1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24
25 /*
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
28 */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30
31 /*
32 * We keep all named keyrings in a hash to speed looking them up.
33 */
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
35
36 /*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40 #define KEYRING_PTR_SUBTYPE 0x2UL
41
keyring_ptr_is_keyring(const struct assoc_array_ptr * x)42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
keyring_ptr_to_key(const struct assoc_array_ptr * x)46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
keyring_key_to_ptr(struct key * key)51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56 }
57
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60
keyring_hash(const char * desc)61 static inline unsigned keyring_hash(const char *desc)
62 {
63 unsigned bucket = 0;
64
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
67
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70
71 /*
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
75 */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
85
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98
99 /*
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
102 */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104
105 /*
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
108 */
keyring_publish_name(struct key * keyring)109 static void keyring_publish_name(struct key *keyring)
110 {
111 int bucket;
112
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
115
116 write_lock(&keyring_name_lock);
117
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120
121 list_add_tail(&keyring->type_data.link,
122 &keyring_name_hash[bucket]);
123
124 write_unlock(&keyring_name_lock);
125 }
126 }
127
128 /*
129 * Preparse a keyring payload
130 */
keyring_preparse(struct key_preparsed_payload * prep)131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 return prep->datalen != 0 ? -EINVAL : 0;
134 }
135
136 /*
137 * Free a preparse of a user defined key payload
138 */
keyring_free_preparse(struct key_preparsed_payload * prep)139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142
143 /*
144 * Initialise a keyring.
145 *
146 * Returns 0 on success, -EINVAL if given any data.
147 */
keyring_instantiate(struct key * keyring,struct key_preparsed_payload * prep)148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
150 {
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
155 }
156
157 /*
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
160 */
mult_64x32_and_fold(u64 x,u32 y)161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167
168 /*
169 * Hash a key type and description.
170 */
hash_key_type_and_desc(const struct keyring_index_key * index_key)171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
180
181 type = (unsigned long)index_key->type;
182
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
197 }
198
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
203
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
207 */
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
213 }
214
215 /*
216 * Build the next index key chunk.
217 *
218 * On 32-bit systems the index key is laid out as:
219 *
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
222 *
223 * On 64-bit systems:
224 *
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
227 *
228 * We return it one word-sized chunk at a time.
229 */
keyring_get_key_chunk(const void * data,int level)230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
236
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
262
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 }
268 return chunk;
269 }
270 }
271
keyring_get_object_key_chunk(const void * object,int level)272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
276 }
277
keyring_compare_object(const void * object,const void * data)278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
282
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
287 }
288
289 /*
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
292 */
keyring_diff_objects(const void * object,const void * data)293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
300
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
306
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
310 */
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
316
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
323
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
327
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 }
339
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
345 }
346
347 same:
348 return -1;
349
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
355 }
356
357 /*
358 * Free an object after stripping the keyring flag off of the pointer.
359 */
keyring_free_object(void * object)360 static void keyring_free_object(void *object)
361 {
362 key_put(keyring_ptr_to_key(object));
363 }
364
365 /*
366 * Operations for keyring management by the index-tree routines.
367 */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
374 };
375
376 /*
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
379 *
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
384 */
keyring_destroy(struct key * keyring)385 static void keyring_destroy(struct key *keyring)
386 {
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
389
390 if (keyring->type_data.link.next != NULL &&
391 !list_empty(&keyring->type_data.link))
392 list_del(&keyring->type_data.link);
393
394 write_unlock(&keyring_name_lock);
395 }
396
397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
398 }
399
400 /*
401 * Describe a keyring for /proc.
402 */
keyring_describe(const struct key * keyring,struct seq_file * m)403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
404 {
405 if (keyring->description)
406 seq_puts(m, keyring->description);
407 else
408 seq_puts(m, "[anon]");
409
410 if (key_is_instantiated(keyring)) {
411 if (keyring->keys.nr_leaves_on_tree != 0)
412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 else
414 seq_puts(m, ": empty");
415 }
416 }
417
418 struct keyring_read_iterator_context {
419 size_t buflen;
420 size_t count;
421 key_serial_t __user *buffer;
422 };
423
keyring_read_iterator(const void * object,void * data)424 static int keyring_read_iterator(const void *object, void *data)
425 {
426 struct keyring_read_iterator_context *ctx = data;
427 const struct key *key = keyring_ptr_to_key(object);
428 int ret;
429
430 kenter("{%s,%d},,{%zu/%zu}",
431 key->type->name, key->serial, ctx->count, ctx->buflen);
432
433 if (ctx->count >= ctx->buflen)
434 return 1;
435
436 ret = put_user(key->serial, ctx->buffer);
437 if (ret < 0)
438 return ret;
439 ctx->buffer++;
440 ctx->count += sizeof(key->serial);
441 return 0;
442 }
443
444 /*
445 * Read a list of key IDs from the keyring's contents in binary form
446 *
447 * The keyring's semaphore is read-locked by the caller. This prevents someone
448 * from modifying it under us - which could cause us to read key IDs multiple
449 * times.
