• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20 
21 #define	DM_MSG_PREFIX	"thin"
22 
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31 
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33 
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35 		"A percentage of time allocated for copy on write");
36 
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43 
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48 
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106 
107 /*----------------------------------------------------------------*/
108 
109 /*
110  * Key building.
111  */
build_data_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)112 static void build_data_key(struct dm_thin_device *td,
113 			   dm_block_t b, struct dm_cell_key *key)
114 {
115 	key->virtual = 0;
116 	key->dev = dm_thin_dev_id(td);
117 	key->block = b;
118 }
119 
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct dm_cell_key * key)120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121 			      struct dm_cell_key *key)
122 {
123 	key->virtual = 1;
124 	key->dev = dm_thin_dev_id(td);
125 	key->block = b;
126 }
127 
128 /*----------------------------------------------------------------*/
129 
130 /*
131  * A pool device ties together a metadata device and a data device.  It
132  * also provides the interface for creating and destroying internal
133  * devices.
134  */
135 struct dm_thin_new_mapping;
136 
137 /*
138  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
139  */
140 enum pool_mode {
141 	PM_WRITE,		/* metadata may be changed */
142 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
143 	PM_READ_ONLY,		/* metadata may not be changed */
144 	PM_FAIL,		/* all I/O fails */
145 };
146 
147 struct pool_features {
148 	enum pool_mode mode;
149 
150 	bool zero_new_blocks:1;
151 	bool discard_enabled:1;
152 	bool discard_passdown:1;
153 	bool error_if_no_space:1;
154 };
155 
156 struct thin_c;
157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159 
160 struct pool {
161 	struct list_head list;
162 	struct dm_target *ti;	/* Only set if a pool target is bound */
163 
164 	struct mapped_device *pool_md;
165 	struct block_device *md_dev;
166 	struct dm_pool_metadata *pmd;
167 
168 	dm_block_t low_water_blocks;
169 	uint32_t sectors_per_block;
170 	int sectors_per_block_shift;
171 
172 	struct pool_features pf;
173 	bool low_water_triggered:1;	/* A dm event has been sent */
174 
175 	struct dm_bio_prison *prison;
176 	struct dm_kcopyd_client *copier;
177 
178 	struct workqueue_struct *wq;
179 	struct work_struct worker;
180 	struct delayed_work waker;
181 	struct delayed_work no_space_timeout;
182 
183 	unsigned long last_commit_jiffies;
184 	unsigned ref_count;
185 
186 	spinlock_t lock;
187 	struct bio_list deferred_flush_bios;
188 	struct list_head prepared_mappings;
189 	struct list_head prepared_discards;
190 	struct list_head active_thins;
191 
192 	struct dm_deferred_set *shared_read_ds;
193 	struct dm_deferred_set *all_io_ds;
194 
195 	struct dm_thin_new_mapping *next_mapping;
196 	mempool_t *mapping_pool;
197 
198 	process_bio_fn process_bio;
199 	process_bio_fn process_discard;
200 
201 	process_mapping_fn process_prepared_mapping;
202 	process_mapping_fn process_prepared_discard;
203 };
204 
205 static enum pool_mode get_pool_mode(struct pool *pool);
206 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207 
208 /*
209  * Target context for a pool.
210  */
211 struct pool_c {
212 	struct dm_target *ti;
213 	struct pool *pool;
214 	struct dm_dev *data_dev;
215 	struct dm_dev *metadata_dev;
216 	struct dm_target_callbacks callbacks;
217 
218 	dm_block_t low_water_blocks;
219 	struct pool_features requested_pf; /* Features requested during table load */
220 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
221 };
222 
223 /*
224  * Target context for a thin.
225  */
226 struct thin_c {
227 	struct list_head list;
228 	struct dm_dev *pool_dev;
229 	struct dm_dev *origin_dev;
230 	sector_t origin_size;
231 	dm_thin_id dev_id;
232 
233 	struct pool *pool;
234 	struct dm_thin_device *td;
235 	bool requeue_mode:1;
236 	spinlock_t lock;
237 	struct bio_list deferred_bio_list;
238 	struct bio_list retry_on_resume_list;
239 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
240 
241 	/*
242 	 * Ensures the thin is not destroyed until the worker has finished
243 	 * iterating the active_thins list.
244 	 */
245 	atomic_t refcount;
246 	struct completion can_destroy;
247 };
248 
249 /*----------------------------------------------------------------*/
250 
251 /*
252  * wake_worker() is used when new work is queued and when pool_resume is
253  * ready to continue deferred IO processing.
