• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	int last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct mem_cgroup_event {
235 	/*
236 	 * memcg which the event belongs to.
237 	 */
238 	struct mem_cgroup *memcg;
239 	/*
240 	 * eventfd to signal userspace about the event.
241 	 */
242 	struct eventfd_ctx *eventfd;
243 	/*
244 	 * Each of these stored in a list by the cgroup.
245 	 */
246 	struct list_head list;
247 	/*
248 	 * register_event() callback will be used to add new userspace
249 	 * waiter for changes related to this event.  Use eventfd_signal()
250 	 * on eventfd to send notification to userspace.
251 	 */
252 	int (*register_event)(struct mem_cgroup *memcg,
253 			      struct eventfd_ctx *eventfd, const char *args);
254 	/*
255 	 * unregister_event() callback will be called when userspace closes
256 	 * the eventfd or on cgroup removing.  This callback must be set,
257 	 * if you want provide notification functionality.
258 	 */
259 	void (*unregister_event)(struct mem_cgroup *memcg,
260 				 struct eventfd_ctx *eventfd);
261 	/*
262 	 * All fields below needed to unregister event when
263 	 * userspace closes eventfd.
264 	 */
265 	poll_table pt;
266 	wait_queue_head_t *wqh;
267 	wait_queue_t wait;
268 	struct work_struct remove;
269 };
270 
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273 
274 /*
275  * The memory controller data structure. The memory controller controls both
276  * page cache and RSS per cgroup. We would eventually like to provide
277  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278  * to help the administrator determine what knobs to tune.
279  *
280  * TODO: Add a water mark for the memory controller. Reclaim will begin when
281  * we hit the water mark. May be even add a low water mark, such that
282  * no reclaim occurs from a cgroup at it's low water mark, this is
283  * a feature that will be implemented much later in the future.
284  */
285 struct mem_cgroup {
286 	struct cgroup_subsys_state css;
287 	/*
288 	 * the counter to account for memory usage
289 	 */
290 	struct res_counter res;
291 
292 	/* vmpressure notifications */
293 	struct vmpressure vmpressure;
294 
295 	/* css_online() has been completed */
296 	int initialized;
297 
298 	/*
299 	 * the counter to account for mem+swap usage.
300 	 */
301 	struct res_counter memsw;
302 
303 	/*
304 	 * the counter to account for kernel memory usage.
305 	 */
306 	struct res_counter kmem;
307 	/*
308 	 * Should the accounting and control be hierarchical, per subtree?
309 	 */
310 	bool use_hierarchy;
311 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312 
313 	bool		oom_lock;
314 	atomic_t	under_oom;
315 	atomic_t	oom_wakeups;
316 
317 	int	swappiness;
318 	/* OOM-Killer disable */
319 	int		oom_kill_disable;
320 
321 	/* protect arrays of thresholds */
322 	struct mutex thresholds_lock;
323 
324 	/* thresholds for memory usage. RCU-protected */
325 	struct mem_cgroup_thresholds thresholds;
326 
327 	/* thresholds for mem+swap usage. RCU-protected */
328 	struct mem_cgroup_thresholds memsw_thresholds;
329 
330 	/* For oom notifier event fd */
331 	struct list_head oom_notify;
332 
333 	/*
334 	 * Should we move charges of a task when a task is moved into this
335 	 * mem_cgroup ? And what type of charges should we move ?
336 	 */
337 	unsigned long move_charge_at_immigrate;
338 	/*
339 	 * set > 0 if pages under this cgroup are moving to other cgroup.
340 	 */
341 	atomic_t	moving_account;
342 	/* taken only while moving_account > 0 */
343 	spinlock_t	move_lock;
344 	/*
345 	 * percpu counter.
346 	 */
347 	struct mem_cgroup_stat_cpu __percpu *stat;
348 	/*
349 	 * used when a cpu is offlined or other synchronizations
350 	 * See mem_cgroup_read_stat().
351 	 */
352 	struct mem_cgroup_stat_cpu nocpu_base;
353 	spinlock_t pcp_counter_lock;
354 
355 	atomic_t	dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 	struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 	/* analogous to slab_common's slab_caches list, but per-memcg;
361 	 * protected by memcg_slab_mutex */
362 	struct list_head memcg_slab_caches;
363         /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 	int kmemcg_id;
365 #endif
366 
367 	int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 	nodemask_t	scan_nodes;
370 	atomic_t	numainfo_events;
371 	atomic_t	numainfo_updating;
372 #endif
373 
374 	/* List of events which userspace want to receive */
375 	struct list_head event_list;
376 	spinlock_t event_list_lock;
377 
378 	struct mem_cgroup_per_node *nodeinfo[0];
379 	/* WARNING: nodeinfo must be the last member here */
380 };
381 
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387 
388 #ifdef CONFIG_MEMCG_KMEM
memcg_kmem_set_active(struct mem_cgroup * memcg)389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393 
memcg_kmem_is_active(struct mem_cgroup * memcg)394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398 
memcg_kmem_mark_dead(struct mem_cgroup * memcg)399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 	/*
402 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 	 * will call css_put() if it sees the memcg is dead.
404 	 */
405 	smp_wmb();
406 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409 
memcg_kmem_test_and_clear_dead(struct mem_cgroup * memcg)410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 				  &memcg->kmem_account_flags);
414 }
415 #endif
416 
417 /* Stuffs for move charges at task migration. */
418 /*
419  * Types of charges to be moved. "move_charge_at_immitgrate" and
420  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421  */
422 enum move_type {
423 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 	NR_MOVE_TYPE,
426 };
427 
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 	spinlock_t	  lock; /* for from, to */
431 	struct mem_cgroup *from;
432 	struct mem_cgroup *to;
433 	unsigned long immigrate_flags;
434 	unsigned long precharge;
435 	unsigned long moved_charge;
436 	unsigned long moved_swap;
437 	struct task_struct *moving_task;	/* a task moving charges */
438 	wait_queue_head_t waitq;		/* a waitq for other context */
439 } mc = {
440 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443 
move_anon(void)444 static bool move_anon(void)
445 {
446 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448 
move_file(void)449 static bool move_file(void)
450 {
451 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453 
454 /*
455  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456  * limit reclaim to prevent infinite loops, if they ever occur.
457  */
458 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460 
461 enum charge_type {
462 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 	MEM_CGROUP_CHARGE_TYPE_ANON,
464 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
465 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 	NR_CHARGE_TYPE,
467 };
468 
469 /* for encoding cft->private value on file */
470 enum res_type {
471 	_MEM,
472 	_MEMSWAP,
473 	_OOM_TYPE,
474 	_KMEM,
475 };
476 
477 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
478 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val)	((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL		(0)
482 
483 /*
484  * The memcg_create_mutex will be held whenever a new cgroup is created.
485  * As a consequence, any change that needs to protect against new child cgroups
486  * appearing has to hold it as well.
487  */
488 static DEFINE_MUTEX(memcg_create_mutex);
489 
mem_cgroup_from_css(struct cgroup_subsys_state * s)490 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
491 {
492 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
493 }
494 
495 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)496 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
497 {
498 	if (!memcg)
499 		memcg = root_mem_cgroup;
500 	return &memcg->vmpressure;
501 }
502 
vmpressure_to_css(struct vmpressure * vmpr)503 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
504 {
505 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
506 }
507 
mem_cgroup_is_root(struct mem_cgroup * memcg)508 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
509 {
510 	return (memcg == root_mem_cgroup);
511 }
512 
513 /*
514  * We restrict the id in the range of [1, 65535], so it can fit into
515  * an unsigned short.
516  */
517 #define MEM_CGROUP_ID_MAX	USHRT_MAX
518 
mem_cgroup_id(struct mem_cgroup * memcg)519 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
520 {
521 	return memcg->css.id;
522 }
523 
mem_cgroup_from_id(unsigned short id)524 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
525 {
526 	struct cgroup_subsys_state *css;
527 
528 	css = css_from_id(id, &memory_cgrp_subsys);
529 	return mem_cgroup_from_css(css);
530 }
531 
532 /* Writing them here to avoid exposing memcg's inner layout */
533 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
534 
sock_update_memcg(struct sock * sk)535 void sock_update_memcg(struct sock *sk)
536 {
537 	if (mem_cgroup_sockets_enabled) {
538 		struct mem_cgroup *memcg;
539 		struct cg_proto *cg_proto;
540 
541 		BUG_ON(!sk->sk_prot->proto_cgroup);
542 
543 		/* Socket cloning can throw us here with sk_cgrp already
544 		 * filled. It won't however, necessarily happen from
545 		 * process context. So the test for root memcg given
546 		 * the current task's memcg won't help us in this case.
547 		 *
548 		 * Respecting the original socket's memcg is a better
549 		 * decision in this case.
550 		 */
551 		if (sk->sk_cgrp) {
552 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
553 			css_get(&sk->sk_cgrp->memcg->css);
554 			return;
555 		}
556 
557 		rcu_read_lock();
558 		memcg = mem_cgroup_from_task(current);
559 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
560 		if (!mem_cgroup_is_root(memcg) &&
561 		    memcg_proto_active(cg_proto) &&
562 		    css_tryget_online(&memcg->css)) {
563 			sk->sk_cgrp = cg_proto;
564 		}
565 		rcu_read_unlock();
566 	}
567 }
568 EXPORT_SYMBOL(sock_update_memcg);
569 
sock_release_memcg(struct sock * sk)570 void sock_release_memcg(struct sock *sk)
571 {
572 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
573 		struct mem_cgroup *memcg;
574 		WARN_ON(!sk->sk_cgrp->memcg);
575 		memcg = sk->sk_cgrp->memcg;
576 		css_put(&sk->sk_cgrp->memcg->css);
577 	}
578 }
579 
tcp_proto_cgroup(struct mem_cgroup * memcg)580 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581 {
582 	if (!memcg || mem_cgroup_is_root(memcg))
583 		return NULL;
584 
585 	return &memcg->tcp_mem;
586 }
587 EXPORT_SYMBOL(tcp_proto_cgroup);
588 
disarm_sock_keys(struct mem_cgroup * memcg)589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 	if (!memcg_proto_activated(&memcg->tcp_mem))
592 		return;
593 	static_key_slow_dec(&memcg_socket_limit_enabled);
594 }
595 #else
disarm_sock_keys(struct mem_cgroup * memcg)596 static void disarm_sock_keys(struct mem_cgroup *memcg)
597 {
598 }
599 #endif
600 
601 #ifdef CONFIG_MEMCG_KMEM
602 /*
603  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604  * The main reason for not using cgroup id for this:
605  *  this works better in sparse environments, where we have a lot of memcgs,
606  *  but only a few kmem-limited. Or also, if we have, for instance, 200
607  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
608  *  200 entry array for that.
609  *
610  * The current size of the caches array is stored in
611  * memcg_limited_groups_array_size.  It will double each time we have to
612  * increase it.
613  */
614 static DEFINE_IDA(kmem_limited_groups);
615 int memcg_limited_groups_array_size;
616 
617 /*
618  * MIN_SIZE is different than 1, because we would like to avoid going through
619  * the alloc/free process all the time. In a small machine, 4 kmem-limited
620  * cgroups is a reasonable guess. In the future, it could be a parameter or
621  * tunable, but that is strictly not necessary.
622  *
623  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
624  * this constant directly from cgroup, but it is understandable that this is
625  * better kept as an internal representation in cgroup.c. In any case, the
626  * cgrp_id space is not getting any smaller, and we don't have to necessarily
627  * increase ours as well if it increases.
628  */
629 #define MEMCG_CACHES_MIN_SIZE 4
630 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
631 
632 /*
633  * A lot of the calls to the cache allocation functions are expected to be
634  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
635  * conditional to this static branch, we'll have to allow modules that does
636  * kmem_cache_alloc and the such to see this symbol as well
637  */
638 struct static_key memcg_kmem_enabled_key;
639 EXPORT_SYMBOL(memcg_kmem_enabled_key);
640 
641 static void memcg_free_cache_id(int id);
642 
disarm_kmem_keys(struct mem_cgroup * memcg)643 static void disarm_kmem_keys(struct mem_cgroup *memcg)
644 {
645 	if (memcg_kmem_is_active(memcg)) {
646 		static_key_slow_dec(&memcg_kmem_enabled_key);
647 		memcg_free_cache_id(memcg->kmemcg_id);
648 	}
649 	/*
650 	 * This check can't live in kmem destruction function,
651 	 * since the charges will outlive the cgroup
652 	 */
653 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
654 }
655 #else
disarm_kmem_keys(struct mem_cgroup * memcg)656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 }
659 #endif /* CONFIG_MEMCG_KMEM */
660 
disarm_static_keys(struct mem_cgroup * memcg)661 static void disarm_static_keys(struct mem_cgroup *memcg)
662 {
663 	disarm_sock_keys(memcg);
664 	disarm_kmem_keys(memcg);
665 }
666 
667 static void drain_all_stock_async(struct mem_cgroup *memcg);
668 
669 static struct mem_cgroup_per_zone *
mem_cgroup_zone_zoneinfo(struct mem_cgroup * memcg,struct zone * zone)670 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
671 {
672 	int nid = zone_to_nid(zone);
673 	int zid = zone_idx(zone);
674 
675 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
676 }
677 
mem_cgroup_css(struct mem_cgroup * memcg)678 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
679 {
680 	return &memcg->css;
681 }
682 
683 static struct mem_cgroup_per_zone *
mem_cgroup_page_zoneinfo(struct mem_cgroup * memcg,struct page * page)684 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
685 {
686 	int nid = page_to_nid(page);
687 	int zid = page_zonenum(page);
688 
689 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
690 }
691 
692 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)693 soft_limit_tree_node_zone(int nid, int zid)
694 {
695 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
696 }
697 
698 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)699 soft_limit_tree_from_page(struct page *page)
700 {
701 	int nid = page_to_nid(page);
702 	int zid = page_zonenum(page);
703 
704 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long long new_usage_in_excess)707 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
708 					 struct mem_cgroup_tree_per_zone *mctz,
709 					 unsigned long long new_usage_in_excess)
710 {
711 	struct rb_node **p = &mctz->rb_root.rb_node;
712 	struct rb_node *parent = NULL;
713 	struct mem_cgroup_per_zone *mz_node;
714 
715 	if (mz->on_tree)
716 		return;
717 
718 	mz->usage_in_excess = new_usage_in_excess;
719 	if (!mz->usage_in_excess)
720 		return;
721 	while (*p) {
722 		parent = *p;
723 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
724 					tree_node);
725 		if (mz->usage_in_excess < mz_node->usage_in_excess)
726 			p = &(*p)->rb_left;
727 		/*
728 		 * We can't avoid mem cgroups that are over their soft
729 		 * limit by the same amount
730 		 */
731 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
732 			p = &(*p)->rb_right;
733 	}
734 	rb_link_node(&mz->tree_node, parent, p);
735 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
736 	mz->on_tree = true;
737 }
738 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)739 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
740 					 struct mem_cgroup_tree_per_zone *mctz)
741 {
742 	if (!mz->on_tree)
743 		return;
744 	rb_erase(&mz->tree_node, &mctz->rb_root);
745 	mz->on_tree = false;
746 }
747 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)748 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 				       struct mem_cgroup_tree_per_zone *mctz)
750 {
751 	unsigned long flags;
752 
753 	spin_lock_irqsave(&mctz->lock, flags);
754 	__mem_cgroup_remove_exceeded(mz, mctz);
755 	spin_unlock_irqrestore(&mctz->lock, flags);
756 }
757 
758 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)759 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
760 {
761 	unsigned long long excess;
762 	struct mem_cgroup_per_zone *mz;
763 	struct mem_cgroup_tree_per_zone *mctz;
764 
765 	mctz = soft_limit_tree_from_page(page);
766 	/*
767 	 * Necessary to update all ancestors when hierarchy is used.
768 	 * because their event counter is not touched.
769 	 */
770 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
771 		mz = mem_cgroup_page_zoneinfo(memcg, page);
772 		excess = res_counter_soft_limit_excess(&memcg->res);
773 		/*
774 		 * We have to update the tree if mz is on RB-tree or
775 		 * mem is over its softlimit.
776 		 */
777 		if (excess || mz->on_tree) {
778 			unsigned long flags;
779 
780 			spin_lock_irqsave(&mctz->lock, flags);
781 			/* if on-tree, remove it */
782 			if (mz->on_tree)
783 				__mem_cgroup_remove_exceeded(mz, mctz);
784 			/*
785 			 * Insert again. mz->usage_in_excess will be updated.
786 			 * If excess is 0, no tree ops.
787 			 */
788 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
789 			spin_unlock_irqrestore(&mctz->lock, flags);
790 		}
791 	}
792 }
793 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)794 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
795 {
796 	struct mem_cgroup_tree_per_zone *mctz;
797 	struct mem_cgroup_per_zone *mz;
798 	int nid, zid;
799 
800 	for_each_node(nid) {
801 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
802 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
803 			mctz = soft_limit_tree_node_zone(nid, zid);
804 			mem_cgroup_remove_exceeded(mz, mctz);
805 		}
806 	}
807 }
808 
809 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)810 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 	struct rb_node *rightmost = NULL;
813 	struct mem_cgroup_per_zone *mz;
814 
815 retry:
816 	mz = NULL;
817 	rightmost = rb_last(&mctz->rb_root);
818 	if (!rightmost)
819 		goto done;		/* Nothing to reclaim from */
820 
821 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
822 	/*
823 	 * Remove the node now but someone else can add it back,
824 	 * we will to add it back at the end of reclaim to its correct
825 	 * position in the tree.
826 	 */
827 	__mem_cgroup_remove_exceeded(mz, mctz);
828 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
829 	    !css_tryget_online(&mz->memcg->css))
830 		goto retry;
831 done:
832 	return mz;
833 }
834 
835 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)836 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
837 {
838 	struct mem_cgroup_per_zone *mz;
839 
840 	spin_lock_irq(&mctz->lock);
841 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
842 	spin_unlock_irq(&mctz->lock);
843 	return mz;
844 }
845 
846 /*
847  * Implementation Note: reading percpu statistics for memcg.
848  *
849  * Both of vmstat[] and percpu_counter has threshold and do periodic
850  * synchronization to implement "quick" read. There are trade-off between
851  * reading cost and precision of value. Then, we may have a chance to implement
852  * a periodic synchronizion of counter in memcg's counter.
853  *
854  * But this _read() function is used for user interface now. The user accounts
855  * memory usage by memory cgroup and he _always_ requires exact value because
856  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
857  * have to visit all online cpus and make sum. So, for now, unnecessary
858  * synchronization is not implemented. (just implemented for cpu hotplug)
859  *
860  * If there are kernel internal actions which can make use of some not-exact
861  * value, and reading all cpu value can be performance bottleneck in some
862  * common workload, threashold and synchonization as vmstat[] should be
863  * implemented.
864  */
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)865 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
866 				 enum mem_cgroup_stat_index idx)
867 {
868 	long val = 0;
869 	int cpu;
870 
871 	get_online_cpus();
872 	for_each_online_cpu(cpu)
873 		val += per_cpu(memcg->stat->count[idx], cpu);
874 #ifdef CONFIG_HOTPLUG_CPU
875 	spin_lock(&memcg->pcp_counter_lock);
876 	val += memcg->nocpu_base.count[idx];
877 	spin_unlock(&memcg->pcp_counter_lock);
878 #endif
879 	put_online_cpus();
880 	return val;
881 }
882 
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 					    enum mem_cgroup_events_index idx)
885 {
886 	unsigned long val = 0;
887 	int cpu;
888 
889 	get_online_cpus();
890 	for_each_online_cpu(cpu)
891 		val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 	spin_lock(&memcg->pcp_counter_lock);
894 	val += memcg->nocpu_base.events[idx];
895 	spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 	put_online_cpus();
898 	return val;
899 }
900 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 					 struct page *page,
903 					 int nr_pages)
904 {
905 	/*
906 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
907 	 * counted as CACHE even if it's on ANON LRU.
908 	 */
909 	if (PageAnon(page))
910 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
911 				nr_pages);
912 	else
913 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
914 				nr_pages);
915 
916 	if (PageTransHuge(page))
917 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
918 				nr_pages);
919 
920 	/* pagein of a big page is an event. So, ignore page size */
921 	if (nr_pages > 0)
922 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
923 	else {
924 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
925 		nr_pages = -nr_pages; /* for event */
926 	}
927 
928 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
929 }
930 
mem_cgroup_get_lru_size(struct lruvec * lruvec,enum lru_list lru)931 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
932 {
933 	struct mem_cgroup_per_zone *mz;
934 
935 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
936 	return mz->lru_size[lru];
937 }
938 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 						  int nid,
941 						  unsigned int lru_mask)
942 {
943 	unsigned long nr = 0;
944 	int zid;
945 
946 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
947 
948 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
949 		struct mem_cgroup_per_zone *mz;
950 		enum lru_list lru;
951 
952 		for_each_lru(lru) {
953 			if (!(BIT(lru) & lru_mask))
954 				continue;
955 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
956 			nr += mz->lru_size[lru];
957 		}
958 	}
959 	return nr;
960 }
961 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
963 			unsigned int lru_mask)
964 {
965 	unsigned long nr = 0;
966 	int nid;
967 
968 	for_each_node_state(nid, N_MEMORY)
969 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
970 	return nr;
971 }
972 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 				       enum mem_cgroup_events_target target)
975 {
976 	unsigned long val, next;
977 
978 	val = __this_cpu_read(memcg->stat->nr_page_events);
979 	next = __this_cpu_read(memcg->stat->targets[target]);
980 	/* from time_after() in jiffies.h */
981 	if ((long)next - (long)val < 0) {
982 		switch (target) {
983 		case MEM_CGROUP_TARGET_THRESH:
984 			next = val + THRESHOLDS_EVENTS_TARGET;
985 			break;
986 		case MEM_CGROUP_TARGET_SOFTLIMIT:
987 			next = val + SOFTLIMIT_EVENTS_TARGET;
988 			break;
989 		case MEM_CGROUP_TARGET_NUMAINFO:
990 			next = val + NUMAINFO_EVENTS_TARGET;
991 			break;
992 		default:
993 			break;
994 		}
995 		__this_cpu_write(memcg->stat->targets[target], next);
996 		return true;
997 	}
998 	return false;
999 }
1000 
1001 /*
1002  * Check events in order.
1003  *
1004  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)1005 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1006 {
1007 	/* threshold event is triggered in finer grain than soft limit */
1008 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 						MEM_CGROUP_TARGET_THRESH))) {
1010 		bool do_softlimit;
1011 		bool do_numainfo __maybe_unused;
1012 
1013 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1014 						MEM_CGROUP_TARGET_SOFTLIMIT);
1015 #if MAX_NUMNODES > 1
1016 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1017 						MEM_CGROUP_TARGET_NUMAINFO);
1018 #endif
1019 		mem_cgroup_threshold(memcg);
1020 		if (unlikely(do_softlimit))
1021 			mem_cgroup_update_tree(memcg, page);
1022 #if MAX_NUMNODES > 1
1023 		if (unlikely(do_numainfo))
1024 			atomic_inc(&memcg->numainfo_events);
1025 #endif
1026 	}
1027 }
1028 
mem_cgroup_from_task(struct task_struct * p)1029 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030 {
1031 	/*
1032 	 * mm_update_next_owner() may clear mm->owner to NULL
1033 	 * if it races with swapoff, page migration, etc.
1034 	 * So this can be called with p == NULL.
1035 	 */
1036 	if (unlikely(!p))
1037 		return NULL;
1038 
1039 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1040 }
1041 
get_mem_cgroup_from_mm(struct mm_struct * mm)1042 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1043 {
1044 	struct mem_cgroup *memcg = NULL;
1045 
1046 	rcu_read_lock();
1047 	do {
1048 		/*
1049 		 * Page cache insertions can happen withou an
1050 		 * actual mm context, e.g. during disk probing
1051 		 * on boot, loopback IO, acct() writes etc.
1052 		 */
1053 		if (unlikely(!mm))
1054 			memcg = root_mem_cgroup;
1055 		else {
1056 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1057 			if (unlikely(!memcg))
1058 				memcg = root_mem_cgroup;
1059 		}
1060 	} while (!css_tryget_online(&memcg->css));
1061 	rcu_read_unlock();
1062 	return memcg;
1063 }
1064 
1065 /*
1066  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1067  * ref. count) or NULL if the whole root's subtree has been visited.
1068  *
1069  * helper function to be used by mem_cgroup_iter
1070  */
__mem_cgroup_iter_next(struct mem_cgroup * root,struct mem_cgroup * last_visited)1071 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1072 		struct mem_cgroup *last_visited)
1073 {
1074 	struct cgroup_subsys_state *prev_css, *next_css;
1075 
1076 	prev_css = last_visited ? &last_visited->css : NULL;
1077 skip_node:
1078 	next_css = css_next_descendant_pre(prev_css, &root->css);
1079 
1080 	/*
1081 	 * Even if we found a group we have to make sure it is
1082 	 * alive. css && !memcg means that the groups should be
1083 	 * skipped and we should continue the tree walk.
1084 	 * last_visited css is safe to use because it is
1085 	 * protected by css_get and the tree walk is rcu safe.
1086 	 *
1087 	 * We do not take a reference on the root of the tree walk
1088 	 * because we might race with the root removal when it would
1089 	 * be the only node in the iterated hierarchy and mem_cgroup_iter
1090 	 * would end up in an endless loop because it expects that at
1091 	 * least one valid node will be returned. Root cannot disappear
1092 	 * because caller of the iterator should hold it already so
1093 	 * skipping css reference should be safe.
