236 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4237 GFP_KERNEL);
4238 if (!err) {
4239 unsigned long freei = ext4_count_free_inodes(sb);
4240 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4241 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4242 GFP_KERNEL);
4243 }
4244 if (!err)
4245 err = percpu_counter_init(&sbi->s_dirs_counter,
4246 ext4_count_dirs(sb), GFP_KERNEL);
4247 if (!err)
4248 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4249 GFP_KERNEL);
4250 if (err) {
4251 ext4_msg(sb, KERN_ERR, "insufficient memory");
4252 goto failed_mount6;
4253 }
4254
4255 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4256 if (!ext4_fill_flex_info(sb)) {
4257 ext4_msg(sb, KERN_ERR,
4258 "unable to initialize "
4259 "flex_bg meta info!");
4260 goto failed_mount6;
4261 }
4262
4263 err = ext4_register_li_request(sb, first_not_zeroed);
4264 if (err)
4265 goto failed_mount6;
4266
4267 sbi->s_kobj.kset = ext4_kset;
4268 init_completion(&sbi->s_kobj_unregister);
4269 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4270 "%s", sb->s_id);
4271 if (err)
4272 goto failed_mount7;
4273
4274 #ifdef CONFIG_QUOTA
4275 /* Enable quota usage during mount. */
4276 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4277 !(sb->s_flags & MS_RDONLY)) {
4278 err = ext4_enable_quotas(sb);
4279 if (err)
4280 goto failed_mount8;
4281 }
4282 #endif /* CONFIG_QUOTA */
4283
4284 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4285 ext4_orphan_cleanup(sb, es);
4286 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4287 if (needs_recovery) {
4288 ext4_msg(sb, KERN_INFO, "recovery complete");
4289 ext4_mark_recovery_complete(sb, es);
4290 }
4291 if (EXT4_SB(sb)->s_journal) {
4292 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4293 descr = " journalled data mode";
4294 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4295 descr = " ordered data mode";
4296 else
4297 descr = " writeback data mode";
4298 } else
4299 descr = "out journal";
4300
4301 if (test_opt(sb, DISCARD)) {
4302 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4303 if (!blk_queue_discard(q))
4304 ext4_msg(sb, KERN_WARNING,
4305 "mounting with \"discard\" option, but "
4306 "the device does not support discard");
4307 }
4308
4309 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4310 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4311 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4312
4313 if (es->s_error_count)
4314 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4315
4316 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4317 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4318 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4319 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4320
4321 kfree(orig_data);
4322 return 0;
4323
4324 cantfind_ext4:
4325 if (!silent)
4326 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4327 goto failed_mount;
4328
4329 #ifdef CONFIG_QUOTA
4330 failed_mount8:
4331 kobject_del(&sbi->s_kobj);
4332 #endif
4333 failed_mount7:
4334 ext4_unregister_li_request(sb);
4335 failed_mount6:
4336 ext4_mb_release(sb);
4337 if (sbi->s_flex_groups)
4338 ext4_kvfree(sbi->s_flex_groups);
4339 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4340 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4341 percpu_counter_destroy(&sbi->s_dirs_counter);
4342 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4343 failed_mount5:
4344 ext4_ext_release(sb);
4345 ext4_release_system_zone(sb);
4346 failed_mount4a:
4347 dput(sb->s_root);
4348 sb->s_root = NULL;
4349 failed_mount4:
4350 ext4_msg(sb, KERN_ERR, "mount failed");
4351 if (EXT4_SB(sb)->rsv_conversion_wq)
4352 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4353 failed_mount_wq:
4354 if (sbi->s_journal) {
4355 jbd2_journal_destroy(sbi->s_journal);
4356 sbi->s_journal = NULL;
4357 }
4358 failed_mount3a:
4359 ext4_es_unregister_shrinker(sbi);
4360 failed_mount3:
4361 del_timer_sync(&sbi->s_err_report);
4362 if (sbi->s_mmp_tsk)
4363 kthread_stop(sbi->s_mmp_tsk);
4364 failed_mount2:
4365 for (i = 0; i < db_count; i++)
4366 brelse(sbi->s_group_desc[i]);
4367 ext4_kvfree(sbi->s_group_desc);
4368 failed_mount:
4369 if (sbi->s_chksum_driver)
4370 crypto_free_shash(sbi->s_chksum_driver);
4371 if (sbi->s_proc) {
4372 remove_proc_entry("options", sbi->s_proc);
4373 remove_proc_entry(sb->s_id, ext4_proc_root);
4374 }
4375 #ifdef CONFIG_QUOTA
4376 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4377 kfree(sbi->s_qf_names[i]);
4378 #endif
4379 ext4_blkdev_remove(sbi);
4380 brelse(bh);
4381 out_fail:
4382 sb->s_fs_info = NULL;
4383 kfree(sbi->s_blockgroup_lock);
4384 kfree(sbi);
4385 out_free_orig:
4386 kfree(orig_data);
4387 return err ? err : ret;
4388 }
4389
4390 /*
4391 * Setup any per-fs journal parameters now. We'll do this both on
4392 * initial mount, once the journal has been initialised but before we've
4393 * done any recovery; and again on any subsequent remount.