450 */
keyring_read(const struct key * keyring,char __user * buffer,size_t buflen)451 static long keyring_read(const struct key *keyring,
452 char __user *buffer, size_t buflen)
453 {
454 struct keyring_read_iterator_context ctx;
455 long ret;
456
457 kenter("{%d},,%zu", key_serial(keyring), buflen);
458
459 if (buflen & (sizeof(key_serial_t) - 1))
460 return -EINVAL;
461
462 /* Copy as many key IDs as fit into the buffer */
463 if (buffer && buflen) {
464 ctx.buffer = (key_serial_t __user *)buffer;
465 ctx.buflen = buflen;
466 ctx.count = 0;
467 ret = assoc_array_iterate(&keyring->keys,
468 keyring_read_iterator, &ctx);
469 if (ret < 0) {
470 kleave(" = %ld [iterate]", ret);
471 return ret;
472 }
473 }
474
475 /* Return the size of the buffer needed */
476 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
477 if (ret <= buflen)
478 kleave("= %ld [ok]", ret);
479 else
480 kleave("= %ld [buffer too small]", ret);
481 return ret;
482 }
483
484 /*
485 * Allocate a keyring and link into the destination keyring.
486 */
keyring_alloc(const char * description,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key * dest)487 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
488 const struct cred *cred, key_perm_t perm,
489 unsigned long flags, struct key *dest)
490 {
491 struct key *keyring;
492 int ret;
493
494 keyring = key_alloc(&key_type_keyring, description,
495 uid, gid, cred, perm, flags);
496 if (!IS_ERR(keyring)) {
497 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
498 if (ret < 0) {
499 key_put(keyring);
500 keyring = ERR_PTR(ret);
501 }
502 }
503
504 return keyring;
505 }
506 EXPORT_SYMBOL(keyring_alloc);
507
508 /*
509 * By default, we keys found by getting an exact match on their descriptions.
510 */
key_default_cmp(const struct key * key,const struct key_match_data * match_data)511 bool key_default_cmp(const struct key *key,
512 const struct key_match_data *match_data)
513 {
514 return strcmp(key->description, match_data->raw_data) == 0;
515 }
516
517 /*
518 * Iteration function to consider each key found.
519 */
keyring_search_iterator(const void * object,void * iterator_data)520 static int keyring_search_iterator(const void *object, void *iterator_data)
521 {
522 struct keyring_search_context *ctx = iterator_data;
523 const struct key *key = keyring_ptr_to_key(object);
524 unsigned long kflags = key->flags;
525
526 kenter("{%d}", key->serial);
527
528 /* ignore keys not of this type */
529 if (key->type != ctx->index_key.type) {
530 kleave(" = 0 [!type]");
531 return 0;
532 }
533
534 /* skip invalidated, revoked and expired keys */
535 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
536 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
537 (1 << KEY_FLAG_REVOKED))) {
538 ctx->result = ERR_PTR(-EKEYREVOKED);
539 kleave(" = %d [invrev]", ctx->skipped_ret);
540 goto skipped;
541 }
542
543 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
544 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
545 ctx->result = ERR_PTR(-EKEYEXPIRED);
546 kleave(" = %d [expire]", ctx->skipped_ret);
547 goto skipped;
548 }
549 }
550
551 /* keys that don't match */
552 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
553 kleave(" = 0 [!match]");
554 return 0;
555 }
556
557 /* key must have search permissions */
558 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
559 key_task_permission(make_key_ref(key, ctx->possessed),
560 ctx->cred, KEY_NEED_SEARCH) < 0) {
561 ctx->result = ERR_PTR(-EACCES);
562 kleave(" = %d [!perm]", ctx->skipped_ret);
563 goto skipped;
564 }
565
566 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
567 /* we set a different error code if we pass a negative key */
568 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
569 smp_rmb();
570 ctx->result = ERR_PTR(key->type_data.reject_error);
571 kleave(" = %d [neg]", ctx->skipped_ret);
572 goto skipped;
573 }
574 }
575
576 /* Found */
577 ctx->result = make_key_ref(key, ctx->possessed);
578 kleave(" = 1 [found]");
579 return 1;
580
581 skipped:
582 return ctx->skipped_ret;
583 }
584
585 /*
586 * Search inside a keyring for a key. We can search by walking to it
587 * directly based on its index-key or we can iterate over the entire
588 * tree looking for it, based on the match function.