1094 	 */
1095 	if (next_css) {
1096 		struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1097 
1098 		if (next_css == &root->css)
1099 			return memcg;
1100 
1101 		if (css_tryget_online(next_css)) {
1102 			/*
1103 			 * Make sure the memcg is initialized:
1104 			 * mem_cgroup_css_online() orders the the
1105 			 * initialization against setting the flag.
1106 			 */
1107 			if (smp_load_acquire(&memcg->initialized))
1108 				return memcg;
1109 			css_put(next_css);
1110 		}
1111 
1112 		prev_css = next_css;
1113 		goto skip_node;
1114 	}
1115 
1116 	return NULL;
1117 }
1118 
mem_cgroup_iter_invalidate(struct mem_cgroup * root)1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120 {
1121 	/*
1122 	 * When a group in the hierarchy below root is destroyed, the
1123 	 * hierarchy iterator can no longer be trusted since it might
1124 	 * have pointed to the destroyed group.  Invalidate it.
1125 	 */
1126 	atomic_inc(&root->dead_count);
1127 }
1128 
1129 static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter * iter,struct mem_cgroup * root,int * sequence)1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 		     struct mem_cgroup *root,
1132 		     int *sequence)
1133 {
1134 	struct mem_cgroup *position = NULL;
1135 	/*
1136 	 * A cgroup destruction happens in two stages: offlining and
1137 	 * release.  They are separated by a RCU grace period.
1138 	 *
1139 	 * If the iterator is valid, we may still race with an
1140 	 * offlining.  The RCU lock ensures the object won't be
1141 	 * released, tryget will fail if we lost the race.
1142 	 */
1143 	*sequence = atomic_read(&root->dead_count);
1144 	if (iter->last_dead_count == *sequence) {
1145 		smp_rmb();
1146 		position = iter->last_visited;
1147 
1148 		/*
1149 		 * We cannot take a reference to root because we might race
1150 		 * with root removal and returning NULL would end up in
1151 		 * an endless loop on the iterator user level when root
1152 		 * would be returned all the time.
1153 		 */
1154 		if (position && position != root &&
1155 		    !css_tryget_online(&position->css))
1156 			position = NULL;
1157 	}
1158 	return position;
1159 }
1160 
mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter * iter,struct mem_cgroup * last_visited,struct mem_cgroup * new_position,struct mem_cgroup * root,int sequence)1161 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1162 				   struct mem_cgroup *last_visited,
1163 				   struct mem_cgroup *new_position,
1164 				   struct mem_cgroup *root,
1165 				   int sequence)
1166 {
1167 	/* root reference counting symmetric to mem_cgroup_iter_load */
1168 	if (last_visited && last_visited != root)
1169 		css_put(&last_visited->css);
1170 	/*
1171 	 * We store the sequence count from the time @last_visited was
1172 	 * loaded successfully instead of rereading it here so that we
1173 	 * don't lose destruction events in between.  We could have
1174 	 * raced with the destruction of @new_position after all.
1175 	 */
1176 	iter->last_visited = new_position;
1177 	smp_wmb();
1178 	iter->last_dead_count = sequence;
1179 }
1180 
1181 /**
1182  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183  * @root: hierarchy root
1184  * @prev: previously returned memcg, NULL on first invocation
1185  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186  *
1187  * Returns references to children of the hierarchy below @root, or
1188  * @root itself, or %NULL after a full round-trip.
1189  *
1190  * Caller must pass the return value in @prev on subsequent
1191  * invocations for reference counting, or use mem_cgroup_iter_break()
1192  * to cancel a hierarchy walk before the round-trip is complete.
1193  *
1194  * Reclaimers can specify a zone and a priority level in @reclaim to
1195  * divide up the memcgs in the hierarchy among all concurrent
1196  * reclaimers operating on the same zone and priority.
1197  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1198 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1199 				   struct mem_cgroup *prev,
1200 				   struct mem_cgroup_reclaim_cookie *reclaim)
1201 {
1202 	struct mem_cgroup *memcg = NULL;
1203 	struct mem_cgroup *last_visited = NULL;
1204 
1205 	if (mem_cgroup_disabled())
1206 		return NULL;
1207 
1208 	if (!root)
1209 		root = root_mem_cgroup;
1210 
1211 	if (prev && !reclaim)
1212 		last_visited = prev;
1213 
1214 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 		if (prev)
1216 			goto out_css_put;
1217 		return root;
1218 	}
1219 
1220 	rcu_read_lock();
1221 	while (!memcg) {
1222 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1223 		int uninitialized_var(seq);
1224 
1225 		if (reclaim) {
1226 			struct mem_cgroup_per_zone *mz;
1227 
1228 			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1229 			iter = &mz->reclaim_iter[reclaim->priority];
1230 			if (prev && reclaim->generation != iter->generation) {
1231 				iter->last_visited = NULL;
1232 				goto out_unlock;
1233 			}
1234 
1235 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1236 		}
1237 
1238 		memcg = __mem_cgroup_iter_next(root, last_visited);
1239 
1240 		if (reclaim) {
1241 			mem_cgroup_iter_update(iter, last_visited, memcg, root,
1242 					seq);
1243 
1244 			if (!memcg)
1245 				iter->generation++;
1246 			else if (!prev && memcg)
1247 				reclaim->generation = iter->generation;
1248 		}
1249 
1250 		if (prev && !memcg)
1251 			goto out_unlock;
1252 	}
1253 out_unlock:
1254 	rcu_read_unlock();
1255 out_css_put:
1256 	if (prev && prev != root)
1257 		css_put(&prev->css);
1258 
1259 	return memcg;
1260 }
1261 
1262 /**
1263  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1264  * @root: hierarchy root
1265  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1266  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1267 void mem_cgroup_iter_break(struct mem_cgroup *root,
1268 			   struct mem_cgroup *prev)
1269 {
1270 	if (!root)
1271 		root = root_mem_cgroup;
1272 	if (prev && prev != root)
1273 		css_put(&prev->css);
1274 }
1275 
1276 /*
1277  * Iteration constructs for visiting all cgroups (under a tree).  If
1278  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1279  * be used for reference counting.
1280  */
1281 #define for_each_mem_cgroup_tree(iter, root)		\
1282 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1283 	     iter != NULL;				\
1284 	     iter = mem_cgroup_iter(root, iter, NULL))
1285 
1286 #define for_each_mem_cgroup(iter)			\
1287 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1288 	     iter != NULL;				\
1289 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1290 
__mem_cgroup_count_vm_event(struct mm_struct * mm,enum vm_event_item idx)1291 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1292 {
1293 	struct mem_cgroup *memcg;
1294 
1295 	rcu_read_lock();
1296 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1297 	if (unlikely(!memcg))
1298 		goto out;
1299 
1300 	switch (idx) {
1301 	case PGFAULT:
1302 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1303 		break;
1304 	case PGMAJFAULT:
1305 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1306 		break;
1307 	default:
1308 		BUG();
1309 	}
1310 out:
1311 	rcu_read_unlock();
1312 }
1313 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1314 
1315 /**
1316  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1317  * @zone: zone of the wanted lruvec
1318  * @memcg: memcg of the wanted lruvec
1319  *
1320  * Returns the lru list vector holding pages for the given @zone and
1321  * @mem.  This can be the global zone lruvec, if the memory controller
1322  * is disabled.
1323  */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1324 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1325 				      struct mem_cgroup *memcg)
1326 {
1327 	struct mem_cgroup_per_zone *mz;
1328 	struct lruvec *lruvec;
1329 
1330 	if (mem_cgroup_disabled()) {
1331 		lruvec = &zone->lruvec;
1332 		goto out;
1333 	}
1334 
1335 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1336 	lruvec = &mz->lruvec;
1337 out:
1338 	/*
1339 	 * Since a node can be onlined after the mem_cgroup was created,
1340 	 * we have to be prepared to initialize lruvec->zone here;
1341 	 * and if offlined then reonlined, we need to reinitialize it.
1342 	 */
1343 	if (unlikely(lruvec->zone != zone))
1344 		lruvec->zone = zone;
1345 	return lruvec;
1346 }
1347 
1348 /**
1349  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350  * @page: the page
1351  * @zone: zone of the page
1352  */
mem_cgroup_page_lruvec(struct page * page,struct zone * zone)1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1354 {
1355 	struct mem_cgroup_per_zone *mz;
1356 	struct mem_cgroup *memcg;
1357 	struct page_cgroup *pc;
1358 	struct lruvec *lruvec;
1359 
1360 	if (mem_cgroup_disabled()) {
1361 		lruvec = &zone->lruvec;
1362 		goto out;
1363 	}
1364 
1365 	pc = lookup_page_cgroup(page);
1366 	memcg = pc->mem_cgroup;
1367 
1368 	/*
1369 	 * Surreptitiously switch any uncharged offlist page to root:
1370 	 * an uncharged page off lru does nothing to secure
1371 	 * its former mem_cgroup from sudden removal.
1372 	 *
1373 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 	 * under page_cgroup lock: between them, they make all uses
1375 	 * of pc->mem_cgroup safe.
1376 	 */
1377 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 		pc->mem_cgroup = memcg = root_mem_cgroup;
1379 
1380 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1381 	lruvec = &mz->lruvec;
1382 out:
1383 	/*
1384 	 * Since a node can be onlined after the mem_cgroup was created,
1385 	 * we have to be prepared to initialize lruvec->zone here;
1386 	 * and if offlined then reonlined, we need to reinitialize it.
1387 	 */
1388 	if (unlikely(lruvec->zone != zone))
1389 		lruvec->zone = zone;
1390 	return lruvec;
1391 }
1392 
1393 /**
1394  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395  * @lruvec: mem_cgroup per zone lru vector
1396  * @lru: index of lru list the page is sitting on
1397  * @nr_pages: positive when adding or negative when removing
1398  *
1399  * This function must be called when a page is added to or removed from an
1400  * lru list.
1401  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int nr_pages)1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 				int nr_pages)
1404 {
1405 	struct mem_cgroup_per_zone *mz;
1406 	unsigned long *lru_size;
1407 
1408 	if (mem_cgroup_disabled())
1409 		return;
1410 
1411 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 	lru_size = mz->lru_size + lru;
1413 	*lru_size += nr_pages;
1414 	VM_BUG_ON((long)(*lru_size) < 0);
1415 }
1416 
1417 /*
1418  * Checks whether given mem is same or in the root_mem_cgroup's
1419  * hierarchy subtree
1420  */
__mem_cgroup_same_or_subtree(const struct mem_cgroup * root_memcg,struct mem_cgroup * memcg)1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 				  struct mem_cgroup *memcg)
1423 {
1424 	if (root_memcg == memcg)
1425 		return true;
1426 	if (!root_memcg->use_hierarchy || !memcg)
1427 		return false;
1428 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1429 }
1430 
mem_cgroup_same_or_subtree(const struct mem_cgroup * root_memcg,struct mem_cgroup * memcg)1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 				       struct mem_cgroup *memcg)
1433 {
1434 	bool ret;
1435 
1436 	rcu_read_lock();
1437 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 	rcu_read_unlock();
1439 	return ret;
1440 }
1441 
task_in_mem_cgroup(struct task_struct * task,const struct mem_cgroup * memcg)1442 bool task_in_mem_cgroup(struct task_struct *task,
1443 			const struct mem_cgroup *memcg)
1444 {
1445 	struct mem_cgroup *curr = NULL;
1446 	struct task_struct *p;
1447 	bool ret;
1448 
1449 	p = find_lock_task_mm(task);
1450 	if (p) {
1451 		curr = get_mem_cgroup_from_mm(p->mm);
1452 		task_unlock(p);
1453 	} else {
1454 		/*
1455 		 * All threads may have already detached their mm's, but the oom
1456 		 * killer still needs to detect if they have already been oom
1457 		 * killed to prevent needlessly killing additional tasks.
1458 		 */
1459 		rcu_read_lock();
1460 		curr = mem_cgroup_from_task(task);
1461 		if (curr)
1462 			css_get(&curr->css);
1463 		rcu_read_unlock();
1464 	}
1465 	/*
1466 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1467 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1468 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1469 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1470 	 */
1471 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1472 	css_put(&curr->css);
1473 	return ret;
1474 }
1475 
mem_cgroup_inactive_anon_is_low(struct lruvec * lruvec)1476 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1477 {
1478 	unsigned long inactive_ratio;
1479 	unsigned long inactive;
1480 	unsigned long active;
1481 	unsigned long gb;
1482 
1483 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1484 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1485 
1486 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1487 	if (gb)
1488 		inactive_ratio = int_sqrt(10 * gb);
1489 	else
1490 		inactive_ratio = 1;
1491 
1492 	return inactive * inactive_ratio < active;
1493 }
1494 
1495 #define mem_cgroup_from_res_counter(counter, member)	\
1496 	container_of(counter, struct mem_cgroup, member)
1497 
1498 /**
1499  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1500  * @memcg: the memory cgroup
1501  *
1502  * Returns the maximum amount of memory @mem can be charged with, in
1503  * pages.
1504  */
mem_cgroup_margin(struct mem_cgroup * memcg)1505 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1506 {
1507 	unsigned long long margin;
1508 
1509 	margin = res_counter_margin(&memcg->res);
1510 	if (do_swap_account)
1511 		margin = min(margin, res_counter_margin(&memcg->memsw));
1512 	return margin >> PAGE_SHIFT;
1513 }
1514 
mem_cgroup_swappiness(struct mem_cgroup * memcg)1515 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1516 {
1517 	/* root ? */
1518 	if (mem_cgroup_disabled() || !memcg->css.parent)
1519 		return vm_swappiness;
1520 
1521 	return memcg->swappiness;
1522 }
1523 
1524 /*
1525  * memcg->moving_account is used for checking possibility that some thread is
1526  * calling move_account(). When a thread on CPU-A starts moving pages under
1527  * a memcg, other threads should check memcg->moving_account under
1528  * rcu_read_lock(), like this:
1529  *
1530  *         CPU-A                                    CPU-B
1531  *                                              rcu_read_lock()
1532  *         memcg->moving_account+1              if (memcg->mocing_account)
1533  *                                                   take heavy locks.
1534  *         synchronize_rcu()                    update something.
1535  *                                              rcu_read_unlock()
1536  *         start move here.
1537  */
1538 
mem_cgroup_start_move(struct mem_cgroup * memcg)1539 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1540 {
1541 	atomic_inc(&memcg->moving_account);
1542 	synchronize_rcu();
1543 }
1544 
mem_cgroup_end_move(struct mem_cgroup * memcg)1545 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1546 {
1547 	/*
1548 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1549 	 * We check NULL in callee rather than caller.
1550 	 */
1551 	if (memcg)
1552 		atomic_dec(&memcg->moving_account);
1553 }
1554 
1555 /*
1556  * A routine for checking "mem" is under move_account() or not.
1557  *
1558  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1559  * moving cgroups. This is for waiting at high-memory pressure
1560  * caused by "move".
1561  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1562 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1563 {
1564 	struct mem_cgroup *from;
1565 	struct mem_cgroup *to;
1566 	bool ret = false;
1567 	/*
1568 	 * Unlike task_move routines, we access mc.to, mc.from not under
1569 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1570 	 */
1571 	spin_lock(&mc.lock);
1572 	from = mc.from;
1573 	to = mc.to;
1574 	if (!from)
1575 		goto unlock;
1576 
1577 	ret = mem_cgroup_same_or_subtree(memcg, from)
1578 		|| mem_cgroup_same_or_subtree(memcg, to);
1579 unlock:
1580 	spin_unlock(&mc.lock);
1581 	return ret;
1582 }
1583 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1584 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1585 {
1586 	if (mc.moving_task && current != mc.moving_task) {
1587 		if (mem_cgroup_under_move(memcg)) {
1588 			DEFINE_WAIT(wait);
1589 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1590 			/* moving charge context might have finished. */
1591 			if (mc.moving_task)
1592 				schedule();
1593 			finish_wait(&mc.waitq, &wait);
1594 			return true;
1595 		}
1596 	}
1597 	return false;
1598 }
1599 
1600 /*
1601  * Take this lock when
1602  * - a code tries to modify page's memcg while it's USED.
1603  * - a code tries to modify page state accounting in a memcg.
1604  */
move_lock_mem_cgroup(struct mem_cgroup * memcg,unsigned long * flags)1605 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1606 				  unsigned long *flags)
1607 {
1608 	spin_lock_irqsave(&memcg->move_lock, *flags);
1609 }
1610 
move_unlock_mem_cgroup(struct mem_cgroup * memcg,unsigned long * flags)1611 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1612 				unsigned long *flags)
1613 {
1614 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1615 }
1616 
1617 #define K(x) ((x) << (PAGE_SHIFT-10))
1618 /**
1619  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620  * @memcg: The memory cgroup that went over limit
1621  * @p: Task that is going to be killed
1622  *
1623  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1624  * enabled
1625  */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1626 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1627 {
1628 	/* oom_info_lock ensures that parallel ooms do not interleave */
1629 	static DEFINE_MUTEX(oom_info_lock);
1630 	struct mem_cgroup *iter;
1631 	unsigned int i;
1632 
1633 	if (!p)
1634 		return;
1635 
1636 	mutex_lock(&oom_info_lock);
1637 	rcu_read_lock();
1638 
1639 	pr_info("Task in ");
1640 	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1641 	pr_cont(" killed as a result of limit of ");
1642 	pr_cont_cgroup_path(memcg->css.cgroup);
1643 	pr_cont("\n");
1644 
1645 	rcu_read_unlock();
1646 
1647 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1648 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1649 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1650 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1651 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1652 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1653 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1654 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1655 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1656 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1657 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1658 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1659 
1660 	for_each_mem_cgroup_tree(iter, memcg) {
1661 		pr_info("Memory cgroup stats for ");
1662 		pr_cont_cgroup_path(iter->css.cgroup);
1663 		pr_cont(":");
1664 
1665 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1666 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1667 				continue;
1668 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1669 				K(mem_cgroup_read_stat(iter, i)));
1670 		}
1671 
1672 		for (i = 0; i < NR_LRU_LISTS; i++)
1673 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1674 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1675 
1676 		pr_cont("\n");
1677 	}
1678 	mutex_unlock(&oom_info_lock);
1679 }
1680 
1681 /*
1682  * This function returns the number of memcg under hierarchy tree. Returns
1683  * 1(self count) if no children.
1684  */
mem_cgroup_count_children(struct mem_cgroup * memcg)1685 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1686 {
1687 	int num = 0;
1688 	struct mem_cgroup *iter;
1689 
1690 	for_each_mem_cgroup_tree(iter, memcg)
1691 		num++;
1692 	return num;
1693 }
1694 
1695 /*
1696  * Return the memory (and swap, if configured) limit for a memcg.
1697  */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1698 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1699 {
1700 	u64 limit;
1701 
1702 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1703 
1704 	/*
1705 	 * Do not consider swap space if we cannot swap due to swappiness
1706 	 */
1707 	if (mem_cgroup_swappiness(memcg)) {
1708 		u64 memsw;
1709 
1710 		limit += total_swap_pages << PAGE_SHIFT;
1711 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1712 
1713 		/*
1714 		 * If memsw is finite and limits the amount of swap space
1715 		 * available to this memcg, return that limit.
1716 		 */
1717 		limit = min(limit, memsw);
1718 	}
1719 
1720 	return limit;
1721 }
1722 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1723 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1724 				     int order)
1725 {
1726 	struct mem_cgroup *iter;
1727 	unsigned long chosen_points = 0;
1728 	unsigned long totalpages;
1729 	unsigned int points = 0;
1730 	struct task_struct *chosen = NULL;
1731 
1732 	/*
1733 	 * If current has a pending SIGKILL or is exiting, then automatically
1734 	 * select it.  The goal is to allow it to allocate so that it may
1735 	 * quickly exit and free its memory.
1736 	 */
1737 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1738 		set_thread_flag(TIF_MEMDIE);
1739 		return;
1740 	}
1741 
1742 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1743 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1744 	for_each_mem_cgroup_tree(iter, memcg) {
1745 		struct css_task_iter it;
1746 		struct task_struct *task;
1747 
1748 		css_task_iter_start(&iter->css, &it);
1749 		while ((task = css_task_iter_next(&it))) {
1750 			switch (oom_scan_process_thread(task, totalpages, NULL,
1751 							false)) {
1752 			case OOM_SCAN_SELECT:
1753 				if (chosen)
1754 					put_task_struct(chosen);
1755 				chosen = task;
1756 				chosen_points = ULONG_MAX;
1757 				get_task_struct(chosen);
1758 				/* fall through */
1759 			case OOM_SCAN_CONTINUE:
1760 				continue;
1761 			case OOM_SCAN_ABORT:
1762 				css_task_iter_end(&it);
1763 				mem_cgroup_iter_break(memcg, iter);
1764 				if (chosen)
1765 					put_task_struct(chosen);
1766 				return;
1767 			case OOM_SCAN_OK:
1768 				break;
1769 			};
1770 			points = oom_badness(task, memcg, NULL, totalpages);
1771 			if (!points || points < chosen_points)
1772 				continue;
1773 			/* Prefer thread group leaders for display purposes */
1774 			if (points == chosen_points &&
1775 			    thread_group_leader(chosen))
1776 				continue;
1777 
1778 			if (chosen)
1779 				put_task_struct(chosen);
1780 			chosen = task;
1781 			chosen_points = points;
1782 			get_task_struct(chosen);
1783 		}
1784 		css_task_iter_end(&it);
1785 	}
1786 
1787 	if (!chosen)
1788 		return;
1789 	points = chosen_points * 1000 / totalpages;
1790 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1791 			 NULL, "Memory cgroup out of memory");
1792 }
1793 
1794 /**
1795  * test_mem_cgroup_node_reclaimable
1796  * @memcg: the target memcg
1797  * @nid: the node ID to be checked.
1798  * @noswap : specify true here if the user wants flle only information.
1799  *
1800  * This function returns whether the specified memcg contains any
1801  * reclaimable pages on a node. Returns true if there are any reclaimable
1802  * pages in the node.
1803  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1804 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1805 		int nid, bool noswap)
1806 {
1807 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1808 		return true;
1809 	if (noswap || !total_swap_pages)
1810 		return false;
1811 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1812 		return true;
1813 	return false;
1814 
1815 }
1816 #if MAX_NUMNODES > 1
1817 
1818 /*
1819  * Always updating the nodemask is not very good - even if we have an empty
1820  * list or the wrong list here, we can start from some node and traverse all
1821  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1822  *
1823  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1824 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1825 {
1826 	int nid;
1827 	/*
1828 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1829 	 * pagein/pageout changes since the last update.
1830 	 */
1831 	if (!atomic_read(&memcg->numainfo_events))
1832 		return;
1833 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1834 		return;
1835 
1836 	/* make a nodemask where this memcg uses memory from */
1837 	memcg->scan_nodes = node_states[N_MEMORY];
1838 
1839 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1840 
1841 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1842 			node_clear(nid, memcg->scan_nodes);
1843 	}
1844 
1845 	atomic_set(&memcg->numainfo_events, 0);
1846 	atomic_set(&memcg->numainfo_updating, 0);
1847 }
1848 
1849 /*
1850  * Selecting a node where we start reclaim from. Because what we need is just
1851  * reducing usage counter, start from anywhere is O,K. Considering
1852  * memory reclaim from current node, there are pros. and cons.
1853  *
1854  * Freeing memory from current node means freeing memory from a node which
1855  * we'll use or we've used. So, it may make LRU bad. And if several threads
1856  * hit limits, it will see a contention on a node. But freeing from remote
1857  * node means more costs for memory reclaim because of memory latency.
1858  *
1859  * Now, we use round-robin. Better algorithm is welcomed.
1860  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1861 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1862 {
1863 	int node;
1864 
1865 	mem_cgroup_may_update_nodemask(memcg);
1866 	node = memcg->last_scanned_node;
1867 
1868 	node = next_node(node, memcg->scan_nodes);
1869 	if (node == MAX_NUMNODES)
1870 		node = first_node(memcg->scan_nodes);
1871 	/*
1872 	 * We call this when we hit limit, not when pages are added to LRU.
1873 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1874 	 * memcg is too small and all pages are not on LRU. In that case,
1875 	 * we use curret node.
1876 	 */
1877 	if (unlikely(node == MAX_NUMNODES))
1878 		node = numa_node_id();
1879 
1880 	memcg->last_scanned_node = node;
1881 	return node;
1882 }
1883 
1884 /*
1885  * Check all nodes whether it contains reclaimable pages or not.
1886  * For quick scan, we make use of scan_nodes. This will allow us to skip
1887  * unused nodes. But scan_nodes is lazily updated and may not cotain
1888  * enough new information. We need to do double check.
1889  */
mem_cgroup_reclaimable(struct mem_cgroup * memcg,bool noswap)1890 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1891 {
1892 	int nid;
1893 
1894 	/*
1895 	 * quick check...making use of scan_node.
1896 	 * We can skip unused nodes.
1897 	 */
1898 	if (!nodes_empty(memcg->scan_nodes)) {
1899 		for (nid = first_node(memcg->scan_nodes);
1900 		     nid < MAX_NUMNODES;
1901 		     nid = next_node(nid, memcg->scan_nodes)) {
1902 
1903 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1904 				return true;
1905 		}
1906 	}
1907 	/*
1908 	 * Check rest of nodes.