4394 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)4395 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4396 {
4397 struct ext4_sb_info *sbi = EXT4_SB(sb);
4398
4399 journal->j_commit_interval = sbi->s_commit_interval;
4400 journal->j_min_batch_time = sbi->s_min_batch_time;
4401 journal->j_max_batch_time = sbi->s_max_batch_time;
4402
4403 write_lock(&journal->j_state_lock);
4404 if (test_opt(sb, BARRIER))
4405 journal->j_flags |= JBD2_BARRIER;
4406 else
4407 journal->j_flags &= ~JBD2_BARRIER;
4408 if (test_opt(sb, DATA_ERR_ABORT))
4409 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4410 else
4411 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4412 write_unlock(&journal->j_state_lock);
4413 }
4414
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)4415 static journal_t *ext4_get_journal(struct super_block *sb,
4416 unsigned int journal_inum)
4417 {
4418 struct inode *journal_inode;
4419 journal_t *journal;
4420
4421 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4422
4423 /* First, test for the existence of a valid inode on disk. Bad
4424 * things happen if we iget() an unused inode, as the subsequent
4425 * iput() will try to delete it. */
4426
4427 journal_inode = ext4_iget(sb, journal_inum);
4428 if (IS_ERR(journal_inode)) {
4429 ext4_msg(sb, KERN_ERR, "no journal found");
4430 return NULL;
4431 }
4432 if (!journal_inode->i_nlink) {
4433 make_bad_inode(journal_inode);
4434 iput(journal_inode);
4435 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4436 return NULL;
4437 }
4438
4439 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4440 journal_inode, journal_inode->i_size);
4441 if (!S_ISREG(journal_inode->i_mode)) {
4442 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4443 iput(journal_inode);
4444 return NULL;
4445 }
4446
4447 journal = jbd2_journal_init_inode(journal_inode);
4448 if (!journal) {
4449 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4450 iput(journal_inode);
4451 return NULL;
4452 }
4453 journal->j_private = sb;
4454 ext4_init_journal_params(sb, journal);
4455 return journal;
4456 }
4457
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)4458 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4459 dev_t j_dev)
4460 {
4461 struct buffer_head *bh;
4462 journal_t *journal;
4463 ext4_fsblk_t start;
4464 ext4_fsblk_t len;
4465 int hblock, blocksize;
4466 ext4_fsblk_t sb_block;
4467 unsigned long offset;
4468 struct ext4_super_block *es;
4469 struct block_device *bdev;
4470
4471 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4472
4473 bdev = ext4_blkdev_get(j_dev, sb);
4474 if (bdev == NULL)
4475 return NULL;
4476
4477 blocksize = sb->s_blocksize;
4478 hblock = bdev_logical_block_size(bdev);
4479 if (blocksize < hblock) {
4480 ext4_msg(sb, KERN_ERR,
4481 "blocksize too small for journal device");
4482 goto out_bdev;
4483 }
4484
4485 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4486 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4487 set_blocksize(bdev, blocksize);
4488 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4489 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4490 "external journal");
4491 goto out_bdev;
4492 }
4493
4494 es = (struct ext4_super_block *) (bh->b_data + offset);
4495 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4496 !(le32_to_cpu(es->s_feature_incompat) &
4497 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4498 ext4_msg(sb, KERN_ERR, "external journal has "
4499 "bad superblock");
4500 brelse(bh);
4501 goto out_bdev;
4502 }
4503
4504 if ((le32_to_cpu(es->s_feature_ro_compat) &
4505 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4506 es->s_checksum != ext4_superblock_csum(sb, es)) {
4507 ext4_msg(sb, KERN_ERR, "external journal has "
4508 "corrupt superblock");
4509 brelse(bh);
4510 goto out_bdev;
4511 }
4512
4513 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4514 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4515 brelse(bh);
4516 goto out_bdev;
4517 }
4518
4519 len = ext4_blocks_count(es);
4520 start = sb_block + 1;
4521 brelse(bh); /* we're done with the superblock */
4522
4523 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4524 start, len, blocksize);
4525 if (!journal) {
4526 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4527 goto out_bdev;
4528 }
4529 journal->j_private = sb;
4530 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4531 wait_on_buffer(journal->j_sb_buffer);
4532 if (!buffer_uptodate(journal->j_sb_buffer)) {
4533 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4534 goto out_journal;
4535 }
4536 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4537 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4538 "user (unsupported) - %d",
4539 be32_to_cpu(journal->j_superblock->s_nr_users));
4540 goto out_journal;
4541 }
4542 EXT4_SB(sb)->journal_bdev = bdev;
4543 ext4_init_journal_params(sb, journal);
4544 return journal;
4545
4546 out_journal:
4547 jbd2_journal_destroy(journal);
4548 out_bdev:
4549 ext4_blkdev_put(bdev);
4550 return NULL;
4551 }
4552
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4553 static int ext4_load_journal(struct super_block *sb,
4554 struct ext4_super_block *es,
4555 unsigned long journal_devnum)
4556 {
4557 journal_t *journal;
4558 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4559 dev_t journal_dev;
4560 int err = 0;
4561 int really_read_only;
4562
4563 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4564
4565 if (journal_devnum &&
4566 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4567 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4568 "numbers have changed");
4569 journal_dev = new_decode_dev(journal_devnum);
4570 } else
4571 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4572
4573 really_read_only = bdev_read_only(sb->s_bdev);
4574
4575 /*
4576 * Are we loading a blank journal or performing recovery after a
4577 * crash? For recovery, we need to check in advance whether we
4578 * can get read-write access to the device.
