• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #ifndef _ASM_TILE_PAGE_H
16 #define _ASM_TILE_PAGE_H
17 
18 #include <linux/const.h>
19 #include <hv/hypervisor.h>
20 #include <arch/chip.h>
21 
22 /* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
23 #if defined(CONFIG_PAGE_SIZE_16KB)
24 #define PAGE_SHIFT	14
25 #define CTX_PAGE_FLAG	HV_CTX_PG_SM_16K
26 #elif defined(CONFIG_PAGE_SIZE_64KB)
27 #define PAGE_SHIFT	16
28 #define CTX_PAGE_FLAG	HV_CTX_PG_SM_64K
29 #else
30 #define PAGE_SHIFT	HV_LOG2_DEFAULT_PAGE_SIZE_SMALL
31 #define CTX_PAGE_FLAG	0
32 #endif
33 #define HPAGE_SHIFT	HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
34 
35 #define PAGE_SIZE	(_AC(1, UL) << PAGE_SHIFT)
36 #define HPAGE_SIZE	(_AC(1, UL) << HPAGE_SHIFT)
37 
38 #define PAGE_MASK	(~(PAGE_SIZE - 1))
39 #define HPAGE_MASK	(~(HPAGE_SIZE - 1))
40 
41 /*
42  * If the Kconfig doesn't specify, set a maximum zone order that
43  * is enough so that we can create huge pages from small pages given
44  * the respective sizes of the two page types.  See <linux/mmzone.h>.
45  */
46 #ifndef CONFIG_FORCE_MAX_ZONEORDER
47 #define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
48 #endif
49 
50 #ifndef __ASSEMBLY__
51 
52 #include <linux/types.h>
53 #include <linux/string.h>
54 
55 struct page;
56 
clear_page(void * page)57 static inline void clear_page(void *page)
58 {
59 	memset(page, 0, PAGE_SIZE);
60 }
61 
copy_page(void * to,void * from)62 static inline void copy_page(void *to, void *from)
63 {
64 	memcpy(to, from, PAGE_SIZE);
65 }
66 
clear_user_page(void * page,unsigned long vaddr,struct page * pg)67 static inline void clear_user_page(void *page, unsigned long vaddr,
68 				struct page *pg)
69 {
70 	clear_page(page);
71 }
72 
copy_user_page(void * to,void * from,unsigned long vaddr,struct page * topage)73 static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
74 				struct page *topage)
75 {
76 	copy_page(to, from);
77 }
78 
79 /*
80  * Hypervisor page tables are made of the same basic structure.
81  */
82 
83 typedef HV_PTE pte_t;
84 typedef HV_PTE pgd_t;
85 typedef HV_PTE pgprot_t;
86 
87 /*
88  * User L2 page tables are managed as one L2 page table per page,
89  * because we use the page allocator for them.  This keeps the allocation
90  * simple, but it's also inefficient, since L2 page tables are much smaller
91  * than pages (currently 2KB vs 64KB).  So we should revisit this.