254  */
wake_worker(struct pool * pool)255 static void wake_worker(struct pool *pool)
256 {
257 	queue_work(pool->wq, &pool->worker);
258 }
259 
260 /*----------------------------------------------------------------*/
261 
bio_detain(struct pool * pool,struct dm_cell_key * key,struct bio * bio,struct dm_bio_prison_cell ** cell_result)262 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
263 		      struct dm_bio_prison_cell **cell_result)
264 {
265 	int r;
266 	struct dm_bio_prison_cell *cell_prealloc;
267 
268 	/*
269 	 * Allocate a cell from the prison's mempool.
270 	 * This might block but it can't fail.
271 	 */
272 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
273 
274 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
275 	if (r)
276 		/*
277 		 * We reused an old cell; we can get rid of
278 		 * the new one.
279 		 */
280 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
281 
282 	return r;
283 }
284 
cell_release(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)285 static void cell_release(struct pool *pool,
286 			 struct dm_bio_prison_cell *cell,
287 			 struct bio_list *bios)
288 {
289 	dm_cell_release(pool->prison, cell, bios);
290 	dm_bio_prison_free_cell(pool->prison, cell);
291 }
292 
cell_release_no_holder(struct pool * pool,struct dm_bio_prison_cell * cell,struct bio_list * bios)293 static void cell_release_no_holder(struct pool *pool,
294 				   struct dm_bio_prison_cell *cell,
295 				   struct bio_list *bios)
296 {
297 	dm_cell_release_no_holder(pool->prison, cell, bios);
298 	dm_bio_prison_free_cell(pool->prison, cell);
299 }
300 
cell_defer_no_holder_no_free(struct thin_c * tc,struct dm_bio_prison_cell * cell)301 static void cell_defer_no_holder_no_free(struct thin_c *tc,
302 					 struct dm_bio_prison_cell *cell)
303 {
304 	struct pool *pool = tc->pool;
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(&tc->lock, flags);
308 	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
309 	spin_unlock_irqrestore(&tc->lock, flags);
310 
311 	wake_worker(pool);
312 }
313 
cell_error_with_code(struct pool * pool,struct dm_bio_prison_cell * cell,int error_code)314 static void cell_error_with_code(struct pool *pool,
315 				 struct dm_bio_prison_cell *cell, int error_code)
316 {
317 	dm_cell_error(pool->prison, cell, error_code);
318 	dm_bio_prison_free_cell(pool->prison, cell);
319 }
320 
cell_error(struct pool * pool,struct dm_bio_prison_cell * cell)321 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
322 {
323 	cell_error_with_code(pool, cell, -EIO);
324 }
325 
326 /*----------------------------------------------------------------*/
327 
328 /*
329  * A global list of pools that uses a struct mapped_device as a key.
330  */
331 static struct dm_thin_pool_table {
332 	struct mutex mutex;
333 	struct list_head pools;
334 } dm_thin_pool_table;
335 
pool_table_init(void)336 static void pool_table_init(void)
337 {
338 	mutex_init(&dm_thin_pool_table.mutex);
339 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
340 }
341 
__pool_table_insert(struct pool * pool)342 static void __pool_table_insert(struct pool *pool)
343 {
344 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345 	list_add(&pool->list, &dm_thin_pool_table.pools);
346 }
347 
__pool_table_remove(struct pool * pool)348 static void __pool_table_remove(struct pool *pool)
349 {
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 	list_del(&pool->list);
352 }
353 
__pool_table_lookup(struct mapped_device * md)354 static struct pool *__pool_table_lookup(struct mapped_device *md)
355 {
356 	struct pool *pool = NULL, *tmp;
357 
358 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
359 
360 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
361 		if (tmp->pool_md == md) {
362 			pool = tmp;
363 			break;
364 		}
365 	}
366 
367 	return pool;
368 }
369 
__pool_table_lookup_metadata_dev(struct block_device * md_dev)370 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
371 {
372 	struct pool *pool = NULL, *tmp;
373 
374 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
375 
376 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
377 		if (tmp->md_dev == md_dev) {
378 			pool = tmp;
379 			break;
380 		}
381 	}
382 
383 	return pool;
384 }
385 
386 /*----------------------------------------------------------------*/