1909 	 */
1910 	for_each_node_state(nid, N_MEMORY) {
1911 		if (node_isset(nid, memcg->scan_nodes))
1912 			continue;
1913 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1914 			return true;
1915 	}
1916 	return false;
1917 }
1918 
1919 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1920 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1921 {
1922 	return 0;
1923 }
1924 
mem_cgroup_reclaimable(struct mem_cgroup * memcg,bool noswap)1925 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1926 {
1927 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1928 }
1929 #endif
1930 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1931 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1932 				   struct zone *zone,
1933 				   gfp_t gfp_mask,
1934 				   unsigned long *total_scanned)
1935 {
1936 	struct mem_cgroup *victim = NULL;
1937 	int total = 0;
1938 	int loop = 0;
1939 	unsigned long excess;
1940 	unsigned long nr_scanned;
1941 	struct mem_cgroup_reclaim_cookie reclaim = {
1942 		.zone = zone,
1943 		.priority = 0,
1944 	};
1945 
1946 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1947 
1948 	while (1) {
1949 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1950 		if (!victim) {
1951 			loop++;
1952 			if (loop >= 2) {
1953 				/*
1954 				 * If we have not been able to reclaim
1955 				 * anything, it might because there are
1956 				 * no reclaimable pages under this hierarchy
1957 				 */
1958 				if (!total)
1959 					break;
1960 				/*
1961 				 * We want to do more targeted reclaim.
1962 				 * excess >> 2 is not to excessive so as to
1963 				 * reclaim too much, nor too less that we keep
1964 				 * coming back to reclaim from this cgroup
1965 				 */
1966 				if (total >= (excess >> 2) ||
1967 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1968 					break;
1969 			}
1970 			continue;
1971 		}
1972 		if (!mem_cgroup_reclaimable(victim, false))
1973 			continue;
1974 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1975 						     zone, &nr_scanned);
1976 		*total_scanned += nr_scanned;
1977 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1978 			break;
1979 	}
1980 	mem_cgroup_iter_break(root_memcg, victim);
1981 	return total;
1982 }
1983 
1984 #ifdef CONFIG_LOCKDEP
1985 static struct lockdep_map memcg_oom_lock_dep_map = {
1986 	.name = "memcg_oom_lock",
1987 };
1988 #endif
1989 
1990 static DEFINE_SPINLOCK(memcg_oom_lock);
1991 
1992 /*
1993  * Check OOM-Killer is already running under our hierarchy.
1994  * If someone is running, return false.
1995  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1996 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1997 {
1998 	struct mem_cgroup *iter, *failed = NULL;
1999 
2000 	spin_lock(&memcg_oom_lock);
2001 
2002 	for_each_mem_cgroup_tree(iter, memcg) {
2003 		if (iter->oom_lock) {
2004 			/*
2005 			 * this subtree of our hierarchy is already locked
2006 			 * so we cannot give a lock.
2007 			 */
2008 			failed = iter;
2009 			mem_cgroup_iter_break(memcg, iter);
2010 			break;
2011 		} else
2012 			iter->oom_lock = true;
2013 	}
2014 
2015 	if (failed) {
2016 		/*
2017 		 * OK, we failed to lock the whole subtree so we have
2018 		 * to clean up what we set up to the failing subtree
2019 		 */
2020 		for_each_mem_cgroup_tree(iter, memcg) {
2021 			if (iter == failed) {
2022 				mem_cgroup_iter_break(memcg, iter);
2023 				break;
2024 			}
2025 			iter->oom_lock = false;
2026 		}
2027 	} else
2028 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2029 
2030 	spin_unlock(&memcg_oom_lock);
2031 
2032 	return !failed;
2033 }
2034 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)2035 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2036 {
2037 	struct mem_cgroup *iter;
2038 
2039 	spin_lock(&memcg_oom_lock);
2040 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2041 	for_each_mem_cgroup_tree(iter, memcg)
2042 		iter->oom_lock = false;
2043 	spin_unlock(&memcg_oom_lock);
2044 }
2045 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)2046 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2047 {
2048 	struct mem_cgroup *iter;
2049 
2050 	for_each_mem_cgroup_tree(iter, memcg)
2051 		atomic_inc(&iter->under_oom);
2052 }
2053 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)2054 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2055 {
2056 	struct mem_cgroup *iter;
2057 
2058 	/*
2059 	 * When a new child is created while the hierarchy is under oom,
2060 	 * mem_cgroup_oom_lock() may not be called. We have to use
2061 	 * atomic_add_unless() here.
2062 	 */
2063 	for_each_mem_cgroup_tree(iter, memcg)
2064 		atomic_add_unless(&iter->under_oom, -1, 0);
2065 }
2066 
2067 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2068 
2069 struct oom_wait_info {
2070 	struct mem_cgroup *memcg;
2071 	wait_queue_t	wait;
2072 };
2073 
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)2074 static int memcg_oom_wake_function(wait_queue_t *wait,
2075 	unsigned mode, int sync, void *arg)
2076 {
2077 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2078 	struct mem_cgroup *oom_wait_memcg;
2079 	struct oom_wait_info *oom_wait_info;
2080 
2081 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2082 	oom_wait_memcg = oom_wait_info->memcg;
2083 
2084 	/*
2085 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2086 	 * Then we can use css_is_ancestor without taking care of RCU.
2087 	 */
2088 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2089 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2090 		return 0;
2091 	return autoremove_wake_function(wait, mode, sync, arg);
2092 }
2093 
memcg_wakeup_oom(struct mem_cgroup * memcg)2094 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2095 {
2096 	atomic_inc(&memcg->oom_wakeups);
2097 	/* for filtering, pass "memcg" as argument. */
2098 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2099 }
2100 
memcg_oom_recover(struct mem_cgroup * memcg)2101 static void memcg_oom_recover(struct mem_cgroup *memcg)
2102 {
2103 	if (memcg && atomic_read(&memcg->under_oom))
2104 		memcg_wakeup_oom(memcg);
2105 }
2106 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)2107 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2108 {
2109 	if (!current->memcg_oom.may_oom)
2110 		return;
2111 	/*
2112 	 * We are in the middle of the charge context here, so we
2113 	 * don't want to block when potentially sitting on a callstack
2114 	 * that holds all kinds of filesystem and mm locks.
2115 	 *
2116 	 * Also, the caller may handle a failed allocation gracefully
2117 	 * (like optional page cache readahead) and so an OOM killer
2118 	 * invocation might not even be necessary.
2119 	 *
2120 	 * That's why we don't do anything here except remember the
2121 	 * OOM context and then deal with it at the end of the page
2122 	 * fault when the stack is unwound, the locks are released,
2123 	 * and when we know whether the fault was overall successful.
2124 	 */
2125 	css_get(&memcg->css);
2126 	current->memcg_oom.memcg = memcg;
2127 	current->memcg_oom.gfp_mask = mask;
2128 	current->memcg_oom.order = order;
2129 }
2130 
2131 /**
2132  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2133  * @handle: actually kill/wait or just clean up the OOM state
2134  *
2135  * This has to be called at the end of a page fault if the memcg OOM
2136  * handler was enabled.
2137  *
2138  * Memcg supports userspace OOM handling where failed allocations must
2139  * sleep on a waitqueue until the userspace task resolves the
2140  * situation.  Sleeping directly in the charge context with all kinds
2141  * of locks held is not a good idea, instead we remember an OOM state
2142  * in the task and mem_cgroup_oom_synchronize() has to be called at
2143  * the end of the page fault to complete the OOM handling.
2144  *
2145  * Returns %true if an ongoing memcg OOM situation was detected and
2146  * completed, %false otherwise.
2147  */
mem_cgroup_oom_synchronize(bool handle)2148 bool mem_cgroup_oom_synchronize(bool handle)
2149 {
2150 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2151 	struct oom_wait_info owait;
2152 	bool locked;
2153 
2154 	/* OOM is global, do not handle */
2155 	if (!memcg)
2156 		return false;
2157 
2158 	if (!handle)
2159 		goto cleanup;
2160 
2161 	owait.memcg = memcg;
2162 	owait.wait.flags = 0;
2163 	owait.wait.func = memcg_oom_wake_function;
2164 	owait.wait.private = current;
2165 	INIT_LIST_HEAD(&owait.wait.task_list);
2166 
2167 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2168 	mem_cgroup_mark_under_oom(memcg);
2169 
2170 	locked = mem_cgroup_oom_trylock(memcg);
2171 
2172 	if (locked)
2173 		mem_cgroup_oom_notify(memcg);
2174 
2175 	if (locked && !memcg->oom_kill_disable) {
2176 		mem_cgroup_unmark_under_oom(memcg);
2177 		finish_wait(&memcg_oom_waitq, &owait.wait);
2178 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2179 					 current->memcg_oom.order);
2180 	} else {
2181 		schedule();
2182 		mem_cgroup_unmark_under_oom(memcg);
2183 		finish_wait(&memcg_oom_waitq, &owait.wait);
2184 	}
2185 
2186 	if (locked) {
2187 		mem_cgroup_oom_unlock(memcg);
2188 		/*
2189 		 * There is no guarantee that an OOM-lock contender
2190 		 * sees the wakeups triggered by the OOM kill
2191 		 * uncharges.  Wake any sleepers explicitely.
2192 		 */
2193 		memcg_oom_recover(memcg);
2194 	}
2195 cleanup:
2196 	current->memcg_oom.memcg = NULL;
2197 	css_put(&memcg->css);
2198 	return true;
2199 }
2200 
2201 /**
2202  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2203  * @page: page that is going to change accounted state
2204  * @locked: &memcg->move_lock slowpath was taken
2205  * @flags: IRQ-state flags for &memcg->move_lock
2206  *
2207  * This function must mark the beginning of an accounted page state
2208  * change to prevent double accounting when the page is concurrently
2209  * being moved to another memcg:
2210  *
2211  *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2212  *   if (TestClearPageState(page))
2213  *     mem_cgroup_update_page_stat(memcg, state, -1);
2214  *   mem_cgroup_end_page_stat(memcg, locked, flags);
2215  *
2216  * The RCU lock is held throughout the transaction.  The fast path can
2217  * get away without acquiring the memcg->move_lock (@locked is false)
2218  * because page moving starts with an RCU grace period.
2219  *
2220  * The RCU lock also protects the memcg from being freed when the page
2221  * state that is going to change is the only thing preventing the page
2222  * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
2223  * which allows migration to go ahead and uncharge the page before the
2224  * account transaction might be complete.
2225  */
mem_cgroup_begin_page_stat(struct page * page,bool * locked,unsigned long * flags)2226 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2227 					      bool *locked,
2228 					      unsigned long *flags)
2229 {
2230 	struct mem_cgroup *memcg;
2231 	struct page_cgroup *pc;
2232 
2233 	rcu_read_lock();
2234 
2235 	if (mem_cgroup_disabled())
2236 		return NULL;
2237 
2238 	pc = lookup_page_cgroup(page);
2239 again:
2240 	memcg = pc->mem_cgroup;
2241 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2242 		return NULL;
2243 
2244 	*locked = false;
2245 	if (atomic_read(&memcg->moving_account) <= 0)
2246 		return memcg;
2247 
2248 	move_lock_mem_cgroup(memcg, flags);
2249 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2250 		move_unlock_mem_cgroup(memcg, flags);
2251 		goto again;
2252 	}
2253 	*locked = true;
2254 
2255 	return memcg;
2256 }
2257 
2258 /**
2259  * mem_cgroup_end_page_stat - finish a page state statistics transaction
2260  * @memcg: the memcg that was accounted against
2261  * @locked: value received from mem_cgroup_begin_page_stat()
2262  * @flags: value received from mem_cgroup_begin_page_stat()
2263  */
mem_cgroup_end_page_stat(struct mem_cgroup * memcg,bool locked,unsigned long flags)2264 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2265 			      unsigned long flags)
2266 {
2267 	if (memcg && locked)
2268 		move_unlock_mem_cgroup(memcg, &flags);
2269 
2270 	rcu_read_unlock();
2271 }
2272 
2273 /**
2274  * mem_cgroup_update_page_stat - update page state statistics
2275  * @memcg: memcg to account against
2276  * @idx: page state item to account
2277  * @val: number of pages (positive or negative)
2278  *
2279  * See mem_cgroup_begin_page_stat() for locking requirements.
2280  */
mem_cgroup_update_page_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx,int val)2281 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2282 				 enum mem_cgroup_stat_index idx, int val)
2283 {
2284 	VM_BUG_ON(!rcu_read_lock_held());
2285 
2286 	if (memcg)
2287 		this_cpu_add(memcg->stat->count[idx], val);
2288 }
2289 
2290 /*
2291  * size of first charge trial. "32" comes from vmscan.c's magic value.
2292  * TODO: maybe necessary to use big numbers in big irons.
2293  */
2294 #define CHARGE_BATCH	32U
2295 struct memcg_stock_pcp {
2296 	struct mem_cgroup *cached; /* this never be root cgroup */
2297 	unsigned int nr_pages;
2298 	struct work_struct work;
2299 	unsigned long flags;
2300 #define FLUSHING_CACHED_CHARGE	0
2301 };
2302 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2303 static DEFINE_MUTEX(percpu_charge_mutex);
2304 
2305 /**
2306  * consume_stock: Try to consume stocked charge on this cpu.
2307  * @memcg: memcg to consume from.
2308  * @nr_pages: how many pages to charge.
2309  *
2310  * The charges will only happen if @memcg matches the current cpu's memcg
2311  * stock, and at least @nr_pages are available in that stock.  Failure to
2312  * service an allocation will refill the stock.
2313  *
2314  * returns true if successful, false otherwise.
2315  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2316 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2317 {
2318 	struct memcg_stock_pcp *stock;
2319 	bool ret = true;
2320 
2321 	if (nr_pages > CHARGE_BATCH)
2322 		return false;
2323 
2324 	stock = &get_cpu_var(memcg_stock);
2325 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2326 		stock->nr_pages -= nr_pages;
2327 	else /* need to call res_counter_charge */
2328 		ret = false;
2329 	put_cpu_var(memcg_stock);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Returns stocks cached in percpu to res_counter and reset cached information.
2335  */
drain_stock(struct memcg_stock_pcp * stock)2336 static void drain_stock(struct memcg_stock_pcp *stock)
2337 {
2338 	struct mem_cgroup *old = stock->cached;
2339 
2340 	if (stock->nr_pages) {
2341 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2342 
2343 		res_counter_uncharge(&old->res, bytes);
2344 		if (do_swap_account)
2345 			res_counter_uncharge(&old->memsw, bytes);
2346 		stock->nr_pages = 0;
2347 	}
2348 	stock->cached = NULL;
2349 }
2350 
2351 /*
2352  * This must be called under preempt disabled or must be called by
2353  * a thread which is pinned to local cpu.
2354  */
drain_local_stock(struct work_struct * dummy)2355 static void drain_local_stock(struct work_struct *dummy)
2356 {
2357 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2358 	drain_stock(stock);
2359 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2360 }
2361 
memcg_stock_init(void)2362 static void __init memcg_stock_init(void)
2363 {
2364 	int cpu;
2365 
2366 	for_each_possible_cpu(cpu) {
2367 		struct memcg_stock_pcp *stock =
2368 					&per_cpu(memcg_stock, cpu);
2369 		INIT_WORK(&stock->work, drain_local_stock);
2370 	}
2371 }
2372 
2373 /*
2374  * Cache charges(val) which is from res_counter, to local per_cpu area.
2375  * This will be consumed by consume_stock() function, later.
2376  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2377 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2378 {
2379 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2380 
2381 	if (stock->cached != memcg) { /* reset if necessary */
2382 		drain_stock(stock);
2383 		stock->cached = memcg;
2384 	}
2385 	stock->nr_pages += nr_pages;
2386 	put_cpu_var(memcg_stock);
2387 }
2388 
2389 /*
2390  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2391  * of the hierarchy under it. sync flag says whether we should block
2392  * until the work is done.
2393  */
drain_all_stock(struct mem_cgroup * root_memcg,bool sync)2394 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2395 {
2396 	int cpu, curcpu;
2397 
2398 	/* Notify other cpus that system-wide "drain" is running */
2399 	get_online_cpus();
2400 	curcpu = get_cpu();
2401 	for_each_online_cpu(cpu) {
2402 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2403 		struct mem_cgroup *memcg;
2404 
2405 		memcg = stock->cached;
2406 		if (!memcg || !stock->nr_pages)
2407 			continue;
2408 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2409 			continue;
2410 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2411 			if (cpu == curcpu)
2412 				drain_local_stock(&stock->work);
2413 			else
2414 				schedule_work_on(cpu, &stock->work);
2415 		}
2416 	}
2417 	put_cpu();
2418 
2419 	if (!sync)
2420 		goto out;
2421 
2422 	for_each_online_cpu(cpu) {
2423 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2424 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2425 			flush_work(&stock->work);
2426 	}
2427 out:
2428 	put_online_cpus();
2429 }
2430 
2431 /*
2432  * Tries to drain stocked charges in other cpus. This function is asynchronous
2433  * and just put a work per cpu for draining localy on each cpu. Caller can
2434  * expects some charges will be back to res_counter later but cannot wait for
2435  * it.
2436  */
drain_all_stock_async(struct mem_cgroup * root_memcg)2437 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2438 {
2439 	/*
2440 	 * If someone calls draining, avoid adding more kworker runs.
2441 	 */
2442 	if (!mutex_trylock(&percpu_charge_mutex))
2443 		return;
2444 	drain_all_stock(root_memcg, false);
2445 	mutex_unlock(&percpu_charge_mutex);
2446 }
2447 
2448 /* This is a synchronous drain interface. */
drain_all_stock_sync(struct mem_cgroup * root_memcg)2449 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2450 {
2451 	/* called when force_empty is called */
2452 	mutex_lock(&percpu_charge_mutex);
2453 	drain_all_stock(root_memcg, true);
2454 	mutex_unlock(&percpu_charge_mutex);
2455 }
2456 
2457 /*
2458  * This function drains percpu counter value from DEAD cpu and
2459  * move it to local cpu. Note that this function can be preempted.
2460  */
mem_cgroup_drain_pcp_counter(struct mem_cgroup * memcg,int cpu)2461 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2462 {
2463 	int i;
2464 
2465 	spin_lock(&memcg->pcp_counter_lock);
2466 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2467 		long x = per_cpu(memcg->stat->count[i], cpu);
2468 
2469 		per_cpu(memcg->stat->count[i], cpu) = 0;
2470 		memcg->nocpu_base.count[i] += x;
2471 	}
2472 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2473 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2474 
2475 		per_cpu(memcg->stat->events[i], cpu) = 0;
2476 		memcg->nocpu_base.events[i] += x;
2477 	}
2478 	spin_unlock(&memcg->pcp_counter_lock);
2479 }
2480 
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)2481 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2482 					unsigned long action,
2483 					void *hcpu)
2484 {
2485 	int cpu = (unsigned long)hcpu;
2486 	struct memcg_stock_pcp *stock;
2487 	struct mem_cgroup *iter;
2488 
2489 	if (action == CPU_ONLINE)
2490 		return NOTIFY_OK;
2491 
2492 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2493 		return NOTIFY_OK;
2494 
2495 	for_each_mem_cgroup(iter)
2496 		mem_cgroup_drain_pcp_counter(iter, cpu);
2497 
2498 	stock = &per_cpu(memcg_stock, cpu);
2499 	drain_stock(stock);
2500 	return NOTIFY_OK;
2501 }
2502 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2503 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2504 		      unsigned int nr_pages)
2505 {
2506 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2507 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2508 	struct mem_cgroup *mem_over_limit;
2509 	struct res_counter *fail_res;
2510 	unsigned long nr_reclaimed;
2511 	unsigned long long size;
2512 	bool may_swap = true;
2513 	bool drained = false;
2514 	int ret = 0;
2515 
2516 	if (mem_cgroup_is_root(memcg))
2517 		goto done;
2518 retry:
2519 	if (consume_stock(memcg, nr_pages))
2520 		goto done;
2521 
2522 	size = batch * PAGE_SIZE;
2523 	if (!do_swap_account ||
2524 	    !res_counter_charge(&memcg->memsw, size, &fail_res)) {
2525 		if (!res_counter_charge(&memcg->res, size, &fail_res))
2526 			goto done_restock;
2527 		if (do_swap_account)
2528 			res_counter_uncharge(&memcg->memsw, size);
2529 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2530 	} else {
2531 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2532 		may_swap = false;
2533 	}
2534 
2535 	if (batch > nr_pages) {
2536 		batch = nr_pages;
2537 		goto retry;
2538 	}
2539 
2540 	/*
2541 	 * Unlike in global OOM situations, memcg is not in a physical
2542 	 * memory shortage.  Allow dying and OOM-killed tasks to
2543 	 * bypass the last charges so that they can exit quickly and
2544 	 * free their memory.
2545 	 */
2546 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2547 		     fatal_signal_pending(current) ||
2548 		     current->flags & PF_EXITING))
2549 		goto bypass;
2550 
2551 	if (unlikely(task_in_memcg_oom(current)))
2552 		goto nomem;
2553 
2554 	if (!(gfp_mask & __GFP_WAIT))
2555 		goto nomem;
2556 
2557 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2558 						    gfp_mask, may_swap);
2559 
2560 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2561 		goto retry;
2562 
2563 	if (!drained) {
2564 		drain_all_stock_async(mem_over_limit);
2565 		drained = true;
2566 		goto retry;
2567 	}
2568 
2569 	if (gfp_mask & __GFP_NORETRY)
2570 		goto nomem;
2571 	/*
2572 	 * Even though the limit is exceeded at this point, reclaim
2573 	 * may have been able to free some pages.  Retry the charge
2574 	 * before killing the task.
2575 	 *
2576 	 * Only for regular pages, though: huge pages are rather
2577 	 * unlikely to succeed so close to the limit, and we fall back
2578 	 * to regular pages anyway in case of failure.
2579 	 */
2580 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2581 		goto retry;
2582 	/*
2583 	 * At task move, charge accounts can be doubly counted. So, it's
2584 	 * better to wait until the end of task_move if something is going on.
2585 	 */
2586 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2587 		goto retry;
2588 
2589 	if (nr_retries--)
2590 		goto retry;
2591 
2592 	if (gfp_mask & __GFP_NOFAIL)
2593 		goto bypass;
2594 
2595 	if (fatal_signal_pending(current))
2596 		goto bypass;
2597 
2598 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2599 nomem:
2600 	if (!(gfp_mask & __GFP_NOFAIL))
2601 		return -ENOMEM;
2602 bypass:
2603 	return -EINTR;
2604 
2605 done_restock:
2606 	if (batch > nr_pages)
2607 		refill_stock(memcg, batch - nr_pages);
2608 done:
2609 	return ret;
2610 }
2611 
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2613 {
2614 	unsigned long bytes = nr_pages * PAGE_SIZE;
2615 
2616 	if (mem_cgroup_is_root(memcg))
2617 		return;
2618 
2619 	res_counter_uncharge(&memcg->res, bytes);
2620 	if (do_swap_account)
2621 		res_counter_uncharge(&memcg->memsw, bytes);
2622 }
2623 
2624 /*
2625  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2626  * This is useful when moving usage to parent cgroup.
2627  */
__mem_cgroup_cancel_local_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2628 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2629 					unsigned int nr_pages)
2630 {
2631 	unsigned long bytes = nr_pages * PAGE_SIZE;
2632 
2633 	if (mem_cgroup_is_root(memcg))
2634 		return;
2635 
2636 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2637 	if (do_swap_account)
2638 		res_counter_uncharge_until(&memcg->memsw,
2639 						memcg->memsw.parent, bytes);
2640 }
2641 
2642 /*
2643  * A helper function to get mem_cgroup from ID. must be called under
2644  * rcu_read_lock().  The caller is responsible for calling
2645  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2646  * refcnt from swap can be called against removed memcg.)
2647  */
mem_cgroup_lookup(unsigned short id)2648 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2649 {
2650 	/* ID 0 is unused ID */
2651 	if (!id)
2652 		return NULL;
2653 	return mem_cgroup_from_id(id);
2654 }
2655 
2656 /*
2657  * try_get_mem_cgroup_from_page - look up page's memcg association
2658  * @page: the page
2659  *
2660  * Look up, get a css reference, and return the memcg that owns @page.
2661  *
2662  * The page must be locked to prevent racing with swap-in and page
2663  * cache charges.  If coming from an unlocked page table, the caller
2664  * must ensure the page is on the LRU or this can race with charging.
2665  */
try_get_mem_cgroup_from_page(struct page * page)2666 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2667 {
2668 	struct mem_cgroup *memcg = NULL;
2669 	struct page_cgroup *pc;
2670 	unsigned short id;
2671 	swp_entry_t ent;
2672 
2673 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2674 
2675 	pc = lookup_page_cgroup(page);
2676 	if (PageCgroupUsed(pc)) {
2677 		memcg = pc->mem_cgroup;
2678 		if (memcg && !css_tryget_online(&memcg->css))
2679 			memcg = NULL;
2680 	} else if (PageSwapCache(page)) {
2681 		ent.val = page_private(page);
2682 		id = lookup_swap_cgroup_id(ent);
2683 		rcu_read_lock();
2684 		memcg = mem_cgroup_lookup(id);
2685 		if (memcg && !css_tryget_online(&memcg->css))
2686 			memcg = NULL;
2687 		rcu_read_unlock();
2688 	}
2689 	return memcg;
2690 }
2691 
lock_page_lru(struct page * page,int * isolated)2692 static void lock_page_lru(struct page *page, int *isolated)
2693 {
2694 	struct zone *zone = page_zone(page);
2695 
2696 	spin_lock_irq(&zone->lru_lock);
2697 	if (PageLRU(page)) {
2698 		struct lruvec *lruvec;
2699 
2700 		lruvec = mem_cgroup_page_lruvec(page, zone);
2701 		ClearPageLRU(page);
2702 		del_page_from_lru_list(page, lruvec, page_lru(page));
2703 		*isolated = 1;
2704 	} else
2705 		*isolated = 0;
2706 }
2707 
unlock_page_lru(struct page * page,int isolated)2708 static void unlock_page_lru(struct page *page, int isolated)
2709 {
2710 	struct zone *zone = page_zone(page);
2711 
2712 	if (isolated) {
2713 		struct lruvec *lruvec;
2714 
2715 		lruvec = mem_cgroup_page_lruvec(page, zone);
2716 		VM_BUG_ON_PAGE(PageLRU(page), page);
2717 		SetPageLRU(page);
2718 		add_page_to_lru_list(page, lruvec, page_lru(page));
2719 	}
2720 	spin_unlock_irq(&zone->lru_lock);
2721 }
2722 
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2723 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2724 			  bool lrucare)
2725 {
2726 	struct page_cgroup *pc = lookup_page_cgroup(page);
2727 	int isolated;
2728 
2729 	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2730 	/*
2731 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2732 	 * accessed by any other context at this point.