4579 */
4580 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4581 if (sb->s_flags & MS_RDONLY) {
4582 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4583 "required on readonly filesystem");
4584 if (really_read_only) {
4585 ext4_msg(sb, KERN_ERR, "write access "
4586 "unavailable, cannot proceed");
4587 return -EROFS;
4588 }
4589 ext4_msg(sb, KERN_INFO, "write access will "
4590 "be enabled during recovery");
4591 }
4592 }
4593
4594 if (journal_inum && journal_dev) {
4595 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4596 "and inode journals!");
4597 return -EINVAL;
4598 }
4599
4600 if (journal_inum) {
4601 if (!(journal = ext4_get_journal(sb, journal_inum)))
4602 return -EINVAL;
4603 } else {
4604 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4605 return -EINVAL;
4606 }
4607
4608 if (!(journal->j_flags & JBD2_BARRIER))
4609 ext4_msg(sb, KERN_INFO, "barriers disabled");
4610
4611 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4612 err = jbd2_journal_wipe(journal, !really_read_only);
4613 if (!err) {
4614 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4615 if (save)
4616 memcpy(save, ((char *) es) +
4617 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4618 err = jbd2_journal_load(journal);
4619 if (save)
4620 memcpy(((char *) es) + EXT4_S_ERR_START,
4621 save, EXT4_S_ERR_LEN);
4622 kfree(save);
4623 }
4624
4625 if (err) {
4626 ext4_msg(sb, KERN_ERR, "error loading journal");
4627 jbd2_journal_destroy(journal);
4628 return err;
4629 }
4630
4631 EXT4_SB(sb)->s_journal = journal;
4632 ext4_clear_journal_err(sb, es);
4633
4634 if (!really_read_only && journal_devnum &&
4635 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4636 es->s_journal_dev = cpu_to_le32(journal_devnum);
4637
4638 /* Make sure we flush the recovery flag to disk. */
4639 ext4_commit_super(sb, 1);
4640 }
4641
4642 return 0;
4643 }
4644
ext4_commit_super(struct super_block * sb,int sync)4645 static int ext4_commit_super(struct super_block *sb, int sync)
4646 {
4647 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4648 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4649 int error = 0;
4650
4651 if (!sbh || block_device_ejected(sb))
4652 return error;
4653 if (buffer_write_io_error(sbh)) {
4654 /*
4655 * Oh, dear. A previous attempt to write the
4656 * superblock failed. This could happen because the
4657 * USB device was yanked out. Or it could happen to
4658 * be a transient write error and maybe the block will
4659 * be remapped. Nothing we can do but to retry the
4660 * write and hope for the best.
4661 */
4662 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4663 "superblock detected");
4664 clear_buffer_write_io_error(sbh);
4665 set_buffer_uptodate(sbh);
4666 }
4667 /*
4668 * If the file system is mounted read-only, don't update the
4669 * superblock write time. This avoids updating the superblock
4670 * write time when we are mounting the root file system
4671 * read/only but we need to replay the journal; at that point,
4672 * for people who are east of GMT and who make their clock
4673 * tick in localtime for Windows bug-for-bug compatibility,
4674 * the clock is set in the future, and this will cause e2fsck
4675 * to complain and force a full file system check.
4676 */
4677 if (!(sb->s_flags & MS_RDONLY))
4678 es->s_wtime = cpu_to_le32(get_seconds());
4679 if (sb->s_bdev->bd_part)
4680 es->s_kbytes_written =
4681 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4682 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4683 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4684 else
4685 es->s_kbytes_written =
4686 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4687 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4688 ext4_free_blocks_count_set(es,
4689 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4690 &EXT4_SB(sb)->s_freeclusters_counter)));
4691 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4692 es->s_free_inodes_count =
4693 cpu_to_le32(percpu_counter_sum_positive(
4694 &EXT4_SB(sb)->s_freeinodes_counter));
4695 BUFFER_TRACE(sbh, "marking dirty");
4696 ext4_superblock_csum_set(sb);
4697 mark_buffer_dirty(sbh);
4698 if (sync) {
4699 error = sync_dirty_buffer(sbh);
4700 if (error)
4701 return error;
4702
4703 error = buffer_write_io_error(sbh);
4704 if (error) {
4705 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4706 "superblock");
4707 clear_buffer_write_io_error(sbh);
4708 set_buffer_uptodate(sbh);
4709 }
4710 }
4711 return error;
4712 }
4713
4714 /*
4715 * Have we just finished recovery? If so, and if we are mounting (or
4716 * remounting) the filesystem readonly, then we will end up with a
4717 * consistent fs on disk. Record that fact.
4718 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4719 static void ext4_mark_recovery_complete(struct super_block *sb,
4720 struct ext4_super_block *es)
4721 {
4722 journal_t *journal = EXT4_SB(sb)->s_journal;
4723
4724 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4725 BUG_ON(journal != NULL);
4726 return;
4727 }
4728 jbd2_journal_lock_updates(journal);
4729 if (jbd2_journal_flush(journal) < 0)
4730 goto out;
4731
4732 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4733 sb->s_flags & MS_RDONLY) {
4734 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4735 ext4_commit_super(sb, 1);
4736 }
4737
4738 out:
4739 jbd2_journal_unlock_updates(journal);
4740 }
4741
4742 /*
4743 * If we are mounting (or read-write remounting) a filesystem whose journal
4744 * has recorded an error from a previous lifetime, move that error to the
4745 * main filesystem now.
4746 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4747 static void ext4_clear_journal_err(struct super_block *sb,
4748 struct ext4_super_block *es)
4749 {
4750 journal_t *journal;
4751 int j_errno;
4752 const char *errstr;
4753
4754 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4755
4756 journal = EXT4_SB(sb)->s_journal;
4757
4758 /*
4759 * Now check for any error status which may have been recorded in the
4760 * journal by a prior ext4_error() or ext4_abort()
4761 */
4762
4763 j_errno = jbd2_journal_errno(journal);
4764 if (j_errno) {
4765 char nbuf[16];
4766
4767 errstr = ext4_decode_error(sb, j_errno, nbuf);
4768 ext4_warning(sb, "Filesystem error recorded "
4769 "from previous mount: %s", errstr);
4770 ext4_warning(sb, "Marking fs in need of filesystem check.");
4771
4772 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4773 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4774 ext4_commit_super(sb, 1);
4775
4776 jbd2_journal_clear_err(journal);
4777 jbd2_journal_update_sb_errno(journal);
4778 }
4779 }
4780
4781 /*
4782 * Force the running and committing transactions to commit,
4783 * and wait on the commit.