589 */
search_keyring(struct key * keyring,struct keyring_search_context * ctx)590 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
591 {
592 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
593 const void *object;
594
595 object = assoc_array_find(&keyring->keys,
596 &keyring_assoc_array_ops,
597 &ctx->index_key);
598 return object ? ctx->iterator(object, ctx) : 0;
599 }
600 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
601 }
602
603 /*
604 * Search a tree of keyrings that point to other keyrings up to the maximum
605 * depth.
606 */
search_nested_keyrings(struct key * keyring,struct keyring_search_context * ctx)607 static bool search_nested_keyrings(struct key *keyring,
608 struct keyring_search_context *ctx)
609 {
610 struct {
611 struct key *keyring;
612 struct assoc_array_node *node;
613 int slot;
614 } stack[KEYRING_SEARCH_MAX_DEPTH];
615
616 struct assoc_array_shortcut *shortcut;
617 struct assoc_array_node *node;
618 struct assoc_array_ptr *ptr;
619 struct key *key;
620 int sp = 0, slot;
621
622 kenter("{%d},{%s,%s}",
623 keyring->serial,
624 ctx->index_key.type->name,
625 ctx->index_key.description);
626
627 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
628 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
629 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
630
631 if (ctx->index_key.description)
632 ctx->index_key.desc_len = strlen(ctx->index_key.description);
633
634 /* Check to see if this top-level keyring is what we are looking for
635 * and whether it is valid or not.
636 */
637 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
638 keyring_compare_object(keyring, &ctx->index_key)) {
639 ctx->skipped_ret = 2;
640 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
641 case 1:
642 goto found;
643 case 2:
644 return false;
645 default:
646 break;
647 }
648 }
649
650 ctx->skipped_ret = 0;
651
652 /* Start processing a new keyring */
653 descend_to_keyring:
654 kdebug("descend to %d", keyring->serial);
655 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
656 (1 << KEY_FLAG_REVOKED)))
657 goto not_this_keyring;
658
659 /* Search through the keys in this keyring before its searching its
660 * subtrees.
661 */
662 if (search_keyring(keyring, ctx))
663 goto found;
664
665 /* Then manually iterate through the keyrings nested in this one.
666 *
667 * Start from the root node of the index tree. Because of the way the
668 * hash function has been set up, keyrings cluster on the leftmost
669 * branch of the root node (root slot 0) or in the root node itself.
670 * Non-keyrings avoid the leftmost branch of the root entirely (root
671 * slots 1-15).
672 */
673 ptr = ACCESS_ONCE(keyring->keys.root);
674 if (!ptr)
675 goto not_this_keyring;
676
677 if (assoc_array_ptr_is_shortcut(ptr)) {
678 /* If the root is a shortcut, either the keyring only contains
679 * keyring pointers (everything clusters behind root slot 0) or
680 * doesn't contain any keyring pointers.
681 */
682 shortcut = assoc_array_ptr_to_shortcut(ptr);
683 smp_read_barrier_depends();
684 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
685 goto not_this_keyring;
686
687 ptr = ACCESS_ONCE(shortcut->next_node);
688 node = assoc_array_ptr_to_node(ptr);
689 goto begin_node;
690 }
691
692 node = assoc_array_ptr_to_node(ptr);
693 smp_read_barrier_depends();
694
695 ptr = node->slots[0];
696 if (!assoc_array_ptr_is_meta(ptr))
697 goto begin_node;
698
699 descend_to_node:
700 /* Descend to a more distal node in this keyring's content tree and go
701 * through that.