2733 	 */
2734 
2735 	/*
2736 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2737 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2738 	 */
2739 	if (lrucare)
2740 		lock_page_lru(page, &isolated);
2741 
2742 	/*
2743 	 * Nobody should be changing or seriously looking at
2744 	 * pc->mem_cgroup and pc->flags at this point:
2745 	 *
2746 	 * - the page is uncharged
2747 	 *
2748 	 * - the page is off-LRU
2749 	 *
2750 	 * - an anonymous fault has exclusive page access, except for
2751 	 *   a locked page table
2752 	 *
2753 	 * - a page cache insertion, a swapin fault, or a migration
2754 	 *   have the page locked
2755 	 */
2756 	pc->mem_cgroup = memcg;
2757 	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2758 
2759 	if (lrucare)
2760 		unlock_page_lru(page, isolated);
2761 }
2762 
2763 static DEFINE_MUTEX(set_limit_mutex);
2764 
2765 #ifdef CONFIG_MEMCG_KMEM
2766 /*
2767  * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2768  * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2769  */
2770 static DEFINE_MUTEX(memcg_slab_mutex);
2771 
2772 static DEFINE_MUTEX(activate_kmem_mutex);
2773 
2774 /*
2775  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2776  * in the memcg_cache_params struct.
2777  */
memcg_params_to_cache(struct memcg_cache_params * p)2778 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2779 {
2780 	struct kmem_cache *cachep;
2781 
2782 	VM_BUG_ON(p->is_root_cache);
2783 	cachep = p->root_cache;
2784 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2785 }
2786 
2787 #ifdef CONFIG_SLABINFO
mem_cgroup_slabinfo_read(struct seq_file * m,void * v)2788 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2789 {
2790 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2791 	struct memcg_cache_params *params;
2792 
2793 	if (!memcg_kmem_is_active(memcg))
2794 		return -EIO;
2795 
2796 	print_slabinfo_header(m);
2797 
2798 	mutex_lock(&memcg_slab_mutex);
2799 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2800 		cache_show(memcg_params_to_cache(params), m);
2801 	mutex_unlock(&memcg_slab_mutex);
2802 
2803 	return 0;
2804 }
2805 #endif
2806 
memcg_charge_kmem(struct mem_cgroup * memcg,gfp_t gfp,u64 size)2807 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2808 {
2809 	struct res_counter *fail_res;
2810 	int ret = 0;
2811 
2812 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2813 	if (ret)
2814 		return ret;
2815 
2816 	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2817 	if (ret == -EINTR)  {
2818 		/*
2819 		 * try_charge() chose to bypass to root due to OOM kill or
2820 		 * fatal signal.  Since our only options are to either fail
2821 		 * the allocation or charge it to this cgroup, do it as a
2822 		 * temporary condition. But we can't fail. From a kmem/slab
2823 		 * perspective, the cache has already been selected, by
2824 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2825 		 * our minds.
2826 		 *
2827 		 * This condition will only trigger if the task entered
2828 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2829 		 * during try_charge() above. Tasks that were already dying
2830 		 * when the allocation triggers should have been already
2831 		 * directed to the root cgroup in memcontrol.h
2832 		 */
2833 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2834 		if (do_swap_account)
2835 			res_counter_charge_nofail(&memcg->memsw, size,
2836 						  &fail_res);
2837 		ret = 0;
2838 	} else if (ret)
2839 		res_counter_uncharge(&memcg->kmem, size);
2840 
2841 	return ret;
2842 }
2843 
memcg_uncharge_kmem(struct mem_cgroup * memcg,u64 size)2844 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2845 {
2846 	res_counter_uncharge(&memcg->res, size);
2847 	if (do_swap_account)
2848 		res_counter_uncharge(&memcg->memsw, size);
2849 
2850 	/* Not down to 0 */
2851 	if (res_counter_uncharge(&memcg->kmem, size))
2852 		return;
2853 
2854 	/*
2855 	 * Releases a reference taken in kmem_cgroup_css_offline in case
2856 	 * this last uncharge is racing with the offlining code or it is
2857 	 * outliving the memcg existence.
2858 	 *
2859 	 * The memory barrier imposed by test&clear is paired with the
2860 	 * explicit one in memcg_kmem_mark_dead().
2861 	 */
2862 	if (memcg_kmem_test_and_clear_dead(memcg))
2863 		css_put(&memcg->css);
2864 }
2865 
2866 /*
2867  * helper for acessing a memcg's index. It will be used as an index in the
2868  * child cache array in kmem_cache, and also to derive its name. This function
2869  * will return -1 when this is not a kmem-limited memcg.
2870  */
memcg_cache_id(struct mem_cgroup * memcg)2871 int memcg_cache_id(struct mem_cgroup *memcg)
2872 {
2873 	return memcg ? memcg->kmemcg_id : -1;
2874 }
2875 
memcg_alloc_cache_id(void)2876 static int memcg_alloc_cache_id(void)
2877 {
2878 	int id, size;
2879 	int err;
2880 
2881 	id = ida_simple_get(&kmem_limited_groups,
2882 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2883 	if (id < 0)
2884 		return id;
2885 
2886 	if (id < memcg_limited_groups_array_size)
2887 		return id;
2888 
2889 	/*
2890 	 * There's no space for the new id in memcg_caches arrays,
2891 	 * so we have to grow them.
2892 	 */
2893 
2894 	size = 2 * (id + 1);
2895 	if (size < MEMCG_CACHES_MIN_SIZE)
2896 		size = MEMCG_CACHES_MIN_SIZE;
2897 	else if (size > MEMCG_CACHES_MAX_SIZE)
2898 		size = MEMCG_CACHES_MAX_SIZE;
2899 
2900 	mutex_lock(&memcg_slab_mutex);
2901 	err = memcg_update_all_caches(size);
2902 	mutex_unlock(&memcg_slab_mutex);
2903 
2904 	if (err) {
2905 		ida_simple_remove(&kmem_limited_groups, id);
2906 		return err;
2907 	}
2908 	return id;
2909 }
2910 
memcg_free_cache_id(int id)2911 static void memcg_free_cache_id(int id)
2912 {
2913 	ida_simple_remove(&kmem_limited_groups, id);
2914 }
2915 
2916 /*
2917  * We should update the current array size iff all caches updates succeed. This
2918  * can only be done from the slab side. The slab mutex needs to be held when
2919  * calling this.
2920  */
memcg_update_array_size(int num)2921 void memcg_update_array_size(int num)
2922 {
2923 	memcg_limited_groups_array_size = num;
2924 }
2925 
memcg_register_cache(struct mem_cgroup * memcg,struct kmem_cache * root_cache)2926 static void memcg_register_cache(struct mem_cgroup *memcg,
2927 				 struct kmem_cache *root_cache)
2928 {
2929 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2930 						     memcg_slab_mutex */
2931 	struct kmem_cache *cachep;
2932 	int id;
2933 
2934 	lockdep_assert_held(&memcg_slab_mutex);
2935 
2936 	id = memcg_cache_id(memcg);
2937 
2938 	/*
2939 	 * Since per-memcg caches are created asynchronously on first
2940 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
2941 	 * create the same cache, but only one of them may succeed.
2942 	 */
2943 	if (cache_from_memcg_idx(root_cache, id))
2944 		return;
2945 
2946 	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2947 	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2948 	/*
2949 	 * If we could not create a memcg cache, do not complain, because
2950 	 * that's not critical at all as we can always proceed with the root
2951 	 * cache.
2952 	 */
2953 	if (!cachep)
2954 		return;
2955 
2956 	css_get(&memcg->css);
2957 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2958 
2959 	/*
2960 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2961 	 * barrier here to ensure nobody will see the kmem_cache partially
2962 	 * initialized.
2963 	 */
2964 	smp_wmb();
2965 
2966 	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2967 	root_cache->memcg_params->memcg_caches[id] = cachep;
2968 }
2969 
memcg_unregister_cache(struct kmem_cache * cachep)2970 static void memcg_unregister_cache(struct kmem_cache *cachep)
2971 {
2972 	struct kmem_cache *root_cache;
2973 	struct mem_cgroup *memcg;
2974 	int id;
2975 
2976 	lockdep_assert_held(&memcg_slab_mutex);
2977 
2978 	BUG_ON(is_root_cache(cachep));
2979 
2980 	root_cache = cachep->memcg_params->root_cache;
2981 	memcg = cachep->memcg_params->memcg;
2982 	id = memcg_cache_id(memcg);
2983 
2984 	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2985 	root_cache->memcg_params->memcg_caches[id] = NULL;
2986 
2987 	list_del(&cachep->memcg_params->list);
2988 
2989 	kmem_cache_destroy(cachep);
2990 
2991 	/* drop the reference taken in memcg_register_cache */
2992 	css_put(&memcg->css);
2993 }
2994 
2995 /*
2996  * During the creation a new cache, we need to disable our accounting mechanism
2997  * altogether. This is true even if we are not creating, but rather just
2998  * enqueing new caches to be created.
2999  *
3000  * This is because that process will trigger allocations; some visible, like
3001  * explicit kmallocs to auxiliary data structures, name strings and internal
3002  * cache structures; some well concealed, like INIT_WORK() that can allocate
3003  * objects during debug.
3004  *
3005  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3006  * to it. This may not be a bounded recursion: since the first cache creation
3007  * failed to complete (waiting on the allocation), we'll just try to create the
3008  * cache again, failing at the same point.
3009  *
3010  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3011  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3012  * inside the following two functions.
3013  */
memcg_stop_kmem_account(void)3014 static inline void memcg_stop_kmem_account(void)
3015 {
3016 	VM_BUG_ON(!current->mm);
3017 	current->memcg_kmem_skip_account++;
3018 }
3019 
memcg_resume_kmem_account(void)3020 static inline void memcg_resume_kmem_account(void)
3021 {
3022 	VM_BUG_ON(!current->mm);
3023 	current->memcg_kmem_skip_account--;
3024 }
3025 
__memcg_cleanup_cache_params(struct kmem_cache * s)3026 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3027 {
3028 	struct kmem_cache *c;
3029 	int i, failed = 0;
3030 
3031 	mutex_lock(&memcg_slab_mutex);
3032 	for_each_memcg_cache_index(i) {
3033 		c = cache_from_memcg_idx(s, i);
3034 		if (!c)
3035 			continue;
3036 
3037 		memcg_unregister_cache(c);
3038 
3039 		if (cache_from_memcg_idx(s, i))
3040 			failed++;
3041 	}
3042 	mutex_unlock(&memcg_slab_mutex);
3043 	return failed;
3044 }
3045 
memcg_unregister_all_caches(struct mem_cgroup * memcg)3046 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3047 {
3048 	struct kmem_cache *cachep;
3049 	struct memcg_cache_params *params, *tmp;
3050 
3051 	if (!memcg_kmem_is_active(memcg))
3052 		return;
3053 
3054 	mutex_lock(&memcg_slab_mutex);
3055 	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3056 		cachep = memcg_params_to_cache(params);
3057 		kmem_cache_shrink(cachep);
3058 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3059 			memcg_unregister_cache(cachep);
3060 	}
3061 	mutex_unlock(&memcg_slab_mutex);
3062 }
3063 
3064 struct memcg_register_cache_work {
3065 	struct mem_cgroup *memcg;
3066 	struct kmem_cache *cachep;
3067 	struct work_struct work;
3068 };
3069 
memcg_register_cache_func(struct work_struct * w)3070 static void memcg_register_cache_func(struct work_struct *w)
3071 {
3072 	struct memcg_register_cache_work *cw =
3073 		container_of(w, struct memcg_register_cache_work, work);
3074 	struct mem_cgroup *memcg = cw->memcg;
3075 	struct kmem_cache *cachep = cw->cachep;
3076 
3077 	mutex_lock(&memcg_slab_mutex);
3078 	memcg_register_cache(memcg, cachep);
3079 	mutex_unlock(&memcg_slab_mutex);
3080 
3081 	css_put(&memcg->css);
3082 	kfree(cw);
3083 }
3084 
3085 /*
3086  * Enqueue the creation of a per-memcg kmem_cache.
3087  */
__memcg_schedule_register_cache(struct mem_cgroup * memcg,struct kmem_cache * cachep)3088 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3089 					    struct kmem_cache *cachep)
3090 {
3091 	struct memcg_register_cache_work *cw;
3092 
3093 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3094 	if (cw == NULL) {
3095 		css_put(&memcg->css);
3096 		return;
3097 	}
3098 
3099 	cw->memcg = memcg;
3100 	cw->cachep = cachep;
3101 
3102 	INIT_WORK(&cw->work, memcg_register_cache_func);
3103 	schedule_work(&cw->work);
3104 }
3105 
memcg_schedule_register_cache(struct mem_cgroup * memcg,struct kmem_cache * cachep)3106 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3107 					  struct kmem_cache *cachep)
3108 {
3109 	/*
3110 	 * We need to stop accounting when we kmalloc, because if the
3111 	 * corresponding kmalloc cache is not yet created, the first allocation
3112 	 * in __memcg_schedule_register_cache will recurse.
3113 	 *
3114 	 * However, it is better to enclose the whole function. Depending on
3115 	 * the debugging options enabled, INIT_WORK(), for instance, can
3116 	 * trigger an allocation. This too, will make us recurse. Because at
3117 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3118 	 * the safest choice is to do it like this, wrapping the whole function.
3119 	 */
3120 	memcg_stop_kmem_account();
3121 	__memcg_schedule_register_cache(memcg, cachep);
3122 	memcg_resume_kmem_account();
3123 }
3124 
__memcg_charge_slab(struct kmem_cache * cachep,gfp_t gfp,int order)3125 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3126 {
3127 	int res;
3128 
3129 	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3130 				PAGE_SIZE << order);
3131 	if (!res)
3132 		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3133 	return res;
3134 }
3135 
__memcg_uncharge_slab(struct kmem_cache * cachep,int order)3136 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3137 {
3138 	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3139 	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3140 }
3141 
3142 /*
3143  * Return the kmem_cache we're supposed to use for a slab allocation.
3144  * We try to use the current memcg's version of the cache.
3145  *
3146  * If the cache does not exist yet, if we are the first user of it,
3147  * we either create it immediately, if possible, or create it asynchronously
3148  * in a workqueue.
3149  * In the latter case, we will let the current allocation go through with
3150  * the original cache.
3151  *
3152  * Can't be called in interrupt context or from kernel threads.
3153  * This function needs to be called with rcu_read_lock() held.
3154  */
__memcg_kmem_get_cache(struct kmem_cache * cachep,gfp_t gfp)3155 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3156 					  gfp_t gfp)
3157 {
3158 	struct mem_cgroup *memcg;
3159 	struct kmem_cache *memcg_cachep;
3160 
3161 	VM_BUG_ON(!cachep->memcg_params);
3162 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3163 
3164 	if (!current->mm || current->memcg_kmem_skip_account)
3165 		return cachep;
3166 
3167 	rcu_read_lock();
3168 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3169 
3170 	if (!memcg_kmem_is_active(memcg))
3171 		goto out;
3172 
3173 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3174 	if (likely(memcg_cachep)) {
3175 		cachep = memcg_cachep;
3176 		goto out;
3177 	}
3178 
3179 	/* The corresponding put will be done in the workqueue. */
3180 	if (!css_tryget_online(&memcg->css))
3181 		goto out;
3182 	rcu_read_unlock();
3183 
3184 	/*
3185 	 * If we are in a safe context (can wait, and not in interrupt
3186 	 * context), we could be be predictable and return right away.
3187 	 * This would guarantee that the allocation being performed
3188 	 * already belongs in the new cache.
3189 	 *
3190 	 * However, there are some clashes that can arrive from locking.
3191 	 * For instance, because we acquire the slab_mutex while doing
3192 	 * memcg_create_kmem_cache, this means no further allocation
3193 	 * could happen with the slab_mutex held. So it's better to
3194 	 * defer everything.
3195 	 */
3196 	memcg_schedule_register_cache(memcg, cachep);
3197 	return cachep;
3198 out:
3199 	rcu_read_unlock();
3200 	return cachep;
3201 }
3202 
3203 /*
3204  * We need to verify if the allocation against current->mm->owner's memcg is
3205  * possible for the given order. But the page is not allocated yet, so we'll
3206  * need a further commit step to do the final arrangements.
3207  *
3208  * It is possible for the task to switch cgroups in this mean time, so at
3209  * commit time, we can't rely on task conversion any longer.  We'll then use
3210  * the handle argument to return to the caller which cgroup we should commit
3211  * against. We could also return the memcg directly and avoid the pointer
3212  * passing, but a boolean return value gives better semantics considering
3213  * the compiled-out case as well.
3214  *
3215  * Returning true means the allocation is possible.
3216  */
3217 bool
__memcg_kmem_newpage_charge(gfp_t gfp,struct mem_cgroup ** _memcg,int order)3218 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3219 {
3220 	struct mem_cgroup *memcg;
3221 	int ret;
3222 
3223 	*_memcg = NULL;
3224 
3225 	/*
3226 	 * Disabling accounting is only relevant for some specific memcg
3227 	 * internal allocations. Therefore we would initially not have such
3228 	 * check here, since direct calls to the page allocator that are
3229 	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3230 	 * outside memcg core. We are mostly concerned with cache allocations,
3231 	 * and by having this test at memcg_kmem_get_cache, we are already able
3232 	 * to relay the allocation to the root cache and bypass the memcg cache
3233 	 * altogether.
3234 	 *
3235 	 * There is one exception, though: the SLUB allocator does not create
3236 	 * large order caches, but rather service large kmallocs directly from
3237 	 * the page allocator. Therefore, the following sequence when backed by
3238 	 * the SLUB allocator:
3239 	 *
3240 	 *	memcg_stop_kmem_account();
3241 	 *	kmalloc(<large_number>)
3242 	 *	memcg_resume_kmem_account();
3243 	 *
3244 	 * would effectively ignore the fact that we should skip accounting,
3245 	 * since it will drive us directly to this function without passing
3246 	 * through the cache selector memcg_kmem_get_cache. Such large
3247 	 * allocations are extremely rare but can happen, for instance, for the
3248 	 * cache arrays. We bring this test here.
3249 	 */
3250 	if (!current->mm || current->memcg_kmem_skip_account)
3251 		return true;
3252 
3253 	memcg = get_mem_cgroup_from_mm(current->mm);
3254 
3255 	if (!memcg_kmem_is_active(memcg)) {
3256 		css_put(&memcg->css);
3257 		return true;
3258 	}
3259 
3260 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3261 	if (!ret)
3262 		*_memcg = memcg;
3263 
3264 	css_put(&memcg->css);
3265 	return (ret == 0);
3266 }
3267 
__memcg_kmem_commit_charge(struct page * page,struct mem_cgroup * memcg,int order)3268 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3269 			      int order)
3270 {
3271 	struct page_cgroup *pc;
3272 
3273 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3274 
3275 	/* The page allocation failed. Revert */
3276 	if (!page) {
3277 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3278 		return;
3279 	}
3280 	/*
3281 	 * The page is freshly allocated and not visible to any
3282 	 * outside callers yet.  Set up pc non-atomically.
3283 	 */
3284 	pc = lookup_page_cgroup(page);
3285 	pc->mem_cgroup = memcg;
3286 	pc->flags = PCG_USED;
3287 }
3288 
__memcg_kmem_uncharge_pages(struct page * page,int order)3289 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3290 {
3291 	struct mem_cgroup *memcg = NULL;
3292 	struct page_cgroup *pc;
3293 
3294 
3295 	pc = lookup_page_cgroup(page);
3296 	if (!PageCgroupUsed(pc))
3297 		return;
3298 
3299 	memcg = pc->mem_cgroup;
3300 	pc->flags = 0;
3301 
3302 	/*
3303 	 * We trust that only if there is a memcg associated with the page, it
3304 	 * is a valid allocation
3305 	 */
3306 	if (!memcg)
3307 		return;
3308 
3309 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3310 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3311 }
3312 #else
memcg_unregister_all_caches(struct mem_cgroup * memcg)3313 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3314 {
3315 }
3316 #endif /* CONFIG_MEMCG_KMEM */
3317 
3318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3319 
3320 /*
3321  * Because tail pages are not marked as "used", set it. We're under
3322  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3323  * charge/uncharge will be never happen and move_account() is done under
3324  * compound_lock(), so we don't have to take care of races.
3325  */
mem_cgroup_split_huge_fixup(struct page * head)3326 void mem_cgroup_split_huge_fixup(struct page *head)
3327 {
3328 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3329 	struct page_cgroup *pc;
3330 	struct mem_cgroup *memcg;
3331 	int i;
3332 
3333 	if (mem_cgroup_disabled())
3334 		return;
3335 
3336 	memcg = head_pc->mem_cgroup;
3337 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3338 		pc = head_pc + i;
3339 		pc->mem_cgroup = memcg;
3340 		pc->flags = head_pc->flags;
3341 	}
3342 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3343 		       HPAGE_PMD_NR);
3344 }
3345 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3346 
3347 /**
3348  * mem_cgroup_move_account - move account of the page
3349  * @page: the page
3350  * @nr_pages: number of regular pages (>1 for huge pages)
3351  * @pc:	page_cgroup of the page.
3352  * @from: mem_cgroup which the page is moved from.
3353  * @to:	mem_cgroup which the page is moved to. @from != @to.
3354  *
3355  * The caller must confirm following.
3356  * - page is not on LRU (isolate_page() is useful.)
3357  * - compound_lock is held when nr_pages > 1
3358  *
3359  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3360  * from old cgroup.
3361  */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct page_cgroup * pc,struct mem_cgroup * from,struct mem_cgroup * to)3362 static int mem_cgroup_move_account(struct page *page,
3363 				   unsigned int nr_pages,
3364 				   struct page_cgroup *pc,
3365 				   struct mem_cgroup *from,
3366 				   struct mem_cgroup *to)
3367 {
3368 	unsigned long flags;
3369 	int ret;
3370 
3371 	VM_BUG_ON(from == to);
3372 	VM_BUG_ON_PAGE(PageLRU(page), page);
3373 	/*
3374 	 * The page is isolated from LRU. So, collapse function
3375 	 * will not handle this page. But page splitting can happen.
3376 	 * Do this check under compound_page_lock(). The caller should
3377 	 * hold it.
3378 	 */
3379 	ret = -EBUSY;
3380 	if (nr_pages > 1 && !PageTransHuge(page))
3381 		goto out;
3382 
3383 	/*
3384 	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3385 	 * of its source page while we change it: page migration takes
3386 	 * both pages off the LRU, but page cache replacement doesn't.
3387 	 */
3388 	if (!trylock_page(page))
3389 		goto out;
3390 
3391 	ret = -EINVAL;
3392 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3393 		goto out_unlock;
3394 
3395 	move_lock_mem_cgroup(from, &flags);
3396 
3397 	if (!PageAnon(page) && page_mapped(page)) {
3398 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3399 			       nr_pages);
3400 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3401 			       nr_pages);
3402 	}
3403 
3404 	if (PageWriteback(page)) {
3405 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3406 			       nr_pages);
3407 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3408 			       nr_pages);
3409 	}
3410 
3411 	/*
3412 	 * It is safe to change pc->mem_cgroup here because the page
3413 	 * is referenced, charged, and isolated - we can't race with
3414 	 * uncharging, charging, migration, or LRU putback.
3415 	 */
3416 
3417 	/* caller should have done css_get */
3418 	pc->mem_cgroup = to;
3419 	move_unlock_mem_cgroup(from, &flags);
3420 	ret = 0;
3421 
3422 	local_irq_disable();
3423 	mem_cgroup_charge_statistics(to, page, nr_pages);
3424 	memcg_check_events(to, page);
3425 	mem_cgroup_charge_statistics(from, page, -nr_pages);
3426 	memcg_check_events(from, page);
3427 	local_irq_enable();
3428 out_unlock:
3429 	unlock_page(page);
3430 out:
3431 	return ret;
3432 }
3433 
3434 /**
3435  * mem_cgroup_move_parent - moves page to the parent group
3436  * @page: the page to move
3437  * @pc: page_cgroup of the page
3438  * @child: page's cgroup
3439  *
3440  * move charges to its parent or the root cgroup if the group has no
3441  * parent (aka use_hierarchy==0).
3442  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3443  * mem_cgroup_move_account fails) the failure is always temporary and
3444  * it signals a race with a page removal/uncharge or migration. In the
3445  * first case the page is on the way out and it will vanish from the LRU
3446  * on the next attempt and the call should be retried later.