4784 */
ext4_force_commit(struct super_block * sb)4785 int ext4_force_commit(struct super_block *sb)
4786 {
4787 journal_t *journal;
4788
4789 if (sb->s_flags & MS_RDONLY)
4790 return 0;
4791
4792 journal = EXT4_SB(sb)->s_journal;
4793 return ext4_journal_force_commit(journal);
4794 }
4795
ext4_sync_fs(struct super_block * sb,int wait)4796 static int ext4_sync_fs(struct super_block *sb, int wait)
4797 {
4798 int ret = 0;
4799 tid_t target;
4800 bool needs_barrier = false;
4801 struct ext4_sb_info *sbi = EXT4_SB(sb);
4802
4803 trace_ext4_sync_fs(sb, wait);
4804 flush_workqueue(sbi->rsv_conversion_wq);
4805 /*
4806 * Writeback quota in non-journalled quota case - journalled quota has
4807 * no dirty dquots
4808 */
4809 dquot_writeback_dquots(sb, -1);
4810 /*
4811 * Data writeback is possible w/o journal transaction, so barrier must
4812 * being sent at the end of the function. But we can skip it if
4813 * transaction_commit will do it for us.
4814 */
4815 if (sbi->s_journal) {
4816 target = jbd2_get_latest_transaction(sbi->s_journal);
4817 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4818 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4819 needs_barrier = true;
4820
4821 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4822 if (wait)
4823 ret = jbd2_log_wait_commit(sbi->s_journal,
4824 target);
4825 }
4826 } else if (wait && test_opt(sb, BARRIER))
4827 needs_barrier = true;
4828 if (needs_barrier) {
4829 int err;
4830 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4831 if (!ret)
4832 ret = err;
4833 }
4834
4835 return ret;
4836 }
4837
4838 /*
4839 * LVM calls this function before a (read-only) snapshot is created. This
4840 * gives us a chance to flush the journal completely and mark the fs clean.
4841 *
4842 * Note that only this function cannot bring a filesystem to be in a clean
4843 * state independently. It relies on upper layer to stop all data & metadata
4844 * modifications.
4845 */
ext4_freeze(struct super_block * sb)4846 static int ext4_freeze(struct super_block *sb)
4847 {
4848 int error = 0;
4849 journal_t *journal;
4850
4851 if (sb->s_flags & MS_RDONLY)
4852 return 0;
4853
4854 journal = EXT4_SB(sb)->s_journal;
4855
4856 if (journal) {
4857 /* Now we set up the journal barrier. */
4858 jbd2_journal_lock_updates(journal);
4859
4860 /*
4861 * Don't clear the needs_recovery flag if we failed to
4862 * flush the journal.
4863 */
4864 error = jbd2_journal_flush(journal);
4865 if (error < 0)
4866 goto out;
4867
4868 /* Journal blocked and flushed, clear needs_recovery flag. */
4869 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4870 }
4871
4872 error = ext4_commit_super(sb, 1);
4873 out:
4874 if (journal)
4875 /* we rely on upper layer to stop further updates */
4876 jbd2_journal_unlock_updates(journal);
4877 return error;
4878 }
4879
4880 /*
4881 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4882 * flag here, even though the filesystem is not technically dirty yet.
4883 */
ext4_unfreeze(struct super_block * sb)4884 static int ext4_unfreeze(struct super_block *sb)
4885 {
4886 if (sb->s_flags & MS_RDONLY)
4887 return 0;
4888
4889 if (EXT4_SB(sb)->s_journal) {
4890 /* Reset the needs_recovery flag before the fs is unlocked. */
4891 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4892 }
4893
4894 ext4_commit_super(sb, 1);
4895 return 0;
4896 }
4897
4898 /*
4899 * Structure to save mount options for ext4_remount's benefit
4900 */
4901 struct ext4_mount_options {
4902 unsigned long s_mount_opt;
4903 unsigned long s_mount_opt2;
4904 kuid_t s_resuid;
4905 kgid_t s_resgid;
4906 unsigned long s_commit_interval;
4907 u32 s_min_batch_time, s_max_batch_time;
4908 #ifdef CONFIG_QUOTA
4909 int s_jquota_fmt;
4910 char *s_qf_names[EXT4_MAXQUOTAS];
4911 #endif
4912 };
4913
ext4_remount(struct super_block * sb,int * flags,char * data)4914 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4915 {
4916 struct ext4_super_block *es;
4917 struct ext4_sb_info *sbi = EXT4_SB(sb);
4918 unsigned long old_sb_flags;
4919 struct ext4_mount_options old_opts;
4920 int enable_quota = 0;
4921 ext4_group_t g;
4922 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4923 int err = 0;
4924 #ifdef CONFIG_QUOTA
4925 int i, j;
4926 #endif
4927 char *orig_data = kstrdup(data, GFP_KERNEL);
4928
4929 /* Store the original options */
4930 old_sb_flags = sb->s_flags;
4931 old_opts.s_mount_opt = sbi->s_mount_opt;
4932 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4933 old_opts.s_resuid = sbi->s_resuid;
4934 old_opts.s_resgid = sbi->s_resgid;
4935 old_opts.s_commit_interval = sbi->s_commit_interval;
4936 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4937 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4938 #ifdef CONFIG_QUOTA
4939 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4940 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4941 if (sbi->s_qf_names[i]) {
4942 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4943 GFP_KERNEL);
4944 if (!old_opts.s_qf_names[i]) {
4945 for (j = 0; j < i; j++)
4946 kfree(old_opts.s_qf_names[j]);
4947 kfree(orig_data);
4948 return -ENOMEM;
4949 }
4950 } else
4951 old_opts.s_qf_names[i] = NULL;
4952 #endif
4953 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4954 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4955
4956 /*
4957 * Allow the "check" option to be passed as a remount option.