387 
388 struct dm_thin_endio_hook {
389 	struct thin_c *tc;
390 	struct dm_deferred_entry *shared_read_entry;
391 	struct dm_deferred_entry *all_io_entry;
392 	struct dm_thin_new_mapping *overwrite_mapping;
393 	struct rb_node rb_node;
394 };
395 
requeue_bio_list(struct thin_c * tc,struct bio_list * master)396 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
397 {
398 	struct bio *bio;
399 	struct bio_list bios;
400 	unsigned long flags;
401 
402 	bio_list_init(&bios);
403 
404 	spin_lock_irqsave(&tc->lock, flags);
405 	bio_list_merge(&bios, master);
406 	bio_list_init(master);
407 	spin_unlock_irqrestore(&tc->lock, flags);
408 
409 	while ((bio = bio_list_pop(&bios)))
410 		bio_endio(bio, DM_ENDIO_REQUEUE);
411 }
412 
requeue_io(struct thin_c * tc)413 static void requeue_io(struct thin_c *tc)
414 {
415 	requeue_bio_list(tc, &tc->deferred_bio_list);
416 	requeue_bio_list(tc, &tc->retry_on_resume_list);
417 }
418 
error_thin_retry_list(struct thin_c * tc)419 static void error_thin_retry_list(struct thin_c *tc)
420 {
421 	struct bio *bio;
422 	unsigned long flags;
423 	struct bio_list bios;
424 
425 	bio_list_init(&bios);
426 
427 	spin_lock_irqsave(&tc->lock, flags);
428 	bio_list_merge(&bios, &tc->retry_on_resume_list);
429 	bio_list_init(&tc->retry_on_resume_list);
430 	spin_unlock_irqrestore(&tc->lock, flags);
431 
432 	while ((bio = bio_list_pop(&bios)))
433 		bio_io_error(bio);
434 }
435 
error_retry_list(struct pool * pool)436 static void error_retry_list(struct pool *pool)
437 {
438 	struct thin_c *tc;
439 
440 	rcu_read_lock();
441 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
442 		error_thin_retry_list(tc);
443 	rcu_read_unlock();
444 }
445 
446 /*
447  * This section of code contains the logic for processing a thin device's IO.
448  * Much of the code depends on pool object resources (lists, workqueues, etc)
449  * but most is exclusively called from the thin target rather than the thin-pool
450  * target.
451  */
452 
block_size_is_power_of_two(struct pool * pool)453 static bool block_size_is_power_of_two(struct pool *pool)
454 {
455 	return pool->sectors_per_block_shift >= 0;
456 }
457 
get_bio_block(struct thin_c * tc,struct bio * bio)458 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
459 {
460 	struct pool *pool = tc->pool;
461 	sector_t block_nr = bio->bi_iter.bi_sector;
462 
463 	if (block_size_is_power_of_two(pool))
464 		block_nr >>= pool->sectors_per_block_shift;
465 	else
466 		(void) sector_div(block_nr, pool->sectors_per_block);
467 
468 	return block_nr;
469 }
470 
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)471 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
472 {
473 	struct pool *pool = tc->pool;
474 	sector_t bi_sector = bio->bi_iter.bi_sector;
475 
476 	bio->bi_bdev = tc->pool_dev->bdev;
477 	if (block_size_is_power_of_two(pool))
478 		bio->bi_iter.bi_sector =
479 			(block << pool->sectors_per_block_shift) |
480 			(bi_sector & (pool->sectors_per_block - 1));
481 	else
482 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
483 				 sector_div(bi_sector, pool->sectors_per_block);
484 }
485 
remap_to_origin(struct thin_c * tc,struct bio * bio)486 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
487 {
488 	bio->bi_bdev = tc->origin_dev->bdev;
489 }
490 
bio_triggers_commit(struct thin_c * tc,struct bio * bio)491 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
492 {
493 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
494 		dm_thin_changed_this_transaction(tc->td);
495 }
496 
inc_all_io_entry(struct pool * pool,struct bio * bio)497 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
498 {
499 	struct dm_thin_endio_hook *h;
500 
501 	if (bio->bi_rw & REQ_DISCARD)
502 		return;
503 
504 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
505 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
506 }
507 
issue(struct thin_c * tc,struct bio * bio)508 static void issue(struct thin_c *tc, struct bio *bio)
509 {
510 	struct pool *pool = tc->pool;
511 	unsigned long flags;
512 
513 	if (!bio_triggers_commit(tc, bio)) {
514 		generic_make_request(bio);
515 		return;
516 	}
517 
518 	/*
519 	 * Complete bio with an error if earlier I/O caused changes to
520 	 * the metadata that can't be committed e.g, due to I/O errors
521 	 * on the metadata device.