3447  * Isolation from the LRU fails only if page has been isolated from
3448  * the LRU since we looked at it and that usually means either global
3449  * reclaim or migration going on. The page will either get back to the
3450  * LRU or vanish.
3451  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3452  * (!PageCgroupUsed) or moved to a different group. The page will
3453  * disappear in the next attempt.
3454  */
mem_cgroup_move_parent(struct page * page,struct page_cgroup * pc,struct mem_cgroup * child)3455 static int mem_cgroup_move_parent(struct page *page,
3456 				  struct page_cgroup *pc,
3457 				  struct mem_cgroup *child)
3458 {
3459 	struct mem_cgroup *parent;
3460 	unsigned int nr_pages;
3461 	unsigned long uninitialized_var(flags);
3462 	int ret;
3463 
3464 	VM_BUG_ON(mem_cgroup_is_root(child));
3465 
3466 	ret = -EBUSY;
3467 	if (!get_page_unless_zero(page))
3468 		goto out;
3469 	if (isolate_lru_page(page))
3470 		goto put;
3471 
3472 	nr_pages = hpage_nr_pages(page);
3473 
3474 	parent = parent_mem_cgroup(child);
3475 	/*
3476 	 * If no parent, move charges to root cgroup.
3477 	 */
3478 	if (!parent)
3479 		parent = root_mem_cgroup;
3480 
3481 	if (nr_pages > 1) {
3482 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3483 		flags = compound_lock_irqsave(page);
3484 	}
3485 
3486 	ret = mem_cgroup_move_account(page, nr_pages,
3487 				pc, child, parent);
3488 	if (!ret)
3489 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3490 
3491 	if (nr_pages > 1)
3492 		compound_unlock_irqrestore(page, flags);
3493 	putback_lru_page(page);
3494 put:
3495 	put_page(page);
3496 out:
3497 	return ret;
3498 }
3499 
3500 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)3501 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3502 					 bool charge)
3503 {
3504 	int val = (charge) ? 1 : -1;
3505 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3506 }
3507 
3508 /**
3509  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3510  * @entry: swap entry to be moved
3511  * @from:  mem_cgroup which the entry is moved from
3512  * @to:  mem_cgroup which the entry is moved to
3513  *
3514  * It succeeds only when the swap_cgroup's record for this entry is the same
3515  * as the mem_cgroup's id of @from.
3516  *
3517  * Returns 0 on success, -EINVAL on failure.
3518  *
3519  * The caller must have charged to @to, IOW, called res_counter_charge() about
3520  * both res and memsw, and called css_get().
3521  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3522 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3523 				struct mem_cgroup *from, struct mem_cgroup *to)
3524 {
3525 	unsigned short old_id, new_id;
3526 
3527 	old_id = mem_cgroup_id(from);
3528 	new_id = mem_cgroup_id(to);
3529 
3530 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3531 		mem_cgroup_swap_statistics(from, false);
3532 		mem_cgroup_swap_statistics(to, true);
3533 		/*
3534 		 * This function is only called from task migration context now.
3535 		 * It postpones res_counter and refcount handling till the end
3536 		 * of task migration(mem_cgroup_clear_mc()) for performance
3537 		 * improvement. But we cannot postpone css_get(to)  because if
3538 		 * the process that has been moved to @to does swap-in, the
3539 		 * refcount of @to might be decreased to 0.
3540 		 *
3541 		 * We are in attach() phase, so the cgroup is guaranteed to be
3542 		 * alive, so we can just call css_get().
3543 		 */
3544 		css_get(&to->css);
3545 		return 0;
3546 	}
3547 	return -EINVAL;
3548 }
3549 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3550 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3551 				struct mem_cgroup *from, struct mem_cgroup *to)
3552 {
3553 	return -EINVAL;
3554 }
3555 #endif
3556 
3557 #ifdef CONFIG_DEBUG_VM
lookup_page_cgroup_used(struct page * page)3558 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3559 {
3560 	struct page_cgroup *pc;
3561 
3562 	pc = lookup_page_cgroup(page);
3563 	/*
3564 	 * Can be NULL while feeding pages into the page allocator for
3565 	 * the first time, i.e. during boot or memory hotplug;
3566 	 * or when mem_cgroup_disabled().
3567 	 */
3568 	if (likely(pc) && PageCgroupUsed(pc))
3569 		return pc;
3570 	return NULL;
3571 }
3572 
mem_cgroup_bad_page_check(struct page * page)3573 bool mem_cgroup_bad_page_check(struct page *page)
3574 {
3575 	if (mem_cgroup_disabled())
3576 		return false;
3577 
3578 	return lookup_page_cgroup_used(page) != NULL;
3579 }
3580 
mem_cgroup_print_bad_page(struct page * page)3581 void mem_cgroup_print_bad_page(struct page *page)
3582 {
3583 	struct page_cgroup *pc;
3584 
3585 	pc = lookup_page_cgroup_used(page);
3586 	if (pc) {
3587 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3588 			 pc, pc->flags, pc->mem_cgroup);
3589 	}
3590 }
3591 #endif
3592 
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long long val)3593 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3594 				unsigned long long val)
3595 {
3596 	int retry_count;
3597 	int ret = 0;
3598 	int children = mem_cgroup_count_children(memcg);
3599 	u64 curusage, oldusage;
3600 	int enlarge;
3601 
3602 	/*
3603 	 * For keeping hierarchical_reclaim simple, how long we should retry
3604 	 * is depends on callers. We set our retry-count to be function
3605 	 * of # of children which we should visit in this loop.
3606 	 */
3607 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3608 
3609 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3610 
3611 	enlarge = 0;
3612 	while (retry_count) {
3613 		if (signal_pending(current)) {
3614 			ret = -EINTR;
3615 			break;
3616 		}
3617 		/*
3618 		 * Rather than hide all in some function, I do this in
3619 		 * open coded manner. You see what this really does.
3620 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3621 		 */
3622 		mutex_lock(&set_limit_mutex);
3623 		if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
3624 			ret = -EINVAL;
3625 			mutex_unlock(&set_limit_mutex);
3626 			break;
3627 		}
3628 
3629 		if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3630 			enlarge = 1;
3631 
3632 		ret = res_counter_set_limit(&memcg->res, val);
3633 		mutex_unlock(&set_limit_mutex);
3634 
3635 		if (!ret)
3636 			break;
3637 
3638 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3639 
3640 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3641 		/* Usage is reduced ? */
3642 		if (curusage >= oldusage)
3643 			retry_count--;
3644 		else
3645 			oldusage = curusage;
3646 	}
3647 	if (!ret && enlarge)
3648 		memcg_oom_recover(memcg);
3649 
3650 	return ret;
3651 }
3652 
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long long val)3653 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3654 					unsigned long long val)
3655 {
3656 	int retry_count;
3657 	u64 oldusage, curusage;
3658 	int children = mem_cgroup_count_children(memcg);
3659 	int ret = -EBUSY;
3660 	int enlarge = 0;
3661 
3662 	/* see mem_cgroup_resize_res_limit */
3663 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3664 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3665 	while (retry_count) {
3666 		if (signal_pending(current)) {
3667 			ret = -EINTR;
3668 			break;
3669 		}
3670 		/*
3671 		 * Rather than hide all in some function, I do this in
3672 		 * open coded manner. You see what this really does.
3673 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3674 		 */
3675 		mutex_lock(&set_limit_mutex);
3676 		if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
3677 			ret = -EINVAL;
3678 			mutex_unlock(&set_limit_mutex);
3679 			break;
3680 		}
3681 		if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3682 			enlarge = 1;
3683 		ret = res_counter_set_limit(&memcg->memsw, val);
3684 		mutex_unlock(&set_limit_mutex);
3685 
3686 		if (!ret)
3687 			break;
3688 
3689 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3690 
3691 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3692 		/* Usage is reduced ? */
3693 		if (curusage >= oldusage)
3694 			retry_count--;
3695 		else
3696 			oldusage = curusage;
3697 	}
3698 	if (!ret && enlarge)
3699 		memcg_oom_recover(memcg);
3700 	return ret;
3701 }
3702 
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)3703 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3704 					    gfp_t gfp_mask,
3705 					    unsigned long *total_scanned)
3706 {
3707 	unsigned long nr_reclaimed = 0;
3708 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3709 	unsigned long reclaimed;
3710 	int loop = 0;
3711 	struct mem_cgroup_tree_per_zone *mctz;
3712 	unsigned long long excess;
3713 	unsigned long nr_scanned;
3714 
3715 	if (order > 0)
3716 		return 0;
3717 
3718 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3719 	/*
3720 	 * This loop can run a while, specially if mem_cgroup's continuously
3721 	 * keep exceeding their soft limit and putting the system under
3722 	 * pressure
3723 	 */
3724 	do {
3725 		if (next_mz)
3726 			mz = next_mz;
3727 		else
3728 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3729 		if (!mz)
3730 			break;
3731 
3732 		nr_scanned = 0;
3733 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3734 						    gfp_mask, &nr_scanned);
3735 		nr_reclaimed += reclaimed;
3736 		*total_scanned += nr_scanned;
3737 		spin_lock_irq(&mctz->lock);
3738 
3739 		/*
3740 		 * If we failed to reclaim anything from this memory cgroup
3741 		 * it is time to move on to the next cgroup
3742 		 */
3743 		next_mz = NULL;
3744 		if (!reclaimed) {
3745 			do {
3746 				/*
3747 				 * Loop until we find yet another one.
3748 				 *
3749 				 * By the time we get the soft_limit lock
3750 				 * again, someone might have aded the
3751 				 * group back on the RB tree. Iterate to
3752 				 * make sure we get a different mem.
3753 				 * mem_cgroup_largest_soft_limit_node returns
3754 				 * NULL if no other cgroup is present on
3755 				 * the tree
3756 				 */
3757 				next_mz =
3758 				__mem_cgroup_largest_soft_limit_node(mctz);
3759 				if (next_mz == mz)
3760 					css_put(&next_mz->memcg->css);
3761 				else /* next_mz == NULL or other memcg */
3762 					break;
3763 			} while (1);
3764 		}
3765 		__mem_cgroup_remove_exceeded(mz, mctz);
3766 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3767 		/*
3768 		 * One school of thought says that we should not add
3769 		 * back the node to the tree if reclaim returns 0.
3770 		 * But our reclaim could return 0, simply because due
3771 		 * to priority we are exposing a smaller subset of
3772 		 * memory to reclaim from. Consider this as a longer
3773 		 * term TODO.
3774 		 */
3775 		/* If excess == 0, no tree ops */
3776 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3777 		spin_unlock_irq(&mctz->lock);
3778 		css_put(&mz->memcg->css);
3779 		loop++;
3780 		/*
3781 		 * Could not reclaim anything and there are no more
3782 		 * mem cgroups to try or we seem to be looping without
3783 		 * reclaiming anything.
3784 		 */
3785 		if (!nr_reclaimed &&
3786 			(next_mz == NULL ||
3787 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3788 			break;
3789 	} while (!nr_reclaimed);
3790 	if (next_mz)
3791 		css_put(&next_mz->memcg->css);
3792 	return nr_reclaimed;
3793 }
3794 
3795 /**
3796  * mem_cgroup_force_empty_list - clears LRU of a group
3797  * @memcg: group to clear
3798  * @node: NUMA node
3799  * @zid: zone id
3800  * @lru: lru to to clear
3801  *
3802  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3803  * reclaim the pages page themselves - pages are moved to the parent (or root)
3804  * group.
3805  */
mem_cgroup_force_empty_list(struct mem_cgroup * memcg,int node,int zid,enum lru_list lru)3806 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3807 				int node, int zid, enum lru_list lru)
3808 {
3809 	struct lruvec *lruvec;
3810 	unsigned long flags;
3811 	struct list_head *list;
3812 	struct page *busy;
3813 	struct zone *zone;
3814 
3815 	zone = &NODE_DATA(node)->node_zones[zid];
3816 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3817 	list = &lruvec->lists[lru];
3818 
3819 	busy = NULL;
3820 	do {
3821 		struct page_cgroup *pc;
3822 		struct page *page;
3823 
3824 		spin_lock_irqsave(&zone->lru_lock, flags);
3825 		if (list_empty(list)) {
3826 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3827 			break;
3828 		}
3829 		page = list_entry(list->prev, struct page, lru);
3830 		if (busy == page) {
3831 			list_move(&page->lru, list);
3832 			busy = NULL;
3833 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3834 			continue;
3835 		}
3836 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3837 
3838 		pc = lookup_page_cgroup(page);
3839 
3840 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3841 			/* found lock contention or "pc" is obsolete. */
3842 			busy = page;
3843 		} else
3844 			busy = NULL;
3845 		cond_resched();
3846 	} while (!list_empty(list));
3847 }
3848 
3849 /*
3850  * make mem_cgroup's charge to be 0 if there is no task by moving
3851  * all the charges and pages to the parent.
3852  * This enables deleting this mem_cgroup.
3853  *
3854  * Caller is responsible for holding css reference on the memcg.
3855  */
mem_cgroup_reparent_charges(struct mem_cgroup * memcg)3856 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3857 {
3858 	int node, zid;
3859 	u64 usage;
3860 
3861 	do {
3862 		/* This is for making all *used* pages to be on LRU. */
3863 		lru_add_drain_all();
3864 		drain_all_stock_sync(memcg);
3865 		mem_cgroup_start_move(memcg);
3866 		for_each_node_state(node, N_MEMORY) {
3867 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3868 				enum lru_list lru;
3869 				for_each_lru(lru) {
3870 					mem_cgroup_force_empty_list(memcg,
3871 							node, zid, lru);
3872 				}
3873 			}
3874 		}
3875 		mem_cgroup_end_move(memcg);
3876 		memcg_oom_recover(memcg);
3877 		cond_resched();
3878 
3879 		/*
3880 		 * Kernel memory may not necessarily be trackable to a specific
3881 		 * process. So they are not migrated, and therefore we can't
3882 		 * expect their value to drop to 0 here.
3883 		 * Having res filled up with kmem only is enough.
3884 		 *
3885 		 * This is a safety check because mem_cgroup_force_empty_list
3886 		 * could have raced with mem_cgroup_replace_page_cache callers
3887 		 * so the lru seemed empty but the page could have been added
3888 		 * right after the check. RES_USAGE should be safe as we always
3889 		 * charge before adding to the LRU.
3890 		 */
3891 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3892 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
3893 	} while (usage > 0);
3894 }
3895 
3896 /*
3897  * Test whether @memcg has children, dead or alive.  Note that this
3898  * function doesn't care whether @memcg has use_hierarchy enabled and
3899  * returns %true if there are child csses according to the cgroup
3900  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3901  */
memcg_has_children(struct mem_cgroup * memcg)3902 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3903 {
3904 	bool ret;
3905 
3906 	/*
3907 	 * The lock does not prevent addition or deletion of children, but
3908 	 * it prevents a new child from being initialized based on this
3909 	 * parent in css_online(), so it's enough to decide whether
3910 	 * hierarchically inherited attributes can still be changed or not.
3911 	 */
3912 	lockdep_assert_held(&memcg_create_mutex);
3913 
3914 	rcu_read_lock();
3915 	ret = css_next_child(NULL, &memcg->css);
3916 	rcu_read_unlock();
3917 	return ret;
3918 }
3919 
3920 /*
3921  * Reclaims as many pages from the given memcg as possible and moves
3922  * the rest to the parent.
3923  *
3924  * Caller is responsible for holding css reference for memcg.
3925  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3926 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3927 {
3928 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3929 
3930 	/* we call try-to-free pages for make this cgroup empty */
3931 	lru_add_drain_all();
3932 	/* try to free all pages in this cgroup */
3933 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3934 		int progress;
3935 
3936 		if (signal_pending(current))
3937 			return -EINTR;
3938 
3939 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3940 							GFP_KERNEL, true);
3941 		if (!progress) {
3942 			nr_retries--;
3943 			/* maybe some writeback is necessary */
3944 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3945 		}
3946 
3947 	}
3948 
3949 	return 0;
3950 }
3951 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3952 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3953 					    char *buf, size_t nbytes,
3954 					    loff_t off)
3955 {
3956 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3957 
3958 	if (mem_cgroup_is_root(memcg))
3959 		return -EINVAL;
3960 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3961 }
3962 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3963 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3964 				     struct cftype *cft)
3965 {
3966 	return mem_cgroup_from_css(css)->use_hierarchy;
3967 }
3968 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3969 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3970 				      struct cftype *cft, u64 val)
3971 {
3972 	int retval = 0;
3973 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3974 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3975 
3976 	mutex_lock(&memcg_create_mutex);
3977 
3978 	if (memcg->use_hierarchy == val)
3979 		goto out;
3980 
3981 	/*
3982 	 * If parent's use_hierarchy is set, we can't make any modifications
3983 	 * in the child subtrees. If it is unset, then the change can
3984 	 * occur, provided the current cgroup has no children.
3985 	 *
3986 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3987 	 * set if there are no children.
3988 	 */
3989 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3990 				(val == 1 || val == 0)) {
3991 		if (!memcg_has_children(memcg))
3992 			memcg->use_hierarchy = val;
3993 		else
3994 			retval = -EBUSY;
3995 	} else
3996 		retval = -EINVAL;
3997 
3998 out:
3999 	mutex_unlock(&memcg_create_mutex);
4000 
4001 	return retval;
4002 }
4003 
mem_cgroup_recursive_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)4004 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4005 					       enum mem_cgroup_stat_index idx)
4006 {
4007 	struct mem_cgroup *iter;
4008 	long val = 0;
4009 
4010 	/* Per-cpu values can be negative, use a signed accumulator */
4011 	for_each_mem_cgroup_tree(iter, memcg)
4012 		val += mem_cgroup_read_stat(iter, idx);
4013 
4014 	if (val < 0) /* race ? */
4015 		val = 0;
4016 	return val;
4017 }
4018 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)4019 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4020 {
4021 	u64 val;
4022 
4023 	if (!mem_cgroup_is_root(memcg)) {
4024 		if (!swap)
4025 			return res_counter_read_u64(&memcg->res, RES_USAGE);
4026 		else
4027 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4028 	}
4029 
4030 	/*
4031 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4032 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4033 	 */
4034 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4035 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4036 
4037 	if (swap)
4038 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4039 
4040 	return val << PAGE_SHIFT;
4041 }
4042 
4043 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)4044 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4045 			       struct cftype *cft)
4046 {
4047 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4048 	enum res_type type = MEMFILE_TYPE(cft->private);
4049 	int name = MEMFILE_ATTR(cft->private);
4050 
4051 	switch (type) {
4052 	case _MEM:
4053 		if (name == RES_USAGE)
4054 			return mem_cgroup_usage(memcg, false);
4055 		return res_counter_read_u64(&memcg->res, name);
4056 	case _MEMSWAP:
4057 		if (name == RES_USAGE)
4058 			return mem_cgroup_usage(memcg, true);
4059 		return res_counter_read_u64(&memcg->memsw, name);
4060 	case _KMEM:
4061 		return res_counter_read_u64(&memcg->kmem, name);
4062 		break;
4063 	default:
4064 		BUG();
4065 	}
4066 }
4067 
4068 #ifdef CONFIG_MEMCG_KMEM
4069 /* should be called with activate_kmem_mutex held */
__memcg_activate_kmem(struct mem_cgroup * memcg,unsigned long long limit)4070 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4071 				 unsigned long long limit)
4072 {
4073 	int err = 0;
4074 	int memcg_id;
4075 
4076 	if (memcg_kmem_is_active(memcg))
4077 		return 0;
4078 
4079 	/*
4080 	 * We are going to allocate memory for data shared by all memory
4081 	 * cgroups so let's stop accounting here.
4082 	 */
4083 	memcg_stop_kmem_account();
4084 
4085 	/*
4086 	 * For simplicity, we won't allow this to be disabled.  It also can't
4087 	 * be changed if the cgroup has children already, or if tasks had
4088 	 * already joined.
4089 	 *
4090 	 * If tasks join before we set the limit, a person looking at
4091 	 * kmem.usage_in_bytes will have no way to determine when it took
4092 	 * place, which makes the value quite meaningless.
4093 	 *
4094 	 * After it first became limited, changes in the value of the limit are
4095 	 * of course permitted.
4096 	 */
4097 	mutex_lock(&memcg_create_mutex);
4098 	if (cgroup_has_tasks(memcg->css.cgroup) ||
4099 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4100 		err = -EBUSY;
4101 	mutex_unlock(&memcg_create_mutex);
4102 	if (err)
4103 		goto out;
4104 
4105 	memcg_id = memcg_alloc_cache_id();
4106 	if (memcg_id < 0) {
4107 		err = memcg_id;
4108 		goto out;
4109 	}
4110 
4111 	memcg->kmemcg_id = memcg_id;
4112 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4113 
4114 	/*
4115 	 * We couldn't have accounted to this cgroup, because it hasn't got the
4116 	 * active bit set yet, so this should succeed.
4117 	 */
4118 	err = res_counter_set_limit(&memcg->kmem, limit);
4119 	VM_BUG_ON(err);
4120 
4121 	static_key_slow_inc(&memcg_kmem_enabled_key);
4122 	/*
4123 	 * Setting the active bit after enabling static branching will
4124 	 * guarantee no one starts accounting before all call sites are
4125 	 * patched.
4126 	 */
4127 	memcg_kmem_set_active(memcg);
4128 out:
4129 	memcg_resume_kmem_account();
4130 	return err;
4131 }
4132 
memcg_activate_kmem(struct mem_cgroup * memcg,unsigned long long limit)4133 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4134 			       unsigned long long limit)
4135 {
4136 	int ret;
4137 
4138 	mutex_lock(&activate_kmem_mutex);
4139 	ret = __memcg_activate_kmem(memcg, limit);
4140 	mutex_unlock(&activate_kmem_mutex);
4141 	return ret;
4142 }
4143 
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long long val)4144 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4145 				   unsigned long long val)
4146 {
4147 	int ret;
4148 
4149 	if (!memcg_kmem_is_active(memcg))
4150 		ret = memcg_activate_kmem(memcg, val);
4151 	else
4152 		ret = res_counter_set_limit(&memcg->kmem, val);
4153 	return ret;
4154 }
4155 
memcg_propagate_kmem(struct mem_cgroup * memcg)4156 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4157 {
4158 	int ret = 0;
4159 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4160 
4161 	if (!parent)
4162 		return 0;
4163 
4164 	mutex_lock(&activate_kmem_mutex);
4165 	/*
4166 	 * If the parent cgroup is not kmem-active now, it cannot be activated
4167 	 * after this point, because it has at least one child already.
4168 	 */
4169 	if (memcg_kmem_is_active(parent))
4170 		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4171 	mutex_unlock(&activate_kmem_mutex);
4172 	return ret;
4173 }
4174 #else
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long long val)4175 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4176 				   unsigned long long val)
4177 {
4178 	return -EINVAL;
4179 }
4180 #endif /* CONFIG_MEMCG_KMEM */
4181 
4182 /*
4183  * The user of this function is...
4184  * RES_LIMIT.
4185  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4186 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4187 				char *buf, size_t nbytes, loff_t off)
4188 {
4189 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4190 	enum res_type type;
4191 	int name;
4192 	unsigned long long val;
4193 	int ret;
4194 
4195 	buf = strstrip(buf);
4196 	type = MEMFILE_TYPE(of_cft(of)->private);
4197 	name = MEMFILE_ATTR(of_cft(of)->private);
4198 
4199 	switch (name) {
4200 	case RES_LIMIT:
4201 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4202 			ret = -EINVAL;
4203 			break;
4204 		}
4205 		/* This function does all necessary parse...reuse it */
4206 		ret = res_counter_memparse_write_strategy(buf, &val);
4207 		if (ret)
4208 			break;
4209 		if (type == _MEM)
4210 			ret = mem_cgroup_resize_limit(memcg, val);
4211 		else if (type == _MEMSWAP)
4212 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4213 		else if (type == _KMEM)
4214 			ret = memcg_update_kmem_limit(memcg, val);
4215 		else
4216 			return -EINVAL;
4217 		break;
4218 	case RES_SOFT_LIMIT:
4219 		ret = res_counter_memparse_write_strategy(buf, &val);
4220 		if (ret)
4221 			break;
4222 		/*
4223 		 * For memsw, soft limits are hard to implement in terms
4224 		 * of semantics, for now, we support soft limits for
4225 		 * control without swap
4226 		 */
4227 		if (type == _MEM)
4228 			ret = res_counter_set_soft_limit(&memcg->res, val);
4229 		else
4230 			ret = -EINVAL;
4231 		break;
4232 	default:
4233 		ret = -EINVAL; /* should be BUG() ? */
4234 		break;
4235 	}
4236 	return ret ?: nbytes;
4237 }
4238 
memcg_get_hierarchical_limit(struct mem_cgroup * memcg,unsigned long long * mem_limit,unsigned long long * memsw_limit)4239 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4240 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4241 {
4242 	unsigned long long min_limit, min_memsw_limit, tmp;
4243 
4244 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4245 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4246 	if (!memcg->use_hierarchy)
4247 		goto out;
4248 
4249 	while (memcg->css.parent) {
4250 		memcg = mem_cgroup_from_css(memcg->css.parent);
4251 		if (!memcg->use_hierarchy)
4252 			break;
4253 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4254 		min_limit = min(min_limit, tmp);
4255 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4256 		min_memsw_limit = min(min_memsw_limit, tmp);
4257 	}
4258 out:
4259 	*mem_limit = min_limit;
4260 	*memsw_limit = min_memsw_limit;
4261 }
4262 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4263 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4264 				size_t nbytes, loff_t off)
4265 {
4266 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4267 	int name;
4268 	enum res_type type;
4269 
4270 	type = MEMFILE_TYPE(of_cft(of)->private);
4271 	name = MEMFILE_ATTR(of_cft(of)->private);
4272 
4273 	switch (name) {
4274 	case RES_MAX_USAGE:
4275 		if (type == _MEM)
4276 			res_counter_reset_max(&memcg->res);
4277 		else if (type == _MEMSWAP)
4278 			res_counter_reset_max(&memcg->memsw);
4279 		else if (type == _KMEM)
4280 			res_counter_reset_max(&memcg->kmem);
4281 		else
4282 			return -EINVAL;
4283 		break;
4284 	case RES_FAILCNT:
4285 		if (type == _MEM)
4286 			res_counter_reset_failcnt(&memcg->res);
4287 		else if (type == _MEMSWAP)
4288 			res_counter_reset_failcnt(&memcg->memsw);
4289 		else if (type == _KMEM)
4290 			res_counter_reset_failcnt(&memcg->kmem);
4291 		else
4292 			return -EINVAL;
4293 		break;
4294 	}
4295 
4296 	return nbytes;
4297 }
4298 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)4299 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4300 					struct cftype *cft)
4301 {
4302 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4303 }
4304 
4305 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4306 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4307 					struct cftype *cft, u64 val)
4308 {
4309 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310 
4311 	if (val >= (1 << NR_MOVE_TYPE))
4312 		return -EINVAL;
4313 
4314 	/*
4315 	 * No kind of locking is needed in here, because ->can_attach() will
4316 	 * check this value once in the beginning of the process, and then carry
4317 	 * on with stale data. This means that changes to this value will only
4318 	 * affect task migrations starting after the change.