4958 */
4959 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4960 err = -EINVAL;
4961 goto restore_opts;
4962 }
4963
4964 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4965 test_opt(sb, JOURNAL_CHECKSUM)) {
4966 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4967 "during remount not supported; ignoring");
4968 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4969 }
4970
4971 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4972 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4973 ext4_msg(sb, KERN_ERR, "can't mount with "
4974 "both data=journal and delalloc");
4975 err = -EINVAL;
4976 goto restore_opts;
4977 }
4978 if (test_opt(sb, DIOREAD_NOLOCK)) {
4979 ext4_msg(sb, KERN_ERR, "can't mount with "
4980 "both data=journal and dioread_nolock");
4981 err = -EINVAL;
4982 goto restore_opts;
4983 }
4984 }
4985
4986 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4987 ext4_abort(sb, "Abort forced by user");
4988
4989 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4990 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4991
4992 es = sbi->s_es;
4993
4994 if (sbi->s_journal) {
4995 ext4_init_journal_params(sb, sbi->s_journal);
4996 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4997 }
4998
4999 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
5000 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5001 err = -EROFS;
5002 goto restore_opts;
5003 }
5004
5005 if (*flags & MS_RDONLY) {
5006 err = sync_filesystem(sb);
5007 if (err < 0)
5008 goto restore_opts;
5009 err = dquot_suspend(sb, -1);
5010 if (err < 0)
5011 goto restore_opts;
5012
5013 /*
5014 * First of all, the unconditional stuff we have to do
5015 * to disable replay of the journal when we next remount
5016 */
5017 sb->s_flags |= MS_RDONLY;
5018
5019 /*
5020 * OK, test if we are remounting a valid rw partition
5021 * readonly, and if so set the rdonly flag and then
5022 * mark the partition as valid again.
5023 */
5024 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5025 (sbi->s_mount_state & EXT4_VALID_FS))
5026 es->s_state = cpu_to_le16(sbi->s_mount_state);
5027
5028 if (sbi->s_journal)
5029 ext4_mark_recovery_complete(sb, es);
5030 } else {
5031 /* Make sure we can mount this feature set readwrite */
5032 if (!ext4_feature_set_ok(sb, 0)) {
5033 err = -EROFS;
5034 goto restore_opts;
5035 }
5036 /*
5037 * Make sure the group descriptor checksums
5038 * are sane. If they aren't, refuse to remount r/w.
5039 */
5040 for (g = 0; g < sbi->s_groups_count; g++) {
5041 struct ext4_group_desc *gdp =
5042 ext4_get_group_desc(sb, g, NULL);
5043
5044 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5045 ext4_msg(sb, KERN_ERR,
5046 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5047 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5048 le16_to_cpu(gdp->bg_checksum));
5049 err = -EINVAL;
5050 goto restore_opts;
5051 }
5052 }
5053
5054 /*
5055 * If we have an unprocessed orphan list hanging
5056 * around from a previously readonly bdev mount,
5057 * require a full umount/remount for now.
5058 */
5059 if (es->s_last_orphan) {
5060 ext4_msg(sb, KERN_WARNING, "Couldn't "
5061 "remount RDWR because of unprocessed "
5062 "orphan inode list. Please "
5063 "umount/remount instead");
5064 err = -EINVAL;
5065 goto restore_opts;
5066 }
5067
5068 /*
5069 * Mounting a RDONLY partition read-write, so reread
5070 * and store the current valid flag. (It may have
5071 * been changed by e2fsck since we originally mounted
5072 * the partition.)
5073 */
5074 if (sbi->s_journal)
5075 ext4_clear_journal_err(sb, es);
5076 sbi->s_mount_state = le16_to_cpu(es->s_state);
5077 if (!ext4_setup_super(sb, es, 0))
5078 sb->s_flags &= ~MS_RDONLY;
5079 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5080 EXT4_FEATURE_INCOMPAT_MMP))
5081 if (ext4_multi_mount_protect(sb,
5082 le64_to_cpu(es->s_mmp_block))) {
5083 err = -EROFS;
5084 goto restore_opts;
5085 }
5086 enable_quota = 1;
5087 }
5088 }
5089
5090 /*
5091 * Reinitialize lazy itable initialization thread based on
5092 * current settings
5093 */
5094 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5095 ext4_unregister_li_request(sb);
5096 else {
5097 ext4_group_t first_not_zeroed;
5098 first_not_zeroed = ext4_has_uninit_itable(sb);
5099 ext4_register_li_request(sb, first_not_zeroed);
5100 }
5101
5102 ext4_setup_system_zone(sb);
5103 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5104 ext4_commit_super(sb, 1);
5105
5106 #ifdef CONFIG_QUOTA
5107 /* Release old quota file names */
5108 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5109 kfree(old_opts.s_qf_names[i]);
5110 if (enable_quota) {
5111 if (sb_any_quota_suspended(sb))
5112 dquot_resume(sb, -1);
5113 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5114 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5115 err = ext4_enable_quotas(sb);
5116 if (err)
5117 goto restore_opts;
5118 }
5119 }
5120 #endif
5121
5122 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5123 kfree(orig_data);
5124 return 0;
5125
5126 restore_opts:
5127 sb->s_flags = old_sb_flags;
5128 sbi->s_mount_opt = old_opts.s_mount_opt;
5129 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5130 sbi->s_resuid = old_opts.s_resuid;
5131 sbi->s_resgid = old_opts.s_resgid;
5132 sbi->s_commit_interval = old_opts.s_commit_interval;
5133 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5134 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5135 #ifdef CONFIG_QUOTA
5136 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5137 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5138 kfree(sbi->s_qf_names[i]);
5139 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5140 }
5141 #endif
5142 kfree(orig_data);
5143 return err;
5144 }
5145
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)5146 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5147 {
5148 struct super_block *sb = dentry->d_sb;
5149 struct ext4_sb_info *sbi = EXT4_SB(sb);
5150 struct ext4_super_block *es = sbi->s_es;
5151 ext4_fsblk_t overhead = 0, resv_blocks;
5152 u64 fsid;
5153 s64 bfree;