702 */
703 kdebug("descend");
704 if (assoc_array_ptr_is_shortcut(ptr)) {
705 shortcut = assoc_array_ptr_to_shortcut(ptr);
706 smp_read_barrier_depends();
707 ptr = ACCESS_ONCE(shortcut->next_node);
708 BUG_ON(!assoc_array_ptr_is_node(ptr));
709 }
710 node = assoc_array_ptr_to_node(ptr);
711
712 begin_node:
713 kdebug("begin_node");
714 smp_read_barrier_depends();
715 slot = 0;
716 ascend_to_node:
717 /* Go through the slots in a node */
718 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
719 ptr = ACCESS_ONCE(node->slots[slot]);
720
721 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
722 goto descend_to_node;
723
724 if (!keyring_ptr_is_keyring(ptr))
725 continue;
726
727 key = keyring_ptr_to_key(ptr);
728
729 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
730 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
731 ctx->result = ERR_PTR(-ELOOP);
732 return false;
733 }
734 goto not_this_keyring;
735 }
736
737 /* Search a nested keyring */
738 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
739 key_task_permission(make_key_ref(key, ctx->possessed),
740 ctx->cred, KEY_NEED_SEARCH) < 0)
741 continue;
742
743 /* stack the current position */
744 stack[sp].keyring = keyring;
745 stack[sp].node = node;
746 stack[sp].slot = slot;
747 sp++;
748
749 /* begin again with the new keyring */
750 keyring = key;
751 goto descend_to_keyring;
752 }
753
754 /* We've dealt with all the slots in the current node, so now we need
755 * to ascend to the parent and continue processing there.
756 */
757 ptr = ACCESS_ONCE(node->back_pointer);
758 slot = node->parent_slot;
759
760 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
761 shortcut = assoc_array_ptr_to_shortcut(ptr);
762 smp_read_barrier_depends();
763 ptr = ACCESS_ONCE(shortcut->back_pointer);
764 slot = shortcut->parent_slot;
765 }
766 if (!ptr)
767 goto not_this_keyring;
768 node = assoc_array_ptr_to_node(ptr);
769 smp_read_barrier_depends();
770 slot++;
771
772 /* If we've ascended to the root (zero backpointer), we must have just
773 * finished processing the leftmost branch rather than the root slots -
774 * so there can't be any more keyrings for us to find.
775 */
776 if (node->back_pointer) {
777 kdebug("ascend %d", slot);
778 goto ascend_to_node;
779 }
780
781 /* The keyring we're looking at was disqualified or didn't contain a
782 * matching key.
783 */
784 not_this_keyring:
785 kdebug("not_this_keyring %d", sp);
786 if (sp <= 0) {
787 kleave(" = false");
788 return false;
789 }
790
791 /* Resume the processing of a keyring higher up in the tree */
792 sp--;
793 keyring = stack[sp].keyring;
794 node = stack[sp].node;
795 slot = stack[sp].slot + 1;
796 kdebug("ascend to %d [%d]", keyring->serial, slot);
797 goto ascend_to_node;
798
799 /* We found a viable match */
800 found:
801 key = key_ref_to_ptr(ctx->result);
802 key_check(key);
803 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
804 key->last_used_at = ctx->now.tv_sec;
805 keyring->last_used_at = ctx->now.tv_sec;
806 while (sp > 0)
807 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
808 }
809 kleave(" = true");
810 return true;
811 }
812
813 /**
814 * keyring_search_aux - Search a keyring tree for a key matching some criteria
815 * @keyring_ref: A pointer to the keyring with possession indicator.
816 * @ctx: The keyring search context.
817 *
818 * Search the supplied keyring tree for a key that matches the criteria given.
819 * The root keyring and any linked keyrings must grant Search permission to the
820 * caller to be searchable and keys can only be found if they too grant Search
821 * to the caller. The possession flag on the root keyring pointer controls use
822 * of the possessor bits in permissions checking of the entire tree. In
823 * addition, the LSM gets to forbid keyring searches and key matches.
824 *
825 * The search is performed as a breadth-then-depth search up to the prescribed
826 * limit (KEYRING_SEARCH_MAX_DEPTH).
827 *
828 * Keys are matched to the type provided and are then filtered by the match
829 * function, which is given the description to use in any way it sees fit. The
830 * match function may use any attributes of a key that it wishes to to
831 * determine the match. Normally the match function from the key type would be
832 * used.
833 *
834 * RCU can be used to prevent the keyring key lists from disappearing without
835 * the need to take lots of locks.
836 *
837 * Returns a pointer to the found key and increments the key usage count if
838 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
839 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
840 * specified keyring wasn't a keyring.
841 *
842 * In the case of a successful return, the possession attribute from
843 * @keyring_ref is propagated to the returned key reference.