4319 	 */
4320 	memcg->move_charge_at_immigrate = val;
4321 	return 0;
4322 }
4323 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4324 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4325 					struct cftype *cft, u64 val)
4326 {
4327 	return -ENOSYS;
4328 }
4329 #endif
4330 
4331 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)4332 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4333 {
4334 	struct numa_stat {
4335 		const char *name;
4336 		unsigned int lru_mask;
4337 	};
4338 
4339 	static const struct numa_stat stats[] = {
4340 		{ "total", LRU_ALL },
4341 		{ "file", LRU_ALL_FILE },
4342 		{ "anon", LRU_ALL_ANON },
4343 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4344 	};
4345 	const struct numa_stat *stat;
4346 	int nid;
4347 	unsigned long nr;
4348 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4349 
4350 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4351 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4352 		seq_printf(m, "%s=%lu", stat->name, nr);
4353 		for_each_node_state(nid, N_MEMORY) {
4354 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4355 							  stat->lru_mask);
4356 			seq_printf(m, " N%d=%lu", nid, nr);
4357 		}
4358 		seq_putc(m, '\n');
4359 	}
4360 
4361 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4362 		struct mem_cgroup *iter;
4363 
4364 		nr = 0;
4365 		for_each_mem_cgroup_tree(iter, memcg)
4366 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4367 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4368 		for_each_node_state(nid, N_MEMORY) {
4369 			nr = 0;
4370 			for_each_mem_cgroup_tree(iter, memcg)
4371 				nr += mem_cgroup_node_nr_lru_pages(
4372 					iter, nid, stat->lru_mask);
4373 			seq_printf(m, " N%d=%lu", nid, nr);
4374 		}
4375 		seq_putc(m, '\n');
4376 	}
4377 
4378 	return 0;
4379 }
4380 #endif /* CONFIG_NUMA */
4381 
mem_cgroup_lru_names_not_uptodate(void)4382 static inline void mem_cgroup_lru_names_not_uptodate(void)
4383 {
4384 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4385 }
4386 
memcg_stat_show(struct seq_file * m,void * v)4387 static int memcg_stat_show(struct seq_file *m, void *v)
4388 {
4389 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4390 	struct mem_cgroup *mi;
4391 	unsigned int i;
4392 
4393 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4394 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4395 			continue;
4396 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4397 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4398 	}
4399 
4400 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4401 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4402 			   mem_cgroup_read_events(memcg, i));
4403 
4404 	for (i = 0; i < NR_LRU_LISTS; i++)
4405 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4406 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4407 
4408 	/* Hierarchical information */
4409 	{
4410 		unsigned long long limit, memsw_limit;
4411 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4412 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4413 		if (do_swap_account)
4414 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4415 				   memsw_limit);
4416 	}
4417 
4418 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4419 		long long val = 0;
4420 
4421 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4422 			continue;
4423 		for_each_mem_cgroup_tree(mi, memcg)
4424 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4425 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4426 	}
4427 
4428 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4429 		unsigned long long val = 0;
4430 
4431 		for_each_mem_cgroup_tree(mi, memcg)
4432 			val += mem_cgroup_read_events(mi, i);
4433 		seq_printf(m, "total_%s %llu\n",
4434 			   mem_cgroup_events_names[i], val);
4435 	}
4436 
4437 	for (i = 0; i < NR_LRU_LISTS; i++) {
4438 		unsigned long long val = 0;
4439 
4440 		for_each_mem_cgroup_tree(mi, memcg)
4441 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4442 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4443 	}
4444 
4445 #ifdef CONFIG_DEBUG_VM
4446 	{
4447 		int nid, zid;
4448 		struct mem_cgroup_per_zone *mz;
4449 		struct zone_reclaim_stat *rstat;
4450 		unsigned long recent_rotated[2] = {0, 0};
4451 		unsigned long recent_scanned[2] = {0, 0};
4452 
4453 		for_each_online_node(nid)
4454 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4455 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4456 				rstat = &mz->lruvec.reclaim_stat;
4457 
4458 				recent_rotated[0] += rstat->recent_rotated[0];
4459 				recent_rotated[1] += rstat->recent_rotated[1];
4460 				recent_scanned[0] += rstat->recent_scanned[0];
4461 				recent_scanned[1] += rstat->recent_scanned[1];
4462 			}
4463 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4464 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4465 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4466 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4467 	}
4468 #endif
4469 
4470 	return 0;
4471 }
4472 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4473 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4474 				      struct cftype *cft)
4475 {
4476 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4477 
4478 	return mem_cgroup_swappiness(memcg);
4479 }
4480 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4481 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4482 				       struct cftype *cft, u64 val)
4483 {
4484 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4485 
4486 	if (val > 100)
4487 		return -EINVAL;
4488 
4489 	if (css->parent)
4490 		memcg->swappiness = val;
4491 	else
4492 		vm_swappiness = val;
4493 
4494 	return 0;
4495 }
4496 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4497 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4498 {
4499 	struct mem_cgroup_threshold_ary *t;
4500 	u64 usage;
4501 	int i;
4502 
4503 	rcu_read_lock();
4504 	if (!swap)
4505 		t = rcu_dereference(memcg->thresholds.primary);
4506 	else
4507 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4508 
4509 	if (!t)
4510 		goto unlock;
4511 
4512 	usage = mem_cgroup_usage(memcg, swap);
4513 
4514 	/*
4515 	 * current_threshold points to threshold just below or equal to usage.
4516 	 * If it's not true, a threshold was crossed after last
4517 	 * call of __mem_cgroup_threshold().
4518 	 */
4519 	i = t->current_threshold;
4520 
4521 	/*
4522 	 * Iterate backward over array of thresholds starting from
4523 	 * current_threshold and check if a threshold is crossed.
4524 	 * If none of thresholds below usage is crossed, we read
4525 	 * only one element of the array here.
4526 	 */
4527 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4528 		eventfd_signal(t->entries[i].eventfd, 1);
4529 
4530 	/* i = current_threshold + 1 */
4531 	i++;
4532 
4533 	/*
4534 	 * Iterate forward over array of thresholds starting from
4535 	 * current_threshold+1 and check if a threshold is crossed.
4536 	 * If none of thresholds above usage is crossed, we read
4537 	 * only one element of the array here.
4538 	 */
4539 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4540 		eventfd_signal(t->entries[i].eventfd, 1);
4541 
4542 	/* Update current_threshold */
4543 	t->current_threshold = i - 1;
4544 unlock:
4545 	rcu_read_unlock();
4546 }
4547 
mem_cgroup_threshold(struct mem_cgroup * memcg)4548 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4549 {
4550 	while (memcg) {
4551 		__mem_cgroup_threshold(memcg, false);
4552 		if (do_swap_account)
4553 			__mem_cgroup_threshold(memcg, true);
4554 
4555 		memcg = parent_mem_cgroup(memcg);
4556 	}
4557 }
4558 
compare_thresholds(const void * a,const void * b)4559 static int compare_thresholds(const void *a, const void *b)
4560 {
4561 	const struct mem_cgroup_threshold *_a = a;
4562 	const struct mem_cgroup_threshold *_b = b;
4563 
4564 	if (_a->threshold > _b->threshold)
4565 		return 1;
4566 
4567 	if (_a->threshold < _b->threshold)
4568 		return -1;
4569 
4570 	return 0;
4571 }
4572 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4573 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4574 {
4575 	struct mem_cgroup_eventfd_list *ev;
4576 
4577 	spin_lock(&memcg_oom_lock);
4578 
4579 	list_for_each_entry(ev, &memcg->oom_notify, list)
4580 		eventfd_signal(ev->eventfd, 1);
4581 
4582 	spin_unlock(&memcg_oom_lock);
4583 	return 0;
4584 }
4585 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4586 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4587 {
4588 	struct mem_cgroup *iter;
4589 
4590 	for_each_mem_cgroup_tree(iter, memcg)
4591 		mem_cgroup_oom_notify_cb(iter);
4592 }
4593 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4594 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4595 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4596 {
4597 	struct mem_cgroup_thresholds *thresholds;
4598 	struct mem_cgroup_threshold_ary *new;
4599 	u64 threshold, usage;
4600 	int i, size, ret;
4601 
4602 	ret = res_counter_memparse_write_strategy(args, &threshold);
4603 	if (ret)
4604 		return ret;
4605 
4606 	mutex_lock(&memcg->thresholds_lock);
4607 
4608 	if (type == _MEM) {
4609 		thresholds = &memcg->thresholds;
4610 		usage = mem_cgroup_usage(memcg, false);
4611 	} else if (type == _MEMSWAP) {
4612 		thresholds = &memcg->memsw_thresholds;
4613 		usage = mem_cgroup_usage(memcg, true);
4614 	} else
4615 		BUG();
4616 
4617 	/* Check if a threshold crossed before adding a new one */
4618 	if (thresholds->primary)
4619 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4620 
4621 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4622 
4623 	/* Allocate memory for new array of thresholds */
4624 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4625 			GFP_KERNEL);
4626 	if (!new) {
4627 		ret = -ENOMEM;
4628 		goto unlock;
4629 	}
4630 	new->size = size;
4631 
4632 	/* Copy thresholds (if any) to new array */
4633 	if (thresholds->primary) {
4634 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4635 				sizeof(struct mem_cgroup_threshold));
4636 	}
4637 
4638 	/* Add new threshold */
4639 	new->entries[size - 1].eventfd = eventfd;
4640 	new->entries[size - 1].threshold = threshold;
4641 
4642 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4643 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4644 			compare_thresholds, NULL);
4645 
4646 	/* Find current threshold */
4647 	new->current_threshold = -1;
4648 	for (i = 0; i < size; i++) {
4649 		if (new->entries[i].threshold <= usage) {
4650 			/*
4651 			 * new->current_threshold will not be used until
4652 			 * rcu_assign_pointer(), so it's safe to increment
4653 			 * it here.
4654 			 */
4655 			++new->current_threshold;
4656 		} else
4657 			break;
4658 	}
4659 
4660 	/* Free old spare buffer and save old primary buffer as spare */
4661 	kfree(thresholds->spare);
4662 	thresholds->spare = thresholds->primary;
4663 
4664 	rcu_assign_pointer(thresholds->primary, new);
4665 
4666 	/* To be sure that nobody uses thresholds */
4667 	synchronize_rcu();
4668 
4669 unlock:
4670 	mutex_unlock(&memcg->thresholds_lock);
4671 
4672 	return ret;
4673 }
4674 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4675 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4676 	struct eventfd_ctx *eventfd, const char *args)
4677 {
4678 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4679 }
4680 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4681 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4682 	struct eventfd_ctx *eventfd, const char *args)
4683 {
4684 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4685 }
4686 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4687 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4688 	struct eventfd_ctx *eventfd, enum res_type type)
4689 {
4690 	struct mem_cgroup_thresholds *thresholds;
4691 	struct mem_cgroup_threshold_ary *new;
4692 	u64 usage;
4693 	int i, j, size;
4694 
4695 	mutex_lock(&memcg->thresholds_lock);
4696 
4697 	if (type == _MEM) {
4698 		thresholds = &memcg->thresholds;
4699 		usage = mem_cgroup_usage(memcg, false);
4700 	} else if (type == _MEMSWAP) {
4701 		thresholds = &memcg->memsw_thresholds;
4702 		usage = mem_cgroup_usage(memcg, true);
4703 	} else
4704 		BUG();
4705 
4706 	if (!thresholds->primary)
4707 		goto unlock;
4708 
4709 	/* Check if a threshold crossed before removing */
4710 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4711 
4712 	/* Calculate new number of threshold */
4713 	size = 0;
4714 	for (i = 0; i < thresholds->primary->size; i++) {
4715 		if (thresholds->primary->entries[i].eventfd != eventfd)
4716 			size++;
4717 	}
4718 
4719 	new = thresholds->spare;
4720 
4721 	/* Set thresholds array to NULL if we don't have thresholds */
4722 	if (!size) {
4723 		kfree(new);
4724 		new = NULL;
4725 		goto swap_buffers;
4726 	}
4727 
4728 	new->size = size;
4729 
4730 	/* Copy thresholds and find current threshold */
4731 	new->current_threshold = -1;
4732 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4733 		if (thresholds->primary->entries[i].eventfd == eventfd)
4734 			continue;
4735 
4736 		new->entries[j] = thresholds->primary->entries[i];
4737 		if (new->entries[j].threshold <= usage) {
4738 			/*
4739 			 * new->current_threshold will not be used
4740 			 * until rcu_assign_pointer(), so it's safe to increment
4741 			 * it here.
4742 			 */
4743 			++new->current_threshold;
4744 		}
4745 		j++;
4746 	}
4747 
4748 swap_buffers:
4749 	/* Swap primary and spare array */
4750 	thresholds->spare = thresholds->primary;
4751 
4752 	rcu_assign_pointer(thresholds->primary, new);
4753 
4754 	/* To be sure that nobody uses thresholds */
4755 	synchronize_rcu();
4756 
4757 	/* If all events are unregistered, free the spare array */
4758 	if (!new) {
4759 		kfree(thresholds->spare);
4760 		thresholds->spare = NULL;
4761 	}
4762 unlock:
4763 	mutex_unlock(&memcg->thresholds_lock);
4764 }
4765 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4766 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4767 	struct eventfd_ctx *eventfd)
4768 {
4769 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4770 }
4771 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4772 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4773 	struct eventfd_ctx *eventfd)
4774 {
4775 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4776 }
4777 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4778 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4779 	struct eventfd_ctx *eventfd, const char *args)
4780 {
4781 	struct mem_cgroup_eventfd_list *event;
4782 
4783 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4784 	if (!event)
4785 		return -ENOMEM;
4786 
4787 	spin_lock(&memcg_oom_lock);
4788 
4789 	event->eventfd = eventfd;
4790 	list_add(&event->list, &memcg->oom_notify);
4791 
4792 	/* already in OOM ? */
4793 	if (atomic_read(&memcg->under_oom))
4794 		eventfd_signal(eventfd, 1);
4795 	spin_unlock(&memcg_oom_lock);
4796 
4797 	return 0;
4798 }
4799 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4800 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4801 	struct eventfd_ctx *eventfd)
4802 {
4803 	struct mem_cgroup_eventfd_list *ev, *tmp;
4804 
4805 	spin_lock(&memcg_oom_lock);
4806 
4807 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4808 		if (ev->eventfd == eventfd) {
4809 			list_del(&ev->list);
4810 			kfree(ev);
4811 		}
4812 	}
4813 
4814 	spin_unlock(&memcg_oom_lock);
4815 }
4816 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4817 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4818 {
4819 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4820 
4821 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4822 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4823 	return 0;
4824 }
4825 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4826 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4827 	struct cftype *cft, u64 val)
4828 {
4829 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4830 
4831 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4832 	if (!css->parent || !((val == 0) || (val == 1)))
4833 		return -EINVAL;
4834 
4835 	memcg->oom_kill_disable = val;
4836 	if (!val)
4837 		memcg_oom_recover(memcg);
4838 
4839 	return 0;
4840 }
4841 
4842 #ifdef CONFIG_MEMCG_KMEM
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)4843 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4844 {
4845 	int ret;
4846 
4847 	memcg->kmemcg_id = -1;
4848 	ret = memcg_propagate_kmem(memcg);
4849 	if (ret)
4850 		return ret;
4851 
4852 	return mem_cgroup_sockets_init(memcg, ss);
4853 }
4854 
memcg_destroy_kmem(struct mem_cgroup * memcg)4855 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4856 {
4857 	mem_cgroup_sockets_destroy(memcg);
4858 }
4859 
kmem_cgroup_css_offline(struct mem_cgroup * memcg)4860 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4861 {
4862 	if (!memcg_kmem_is_active(memcg))
4863 		return;
4864 
4865 	/*
4866 	 * kmem charges can outlive the cgroup. In the case of slab
4867 	 * pages, for instance, a page contain objects from various
4868 	 * processes. As we prevent from taking a reference for every
4869 	 * such allocation we have to be careful when doing uncharge
4870 	 * (see memcg_uncharge_kmem) and here during offlining.
4871 	 *
4872 	 * The idea is that that only the _last_ uncharge which sees
4873 	 * the dead memcg will drop the last reference. An additional
4874 	 * reference is taken here before the group is marked dead
4875 	 * which is then paired with css_put during uncharge resp. here.
4876 	 *
4877 	 * Although this might sound strange as this path is called from
4878 	 * css_offline() when the referencemight have dropped down to 0 and
4879 	 * shouldn't be incremented anymore (css_tryget_online() would
4880 	 * fail) we do not have other options because of the kmem
4881 	 * allocations lifetime.
4882 	 */
4883 	css_get(&memcg->css);
4884 
4885 	memcg_kmem_mark_dead(memcg);
4886 
4887 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4888 		return;
4889 
4890 	if (memcg_kmem_test_and_clear_dead(memcg))
4891 		css_put(&memcg->css);
4892 }
4893 #else
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)4894 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4895 {
4896 	return 0;
4897 }
4898 
memcg_destroy_kmem(struct mem_cgroup * memcg)4899 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4900 {
4901 }
4902 
kmem_cgroup_css_offline(struct mem_cgroup * memcg)4903 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4904 {
4905 }
4906 #endif
4907 
4908 /*
4909  * DO NOT USE IN NEW FILES.
4910  *
4911  * "cgroup.event_control" implementation.
4912  *
4913  * This is way over-engineered.  It tries to support fully configurable
4914  * events for each user.  Such level of flexibility is completely
4915  * unnecessary especially in the light of the planned unified hierarchy.
4916  *
4917  * Please deprecate this and replace with something simpler if at all
4918  * possible.
4919  */
4920 
4921 /*
4922  * Unregister event and free resources.
4923  *
4924  * Gets called from workqueue.
4925  */
memcg_event_remove(struct work_struct * work)4926 static void memcg_event_remove(struct work_struct *work)
4927 {
4928 	struct mem_cgroup_event *event =
4929 		container_of(work, struct mem_cgroup_event, remove);
4930 	struct mem_cgroup *memcg = event->memcg;
4931 
4932 	remove_wait_queue(event->wqh, &event->wait);
4933 
4934 	event->unregister_event(memcg, event->eventfd);
4935 
4936 	/* Notify userspace the event is going away. */
4937 	eventfd_signal(event->eventfd, 1);
4938 
4939 	eventfd_ctx_put(event->eventfd);
4940 	kfree(event);
4941 	css_put(&memcg->css);
4942 }
4943 
4944 /*
4945  * Gets called on POLLHUP on eventfd when user closes it.
4946  *
4947  * Called with wqh->lock held and interrupts disabled.
4948  */
memcg_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)4949 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4950 			    int sync, void *key)
4951 {
4952 	struct mem_cgroup_event *event =
4953 		container_of(wait, struct mem_cgroup_event, wait);
4954 	struct mem_cgroup *memcg = event->memcg;
4955 	unsigned long flags = (unsigned long)key;
4956 
4957 	if (flags & POLLHUP) {
4958 		/*
4959 		 * If the event has been detached at cgroup removal, we
4960 		 * can simply return knowing the other side will cleanup
4961 		 * for us.
4962 		 *
4963 		 * We can't race against event freeing since the other
4964 		 * side will require wqh->lock via remove_wait_queue(),
4965 		 * which we hold.
4966 		 */
4967 		spin_lock(&memcg->event_list_lock);
4968 		if (!list_empty(&event->list)) {
4969 			list_del_init(&event->list);
4970 			/*
4971 			 * We are in atomic context, but cgroup_event_remove()
4972 			 * may sleep, so we have to call it in workqueue.
4973 			 */
4974 			schedule_work(&event->remove);
4975 		}
4976 		spin_unlock(&memcg->event_list_lock);
4977 	}
4978 
4979 	return 0;
4980 }
4981 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4982 static void memcg_event_ptable_queue_proc(struct file *file,
4983 		wait_queue_head_t *wqh, poll_table *pt)
4984 {
4985 	struct mem_cgroup_event *event =
4986 		container_of(pt, struct mem_cgroup_event, pt);
4987 
4988 	event->wqh = wqh;
4989 	add_wait_queue(wqh, &event->wait);
4990 }
4991 
4992 /*
4993  * DO NOT USE IN NEW FILES.
4994  *
4995  * Parse input and register new cgroup event handler.
4996  *
4997  * Input must be in format '<event_fd> <control_fd> <args>'.
4998  * Interpretation of args is defined by control file implementation.
4999  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5000 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5001 					 char *buf, size_t nbytes, loff_t off)
5002 {
5003 	struct cgroup_subsys_state *css = of_css(of);
5004 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5005 	struct mem_cgroup_event *event;
5006 	struct cgroup_subsys_state *cfile_css;
5007 	unsigned int efd, cfd;
5008 	struct fd efile;
5009 	struct fd cfile;
5010 	const char *name;
5011 	char *endp;
5012 	int ret;
5013 
5014 	buf = strstrip(buf);
5015 
5016 	efd = simple_strtoul(buf, &endp, 10);
5017 	if (*endp != ' ')
5018 		return -EINVAL;
5019 	buf = endp + 1;
5020 
5021 	cfd = simple_strtoul(buf, &endp, 10);
5022 	if ((*endp != ' ') && (*endp != '\0'))
5023 		return -EINVAL;
5024 	buf = endp + 1;
5025 
5026 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5027 	if (!event)
5028 		return -ENOMEM;
5029 
5030 	event->memcg = memcg;
5031 	INIT_LIST_HEAD(&event->list);
5032 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5033 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5034 	INIT_WORK(&event->remove, memcg_event_remove);
5035 
5036 	efile = fdget(efd);
5037 	if (!efile.file) {
5038 		ret = -EBADF;
5039 		goto out_kfree;
5040 	}
5041 
5042 	event->eventfd = eventfd_ctx_fileget(efile.file);
5043 	if (IS_ERR(event->eventfd)) {
5044 		ret = PTR_ERR(event->eventfd);
5045 		goto out_put_efile;
5046 	}
5047 
5048 	cfile = fdget(cfd);
5049 	if (!cfile.file) {
5050 		ret = -EBADF;
5051 		goto out_put_eventfd;
5052 	}
5053 
5054 	/* the process need read permission on control file */
5055 	/* AV: shouldn't we check that it's been opened for read instead? */
5056 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
5057 	if (ret < 0)
5058 		goto out_put_cfile;
5059 
5060 	/*
5061 	 * Determine the event callbacks and set them in @event.  This used
5062 	 * to be done via struct cftype but cgroup core no longer knows
5063 	 * about these events.  The following is crude but the whole thing
5064 	 * is for compatibility anyway.
5065 	 *
5066 	 * DO NOT ADD NEW FILES.
5067 	 */
5068 	name = cfile.file->f_dentry->d_name.name;
5069 
5070 	if (!strcmp(name, "memory.usage_in_bytes")) {
5071 		event->register_event = mem_cgroup_usage_register_event;
5072 		event->unregister_event = mem_cgroup_usage_unregister_event;
5073 	} else if (!strcmp(name, "memory.oom_control")) {
5074 		event->register_event = mem_cgroup_oom_register_event;
5075 		event->unregister_event = mem_cgroup_oom_unregister_event;
5076 	} else if (!strcmp(name, "memory.pressure_level")) {
5077 		event->register_event = vmpressure_register_event;
5078 		event->unregister_event = vmpressure_unregister_event;
5079 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5080 		event->register_event = memsw_cgroup_usage_register_event;
5081 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5082 	} else {
5083 		ret = -EINVAL;
5084 		goto out_put_cfile;
5085 	}
5086 
5087 	/*
5088 	 * Verify @cfile should belong to @css.  Also, remaining events are
5089 	 * automatically removed on cgroup destruction but the removal is
5090 	 * asynchronous, so take an extra ref on @css.