5154 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5155
5156 if (!test_opt(sb, MINIX_DF))
5157 overhead = sbi->s_overhead;
5158
5159 buf->f_type = EXT4_SUPER_MAGIC;
5160 buf->f_bsize = sb->s_blocksize;
5161 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5162 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5163 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5164 /* prevent underflow in case that few free space is available */
5165 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5166 buf->f_bavail = buf->f_bfree -
5167 (ext4_r_blocks_count(es) + resv_blocks);
5168 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5169 buf->f_bavail = 0;
5170 buf->f_files = le32_to_cpu(es->s_inodes_count);
5171 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5172 buf->f_namelen = EXT4_NAME_LEN;
5173 fsid = le64_to_cpup((void *)es->s_uuid) ^
5174 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5175 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5176 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5177
5178 return 0;
5179 }
5180
5181 /* Helper function for writing quotas on sync - we need to start transaction
5182 * before quota file is locked for write. Otherwise the are possible deadlocks:
5183 * Process 1 Process 2
5184 * ext4_create() quota_sync()
5185 * jbd2_journal_start() write_dquot()
5186 * dquot_initialize() down(dqio_mutex)
5187 * down(dqio_mutex) jbd2_journal_start()
5188 *
5189 */
5190
5191 #ifdef CONFIG_QUOTA
5192
dquot_to_inode(struct dquot * dquot)5193 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5194 {
5195 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5196 }
5197
ext4_write_dquot(struct dquot * dquot)5198 static int ext4_write_dquot(struct dquot *dquot)
5199 {
5200 int ret, err;
5201 handle_t *handle;
5202 struct inode *inode;
5203
5204 inode = dquot_to_inode(dquot);
5205 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5206 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5207 if (IS_ERR(handle))
5208 return PTR_ERR(handle);
5209 ret = dquot_commit(dquot);
5210 err = ext4_journal_stop(handle);
5211 if (!ret)
5212 ret = err;
5213 return ret;
5214 }
5215
ext4_acquire_dquot(struct dquot * dquot)5216 static int ext4_acquire_dquot(struct dquot *dquot)
5217 {
5218 int ret, err;
5219 handle_t *handle;
5220
5221 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5222 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5223 if (IS_ERR(handle))
5224 return PTR_ERR(handle);
5225 ret = dquot_acquire(dquot);
5226 err = ext4_journal_stop(handle);
5227 if (!ret)
5228 ret = err;
5229 return ret;
5230 }
5231
ext4_release_dquot(struct dquot * dquot)5232 static int ext4_release_dquot(struct dquot *dquot)
5233 {
5234 int ret, err;
5235 handle_t *handle;
5236
5237 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5238 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5239 if (IS_ERR(handle)) {
5240 /* Release dquot anyway to avoid endless cycle in dqput() */
5241 dquot_release(dquot);
5242 return PTR_ERR(handle);
5243 }
5244 ret = dquot_release(dquot);
5245 err = ext4_journal_stop(handle);
5246 if (!ret)
5247 ret = err;
5248 return ret;
5249 }
5250
ext4_mark_dquot_dirty(struct dquot * dquot)5251 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5252 {
5253 struct super_block *sb = dquot->dq_sb;
5254 struct ext4_sb_info *sbi = EXT4_SB(sb);
5255
5256 /* Are we journaling quotas? */
5257 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5258 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5259 dquot_mark_dquot_dirty(dquot);
5260 return ext4_write_dquot(dquot);
5261 } else {
5262 return dquot_mark_dquot_dirty(dquot);
5263 }
5264 }
5265
ext4_write_info(struct super_block * sb,int type)5266 static int ext4_write_info(struct super_block *sb, int type)
5267 {
5268 int ret, err;
5269 handle_t *handle;
5270
5271 /* Data block + inode block */
5272 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5273 if (IS_ERR(handle))
5274 return PTR_ERR(handle);
5275 ret = dquot_commit_info(sb, type);
5276 err = ext4_journal_stop(handle);
5277 if (!ret)
5278 ret = err;
5279 return ret;
5280 }
5281
5282 /*
5283 * Turn on quotas during mount time - we need to find
5284 * the quota file and such...
5285 */
ext4_quota_on_mount(struct super_block * sb,int type)5286 static int ext4_quota_on_mount(struct super_block *sb, int type)
5287 {
5288 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5289 EXT4_SB(sb)->s_jquota_fmt, type);
5290 }
5291
lockdep_set_quota_inode(struct inode * inode,int subclass)5292 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5293 {
5294 struct ext4_inode_info *ei = EXT4_I(inode);
5295
5296 /* The first argument of lockdep_set_subclass has to be
5297 * *exactly* the same as the argument to init_rwsem() --- in
5298 * this case, in init_once() --- or lockdep gets unhappy
5299 * because the name of the lock is set using the
5300 * stringification of the argument to init_rwsem().
5301 */
5302 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5303 lockdep_set_subclass(&ei->i_data_sem, subclass);
5304 }
5305
5306 /*
5307 * Standard function to be called on quota_on
5308 */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)5309 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5310 struct path *path)
5311 {
5312 int err;
5313
5314 if (!test_opt(sb, QUOTA))
5315 return -EINVAL;
5316
5317 /* Quotafile not on the same filesystem? */
5318 if (path->dentry->d_sb != sb)
5319 return -EXDEV;
5320 /* Journaling quota? */
5321 if (EXT4_SB(sb)->s_qf_names[type]) {
5322 /* Quotafile not in fs root? */
5323 if (path->dentry->d_parent != sb->s_root)
5324 ext4_msg(sb, KERN_WARNING,
5325 "Quota file not on filesystem root. "
5326 "Journaled quota will not work");
5327 }
5328
5329 /*
5330 * When we journal data on quota file, we have to flush journal to see
5331 * all updates to the file when we bypass pagecache...
5332 */
5333 if (EXT4_SB(sb)->s_journal &&
5334 ext4_should_journal_data(path->dentry->d_inode)) {
5335 /*
5336 * We don't need to lock updates but journal_flush() could
5337 * otherwise be livelocked...