522 	 */
523 	if (dm_thin_aborted_changes(tc->td)) {
524 		bio_io_error(bio);
525 		return;
526 	}
527 
528 	/*
529 	 * Batch together any bios that trigger commits and then issue a
530 	 * single commit for them in process_deferred_bios().
531 	 */
532 	spin_lock_irqsave(&pool->lock, flags);
533 	bio_list_add(&pool->deferred_flush_bios, bio);
534 	spin_unlock_irqrestore(&pool->lock, flags);
535 }
536 
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)537 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
538 {
539 	remap_to_origin(tc, bio);
540 	issue(tc, bio);
541 }
542 
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)543 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
544 			    dm_block_t block)
545 {
546 	remap(tc, bio, block);
547 	issue(tc, bio);
548 }
549 
550 /*----------------------------------------------------------------*/
551 
552 /*
553  * Bio endio functions.
554  */
555 struct dm_thin_new_mapping {
556 	struct list_head list;
557 
558 	bool pass_discard:1;
559 	bool definitely_not_shared:1;
560 
561 	/*
562 	 * Track quiescing, copying and zeroing preparation actions.  When this
563 	 * counter hits zero the block is prepared and can be inserted into the
564 	 * btree.
565 	 */
566 	atomic_t prepare_actions;
567 
568 	int err;
569 	struct thin_c *tc;
570 	dm_block_t virt_block;
571 	dm_block_t data_block;
572 	struct dm_bio_prison_cell *cell, *cell2;
573 
574 	/*
575 	 * If the bio covers the whole area of a block then we can avoid
576 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
577 	 * still be in the cell, so care has to be taken to avoid issuing
578 	 * the bio twice.
579 	 */
580 	struct bio *bio;
581 	bio_end_io_t *saved_bi_end_io;
582 };
583 
__complete_mapping_preparation(struct dm_thin_new_mapping * m)584 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
585 {
586 	struct pool *pool = m->tc->pool;
587 
588 	if (atomic_dec_and_test(&m->prepare_actions)) {
589 		list_add_tail(&m->list, &pool->prepared_mappings);
590 		wake_worker(pool);
591 	}
592 }
593 
complete_mapping_preparation(struct dm_thin_new_mapping * m)594 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
595 {
596 	unsigned long flags;
597 	struct pool *pool = m->tc->pool;
598 
599 	spin_lock_irqsave(&pool->lock, flags);
600 	__complete_mapping_preparation(m);
601 	spin_unlock_irqrestore(&pool->lock, flags);
602 }
603 
copy_complete(int read_err,unsigned long write_err,void * context)604 static void copy_complete(int read_err, unsigned long write_err, void *context)
605 {
606 	struct dm_thin_new_mapping *m = context;
607 
608 	m->err = read_err || write_err ? -EIO : 0;
609 	complete_mapping_preparation(m);
610 }
611 
overwrite_endio(struct bio * bio,int err)612 static void overwrite_endio(struct bio *bio, int err)
613 {
614 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
615 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
616 
617 	m->err = err;
618 	complete_mapping_preparation(m);
619 }
620 
621 /*----------------------------------------------------------------*/
622 
623 /*
624  * Workqueue.
625  */
626 
627 /*
628  * Prepared mapping jobs.
629  */
630 
631 /*
632  * This sends the bios in the cell back to the deferred_bios list.
633  */
cell_defer(struct thin_c * tc,struct dm_bio_prison_cell * cell)634 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
635 {
636 	struct pool *pool = tc->pool;
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&tc->lock, flags);
640 	cell_release(pool, cell, &tc->deferred_bio_list);
641 	spin_unlock_irqrestore(&tc->lock, flags);
642 
643 	wake_worker(pool);
644 }
645 
646 /*
647  * Same as cell_defer above, except it omits the original holder of the cell.
648  */
cell_defer_no_holder(struct thin_c * tc,struct dm_bio_prison_cell * cell)649 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
650 {
651 	struct pool *pool = tc->pool;
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&tc->lock, flags);
655 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
656 	spin_unlock_irqrestore(&tc->lock, flags);
657 
658 	wake_worker(pool);
659 }
660 
process_prepared_mapping_fail(struct dm_thin_new_mapping * m)661 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
662 {
663 	if (m->bio) {
664 		m->bio->bi_end_io = m->saved_bi_end_io;
665 		atomic_inc(&m->bio->bi_remaining);
666 	}
667 	cell_error(m->tc->pool, m->cell);
668 	list_del(&m->list);
669 	mempool_free(m, m->tc->pool->mapping_pool);
670 }
671 
process_prepared_mapping(struct dm_thin_new_mapping * m)672 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
673 {
674 	struct thin_c *tc = m->tc;
675 	struct pool *pool = tc->pool;
676 	struct bio *bio;
677 	int r;
678 
679 	bio = m->bio;
680 	if (bio) {
681 		bio->bi_end_io = m->saved_bi_end_io;
682 		atomic_inc(&bio->bi_remaining);
683 	}
684 
685 	if (m->err) {
686 		cell_error(pool, m->cell);
687 		goto out;
688 	}
689 
690 	/*
691 	 * Commit the prepared block into the mapping btree.