92  */
93 typedef struct page *pgtable_t;
94 
95 /* Must be a macro since it is used to create constants. */
96 #define __pgprot(val) hv_pte(val)
97 
98 /* Rarely-used initializers, typically with a "zero" value. */
99 #define __pte(x) hv_pte(x)
100 #define __pgd(x) hv_pte(x)
101 
pgprot_val(pgprot_t pgprot)102 static inline u64 pgprot_val(pgprot_t pgprot)
103 {
104 	return hv_pte_val(pgprot);
105 }
106 
pte_val(pte_t pte)107 static inline u64 pte_val(pte_t pte)
108 {
109 	return hv_pte_val(pte);
110 }
111 
pgd_val(pgd_t pgd)112 static inline u64 pgd_val(pgd_t pgd)
113 {
114 	return hv_pte_val(pgd);
115 }
116 
117 #ifdef __tilegx__
118 
119 typedef HV_PTE pmd_t;
120 
121 #define __pmd(x) hv_pte(x)
122 
pmd_val(pmd_t pmd)123 static inline u64 pmd_val(pmd_t pmd)
124 {
125 	return hv_pte_val(pmd);
126 }
127 
128 #endif
129 
get_order(unsigned long size)130 static inline __attribute_const__ int get_order(unsigned long size)
131 {
132 	return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
133 }
134 
135 #endif /* !__ASSEMBLY__ */
136 
137 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
138 
139 #define HUGE_MAX_HSTATE		6
140 
141 #ifdef CONFIG_HUGETLB_PAGE
142 #define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
143 #endif
144 
145 /* Allow overriding how much VA or PA the kernel will use. */
146 #define MAX_PA_WIDTH CHIP_PA_WIDTH()
147 #define MAX_VA_WIDTH CHIP_VA_WIDTH()
148 
149 /* Each memory controller has PAs distinct in their high bits. */
150 #define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS())
151 #define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
152 #define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
153 #define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
154 
155 #ifdef __tilegx__
156 
157 /*
158  * We reserve the lower half of memory for user-space programs, and the
159  * upper half for system code.  We re-map all of physical memory in the
160  * upper half, which takes a quarter of our VA space.  Then we have
161  * the vmalloc regions.  The supervisor code lives at the highest address,
162  * with the hypervisor above that.
163  *
164  * Loadable kernel modules are placed immediately after the static
165  * supervisor code, with each being allocated a 256MB region of
166  * address space, so we don't have to worry about the range of "jal"
167  * and other branch instructions.
168  *
169  * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
170  * Similarly, for now we don't play any struct page mapping games.
171  */
172 
173 #if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH
174 # error Too much PA to map with the VA available!
175 #endif
176 
177 #define PAGE_OFFSET		(-(_AC(1, UL) << (MAX_VA_WIDTH - 1)))
178 #define KERNEL_HIGH_VADDR	_AC(0xfffffff800000000, UL)  /* high 32GB */
179 #define FIXADDR_BASE		(KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */
180 #define FIXADDR_TOP		(KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */
181 #define _VMALLOC_START		FIXADDR_TOP
182 #define MEM_SV_START		(KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */
183 #define MEM_MODULE_START	(MEM_SV_START + (256*1024*1024)) /* 256 MB */
184 #define MEM_MODULE_END		(MEM_MODULE_START + (256*1024*1024))
185 
186 #else /* !__tilegx__ */
187 
188 /*
189  * A PAGE_OFFSET of 0xC0000000 means that the kernel has
190  * a virtual address space of one gigabyte, which limits the
191  * amount of physical memory you can use to about 768MB.
192  * If you want more physical memory than this then see the CONFIG_HIGHMEM
193  * option in the kernel configuration.
194  *
195  * The top 16MB chunk in the table below is unavailable to Linux.  Since
196  * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
197  * (depending on whether the kernel is at PL2 or Pl1), we map all of the
198  * bottom of RAM at this address with a huge page table entry to minimize
199  * its ITLB footprint (as well as at PAGE_OFFSET).  The last architected
200  * requirement is that user interrupt vectors live at 0xfc000000, so we
201  * make that range of memory available to user processes.  The remaining
202  * regions are sized as shown; the first four addresses use the PL 1
203  * values, and after that, we show "typical" values, since the actual
204  * addresses depend on kernel #defines.