844 */
keyring_search_aux(key_ref_t keyring_ref,struct keyring_search_context * ctx)845 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
846 struct keyring_search_context *ctx)
847 {
848 struct key *keyring;
849 long err;
850
851 ctx->iterator = keyring_search_iterator;
852 ctx->possessed = is_key_possessed(keyring_ref);
853 ctx->result = ERR_PTR(-EAGAIN);
854
855 keyring = key_ref_to_ptr(keyring_ref);
856 key_check(keyring);
857
858 if (keyring->type != &key_type_keyring)
859 return ERR_PTR(-ENOTDIR);
860
861 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
862 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
863 if (err < 0)
864 return ERR_PTR(err);
865 }
866
867 rcu_read_lock();
868 ctx->now = current_kernel_time();
869 if (search_nested_keyrings(keyring, ctx))
870 __key_get(key_ref_to_ptr(ctx->result));
871 rcu_read_unlock();
872 return ctx->result;
873 }
874
875 /**
876 * keyring_search - Search the supplied keyring tree for a matching key
877 * @keyring: The root of the keyring tree to be searched.
878 * @type: The type of keyring we want to find.
879 * @description: The name of the keyring we want to find.
880 *
881 * As keyring_search_aux() above, but using the current task's credentials and
882 * type's default matching function and preferred search method.
883 */
keyring_search(key_ref_t keyring,struct key_type * type,const char * description)884 key_ref_t keyring_search(key_ref_t keyring,
885 struct key_type *type,
886 const char *description)
887 {
888 struct keyring_search_context ctx = {
889 .index_key.type = type,
890 .index_key.description = description,
891 .cred = current_cred(),
892 .match_data.cmp = key_default_cmp,
893 .match_data.raw_data = description,
894 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
895 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
896 };
897 key_ref_t key;
898 int ret;
899
900 if (type->match_preparse) {
901 ret = type->match_preparse(&ctx.match_data);
902 if (ret < 0)
903 return ERR_PTR(ret);
904 }
905
906 key = keyring_search_aux(keyring, &ctx);
907
908 if (type->match_free)
909 type->match_free(&ctx.match_data);
910 return key;
911 }
912 EXPORT_SYMBOL(keyring_search);
913
914 /*
915 * Search the given keyring for a key that might be updated.
916 *
917 * The caller must guarantee that the keyring is a keyring and that the
918 * permission is granted to modify the keyring as no check is made here. The
919 * caller must also hold a lock on the keyring semaphore.
920 *
921 * Returns a pointer to the found key with usage count incremented if
922 * successful and returns NULL if not found. Revoked and invalidated keys are
923 * skipped over.
924 *
925 * If successful, the possession indicator is propagated from the keyring ref
926 * to the returned key reference.
927 */
find_key_to_update(key_ref_t keyring_ref,const struct keyring_index_key * index_key)928 key_ref_t find_key_to_update(key_ref_t keyring_ref,
929 const struct keyring_index_key *index_key)
930 {
931 struct key *keyring, *key;
932 const void *object;
933
934 keyring = key_ref_to_ptr(keyring_ref);
935
936 kenter("{%d},{%s,%s}",
937 keyring->serial, index_key->type->name, index_key->description);
938
939 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
940 index_key);
941
942 if (object)
943 goto found;
944
945 kleave(" = NULL");
946 return NULL;
947
948 found:
949 key = keyring_ptr_to_key(object);
950 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
951 (1 << KEY_FLAG_REVOKED))) {
952 kleave(" = NULL [x]");
953 return NULL;
954 }
955 __key_get(key);
956 kleave(" = {%d}", key->serial);
957 return make_key_ref(key, is_key_possessed(keyring_ref));
958 }
959
960 /*
961 * Find a keyring with the specified name.
962 *
963 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
964 * user in the current user namespace are considered. If @uid_keyring is %true,
965 * the keyring additionally must have been allocated as a user or user session
966 * keyring; otherwise, it must grant Search permission directly to the caller.
967 *
968 * Returns a pointer to the keyring with the keyring's refcount having being
969 * incremented on success. -ENOKEY is returned if a key could not be found.