692 	 * Any I/O for this block arriving after this point will get
693 	 * remapped to it directly.
694 	 */
695 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
696 	if (r) {
697 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
698 		cell_error(pool, m->cell);
699 		goto out;
700 	}
701 
702 	/*
703 	 * Release any bios held while the block was being provisioned.
704 	 * If we are processing a write bio that completely covers the block,
705 	 * we already processed it so can ignore it now when processing
706 	 * the bios in the cell.
707 	 */
708 	if (bio) {
709 		cell_defer_no_holder(tc, m->cell);
710 		bio_endio(bio, 0);
711 	} else
712 		cell_defer(tc, m->cell);
713 
714 out:
715 	list_del(&m->list);
716 	mempool_free(m, pool->mapping_pool);
717 }
718 
process_prepared_discard_fail(struct dm_thin_new_mapping * m)719 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
720 {
721 	struct thin_c *tc = m->tc;
722 
723 	bio_io_error(m->bio);
724 	cell_defer_no_holder(tc, m->cell);
725 	cell_defer_no_holder(tc, m->cell2);
726 	mempool_free(m, tc->pool->mapping_pool);
727 }
728 
process_prepared_discard_passdown(struct dm_thin_new_mapping * m)729 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
730 {
731 	struct thin_c *tc = m->tc;
732 
733 	inc_all_io_entry(tc->pool, m->bio);
734 	cell_defer_no_holder(tc, m->cell);
735 	cell_defer_no_holder(tc, m->cell2);
736 
737 	if (m->pass_discard)
738 		if (m->definitely_not_shared)
739 			remap_and_issue(tc, m->bio, m->data_block);
740 		else {
741 			bool used = false;
742 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
743 				bio_endio(m->bio, 0);
744 			else
745 				remap_and_issue(tc, m->bio, m->data_block);
746 		}
747 	else
748 		bio_endio(m->bio, 0);
749 
750 	mempool_free(m, tc->pool->mapping_pool);
751 }
752 
process_prepared_discard(struct dm_thin_new_mapping * m)753 static void process_prepared_discard(struct dm_thin_new_mapping *m)
754 {
755 	int r;
756 	struct thin_c *tc = m->tc;
757 
758 	r = dm_thin_remove_block(tc->td, m->virt_block);
759 	if (r)
760 		DMERR_LIMIT("dm_thin_remove_block() failed");
761 
762 	process_prepared_discard_passdown(m);
763 }
764 
process_prepared(struct pool * pool,struct list_head * head,process_mapping_fn * fn)765 static void process_prepared(struct pool *pool, struct list_head *head,
766 			     process_mapping_fn *fn)
767 {
768 	unsigned long flags;
769 	struct list_head maps;
770 	struct dm_thin_new_mapping *m, *tmp;
771 
772 	INIT_LIST_HEAD(&maps);
773 	spin_lock_irqsave(&pool->lock, flags);
774 	list_splice_init(head, &maps);
775 	spin_unlock_irqrestore(&pool->lock, flags);
776 
777 	list_for_each_entry_safe(m, tmp, &maps, list)
778 		(*fn)(m);
779 }
780 
781 /*
782  * Deferred bio jobs.