205  *
206  * MEM_HV_START                    0xfe000000
207  * MEM_SV_START  (kernel code)     0xfd000000
208  * MEM_USER_INTRPT (user vector)   0xfc000000
209  * FIX_KMAP_xxx                    0xfa000000 (via NR_CPUS * KM_TYPE_NR)
210  * PKMAP_BASE                      0xf9000000 (via LAST_PKMAP)
211  * VMALLOC_START                   0xf7000000 (via VMALLOC_RESERVE)
212  * mapped LOWMEM                   0xc0000000
213  */
214 
215 #define MEM_USER_INTRPT		_AC(0xfc000000, UL)
216 #define MEM_SV_START		_AC(0xfd000000, UL)
217 #define MEM_HV_START		_AC(0xfe000000, UL)
218 
219 #define INTRPT_SIZE		0x4000
220 
221 /* Tolerate page size larger than the architecture interrupt region size. */
222 #if PAGE_SIZE > INTRPT_SIZE
223 #undef INTRPT_SIZE
224 #define INTRPT_SIZE PAGE_SIZE
225 #endif
226 
227 #define KERNEL_HIGH_VADDR	MEM_USER_INTRPT
228 #define FIXADDR_TOP		(KERNEL_HIGH_VADDR - PAGE_SIZE)
229 
230 #define PAGE_OFFSET		_AC(CONFIG_PAGE_OFFSET, UL)
231 
232 /* On 32-bit architectures we mix kernel modules in with other vmaps. */
233 #define MEM_MODULE_START	VMALLOC_START
234 #define MEM_MODULE_END		VMALLOC_END
235 
236 #endif /* __tilegx__ */
237 
238 #if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD)
239 
240 #ifdef CONFIG_HIGHMEM
241 
242 /* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
243 extern unsigned long pbase_map[];
244 extern void *vbase_map[];
245 
kaddr_to_pfn(const volatile void * _kaddr)246 static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
247 {
248 	unsigned long kaddr = (unsigned long)_kaddr;
249 	return pbase_map[kaddr >> HPAGE_SHIFT] +
250 		((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
251 }
252 
pfn_to_kaddr(unsigned long pfn)253 static inline void *pfn_to_kaddr(unsigned long pfn)
254 {
255 	return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
256 }
257 
virt_to_phys(const volatile void * kaddr)258 static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
259 {
260 	unsigned long pfn = kaddr_to_pfn(kaddr);
261 	return ((phys_addr_t)pfn << PAGE_SHIFT) +
262 		((unsigned long)kaddr & (PAGE_SIZE-1));
263 }
264 
phys_to_virt(phys_addr_t paddr)265 static inline void *phys_to_virt(phys_addr_t paddr)
266 {
267 	return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
268 }
269 
270 /* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
virt_addr_valid(const volatile void * kaddr)271 static inline int virt_addr_valid(const volatile void *kaddr)
272 {
273 	extern void *high_memory;  /* copied from <linux/mm.h> */
274 	return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
275 }
276 
277 #else /* !CONFIG_HIGHMEM */
278 
kaddr_to_pfn(const volatile void * kaddr)279 static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
280 {
281 	return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
282 }
283 
pfn_to_kaddr(unsigned long pfn)284 static inline void *pfn_to_kaddr(unsigned long pfn)
285 {
286 	return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
287 }
288 
virt_to_phys(const volatile void * kaddr)289 static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
290 {
291 	return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
292 }
293 
phys_to_virt(phys_addr_t paddr)294 static inline void *phys_to_virt(phys_addr_t paddr)
295 {
296 	return (void *)((unsigned long)paddr + PAGE_OFFSET);
297 }
298 
299 /* Check that the given address is within some mapped range of PAs. */
300 #define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
301 
302 #endif /* !CONFIG_HIGHMEM */
303 
304 /* All callers are not consistent in how they call these functions. */
305 #define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
306 #define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
307 
308 extern int devmem_is_allowed(unsigned long pagenr);
309 
310 #ifdef CONFIG_FLATMEM
pfn_valid(unsigned long pfn)311 static inline int pfn_valid(unsigned long pfn)
312 {
313 	return pfn < max_mapnr;
314 }
315 #endif
316 
317 /* Provide as macros since these require some other headers included. */
318 #define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
319 #define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
320 #define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
321 
322 struct mm_struct;
323 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
324 extern pte_t *virt_to_kpte(unsigned long kaddr);
325 
326 #endif /* !__ASSEMBLY__ */
327 
328 #define VM_DATA_DEFAULT_FLAGS \
329 	(VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
330 
331 #include <asm-generic/memory_model.h>
332 
333 #endif /* _ASM_TILE_PAGE_H */
334