5338 */
5339 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5340 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5341 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5342 if (err)
5343 return err;
5344 }
5345 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5346 err = dquot_quota_on(sb, type, format_id, path);
5347 if (err)
5348 lockdep_set_quota_inode(path->dentry->d_inode,
5349 I_DATA_SEM_NORMAL);
5350 return err;
5351 }
5352
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)5353 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5354 unsigned int flags)
5355 {
5356 int err;
5357 struct inode *qf_inode;
5358 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5359 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5360 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5361 };
5362
5363 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5364
5365 if (!qf_inums[type])
5366 return -EPERM;
5367
5368 qf_inode = ext4_iget(sb, qf_inums[type]);
5369 if (IS_ERR(qf_inode)) {
5370 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5371 return PTR_ERR(qf_inode);
5372 }
5373
5374 /* Don't account quota for quota files to avoid recursion */
5375 qf_inode->i_flags |= S_NOQUOTA;
5376 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5377 err = dquot_enable(qf_inode, type, format_id, flags);
5378 iput(qf_inode);
5379 if (err)
5380 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5381
5382 return err;
5383 }
5384
5385 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)5386 static int ext4_enable_quotas(struct super_block *sb)
5387 {
5388 int type, err = 0;
5389 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5390 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5391 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5392 };
5393
5394 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5395 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5396 if (qf_inums[type]) {
5397 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5398 DQUOT_USAGE_ENABLED);
5399 if (err) {
5400 ext4_warning(sb,
5401 "Failed to enable quota tracking "
5402 "(type=%d, err=%d). Please run "
5403 "e2fsck to fix.", type, err);
5404 return err;
5405 }
5406 }
5407 }
5408 return 0;
5409 }
5410
5411 /*
5412 * quota_on function that is used when QUOTA feature is set.
5413 */
ext4_quota_on_sysfile(struct super_block * sb,int type,int format_id)5414 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5415 int format_id)
5416 {
5417 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5418 return -EINVAL;
5419
5420 /*
5421 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5422 */
5423 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5424 }
5425
ext4_quota_off(struct super_block * sb,int type)5426 static int ext4_quota_off(struct super_block *sb, int type)
5427 {
5428 struct inode *inode = sb_dqopt(sb)->files[type];
5429 handle_t *handle;
5430
5431 /* Force all delayed allocation blocks to be allocated.
5432 * Caller already holds s_umount sem */
5433 if (test_opt(sb, DELALLOC))
5434 sync_filesystem(sb);
5435
5436 if (!inode)
5437 goto out;
5438
5439 /* Update modification times of quota files when userspace can
5440 * start looking at them */
5441 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5442 if (IS_ERR(handle))
5443 goto out;
5444 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5445 ext4_mark_inode_dirty(handle, inode);
5446 ext4_journal_stop(handle);
5447
5448 out:
5449 return dquot_quota_off(sb, type);
5450 }
5451
5452 /*
5453 * quota_off function that is used when QUOTA feature is set.
5454 */
ext4_quota_off_sysfile(struct super_block * sb,int type)5455 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5456 {
5457 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5458 return -EINVAL;
5459
5460 /* Disable only the limits. */
5461 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5462 }
5463
5464 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5465 * acquiring the locks... As quota files are never truncated and quota code
5466 * itself serializes the operations (and no one else should touch the files)
5467 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)5468 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5469 size_t len, loff_t off)
5470 {
5471 struct inode *inode = sb_dqopt(sb)->files[type];
5472 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5473 int offset = off & (sb->s_blocksize - 1);
5474 int tocopy;
5475 size_t toread;
5476 struct buffer_head *bh;
5477 loff_t i_size = i_size_read(inode);
5478
5479 if (off > i_size)
5480 return 0;
5481 if (off+len > i_size)
5482 len = i_size-off;
5483 toread = len;
5484 while (toread > 0) {
5485 tocopy = sb->s_blocksize - offset < toread ?
5486 sb->s_blocksize - offset : toread;
5487 bh = ext4_bread(NULL, inode, blk, 0);
5488 if (IS_ERR(bh))
5489 return PTR_ERR(bh);
5490 if (!bh) /* A hole? */
5491 memset(data, 0, tocopy);
5492 else
5493 memcpy(data, bh->b_data+offset, tocopy);
5494 brelse(bh);
5495 offset = 0;
5496 toread -= tocopy;
5497 data += tocopy;
5498 blk++;
5499 }
5500 return len;
5501 }
5502
5503 /* Write to quotafile (we know the transaction is already started and has
5504 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)5505 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5506 const char *data, size_t len, loff_t off)
5507 {
5508 struct inode *inode = sb_dqopt(sb)->files[type];
5509 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5510 int err, offset = off & (sb->s_blocksize - 1);
5511 struct buffer_head *bh;
5512 handle_t *handle = journal_current_handle();
5513
5514 if (EXT4_SB(sb)->s_journal && !handle) {
5515 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5516 " cancelled because transaction is not started",
5517 (unsigned long long)off, (unsigned long long)len);
5518 return -EIO;
5519 }
5520 /*
5521 * Since we account only one data block in transaction credits,
5522 * then it is impossible to cross a block boundary.