783  */
io_overlaps_block(struct pool * pool,struct bio * bio)784 static int io_overlaps_block(struct pool *pool, struct bio *bio)
785 {
786 	return bio->bi_iter.bi_size ==
787 		(pool->sectors_per_block << SECTOR_SHIFT);
788 }
789 
io_overwrites_block(struct pool * pool,struct bio * bio)790 static int io_overwrites_block(struct pool *pool, struct bio *bio)
791 {
792 	return (bio_data_dir(bio) == WRITE) &&
793 		io_overlaps_block(pool, bio);
794 }
795 
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)796 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
797 			       bio_end_io_t *fn)
798 {
799 	*save = bio->bi_end_io;
800 	bio->bi_end_io = fn;
801 }
802 
ensure_next_mapping(struct pool * pool)803 static int ensure_next_mapping(struct pool *pool)
804 {
805 	if (pool->next_mapping)
806 		return 0;
807 
808 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
809 
810 	return pool->next_mapping ? 0 : -ENOMEM;
811 }
812 
get_next_mapping(struct pool * pool)813 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
814 {
815 	struct dm_thin_new_mapping *m = pool->next_mapping;
816 
817 	BUG_ON(!pool->next_mapping);
818 
819 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
820 	INIT_LIST_HEAD(&m->list);
821 	m->bio = NULL;
822 
823 	pool->next_mapping = NULL;
824 
825 	return m;
826 }
827 
ll_zero(struct thin_c * tc,struct dm_thin_new_mapping * m,sector_t begin,sector_t end)828 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
829 		    sector_t begin, sector_t end)
830 {
831 	int r;
832 	struct dm_io_region to;
833 
834 	to.bdev = tc->pool_dev->bdev;
835 	to.sector = begin;
836 	to.count = end - begin;
837 
838 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
839 	if (r < 0) {
840 		DMERR_LIMIT("dm_kcopyd_zero() failed");
841 		copy_complete(1, 1, m);
842 	}
843 }
844 
845 /*
846  * A partial copy also needs to zero the uncopied region.
847  */
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio,sector_t len)848 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
849 			  struct dm_dev *origin, dm_block_t data_origin,
850 			  dm_block_t data_dest,
851 			  struct dm_bio_prison_cell *cell, struct bio *bio,
852 			  sector_t len)
853 {
854 	int r;
855 	struct pool *pool = tc->pool;
856 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
857 
858 	m->tc = tc;
859 	m->virt_block = virt_block;
860 	m->data_block = data_dest;
861 	m->cell = cell;
862 
863 	/*
864 	 * quiesce action + copy action + an extra reference held for the
865 	 * duration of this function (we may need to inc later for a
866 	 * partial zero).
867 	 */
868 	atomic_set(&m->prepare_actions, 3);
869 
870 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
871 		complete_mapping_preparation(m); /* already quiesced */
872 
873 	/*
874 	 * IO to pool_dev remaps to the pool target's data_dev.
875 	 *
876 	 * If the whole block of data is being overwritten, we can issue the
877 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
878 	 */
879 	if (io_overwrites_block(pool, bio)) {
880 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
881 
882 		h->overwrite_mapping = m;
883 		m->bio = bio;
884 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
885 		inc_all_io_entry(pool, bio);
886 		remap_and_issue(tc, bio, data_dest);
887 	} else {
888 		struct dm_io_region from, to;
889 
890 		from.bdev = origin->bdev;
891 		from.sector = data_origin * pool->sectors_per_block;
892 		from.count = len;
893 
894 		to.bdev = tc->pool_dev->bdev;
895 		to.sector = data_dest * pool->sectors_per_block;
896 		to.count = len;
897 
898 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
899 				   0, copy_complete, m);
900 		if (r < 0) {
901 			DMERR_LIMIT("dm_kcopyd_copy() failed");
902 			copy_complete(1, 1, m);
903 
904 			/*
905 			 * We allow the zero to be issued, to simplify the
906 			 * error path.  Otherwise we'd need to start
907 			 * worrying about decrementing the prepare_actions
908 			 * counter.
909 			 */
910 		}
911 
912 		/*
913 		 * Do we need to zero a tail region?
914 		 */
915 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
916 			atomic_inc(&m->prepare_actions);
917 			ll_zero(tc, m,
918 				data_dest * pool->sectors_per_block + len,
919 				(data_dest + 1) * pool->sectors_per_block);
920 		}
921 	}
922 
923 	complete_mapping_preparation(m); /* drop our ref */
924 }
925 
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)926 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
927 				   dm_block_t data_origin, dm_block_t data_dest,
928 				   struct dm_bio_prison_cell *cell, struct bio *bio)
929 {
930 	schedule_copy(tc, virt_block, tc->pool_dev,
931 		      data_origin, data_dest, cell, bio,
932 		      tc->pool->sectors_per_block);
933 }
934 
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct dm_bio_prison_cell * cell,struct bio * bio)935 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
936 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
937 			  struct bio *bio)
938 {
939 	struct pool *pool = tc->pool;
940 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
941 
942 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
943 	m->tc = tc;
944 	m->virt_block = virt_block;
945 	m->data_block = data_block;
946 	m->cell = cell;
947 
948 	/*
949 	 * If the whole block of data is being overwritten or we are not
950 	 * zeroing pre-existing data, we can issue the bio immediately.