5091 	 */
5092 	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5093 					       &memory_cgrp_subsys);
5094 	ret = -EINVAL;
5095 	if (IS_ERR(cfile_css))
5096 		goto out_put_cfile;
5097 	if (cfile_css != css) {
5098 		css_put(cfile_css);
5099 		goto out_put_cfile;
5100 	}
5101 
5102 	ret = event->register_event(memcg, event->eventfd, buf);
5103 	if (ret)
5104 		goto out_put_css;
5105 
5106 	efile.file->f_op->poll(efile.file, &event->pt);
5107 
5108 	spin_lock(&memcg->event_list_lock);
5109 	list_add(&event->list, &memcg->event_list);
5110 	spin_unlock(&memcg->event_list_lock);
5111 
5112 	fdput(cfile);
5113 	fdput(efile);
5114 
5115 	return nbytes;
5116 
5117 out_put_css:
5118 	css_put(css);
5119 out_put_cfile:
5120 	fdput(cfile);
5121 out_put_eventfd:
5122 	eventfd_ctx_put(event->eventfd);
5123 out_put_efile:
5124 	fdput(efile);
5125 out_kfree:
5126 	kfree(event);
5127 
5128 	return ret;
5129 }
5130 
5131 static struct cftype mem_cgroup_files[] = {
5132 	{
5133 		.name = "usage_in_bytes",
5134 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5135 		.read_u64 = mem_cgroup_read_u64,
5136 	},
5137 	{
5138 		.name = "max_usage_in_bytes",
5139 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5140 		.write = mem_cgroup_reset,
5141 		.read_u64 = mem_cgroup_read_u64,
5142 	},
5143 	{
5144 		.name = "limit_in_bytes",
5145 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5146 		.write = mem_cgroup_write,
5147 		.read_u64 = mem_cgroup_read_u64,
5148 	},
5149 	{
5150 		.name = "soft_limit_in_bytes",
5151 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5152 		.write = mem_cgroup_write,
5153 		.read_u64 = mem_cgroup_read_u64,
5154 	},
5155 	{
5156 		.name = "failcnt",
5157 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5158 		.write = mem_cgroup_reset,
5159 		.read_u64 = mem_cgroup_read_u64,
5160 	},
5161 	{
5162 		.name = "stat",
5163 		.seq_show = memcg_stat_show,
5164 	},
5165 	{
5166 		.name = "force_empty",
5167 		.write = mem_cgroup_force_empty_write,
5168 	},
5169 	{
5170 		.name = "use_hierarchy",
5171 		.write_u64 = mem_cgroup_hierarchy_write,
5172 		.read_u64 = mem_cgroup_hierarchy_read,
5173 	},
5174 	{
5175 		.name = "cgroup.event_control",		/* XXX: for compat */
5176 		.write = memcg_write_event_control,
5177 		.flags = CFTYPE_NO_PREFIX,
5178 		.mode = S_IWUGO,
5179 	},
5180 	{
5181 		.name = "swappiness",
5182 		.read_u64 = mem_cgroup_swappiness_read,
5183 		.write_u64 = mem_cgroup_swappiness_write,
5184 	},
5185 	{
5186 		.name = "move_charge_at_immigrate",
5187 		.read_u64 = mem_cgroup_move_charge_read,
5188 		.write_u64 = mem_cgroup_move_charge_write,
5189 	},
5190 	{
5191 		.name = "oom_control",
5192 		.seq_show = mem_cgroup_oom_control_read,
5193 		.write_u64 = mem_cgroup_oom_control_write,
5194 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5195 	},
5196 	{
5197 		.name = "pressure_level",
5198 	},
5199 #ifdef CONFIG_NUMA
5200 	{
5201 		.name = "numa_stat",
5202 		.seq_show = memcg_numa_stat_show,
5203 	},
5204 #endif
5205 #ifdef CONFIG_MEMCG_KMEM
5206 	{
5207 		.name = "kmem.limit_in_bytes",
5208 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5209 		.write = mem_cgroup_write,
5210 		.read_u64 = mem_cgroup_read_u64,
5211 	},
5212 	{
5213 		.name = "kmem.usage_in_bytes",
5214 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5215 		.read_u64 = mem_cgroup_read_u64,
5216 	},
5217 	{
5218 		.name = "kmem.failcnt",
5219 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5220 		.write = mem_cgroup_reset,
5221 		.read_u64 = mem_cgroup_read_u64,
5222 	},
5223 	{
5224 		.name = "kmem.max_usage_in_bytes",
5225 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5226 		.write = mem_cgroup_reset,
5227 		.read_u64 = mem_cgroup_read_u64,
5228 	},
5229 #ifdef CONFIG_SLABINFO
5230 	{
5231 		.name = "kmem.slabinfo",
5232 		.seq_show = mem_cgroup_slabinfo_read,
5233 	},
5234 #endif
5235 #endif
5236 	{ },	/* terminate */
5237 };
5238 
5239 #ifdef CONFIG_MEMCG_SWAP
5240 static struct cftype memsw_cgroup_files[] = {
5241 	{
5242 		.name = "memsw.usage_in_bytes",
5243 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5244 		.read_u64 = mem_cgroup_read_u64,
5245 	},
5246 	{
5247 		.name = "memsw.max_usage_in_bytes",
5248 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5249 		.write = mem_cgroup_reset,
5250 		.read_u64 = mem_cgroup_read_u64,
5251 	},
5252 	{
5253 		.name = "memsw.limit_in_bytes",
5254 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5255 		.write = mem_cgroup_write,
5256 		.read_u64 = mem_cgroup_read_u64,
5257 	},
5258 	{
5259 		.name = "memsw.failcnt",
5260 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5261 		.write = mem_cgroup_reset,
5262 		.read_u64 = mem_cgroup_read_u64,
5263 	},
5264 	{ },	/* terminate */
5265 };
5266 #endif
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)5267 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5268 {
5269 	struct mem_cgroup_per_node *pn;
5270 	struct mem_cgroup_per_zone *mz;
5271 	int zone, tmp = node;
5272 	/*
5273 	 * This routine is called against possible nodes.
5274 	 * But it's BUG to call kmalloc() against offline node.
5275 	 *
5276 	 * TODO: this routine can waste much memory for nodes which will
5277 	 *       never be onlined. It's better to use memory hotplug callback
5278 	 *       function.
5279 	 */
5280 	if (!node_state(node, N_NORMAL_MEMORY))
5281 		tmp = -1;
5282 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5283 	if (!pn)
5284 		return 1;
5285 
5286 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5287 		mz = &pn->zoneinfo[zone];
5288 		lruvec_init(&mz->lruvec);
5289 		mz->usage_in_excess = 0;
5290 		mz->on_tree = false;
5291 		mz->memcg = memcg;
5292 	}
5293 	memcg->nodeinfo[node] = pn;
5294 	return 0;
5295 }
5296 
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)5297 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5298 {
5299 	kfree(memcg->nodeinfo[node]);
5300 }
5301 
mem_cgroup_alloc(void)5302 static struct mem_cgroup *mem_cgroup_alloc(void)
5303 {
5304 	struct mem_cgroup *memcg;
5305 	size_t size;
5306 
5307 	size = sizeof(struct mem_cgroup);
5308 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5309 
5310 	memcg = kzalloc(size, GFP_KERNEL);
5311 	if (!memcg)
5312 		return NULL;
5313 
5314 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5315 	if (!memcg->stat)
5316 		goto out_free;
5317 	spin_lock_init(&memcg->pcp_counter_lock);
5318 	return memcg;
5319 
5320 out_free:
5321 	kfree(memcg);
5322 	return NULL;
5323 }
5324 
5325 /*
5326  * At destroying mem_cgroup, references from swap_cgroup can remain.
5327  * (scanning all at force_empty is too costly...)
5328  *
5329  * Instead of clearing all references at force_empty, we remember
5330  * the number of reference from swap_cgroup and free mem_cgroup when
5331  * it goes down to 0.
5332  *
5333  * Removal of cgroup itself succeeds regardless of refs from swap.
5334  */
5335 
__mem_cgroup_free(struct mem_cgroup * memcg)5336 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5337 {
5338 	int node;
5339 
5340 	mem_cgroup_remove_from_trees(memcg);
5341 
5342 	for_each_node(node)
5343 		free_mem_cgroup_per_zone_info(memcg, node);
5344 
5345 	free_percpu(memcg->stat);
5346 
5347 	/*
5348 	 * We need to make sure that (at least for now), the jump label
5349 	 * destruction code runs outside of the cgroup lock. This is because
5350 	 * get_online_cpus(), which is called from the static_branch update,
5351 	 * can't be called inside the cgroup_lock. cpusets are the ones
5352 	 * enforcing this dependency, so if they ever change, we might as well.
5353 	 *
5354 	 * schedule_work() will guarantee this happens. Be careful if you need
5355 	 * to move this code around, and make sure it is outside
5356 	 * the cgroup_lock.
5357 	 */
5358 	disarm_static_keys(memcg);
5359 	kfree(memcg);
5360 }
5361 
5362 /*
5363  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5364  */
parent_mem_cgroup(struct mem_cgroup * memcg)5365 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5366 {
5367 	if (!memcg->res.parent)
5368 		return NULL;
5369 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5370 }
5371 EXPORT_SYMBOL(parent_mem_cgroup);
5372 
mem_cgroup_soft_limit_tree_init(void)5373 static void __init mem_cgroup_soft_limit_tree_init(void)
5374 {
5375 	struct mem_cgroup_tree_per_node *rtpn;
5376 	struct mem_cgroup_tree_per_zone *rtpz;
5377 	int tmp, node, zone;
5378 
5379 	for_each_node(node) {
5380 		tmp = node;
5381 		if (!node_state(node, N_NORMAL_MEMORY))
5382 			tmp = -1;
5383 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5384 		BUG_ON(!rtpn);
5385 
5386 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5387 
5388 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5389 			rtpz = &rtpn->rb_tree_per_zone[zone];
5390 			rtpz->rb_root = RB_ROOT;
5391 			spin_lock_init(&rtpz->lock);
5392 		}
5393 	}
5394 }
5395 
5396 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5397 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5398 {
5399 	struct mem_cgroup *memcg;
5400 	long error = -ENOMEM;
5401 	int node;
5402 
5403 	memcg = mem_cgroup_alloc();
5404 	if (!memcg)
5405 		return ERR_PTR(error);
5406 
5407 	for_each_node(node)
5408 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5409 			goto free_out;
5410 
5411 	/* root ? */
5412 	if (parent_css == NULL) {
5413 		root_mem_cgroup = memcg;
5414 		res_counter_init(&memcg->res, NULL);
5415 		res_counter_init(&memcg->memsw, NULL);
5416 		res_counter_init(&memcg->kmem, NULL);
5417 	}
5418 
5419 	memcg->last_scanned_node = MAX_NUMNODES;
5420 	INIT_LIST_HEAD(&memcg->oom_notify);
5421 	memcg->move_charge_at_immigrate = 0;
5422 	mutex_init(&memcg->thresholds_lock);
5423 	spin_lock_init(&memcg->move_lock);
5424 	vmpressure_init(&memcg->vmpressure);
5425 	INIT_LIST_HEAD(&memcg->event_list);
5426 	spin_lock_init(&memcg->event_list_lock);
5427 
5428 	return &memcg->css;
5429 
5430 free_out:
5431 	__mem_cgroup_free(memcg);
5432 	return ERR_PTR(error);
5433 }
5434 
5435 static int
mem_cgroup_css_online(struct cgroup_subsys_state * css)5436 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5437 {
5438 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5439 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5440 	int ret;
5441 
5442 	if (css->id > MEM_CGROUP_ID_MAX)
5443 		return -ENOSPC;
5444 
5445 	if (!parent)
5446 		return 0;
5447 
5448 	mutex_lock(&memcg_create_mutex);
5449 
5450 	memcg->use_hierarchy = parent->use_hierarchy;
5451 	memcg->oom_kill_disable = parent->oom_kill_disable;
5452 	memcg->swappiness = mem_cgroup_swappiness(parent);
5453 
5454 	if (parent->use_hierarchy) {
5455 		res_counter_init(&memcg->res, &parent->res);
5456 		res_counter_init(&memcg->memsw, &parent->memsw);
5457 		res_counter_init(&memcg->kmem, &parent->kmem);
5458 
5459 		/*
5460 		 * No need to take a reference to the parent because cgroup
5461 		 * core guarantees its existence.
5462 		 */
5463 	} else {
5464 		res_counter_init(&memcg->res, NULL);
5465 		res_counter_init(&memcg->memsw, NULL);
5466 		res_counter_init(&memcg->kmem, NULL);
5467 		/*
5468 		 * Deeper hierachy with use_hierarchy == false doesn't make
5469 		 * much sense so let cgroup subsystem know about this
5470 		 * unfortunate state in our controller.
5471 		 */
5472 		if (parent != root_mem_cgroup)
5473 			memory_cgrp_subsys.broken_hierarchy = true;
5474 	}
5475 	mutex_unlock(&memcg_create_mutex);
5476 
5477 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5478 	if (ret)
5479 		return ret;
5480 
5481 	/*
5482 	 * Make sure the memcg is initialized: mem_cgroup_iter()
5483 	 * orders reading memcg->initialized against its callers
5484 	 * reading the memcg members.
5485 	 */
5486 	smp_store_release(&memcg->initialized, 1);
5487 
5488 	return 0;
5489 }
5490 
5491 /*
5492  * Announce all parents that a group from their hierarchy is gone.
5493  */
mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup * memcg)5494 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5495 {
5496 	struct mem_cgroup *parent = memcg;
5497 
5498 	while ((parent = parent_mem_cgroup(parent)))
5499 		mem_cgroup_iter_invalidate(parent);
5500 
5501 	/*
5502 	 * if the root memcg is not hierarchical we have to check it
5503 	 * explicitely.
5504 	 */
5505 	if (!root_mem_cgroup->use_hierarchy)
5506 		mem_cgroup_iter_invalidate(root_mem_cgroup);
5507 }
5508 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5509 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5510 {
5511 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5512 	struct mem_cgroup_event *event, *tmp;
5513 	struct cgroup_subsys_state *iter;
5514 
5515 	/*
5516 	 * Unregister events and notify userspace.
5517 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5518 	 * directory to avoid race between userspace and kernelspace.
5519 	 */
5520 	spin_lock(&memcg->event_list_lock);
5521 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5522 		list_del_init(&event->list);
5523 		schedule_work(&event->remove);
5524 	}
5525 	spin_unlock(&memcg->event_list_lock);
5526 
5527 	kmem_cgroup_css_offline(memcg);
5528 
5529 	mem_cgroup_invalidate_reclaim_iterators(memcg);
5530 
5531 	/*
5532 	 * This requires that offlining is serialized.  Right now that is
5533 	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5534 	 */
5535 	css_for_each_descendant_post(iter, css)
5536 		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5537 
5538 	memcg_unregister_all_caches(memcg);
5539 	vmpressure_cleanup(&memcg->vmpressure);
5540 }
5541 
mem_cgroup_css_free(struct cgroup_subsys_state * css)5542 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5543 {
5544 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5545 	/*
5546 	 * XXX: css_offline() would be where we should reparent all
5547 	 * memory to prepare the cgroup for destruction.  However,
5548 	 * memcg does not do css_tryget_online() and res_counter charging
5549 	 * under the same RCU lock region, which means that charging
5550 	 * could race with offlining.  Offlining only happens to
5551 	 * cgroups with no tasks in them but charges can show up
5552 	 * without any tasks from the swapin path when the target
5553 	 * memcg is looked up from the swapout record and not from the
5554 	 * current task as it usually is.  A race like this can leak
5555 	 * charges and put pages with stale cgroup pointers into
5556 	 * circulation:
5557 	 *
5558 	 * #0                        #1
5559 	 *                           lookup_swap_cgroup_id()
5560 	 *                           rcu_read_lock()
5561 	 *                           mem_cgroup_lookup()
5562 	 *                           css_tryget_online()
5563 	 *                           rcu_read_unlock()
5564 	 * disable css_tryget_online()
5565 	 * call_rcu()
5566 	 *   offline_css()
5567 	 *     reparent_charges()
5568 	 *                           res_counter_charge()
5569 	 *                           css_put()
5570 	 *                             css_free()
5571 	 *                           pc->mem_cgroup = dead memcg
5572 	 *                           add page to lru
5573 	 *
5574 	 * The bulk of the charges are still moved in offline_css() to
5575 	 * avoid pinning a lot of pages in case a long-term reference
5576 	 * like a swapout record is deferring the css_free() to long
5577 	 * after offlining.  But this makes sure we catch any charges
5578 	 * made after offlining:
5579 	 */
5580 	mem_cgroup_reparent_charges(memcg);
5581 
5582 	memcg_destroy_kmem(memcg);
5583 	__mem_cgroup_free(memcg);
5584 }
5585 
5586 /**
5587  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5588  * @css: the target css
5589  *
5590  * Reset the states of the mem_cgroup associated with @css.  This is
5591  * invoked when the userland requests disabling on the default hierarchy
5592  * but the memcg is pinned through dependency.  The memcg should stop
5593  * applying policies and should revert to the vanilla state as it may be
5594  * made visible again.
5595  *
5596  * The current implementation only resets the essential configurations.
5597  * This needs to be expanded to cover all the visible parts.
5598  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5599 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5600 {
5601 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5602 
5603 	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5604 	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5605 	memcg_update_kmem_limit(memcg, ULLONG_MAX);
5606 	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5607 }
5608 
5609 #ifdef CONFIG_MMU
5610 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5611 static int mem_cgroup_do_precharge(unsigned long count)
5612 {
5613 	int ret;
5614 
5615 	/* Try a single bulk charge without reclaim first */
5616 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5617 	if (!ret) {
5618 		mc.precharge += count;
5619 		return ret;
5620 	}
5621 	if (ret == -EINTR) {
5622 		cancel_charge(root_mem_cgroup, count);
5623 		return ret;
5624 	}
5625 
5626 	/* Try charges one by one with reclaim */
5627 	while (count--) {
5628 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5629 		/*
5630 		 * In case of failure, any residual charges against
5631 		 * mc.to will be dropped by mem_cgroup_clear_mc()
5632 		 * later on.  However, cancel any charges that are
5633 		 * bypassed to root right away or they'll be lost.
5634 		 */
5635 		if (ret == -EINTR)
5636 			cancel_charge(root_mem_cgroup, 1);
5637 		if (ret)
5638 			return ret;
5639 		mc.precharge++;
5640 		cond_resched();
5641 	}
5642 	return 0;
5643 }
5644 
5645 /**
5646  * get_mctgt_type - get target type of moving charge
5647  * @vma: the vma the pte to be checked belongs
5648  * @addr: the address corresponding to the pte to be checked
5649  * @ptent: the pte to be checked
5650  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5651  *
5652  * Returns
5653  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5654  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5655  *     move charge. if @target is not NULL, the page is stored in target->page
5656  *     with extra refcnt got(Callers should handle it).
5657  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5658  *     target for charge migration. if @target is not NULL, the entry is stored
5659  *     in target->ent.
5660  *
5661  * Called with pte lock held.
5662  */
5663 union mc_target {
5664 	struct page	*page;
5665 	swp_entry_t	ent;
5666 };
5667 
5668 enum mc_target_type {
5669 	MC_TARGET_NONE = 0,
5670 	MC_TARGET_PAGE,
5671 	MC_TARGET_SWAP,
5672 };
5673 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5674 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5675 						unsigned long addr, pte_t ptent)
5676 {
5677 	struct page *page = vm_normal_page(vma, addr, ptent);
5678 
5679 	if (!page || !page_mapped(page))
5680 		return NULL;
5681 	if (PageAnon(page)) {
5682 		/* we don't move shared anon */
5683 		if (!move_anon())
5684 			return NULL;
5685 	} else if (!move_file())
5686 		/* we ignore mapcount for file pages */
5687 		return NULL;
5688 	if (!get_page_unless_zero(page))
5689 		return NULL;
5690 
5691 	return page;
5692 }
5693 
5694 #ifdef CONFIG_SWAP
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5695 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5696 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5697 {
5698 	struct page *page = NULL;
5699 	swp_entry_t ent = pte_to_swp_entry(ptent);
5700 
5701 	if (!move_anon() || non_swap_entry(ent))
5702 		return NULL;
5703 	/*
5704 	 * Because lookup_swap_cache() updates some statistics counter,
5705 	 * we call find_get_page() with swapper_space directly.
5706 	 */
5707 	page = find_get_page(swap_address_space(ent), ent.val);
5708 	if (do_swap_account)
5709 		entry->val = ent.val;
5710 
5711 	return page;
5712 }
5713 #else
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5714 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5715 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5716 {
5717 	return NULL;
5718 }
5719 #endif
5720 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5721 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5722 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5723 {
5724 	struct page *page = NULL;
5725 	struct address_space *mapping;
5726 	pgoff_t pgoff;
5727 
5728 	if (!vma->vm_file) /* anonymous vma */
5729 		return NULL;
5730 	if (!move_file())
5731 		return NULL;
5732 
5733 	mapping = vma->vm_file->f_mapping;
5734 	if (pte_none(ptent))
5735 		pgoff = linear_page_index(vma, addr);
5736 	else /* pte_file(ptent) is true */
5737 		pgoff = pte_to_pgoff(ptent);
5738 
5739 	/* page is moved even if it's not RSS of this task(page-faulted). */
5740 #ifdef CONFIG_SWAP
5741 	/* shmem/tmpfs may report page out on swap: account for that too. */
5742 	if (shmem_mapping(mapping)) {
5743 		page = find_get_entry(mapping, pgoff);
5744 		if (radix_tree_exceptional_entry(page)) {
5745 			swp_entry_t swp = radix_to_swp_entry(page);
5746 			if (do_swap_account)
5747 				*entry = swp;
5748 			page = find_get_page(swap_address_space(swp), swp.val);
5749 		}
5750 	} else
5751 		page = find_get_page(mapping, pgoff);
5752 #else
5753 	page = find_get_page(mapping, pgoff);
5754 #endif
5755 	return page;
5756 }
5757 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5758 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5759 		unsigned long addr, pte_t ptent, union mc_target *target)
5760 {
5761 	struct page *page = NULL;
5762 	struct page_cgroup *pc;
5763 	enum mc_target_type ret = MC_TARGET_NONE;
5764 	swp_entry_t ent = { .val = 0 };
5765 
5766 	if (pte_present(ptent))
5767 		page = mc_handle_present_pte(vma, addr, ptent);
5768 	else if (is_swap_pte(ptent))
5769 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5770 	else if (pte_none(ptent) || pte_file(ptent))
5771 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5772 
5773 	if (!page && !ent.val)
5774 		return ret;
5775 	if (page) {
5776 		pc = lookup_page_cgroup(page);
5777 		/*
5778 		 * Do only loose check w/o serialization.
5779 		 * mem_cgroup_move_account() checks the pc is valid or
5780 		 * not under LRU exclusion.
5781 		 */
5782 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5783 			ret = MC_TARGET_PAGE;
5784 			if (target)
5785 				target->page = page;
5786 		}
5787 		if (!ret || !target)
5788 			put_page(page);
5789 	}
5790 	/* There is a swap entry and a page doesn't exist or isn't charged */
5791 	if (ent.val && !ret &&
5792 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5793 		ret = MC_TARGET_SWAP;
5794 		if (target)
5795 			target->ent = ent;
5796 	}
5797 	return ret;
5798 }
5799 
5800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5801 /*
5802  * We don't consider swapping or file mapped pages because THP does not
5803  * support them for now.
5804  * Caller should make sure that pmd_trans_huge(pmd) is true.
5805  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5806 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5807 		unsigned long addr, pmd_t pmd, union mc_target *target)
5808 {
5809 	struct page *page = NULL;
5810 	struct page_cgroup *pc;
5811 	enum mc_target_type ret = MC_TARGET_NONE;
5812 
5813 	page = pmd_page(pmd);
5814 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5815 	if (!move_anon())
5816 		return ret;
5817 	pc = lookup_page_cgroup(page);
5818 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5819 		ret = MC_TARGET_PAGE;
5820 		if (target) {
5821 			get_page(page);
5822 			target->page = page;
5823 		}
5824 	}
5825 	return ret;
5826 }
5827 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5828 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5829 		unsigned long addr, pmd_t pmd, union mc_target *target)
5830 {
5831 	return MC_TARGET_NONE;
5832 }
5833 #endif
5834 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5835 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5836 					unsigned long addr, unsigned long end,
5837 					struct mm_walk *walk)
5838 {
5839 	struct vm_area_struct *vma = walk->private;
5840 	pte_t *pte;
5841 	spinlock_t *ptl;
5842 
5843 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5844 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5845 			mc.precharge += HPAGE_PMD_NR;
5846 		spin_unlock(ptl);
5847 		return 0;
5848 	}
5849 
5850 	if (pmd_trans_unstable(pmd))
5851 		return 0;
5852 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5853 	for (; addr != end; pte++, addr += PAGE_SIZE)
5854 		if (get_mctgt_type(vma, addr, *pte, NULL))
5855 			mc.precharge++;	/* increment precharge temporarily */
5856 	pte_unmap_unlock(pte - 1, ptl);
5857 	cond_resched();
5858 
5859 	return 0;
5860 }
5861 
mem_cgroup_count_precharge(struct mm_struct * mm)5862 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5863 {
5864 	unsigned long precharge;
5865 	struct vm_area_struct *vma;
5866 
5867 	down_read(&mm->mmap_sem);
5868 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5869 		struct mm_walk mem_cgroup_count_precharge_walk = {
5870 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5871 			.mm = mm,
5872 			.private = vma,
5873 		};
5874 		if (is_vm_hugetlb_page(vma))
5875 			continue;
5876 		walk_page_range(vma->vm_start, vma->vm_end,
5877 					&mem_cgroup_count_precharge_walk);
5878 	}
5879 	up_read(&mm->mmap_sem);
5880 
5881 	precharge = mc.precharge;
5882 	mc.precharge = 0;
5883 
5884 	return precharge;
5885 }
5886 
mem_cgroup_precharge_mc(struct mm_struct * mm)5887 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5888 {
5889 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5890 
5891 	VM_BUG_ON(mc.moving_task);
5892 	mc.moving_task = current;
5893 	return mem_cgroup_do_precharge(precharge);
5894 }
5895 
5896 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5897 static void __mem_cgroup_clear_mc(void)
5898 {
5899 	struct mem_cgroup *from = mc.from;
5900 	struct mem_cgroup *to = mc.to;
5901 	int i;
5902 
5903 	/* we must uncharge all the leftover precharges from mc.to */
5904 	if (mc.precharge) {
5905 		cancel_charge(mc.to, mc.precharge);
5906 		mc.precharge = 0;
5907 	}
5908 	/*
5909 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5910 	 * we must uncharge here.