5523 */
5524 if (sb->s_blocksize - offset < len) {
5525 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5526 " cancelled because not block aligned",
5527 (unsigned long long)off, (unsigned long long)len);
5528 return -EIO;
5529 }
5530
5531 bh = ext4_bread(handle, inode, blk, 1);
5532 if (IS_ERR(bh))
5533 return PTR_ERR(bh);
5534 if (!bh)
5535 goto out;
5536 BUFFER_TRACE(bh, "get write access");
5537 err = ext4_journal_get_write_access(handle, bh);
5538 if (err) {
5539 brelse(bh);
5540 return err;
5541 }
5542 lock_buffer(bh);
5543 memcpy(bh->b_data+offset, data, len);
5544 flush_dcache_page(bh->b_page);
5545 unlock_buffer(bh);
5546 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5547 brelse(bh);
5548 out:
5549 if (inode->i_size < off + len) {
5550 i_size_write(inode, off + len);
5551 EXT4_I(inode)->i_disksize = inode->i_size;
5552 ext4_mark_inode_dirty(handle, inode);
5553 }
5554 return len;
5555 }
5556
5557 #endif
5558
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)5559 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5560 const char *dev_name, void *data)
5561 {
5562 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5563 }
5564
5565 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)5566 static inline void register_as_ext2(void)
5567 {
5568 int err = register_filesystem(&ext2_fs_type);
5569 if (err)
5570 printk(KERN_WARNING
5571 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5572 }
5573
unregister_as_ext2(void)5574 static inline void unregister_as_ext2(void)
5575 {
5576 unregister_filesystem(&ext2_fs_type);
5577 }
5578
ext2_feature_set_ok(struct super_block * sb)5579 static inline int ext2_feature_set_ok(struct super_block *sb)
5580 {
5581 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5582 return 0;
5583 if (sb->s_flags & MS_RDONLY)
5584 return 1;
5585 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5586 return 0;
5587 return 1;
5588 }
5589 #else
register_as_ext2(void)5590 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)5591 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)5592 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5593 #endif
5594
5595 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)5596 static inline void register_as_ext3(void)
5597 {
5598 int err = register_filesystem(&ext3_fs_type);
5599 if (err)
5600 printk(KERN_WARNING
5601 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5602 }
5603
unregister_as_ext3(void)5604 static inline void unregister_as_ext3(void)
5605 {
5606 unregister_filesystem(&ext3_fs_type);
5607 }
5608
ext3_feature_set_ok(struct super_block * sb)5609 static inline int ext3_feature_set_ok(struct super_block *sb)
5610 {
5611 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5612 return 0;
5613 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5614 return 0;
5615 if (sb->s_flags & MS_RDONLY)
5616 return 1;
5617 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5618 return 0;
5619 return 1;
5620 }
5621 #else
register_as_ext3(void)5622 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)5623 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)5624 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5625 #endif
5626
5627 static struct file_system_type ext4_fs_type = {
5628 .owner = THIS_MODULE,
5629 .name = "ext4",
5630 .mount = ext4_mount,
5631 .kill_sb = kill_block_super,
5632 .fs_flags = FS_REQUIRES_DEV,
5633 };
5634 MODULE_ALIAS_FS("ext4");
5635
ext4_init_feat_adverts(void)5636 static int __init ext4_init_feat_adverts(void)
5637 {
5638 struct ext4_features *ef;
5639 int ret = -ENOMEM;
5640
5641 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5642 if (!ef)
5643 goto out;
5644
5645 ef->f_kobj.kset = ext4_kset;
5646 init_completion(&ef->f_kobj_unregister);
5647 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5648 "features");
5649 if (ret) {
5650 kfree(ef);
5651 goto out;
5652 }
5653
5654 ext4_feat = ef;
5655 ret = 0;
5656 out:
5657 return ret;
5658 }
5659
ext4_exit_feat_adverts(void)5660 static void ext4_exit_feat_adverts(void)
5661 {
5662 kobject_put(&ext4_feat->f_kobj);
5663 wait_for_completion(&ext4_feat->f_kobj_unregister);
5664 kfree(ext4_feat);
5665 }
5666
5667 /* Shared across all ext4 file systems */
5668 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5669 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5670
ext4_init_fs(void)5671 static int __init ext4_init_fs(void)
5672 {
5673 int i, err;
5674
5675 ext4_li_info = NULL;
5676 mutex_init(&ext4_li_mtx);
5677
5678 /* Build-time check for flags consistency */
5679 ext4_check_flag_values();
5680
5681 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5682 mutex_init(&ext4__aio_mutex[i]);
5683 init_waitqueue_head(&ext4__ioend_wq[i]);
5684 }
5685
5686 err = ext4_init_es();
5687 if (err)
5688 return err;
5689
5690 err = ext4_init_pageio();
5691 if (err)
5692 goto out7;
5693
5694 err = ext4_init_system_zone();
5695 if (err)
5696 goto out6;
5697 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5698 if (!ext4_kset) {
5699 err = -ENOMEM;
5700 goto out5;
5701 }
5702 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5703
5704 err = ext4_init_feat_adverts();
5705 if (err)
5706 goto out4;
5707
5708 err = ext4_init_mballoc();
5709 if (err)
5710 goto out2;
5711 else
5712 ext4_mballoc_ready = 1;
5713 err = init_inodecache();
5714 if (err)
5715 goto out1;
5716 register_as_ext3();
5717 register_as_ext2();
5718 err = register_filesystem(&ext4_fs_type);
5719 if (err)
5720 goto out;
5721
5722 return 0;
5723 out:
5724 unregister_as_ext2();
5725 unregister_as_ext3();
5726 destroy_inodecache();
5727 out1:
5728 ext4_mballoc_ready = 0;
5729 ext4_exit_mballoc();
5730 out2:
5731 ext4_exit_feat_adverts();
5732 out4:
5733 if (ext4_proc_root)
5734 remove_proc_entry("fs/ext4", NULL);
5735 kset_unregister(ext4_kset);
5736 out5:
5737 ext4_exit_system_zone();
5738 out6:
5739 ext4_exit_pageio();
5740 out7:
5741 ext4_exit_es();
5742
5743 return err;
5744 }
5745
ext4_exit_fs(void)5746 static void __exit ext4_exit_fs(void)
5747 {
5748 ext4_exit_crypto();
5749 ext4_destroy_lazyinit_thread();
5750 unregister_as_ext2();
5751 unregister_as_ext3();
5752 unregister_filesystem(&ext4_fs_type);
5753 destroy_inodecache();
5754 ext4_exit_mballoc();
5755 ext4_exit_feat_adverts();
5756 remove_proc_entry("fs/ext4", NULL);
5757 kset_unregister(ext4_kset);
5758 ext4_exit_system_zone();
5759 ext4_exit_pageio();
5760 ext4_exit_es();
5761 }
5762
5763 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5764 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5765 MODULE_LICENSE("GPL");
5766 module_init(ext4_init_fs)
5767 module_exit(ext4_exit_fs)
5768