970 */
find_keyring_by_name(const char * name,bool uid_keyring)971 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
972 {
973 struct key *keyring;
974 int bucket;
975
976 if (!name)
977 return ERR_PTR(-EINVAL);
978
979 bucket = keyring_hash(name);
980
981 read_lock(&keyring_name_lock);
982
983 if (keyring_name_hash[bucket].next) {
984 /* search this hash bucket for a keyring with a matching name
985 * that's readable and that hasn't been revoked */
986 list_for_each_entry(keyring,
987 &keyring_name_hash[bucket],
988 type_data.link
989 ) {
990 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
991 continue;
992
993 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
994 continue;
995
996 if (strcmp(keyring->description, name) != 0)
997 continue;
998
999 if (uid_keyring) {
1000 if (!test_bit(KEY_FLAG_UID_KEYRING,
1001 &keyring->flags))
1002 continue;
1003 } else {
1004 if (key_permission(make_key_ref(keyring, 0),
1005 KEY_NEED_SEARCH) < 0)
1006 continue;
1007 }
1008
1009 /* we've got a match but we might end up racing with
1010 * key_cleanup() if the keyring is currently 'dead'
1011 * (ie. it has a zero usage count) */
1012 if (!atomic_inc_not_zero(&keyring->usage))
1013 continue;
1014 keyring->last_used_at = current_kernel_time().tv_sec;
1015 goto out;
1016 }
1017 }
1018
1019 keyring = ERR_PTR(-ENOKEY);
1020 out:
1021 read_unlock(&keyring_name_lock);
1022 return keyring;
1023 }
1024
keyring_detect_cycle_iterator(const void * object,void * iterator_data)1025 static int keyring_detect_cycle_iterator(const void *object,
1026 void *iterator_data)
1027 {
1028 struct keyring_search_context *ctx = iterator_data;
1029 const struct key *key = keyring_ptr_to_key(object);
1030
1031 kenter("{%d}", key->serial);
1032
1033 /* We might get a keyring with matching index-key that is nonetheless a
1034 * different keyring. */
1035 if (key != ctx->match_data.raw_data)
1036 return 0;
1037
1038 ctx->result = ERR_PTR(-EDEADLK);
1039 return 1;
1040 }
1041
1042 /*
1043 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1044 * tree A at the topmost level (ie: as a direct child of A).
1045 *
1046 * Since we are adding B to A at the top level, checking for cycles should just
1047 * be a matter of seeing if node A is somewhere in tree B.
1048 */
keyring_detect_cycle(struct key * A,struct key * B)1049 static int keyring_detect_cycle(struct key *A, struct key *B)
1050 {
1051 struct keyring_search_context ctx = {
1052 .index_key = A->index_key,
1053 .match_data.raw_data = A,
1054 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1055 .iterator = keyring_detect_cycle_iterator,
1056 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1057 KEYRING_SEARCH_NO_UPDATE_TIME |
1058 KEYRING_SEARCH_NO_CHECK_PERM |
1059 KEYRING_SEARCH_DETECT_TOO_DEEP),
1060 };
1061
1062 rcu_read_lock();
1063 search_nested_keyrings(B, &ctx);
1064 rcu_read_unlock();
1065 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1066 }
1067
1068 /*
1069 * Preallocate memory so that a key can be linked into to a keyring.
1070 */
__key_link_begin(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit ** _edit)1071 int __key_link_begin(struct key *keyring,
1072 const struct keyring_index_key *index_key,
1073 struct assoc_array_edit **_edit)
1074 __acquires(&keyring->sem)
1075 __acquires(&keyring_serialise_link_sem)
1076 {
1077 struct assoc_array_edit *edit;
1078 int ret;
1079
1080 kenter("%d,%s,%s,",
1081 keyring->serial, index_key->type->name, index_key->description);
1082
1083 BUG_ON(index_key->desc_len == 0);
1084
1085 if (keyring->type != &key_type_keyring)
1086 return -ENOTDIR;
1087
1088 down_write(&keyring->sem);
1089
1090 ret = -EKEYREVOKED;
1091 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1092 goto error_krsem;
1093
1094 /* serialise link/link calls to prevent parallel calls causing a cycle
1095 * when linking two keyring in opposite orders */
1096 if (index_key->type == &key_type_keyring)
1097 down_write(&keyring_serialise_link_sem);
1098
1099 /* Create an edit script that will insert/replace the key in the
1100 * keyring tree.
1101 */
1102 edit = assoc_array_insert(&keyring->keys,
1103 &keyring_assoc_array_ops,
1104 index_key,
1105 NULL);
1106 if (IS_ERR(edit)) {
1107 ret = PTR_ERR(edit);
1108 goto error_sem;
1109 }
1110
1111 /* If we're not replacing a link in-place then we're going to need some
1112 * extra quota.