951 	 * Otherwise we use kcopyd to zero the data first.
952 	 */
953 	if (!pool->pf.zero_new_blocks)
954 		process_prepared_mapping(m);
955 
956 	else if (io_overwrites_block(pool, bio)) {
957 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
958 
959 		h->overwrite_mapping = m;
960 		m->bio = bio;
961 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
962 		inc_all_io_entry(pool, bio);
963 		remap_and_issue(tc, bio, data_block);
964 
965 	} else
966 		ll_zero(tc, m,
967 			data_block * pool->sectors_per_block,
968 			(data_block + 1) * pool->sectors_per_block);
969 }
970 
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct dm_bio_prison_cell * cell,struct bio * bio)971 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
972 				   dm_block_t data_dest,
973 				   struct dm_bio_prison_cell *cell, struct bio *bio)
974 {
975 	struct pool *pool = tc->pool;
976 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
977 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
978 
979 	if (virt_block_end <= tc->origin_size)
980 		schedule_copy(tc, virt_block, tc->origin_dev,
981 			      virt_block, data_dest, cell, bio,
982 			      pool->sectors_per_block);
983 
984 	else if (virt_block_begin < tc->origin_size)
985 		schedule_copy(tc, virt_block, tc->origin_dev,
986 			      virt_block, data_dest, cell, bio,
987 			      tc->origin_size - virt_block_begin);
988 
989 	else
990 		schedule_zero(tc, virt_block, data_dest, cell, bio);
991 }
992 
993 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
994 
check_for_space(struct pool * pool)995 static void check_for_space(struct pool *pool)
996 {
997 	int r;
998 	dm_block_t nr_free;
999 
1000 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1001 		return;
1002 
1003 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1004 	if (r)
1005 		return;
1006 
1007 	if (nr_free)
1008 		set_pool_mode(pool, PM_WRITE);
1009 }
1010 
1011 /*
1012  * A non-zero return indicates read_only or fail_io mode.
1013  * Many callers don't care about the return value.
1014  */
commit(struct pool * pool)1015 static int commit(struct pool *pool)
1016 {
1017 	int r;
1018 
1019 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1020 		return -EINVAL;
1021 
1022 	r = dm_pool_commit_metadata(pool->pmd);
1023 	if (r)
1024 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1025 	else
1026 		check_for_space(pool);
1027 
1028 	return r;
1029 }
1030 
check_low_water_mark(struct pool * pool,dm_block_t free_blocks)1031 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1032 {
1033 	unsigned long flags;
1034 
1035 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1036 		DMWARN("%s: reached low water mark for data device: sending event.",
1037 		       dm_device_name(pool->pool_md));
1038 		spin_lock_irqsave(&pool->lock, flags);
1039 		pool->low_water_triggered = true;
1040 		spin_unlock_irqrestore(&pool->lock, flags);
1041 		dm_table_event(pool->ti->table);
1042 	}
1043 }
1044 
alloc_data_block(struct thin_c * tc,dm_block_t * result)1045 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1046 {
1047 	int r;
1048 	dm_block_t free_blocks;
1049 	struct pool *pool = tc->pool;
1050 
1051 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1052 		return -EINVAL;
1053 
1054 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1055 	if (r) {
1056 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1057 		return r;
1058 	}
1059 
1060 	check_low_water_mark(pool, free_blocks);
1061 
1062 	if (!free_blocks) {
1063 		/*
1064 		 * Try to commit to see if that will free up some
1065 		 * more space.
1066 		 */
1067 		r = commit(pool);
1068 		if (r)
1069 			return r;
1070 
1071 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1072 		if (r) {
1073 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1074 			return r;
1075 		}
1076 
1077 		if (!free_blocks) {
1078 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1079 			return -ENOSPC;
1080 		}
1081 	}
1082 
1083 	r = dm_pool_alloc_data_block(pool->pmd, result);
1084 	if (r) {
1085 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1086 		return r;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * If we have run out of space, queue bios until the device is
1094  * resumed, presumably after having been reloaded with more space.