5911 	 */
5912 	if (mc.moved_charge) {
5913 		cancel_charge(mc.from, mc.moved_charge);
5914 		mc.moved_charge = 0;
5915 	}
5916 	/* we must fixup refcnts and charges */
5917 	if (mc.moved_swap) {
5918 		/* uncharge swap account from the old cgroup */
5919 		if (!mem_cgroup_is_root(mc.from))
5920 			res_counter_uncharge(&mc.from->memsw,
5921 					     PAGE_SIZE * mc.moved_swap);
5922 
5923 		for (i = 0; i < mc.moved_swap; i++)
5924 			css_put(&mc.from->css);
5925 
5926 		/*
5927 		 * we charged both to->res and to->memsw, so we should
5928 		 * uncharge to->res.
5929 		 */
5930 		if (!mem_cgroup_is_root(mc.to))
5931 			res_counter_uncharge(&mc.to->res,
5932 					     PAGE_SIZE * mc.moved_swap);
5933 		/* we've already done css_get(mc.to) */
5934 		mc.moved_swap = 0;
5935 	}
5936 	memcg_oom_recover(from);
5937 	memcg_oom_recover(to);
5938 	wake_up_all(&mc.waitq);
5939 }
5940 
mem_cgroup_clear_mc(void)5941 static void mem_cgroup_clear_mc(void)
5942 {
5943 	struct mem_cgroup *from = mc.from;
5944 
5945 	/*
5946 	 * we must clear moving_task before waking up waiters at the end of
5947 	 * task migration.
5948 	 */
5949 	mc.moving_task = NULL;
5950 	__mem_cgroup_clear_mc();
5951 	spin_lock(&mc.lock);
5952 	mc.from = NULL;
5953 	mc.to = NULL;
5954 	spin_unlock(&mc.lock);
5955 	mem_cgroup_end_move(from);
5956 }
5957 
mem_cgroup_can_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)5958 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5959 				 struct cgroup_taskset *tset)
5960 {
5961 	struct task_struct *p = cgroup_taskset_first(tset);
5962 	int ret = 0;
5963 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5964 	unsigned long move_charge_at_immigrate;
5965 
5966 	/*
5967 	 * We are now commited to this value whatever it is. Changes in this
5968 	 * tunable will only affect upcoming migrations, not the current one.
5969 	 * So we need to save it, and keep it going.
5970 	 */
5971 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
5972 	if (move_charge_at_immigrate) {
5973 		struct mm_struct *mm;
5974 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5975 
5976 		VM_BUG_ON(from == memcg);
5977 
5978 		mm = get_task_mm(p);
5979 		if (!mm)
5980 			return 0;
5981 		/* We move charges only when we move a owner of the mm */
5982 		if (mm->owner == p) {
5983 			VM_BUG_ON(mc.from);
5984 			VM_BUG_ON(mc.to);
5985 			VM_BUG_ON(mc.precharge);
5986 			VM_BUG_ON(mc.moved_charge);
5987 			VM_BUG_ON(mc.moved_swap);
5988 			mem_cgroup_start_move(from);
5989 			spin_lock(&mc.lock);
5990 			mc.from = from;
5991 			mc.to = memcg;
5992 			mc.immigrate_flags = move_charge_at_immigrate;
5993 			spin_unlock(&mc.lock);
5994 			/* We set mc.moving_task later */
5995 
5996 			ret = mem_cgroup_precharge_mc(mm);
5997 			if (ret)
5998 				mem_cgroup_clear_mc();
5999 		}
6000 		mmput(mm);
6001 	}
6002 	return ret;
6003 }
6004 
mem_cgroup_cancel_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)6005 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6006 				     struct cgroup_taskset *tset)
6007 {
6008 	mem_cgroup_clear_mc();
6009 }
6010 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6011 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6012 				unsigned long addr, unsigned long end,
6013 				struct mm_walk *walk)
6014 {
6015 	int ret = 0;
6016 	struct vm_area_struct *vma = walk->private;
6017 	pte_t *pte;
6018 	spinlock_t *ptl;
6019 	enum mc_target_type target_type;
6020 	union mc_target target;
6021 	struct page *page;
6022 	struct page_cgroup *pc;
6023 
6024 	/*
6025 	 * We don't take compound_lock() here but no race with splitting thp
6026 	 * happens because:
6027 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6028 	 *    under splitting, which means there's no concurrent thp split,
6029 	 *  - if another thread runs into split_huge_page() just after we
6030 	 *    entered this if-block, the thread must wait for page table lock
6031 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6032 	 *    part of thp split is not executed yet.
6033 	 */
6034 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6035 		if (mc.precharge < HPAGE_PMD_NR) {
6036 			spin_unlock(ptl);
6037 			return 0;
6038 		}
6039 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6040 		if (target_type == MC_TARGET_PAGE) {
6041 			page = target.page;
6042 			if (!isolate_lru_page(page)) {
6043 				pc = lookup_page_cgroup(page);
6044 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6045 							pc, mc.from, mc.to)) {
6046 					mc.precharge -= HPAGE_PMD_NR;
6047 					mc.moved_charge += HPAGE_PMD_NR;
6048 				}
6049 				putback_lru_page(page);
6050 			}
6051 			put_page(page);
6052 		}
6053 		spin_unlock(ptl);
6054 		return 0;
6055 	}
6056 
6057 	if (pmd_trans_unstable(pmd))
6058 		return 0;
6059 retry:
6060 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061 	for (; addr != end; addr += PAGE_SIZE) {
6062 		pte_t ptent = *(pte++);
6063 		swp_entry_t ent;
6064 
6065 		if (!mc.precharge)
6066 			break;
6067 
6068 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6069 		case MC_TARGET_PAGE:
6070 			page = target.page;
6071 			if (isolate_lru_page(page))
6072 				goto put;
6073 			pc = lookup_page_cgroup(page);
6074 			if (!mem_cgroup_move_account(page, 1, pc,
6075 						     mc.from, mc.to)) {
6076 				mc.precharge--;
6077 				/* we uncharge from mc.from later. */
6078 				mc.moved_charge++;
6079 			}
6080 			putback_lru_page(page);
6081 put:			/* get_mctgt_type() gets the page */
6082 			put_page(page);
6083 			break;
6084 		case MC_TARGET_SWAP:
6085 			ent = target.ent;
6086 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6087 				mc.precharge--;
6088 				/* we fixup refcnts and charges later. */
6089 				mc.moved_swap++;
6090 			}
6091 			break;
6092 		default:
6093 			break;
6094 		}
6095 	}
6096 	pte_unmap_unlock(pte - 1, ptl);
6097 	cond_resched();
6098 
6099 	if (addr != end) {
6100 		/*
6101 		 * We have consumed all precharges we got in can_attach().
6102 		 * We try charge one by one, but don't do any additional
6103 		 * charges to mc.to if we have failed in charge once in attach()
6104 		 * phase.
6105 		 */
6106 		ret = mem_cgroup_do_precharge(1);
6107 		if (!ret)
6108 			goto retry;
6109 	}
6110 
6111 	return ret;
6112 }
6113 
mem_cgroup_move_charge(struct mm_struct * mm)6114 static void mem_cgroup_move_charge(struct mm_struct *mm)
6115 {
6116 	struct vm_area_struct *vma;
6117 
6118 	lru_add_drain_all();
6119 retry:
6120 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6121 		/*
6122 		 * Someone who are holding the mmap_sem might be waiting in
6123 		 * waitq. So we cancel all extra charges, wake up all waiters,
6124 		 * and retry. Because we cancel precharges, we might not be able
6125 		 * to move enough charges, but moving charge is a best-effort
6126 		 * feature anyway, so it wouldn't be a big problem.
6127 		 */
6128 		__mem_cgroup_clear_mc();
6129 		cond_resched();
6130 		goto retry;
6131 	}
6132 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6133 		int ret;
6134 		struct mm_walk mem_cgroup_move_charge_walk = {
6135 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6136 			.mm = mm,
6137 			.private = vma,
6138 		};
6139 		if (is_vm_hugetlb_page(vma))
6140 			continue;
6141 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6142 						&mem_cgroup_move_charge_walk);
6143 		if (ret)
6144 			/*
6145 			 * means we have consumed all precharges and failed in
6146 			 * doing additional charge. Just abandon here.
6147 			 */
6148 			break;
6149 	}
6150 	up_read(&mm->mmap_sem);
6151 }
6152 
mem_cgroup_move_task(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)6153 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6154 				 struct cgroup_taskset *tset)
6155 {
6156 	struct task_struct *p = cgroup_taskset_first(tset);
6157 	struct mm_struct *mm = get_task_mm(p);
6158 
6159 	if (mm) {
6160 		if (mc.to)
6161 			mem_cgroup_move_charge(mm);
6162 		mmput(mm);
6163 	}
6164 	if (mc.to)
6165 		mem_cgroup_clear_mc();
6166 }
6167 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)6168 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6169 				 struct cgroup_taskset *tset)
6170 {
6171 	return 0;
6172 }
mem_cgroup_cancel_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)6173 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6174 				     struct cgroup_taskset *tset)
6175 {
6176 }
mem_cgroup_move_task(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)6177 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6178 				 struct cgroup_taskset *tset)
6179 {
6180 }
6181 #endif
6182 
6183 /*
6184  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6185  * to verify whether we're attached to the default hierarchy on each mount
6186  * attempt.
6187  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6188 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6189 {
6190 	/*
6191 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6192 	 * guarantees that @root doesn't have any children, so turning it
6193 	 * on for the root memcg is enough.
6194 	 */
6195 	if (cgroup_on_dfl(root_css->cgroup))
6196 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6197 }
6198 
6199 struct cgroup_subsys memory_cgrp_subsys = {
6200 	.css_alloc = mem_cgroup_css_alloc,
6201 	.css_online = mem_cgroup_css_online,
6202 	.css_offline = mem_cgroup_css_offline,
6203 	.css_free = mem_cgroup_css_free,
6204 	.css_reset = mem_cgroup_css_reset,
6205 	.can_attach = mem_cgroup_can_attach,
6206 	.cancel_attach = mem_cgroup_cancel_attach,
6207 	.attach = mem_cgroup_move_task,
6208 	.bind = mem_cgroup_bind,
6209 	.legacy_cftypes = mem_cgroup_files,
6210 	.early_init = 0,
6211 };
6212 
6213 #ifdef CONFIG_MEMCG_SWAP
enable_swap_account(char * s)6214 static int __init enable_swap_account(char *s)
6215 {
6216 	if (!strcmp(s, "1"))
6217 		really_do_swap_account = 1;
6218 	else if (!strcmp(s, "0"))
6219 		really_do_swap_account = 0;
6220 	return 1;
6221 }
6222 __setup("swapaccount=", enable_swap_account);
6223 
memsw_file_init(void)6224 static void __init memsw_file_init(void)
6225 {
6226 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6227 					  memsw_cgroup_files));
6228 }
6229 
enable_swap_cgroup(void)6230 static void __init enable_swap_cgroup(void)
6231 {
6232 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6233 		do_swap_account = 1;
6234 		memsw_file_init();
6235 	}
6236 }
6237 
6238 #else
enable_swap_cgroup(void)6239 static void __init enable_swap_cgroup(void)
6240 {
6241 }
6242 #endif
6243 
6244 #ifdef CONFIG_MEMCG_SWAP
6245 /**
6246  * mem_cgroup_swapout - transfer a memsw charge to swap
6247  * @page: page whose memsw charge to transfer
6248  * @entry: swap entry to move the charge to
6249  *
6250  * Transfer the memsw charge of @page to @entry.
6251  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)6252 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6253 {
6254 	struct page_cgroup *pc;
6255 	unsigned short oldid;
6256 
6257 	VM_BUG_ON_PAGE(PageLRU(page), page);
6258 	VM_BUG_ON_PAGE(page_count(page), page);
6259 
6260 	if (!do_swap_account)
6261 		return;
6262 
6263 	pc = lookup_page_cgroup(page);
6264 
6265 	/* Readahead page, never charged */
6266 	if (!PageCgroupUsed(pc))
6267 		return;
6268 
6269 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6270 
6271 	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6272 	VM_BUG_ON_PAGE(oldid, page);
6273 
6274 	pc->flags &= ~PCG_MEMSW;
6275 	css_get(&pc->mem_cgroup->css);
6276 	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6277 }
6278 
6279 /**
6280  * mem_cgroup_uncharge_swap - uncharge a swap entry
6281  * @entry: swap entry to uncharge
6282  *
6283  * Drop the memsw charge associated with @entry.
6284  */
mem_cgroup_uncharge_swap(swp_entry_t entry)6285 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6286 {
6287 	struct mem_cgroup *memcg;
6288 	unsigned short id;
6289 
6290 	if (!do_swap_account)
6291 		return;
6292 
6293 	id = swap_cgroup_record(entry, 0);
6294 	rcu_read_lock();
6295 	memcg = mem_cgroup_lookup(id);
6296 	if (memcg) {
6297 		if (!mem_cgroup_is_root(memcg))
6298 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6299 		mem_cgroup_swap_statistics(memcg, false);
6300 		css_put(&memcg->css);
6301 	}
6302 	rcu_read_unlock();
6303 }
6304 #endif
6305 
6306 /**
6307  * mem_cgroup_try_charge - try charging a page
6308  * @page: page to charge
6309  * @mm: mm context of the victim
6310  * @gfp_mask: reclaim mode
6311  * @memcgp: charged memcg return
6312  *
6313  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6314  * pages according to @gfp_mask if necessary.
6315  *
6316  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6317  * Otherwise, an error code is returned.
6318  *
6319  * After page->mapping has been set up, the caller must finalize the
6320  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6321  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6322  */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp)6323 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6324 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
6325 {
6326 	struct mem_cgroup *memcg = NULL;
6327 	unsigned int nr_pages = 1;
6328 	int ret = 0;
6329 
6330 	if (mem_cgroup_disabled())
6331 		goto out;
6332 
6333 	if (PageSwapCache(page)) {
6334 		struct page_cgroup *pc = lookup_page_cgroup(page);
6335 		/*
6336 		 * Every swap fault against a single page tries to charge the
6337 		 * page, bail as early as possible.  shmem_unuse() encounters
6338 		 * already charged pages, too.  The USED bit is protected by
6339 		 * the page lock, which serializes swap cache removal, which
6340 		 * in turn serializes uncharging.
6341 		 */
6342 		if (PageCgroupUsed(pc))
6343 			goto out;
6344 	}
6345 
6346 	if (PageTransHuge(page)) {
6347 		nr_pages <<= compound_order(page);
6348 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6349 	}
6350 
6351 	if (do_swap_account && PageSwapCache(page))
6352 		memcg = try_get_mem_cgroup_from_page(page);
6353 	if (!memcg)
6354 		memcg = get_mem_cgroup_from_mm(mm);
6355 
6356 	ret = try_charge(memcg, gfp_mask, nr_pages);
6357 
6358 	css_put(&memcg->css);
6359 
6360 	if (ret == -EINTR) {
6361 		memcg = root_mem_cgroup;
6362 		ret = 0;
6363 	}
6364 out:
6365 	*memcgp = memcg;
6366 	return ret;
6367 }
6368 
6369 /**
6370  * mem_cgroup_commit_charge - commit a page charge
6371  * @page: page to charge
6372  * @memcg: memcg to charge the page to
6373  * @lrucare: page might be on LRU already
6374  *
6375  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6376  * after page->mapping has been set up.  This must happen atomically
6377  * as part of the page instantiation, i.e. under the page table lock
6378  * for anonymous pages, under the page lock for page and swap cache.
6379  *
6380  * In addition, the page must not be on the LRU during the commit, to
6381  * prevent racing with task migration.  If it might be, use @lrucare.
6382  *
6383  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6384  */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)6385 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6386 			      bool lrucare)
6387 {
6388 	unsigned int nr_pages = 1;
6389 
6390 	VM_BUG_ON_PAGE(!page->mapping, page);
6391 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6392 
6393 	if (mem_cgroup_disabled())
6394 		return;
6395 	/*
6396 	 * Swap faults will attempt to charge the same page multiple
6397 	 * times.  But reuse_swap_page() might have removed the page
6398 	 * from swapcache already, so we can't check PageSwapCache().
6399 	 */
6400 	if (!memcg)
6401 		return;
6402 
6403 	commit_charge(page, memcg, lrucare);
6404 
6405 	if (PageTransHuge(page)) {
6406 		nr_pages <<= compound_order(page);
6407 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6408 	}
6409 
6410 	local_irq_disable();
6411 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6412 	memcg_check_events(memcg, page);
6413 	local_irq_enable();
6414 
6415 	if (do_swap_account && PageSwapCache(page)) {
6416 		swp_entry_t entry = { .val = page_private(page) };
6417 		/*
6418 		 * The swap entry might not get freed for a long time,
6419 		 * let's not wait for it.  The page already received a
6420 		 * memory+swap charge, drop the swap entry duplicate.
6421 		 */
6422 		mem_cgroup_uncharge_swap(entry);
6423 	}
6424 }
6425 
6426 /**
6427  * mem_cgroup_cancel_charge - cancel a page charge
6428  * @page: page to charge
6429  * @memcg: memcg to charge the page to
6430  *
6431  * Cancel a charge transaction started by mem_cgroup_try_charge().
6432  */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg)6433 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6434 {
6435 	unsigned int nr_pages = 1;
6436 
6437 	if (mem_cgroup_disabled())
6438 		return;
6439 	/*
6440 	 * Swap faults will attempt to charge the same page multiple
6441 	 * times.  But reuse_swap_page() might have removed the page
6442 	 * from swapcache already, so we can't check PageSwapCache().
6443 	 */
6444 	if (!memcg)
6445 		return;
6446 
6447 	if (PageTransHuge(page)) {
6448 		nr_pages <<= compound_order(page);
6449 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6450 	}
6451 
6452 	cancel_charge(memcg, nr_pages);
6453 }
6454 
uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_mem,unsigned long nr_memsw,unsigned long nr_anon,unsigned long nr_file,unsigned long nr_huge,struct page * dummy_page)6455 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6456 			   unsigned long nr_mem, unsigned long nr_memsw,
6457 			   unsigned long nr_anon, unsigned long nr_file,
6458 			   unsigned long nr_huge, struct page *dummy_page)
6459 {
6460 	unsigned long flags;
6461 
6462 	if (!mem_cgroup_is_root(memcg)) {
6463 		if (nr_mem)
6464 			res_counter_uncharge(&memcg->res,
6465 					     nr_mem * PAGE_SIZE);
6466 		if (nr_memsw)
6467 			res_counter_uncharge(&memcg->memsw,
6468 					     nr_memsw * PAGE_SIZE);
6469 		memcg_oom_recover(memcg);
6470 	}
6471 
6472 	local_irq_save(flags);
6473 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6474 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6475 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6476 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6477 	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6478 	memcg_check_events(memcg, dummy_page);
6479 	local_irq_restore(flags);
6480 }
6481 
uncharge_list(struct list_head * page_list)6482 static void uncharge_list(struct list_head *page_list)
6483 {
6484 	struct mem_cgroup *memcg = NULL;
6485 	unsigned long nr_memsw = 0;
6486 	unsigned long nr_anon = 0;
6487 	unsigned long nr_file = 0;
6488 	unsigned long nr_huge = 0;
6489 	unsigned long pgpgout = 0;
6490 	unsigned long nr_mem = 0;
6491 	struct list_head *next;
6492 	struct page *page;
6493 
6494 	next = page_list->next;
6495 	do {
6496 		unsigned int nr_pages = 1;
6497 		struct page_cgroup *pc;
6498 
6499 		page = list_entry(next, struct page, lru);
6500 		next = page->lru.next;
6501 
6502 		VM_BUG_ON_PAGE(PageLRU(page), page);
6503 		VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
6504 
6505 		pc = lookup_page_cgroup(page);
6506 		if (!PageCgroupUsed(pc))
6507 			continue;
6508 
6509 		/*
6510 		 * Nobody should be changing or seriously looking at
6511 		 * pc->mem_cgroup and pc->flags at this point, we have
6512 		 * fully exclusive access to the page.
6513 		 */
6514 
6515 		if (memcg != pc->mem_cgroup) {
6516 			if (memcg) {
6517 				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6518 					       nr_anon, nr_file, nr_huge, page);
6519 				pgpgout = nr_mem = nr_memsw = 0;
6520 				nr_anon = nr_file = nr_huge = 0;
6521 			}
6522 			memcg = pc->mem_cgroup;
6523 		}
6524 
6525 		if (PageTransHuge(page)) {
6526 			nr_pages <<= compound_order(page);
6527 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6528 			nr_huge += nr_pages;
6529 		}
6530 
6531 		if (PageAnon(page))
6532 			nr_anon += nr_pages;
6533 		else
6534 			nr_file += nr_pages;
6535 
6536 		if (pc->flags & PCG_MEM)
6537 			nr_mem += nr_pages;
6538 		if (pc->flags & PCG_MEMSW)
6539 			nr_memsw += nr_pages;
6540 		pc->flags = 0;
6541 
6542 		pgpgout++;
6543 	} while (next != page_list);
6544 
6545 	if (memcg)
6546 		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6547 			       nr_anon, nr_file, nr_huge, page);
6548 }
6549 
6550 /**
6551  * mem_cgroup_uncharge - uncharge a page
6552  * @page: page to uncharge
6553  *
6554  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6555  * mem_cgroup_commit_charge().
6556  */
mem_cgroup_uncharge(struct page * page)6557 void mem_cgroup_uncharge(struct page *page)
6558 {
6559 	struct page_cgroup *pc;
6560 
6561 	if (mem_cgroup_disabled())
6562 		return;
6563 
6564 	/* Don't touch page->lru of any random page, pre-check: */
6565 	pc = lookup_page_cgroup(page);
6566 	if (!PageCgroupUsed(pc))
6567 		return;
6568 
6569 	INIT_LIST_HEAD(&page->lru);
6570 	uncharge_list(&page->lru);
6571 }
6572 
6573 /**
6574  * mem_cgroup_uncharge_list - uncharge a list of page
6575  * @page_list: list of pages to uncharge
6576  *
6577  * Uncharge a list of pages previously charged with
6578  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6579  */
mem_cgroup_uncharge_list(struct list_head * page_list)6580 void mem_cgroup_uncharge_list(struct list_head *page_list)
6581 {
6582 	if (mem_cgroup_disabled())
6583 		return;
6584 
6585 	if (!list_empty(page_list))
6586 		uncharge_list(page_list);
6587 }
6588 
6589 /**
6590  * mem_cgroup_migrate - migrate a charge to another page
6591  * @oldpage: currently charged page
6592  * @newpage: page to transfer the charge to
6593  * @lrucare: either or both pages might be on the LRU already
6594  *
6595  * Migrate the charge from @oldpage to @newpage.
6596  *
6597  * Both pages must be locked, @newpage->mapping must be set up.
6598  */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage,bool lrucare)6599 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6600 			bool lrucare)
6601 {
6602 	struct page_cgroup *pc;
6603 	int isolated;
6604 
6605 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6606 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6607 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6608 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6609 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6610 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6611 		       newpage);
6612 
6613 	if (mem_cgroup_disabled())
6614 		return;
6615 
6616 	/* Page cache replacement: new page already charged? */
6617 	pc = lookup_page_cgroup(newpage);
6618 	if (PageCgroupUsed(pc))
6619 		return;
6620 
6621 	/* Re-entrant migration: old page already uncharged? */
6622 	pc = lookup_page_cgroup(oldpage);
6623 	if (!PageCgroupUsed(pc))
6624 		return;
6625 
6626 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6627 	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6628 
6629 	if (lrucare)
6630 		lock_page_lru(oldpage, &isolated);
6631 
6632 	pc->flags = 0;
6633 
6634 	if (lrucare)
6635 		unlock_page_lru(oldpage, isolated);
6636 
6637 	commit_charge(newpage, pc->mem_cgroup, lrucare);
6638 }
6639 
6640 /*
6641  * subsys_initcall() for memory controller.
6642  *
6643  * Some parts like hotcpu_notifier() have to be initialized from this context
6644  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6645  * everything that doesn't depend on a specific mem_cgroup structure should
6646  * be initialized from here.
6647  */
mem_cgroup_init(void)6648 static int __init mem_cgroup_init(void)
6649 {
6650 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6651 	enable_swap_cgroup();
6652 	mem_cgroup_soft_limit_tree_init();
6653 	memcg_stock_init();
6654 	return 0;
6655 }
6656 subsys_initcall(mem_cgroup_init);
6657