1113 */
1114 if (!edit->dead_leaf) {
1115 ret = key_payload_reserve(keyring,
1116 keyring->datalen + KEYQUOTA_LINK_BYTES);
1117 if (ret < 0)
1118 goto error_cancel;
1119 }
1120
1121 *_edit = edit;
1122 kleave(" = 0");
1123 return 0;
1124
1125 error_cancel:
1126 assoc_array_cancel_edit(edit);
1127 error_sem:
1128 if (index_key->type == &key_type_keyring)
1129 up_write(&keyring_serialise_link_sem);
1130 error_krsem:
1131 up_write(&keyring->sem);
1132 kleave(" = %d", ret);
1133 return ret;
1134 }
1135
1136 /*
1137 * Check already instantiated keys aren't going to be a problem.
1138 *
1139 * The caller must have called __key_link_begin(). Don't need to call this for
1140 * keys that were created since __key_link_begin() was called.
1141 */
__key_link_check_live_key(struct key * keyring,struct key * key)1142 int __key_link_check_live_key(struct key *keyring, struct key *key)
1143 {
1144 if (key->type == &key_type_keyring)
1145 /* check that we aren't going to create a cycle by linking one
1146 * keyring to another */
1147 return keyring_detect_cycle(keyring, key);
1148 return 0;
1149 }
1150
1151 /*
1152 * Link a key into to a keyring.
1153 *
1154 * Must be called with __key_link_begin() having being called. Discards any
1155 * already extant link to matching key if there is one, so that each keyring
1156 * holds at most one link to any given key of a particular type+description
1157 * combination.
1158 */
__key_link(struct key * key,struct assoc_array_edit ** _edit)1159 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1160 {
1161 __key_get(key);
1162 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1163 assoc_array_apply_edit(*_edit);
1164 *_edit = NULL;
1165 }
1166
1167 /*
1168 * Finish linking a key into to a keyring.
1169 *
1170 * Must be called with __key_link_begin() having being called.
1171 */
__key_link_end(struct key * keyring,const struct keyring_index_key * index_key,struct assoc_array_edit * edit)1172 void __key_link_end(struct key *keyring,
1173 const struct keyring_index_key *index_key,
1174 struct assoc_array_edit *edit)
1175 __releases(&keyring->sem)
1176 __releases(&keyring_serialise_link_sem)
1177 {
1178 BUG_ON(index_key->type == NULL);
1179 kenter("%d,%s,", keyring->serial, index_key->type->name);
1180
1181 if (index_key->type == &key_type_keyring)
1182 up_write(&keyring_serialise_link_sem);
1183
1184 if (edit) {
1185 if (!edit->dead_leaf) {
1186 key_payload_reserve(keyring,
1187 keyring->datalen - KEYQUOTA_LINK_BYTES);
1188 }
1189 assoc_array_cancel_edit(edit);
1190 }
1191 up_write(&keyring->sem);
1192 }
1193
1194 /**
1195 * key_link - Link a key to a keyring
1196 * @keyring: The keyring to make the link in.
1197 * @key: The key to link to.
1198 *
1199 * Make a link in a keyring to a key, such that the keyring holds a reference
1200 * on that key and the key can potentially be found by searching that keyring.
1201 *
1202 * This function will write-lock the keyring's semaphore and will consume some
1203 * of the user's key data quota to hold the link.
1204 *
1205 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1206 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1207 * full, -EDQUOT if there is insufficient key data quota remaining to add
1208 * another link or -ENOMEM if there's insufficient memory.
1209 *
1210 * It is assumed that the caller has checked that it is permitted for a link to
1211 * be made (the keyring should have Write permission and the key Link
1212 * permission).
1213 */
key_link(struct key * keyring,struct key * key)1214 int key_link(struct key *keyring, struct key *key)
1215 {
1216 struct assoc_array_edit *edit;
1217 int ret;
1218
1219 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1220
1221 key_check(keyring);
1222 key_check(key);
1223
1224 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1225 !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1226 return -EPERM;
1227
1228 ret = __key_link_begin(keyring, &key->index_key, &edit);
1229 if (ret == 0) {
1230 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1231 ret = __key_link_check_live_key(keyring, key);
1232 if (ret == 0)
1233 __key_link(key, &edit);
1234 __key_link_end(keyring, &key->index_key, edit);
1235 }
1236
1237 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1238 return ret;
1239 }
1240 EXPORT_SYMBOL(key_link);
1241
1242 /**
1243 * key_unlink - Unlink the first link to a key from a keyring.
1244 * @keyring: The keyring to remove the link from.
1245 * @key: The key the link is to.
1246 *
1247 * Remove a link from a keyring to a key.
1248 *
1249 * This function will write-lock the keyring's semaphore.
1250 *
1251 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1252 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1253 * memory.
1254 *
1255 * It is assumed that the caller has checked that it is permitted for a link to
1256 * be removed (the keyring should have Write permission; no permissions are
1257 * required on the key).
1258 */
key_unlink(struct key * keyring,struct key * key)1259 int key_unlink(struct key *keyring, struct key *key)
1260 {
1261 struct assoc_array_edit *edit;
1262 int ret;
1263
1264 key_check(keyring);
1265 key_check(key);
1266
1267 if (keyring->type != &key_type_keyring)
1268 return -ENOTDIR;
1269
1270 down_write(&keyring->sem);
1271
1272 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1273 &key->index_key);
1274 if (IS_ERR(edit)) {
1275 ret = PTR_ERR(edit);
1276 goto error;
1277 }
1278 ret = -ENOENT;
1279 if (edit == NULL)
1280 goto error;
1281
1282 assoc_array_apply_edit(edit);
1283 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1284 ret = 0;
1285
1286 error:
1287 up_write(&keyring->sem);
1288 return ret;
1289 }
1290 EXPORT_SYMBOL(key_unlink);
1291
1292 /**
1293 * keyring_clear - Clear a keyring
1294 * @keyring: The keyring to clear.
1295 *
1296 * Clear the contents of the specified keyring.
1297 *
1298 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1299 */
keyring_clear(struct key * keyring)1300 int keyring_clear(struct key *keyring)
1301 {
1302 struct assoc_array_edit *edit;
1303 int ret;
1304
1305 if (keyring->type != &key_type_keyring)
1306 return -ENOTDIR;
1307
1308 down_write(&keyring->sem);
1309
1310 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1311 if (IS_ERR(edit)) {
1312 ret = PTR_ERR(edit);
1313 } else {
1314 if (edit)
1315 assoc_array_apply_edit(edit);
1316 key_payload_reserve(keyring, 0);
1317 ret = 0;
1318 }
1319
1320 up_write(&keyring->sem);
1321 return ret;
1322 }
1323 EXPORT_SYMBOL(keyring_clear);
1324
1325 /*
1326 * Dispose of the links from a revoked keyring.
1327 *
1328 * This is called with the key sem write-locked.
1329 */
keyring_revoke(struct key * keyring)1330 static void keyring_revoke(struct key *keyring)
1331 {
1332 struct assoc_array_edit *edit;
1333
1334 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1335 if (!IS_ERR(edit)) {
1336 if (edit)
1337 assoc_array_apply_edit(edit);
1338 key_payload_reserve(keyring, 0);
1339 }
1340 }
1341
keyring_gc_select_iterator(void * object,void * iterator_data)1342 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1343 {
1344 struct key *key = keyring_ptr_to_key(object);
1345 time_t *limit = iterator_data;
1346
1347 if (key_is_dead(key, *limit))
1348 return false;
1349 key_get(key);
1350 return true;
1351 }
1352
keyring_gc_check_iterator(const void * object,void * iterator_data)1353 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1354 {
1355 const struct key *key = keyring_ptr_to_key(object);
1356 time_t *limit = iterator_data;
1357
1358 key_check(key);
1359 return key_is_dead(key, *limit);
1360 }
1361
1362 /*
1363 * Garbage collect pointers from a keyring.
1364 *
1365 * Not called with any locks held. The keyring's key struct will not be
1366 * deallocated under us as only our caller may deallocate it.
1367 */
keyring_gc(struct key * keyring,time_t limit)1368 void keyring_gc(struct key *keyring, time_t limit)
1369 {
1370 int result;
1371
1372 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1373
1374 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1375 (1 << KEY_FLAG_REVOKED)))
1376 goto dont_gc;
1377
1378 /* scan the keyring looking for dead keys */
1379 rcu_read_lock();
1380 result = assoc_array_iterate(&keyring->keys,
1381 keyring_gc_check_iterator, &limit);
1382 rcu_read_unlock();
1383 if (result == true)
1384 goto do_gc;
1385
1386 dont_gc:
1387 kleave(" [no gc]");
1388 return;
1389
1390 do_gc:
1391 down_write(&keyring->sem);
1392 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1393 keyring_gc_select_iterator, &limit);
1394 up_write(&keyring->sem);
1395 kleave(" [gc]");
1396 }
1397