1095  */
retry_on_resume(struct bio * bio)1096 static void retry_on_resume(struct bio *bio)
1097 {
1098 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1099 	struct thin_c *tc = h->tc;
1100 	unsigned long flags;
1101 
1102 	spin_lock_irqsave(&tc->lock, flags);
1103 	bio_list_add(&tc->retry_on_resume_list, bio);
1104 	spin_unlock_irqrestore(&tc->lock, flags);
1105 }
1106 
should_error_unserviceable_bio(struct pool * pool)1107 static int should_error_unserviceable_bio(struct pool *pool)
1108 {
1109 	enum pool_mode m = get_pool_mode(pool);
1110 
1111 	switch (m) {
1112 	case PM_WRITE:
1113 		/* Shouldn't get here */
1114 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1115 		return -EIO;
1116 
1117 	case PM_OUT_OF_DATA_SPACE:
1118 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1119 
1120 	case PM_READ_ONLY:
1121 	case PM_FAIL:
1122 		return -EIO;
1123 	default:
1124 		/* Shouldn't get here */
1125 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1126 		return -EIO;
1127 	}
1128 }
1129 
handle_unserviceable_bio(struct pool * pool,struct bio * bio)1130 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1131 {
1132 	int error = should_error_unserviceable_bio(pool);
1133 
1134 	if (error)
1135 		bio_endio(bio, error);
1136 	else
1137 		retry_on_resume(bio);
1138 }
1139 
retry_bios_on_resume(struct pool * pool,struct dm_bio_prison_cell * cell)1140 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1141 {
1142 	struct bio *bio;
1143 	struct bio_list bios;
1144 	int error;
1145 
1146 	error = should_error_unserviceable_bio(pool);
1147 	if (error) {
1148 		cell_error_with_code(pool, cell, error);
1149 		return;
1150 	}
1151 
1152 	bio_list_init(&bios);
1153 	cell_release(pool, cell, &bios);
1154 
1155 	error = should_error_unserviceable_bio(pool);
1156 	if (error)
1157 		while ((bio = bio_list_pop(&bios)))
1158 			bio_endio(bio, error);
1159 	else
1160 		while ((bio = bio_list_pop(&bios)))
1161 			retry_on_resume(bio);
1162 }
1163 
process_discard(struct thin_c * tc,struct bio * bio)1164 static void process_discard(struct thin_c *tc, struct bio *bio)
1165 {
1166 	int r;
1167 	unsigned long flags;
1168 	struct pool *pool = tc->pool;
1169 	struct dm_bio_prison_cell *cell, *cell2;
1170 	struct dm_cell_key key, key2;
1171 	dm_block_t block = get_bio_block(tc, bio);
1172 	struct dm_thin_lookup_result lookup_result;
1173 	struct dm_thin_new_mapping *m;
1174 
1175 	build_virtual_key(tc->td, block, &key);
1176 	if (bio_detain(tc->pool, &key, bio, &cell))
1177 		return;
1178 
1179 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1180 	switch (r) {
1181 	case 0:
1182 		/*
1183 		 * Check nobody is fiddling with this pool block.  This can
1184 		 * happen if someone's in the process of breaking sharing
1185 		 * on this block.
1186 		 */
1187 		build_data_key(tc->td, lookup_result.block, &key2);
1188 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1189 			cell_defer_no_holder(tc, cell);
1190 			break;
1191 		}
1192 
1193 		if (io_overlaps_block(pool, bio)) {
1194 			/*
1195 			 * IO may still be going to the destination block.  We must
1196 			 * quiesce before we can do the removal.
1197 			 */
1198 			m = get_next_mapping(pool);
1199 			m->tc = tc;
1200 			m->pass_discard = pool->pf.discard_passdown;
1201 			m->definitely_not_shared = !lookup_result.shared;
1202 			m->virt_block = block;
1203 			m->data_block = lookup_result.block;
1204 			m->cell = cell;
1205 			m->cell2 = cell2;
1206 			m->bio = bio;
1207 
1208 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1209 				spin_lock_irqsave(&pool->lock, flags);
1210 				list_add_tail(&m->list, &pool->prepared_discards);
1211 				spin_unlock_irqrestore(&pool->lock, flags);
1212 				wake_worker(pool);
1213 			}
1214 		} else {
1215 			inc_all_io_entry(pool, bio);
1216 			cell_defer_no_holder(tc, cell);
1217 			cell_defer_no_holder(tc, cell2);
1218 
1219 			/*
1220 			 * The DM core makes sure that the discard doesn't span
1221 			 * a block boundary.  So we submit the discard of a
1222 			 * partial block appropriately.
1223 			 */
1224 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1225 				remap_and_issue(tc, bio, lookup_result.block);
1226 			else
1227 				bio_endio(bio, 0);
1228 		}
1229 		break;
1230 
1231 	case -ENODATA:
1232 		/*
1233 		 * It isn't provisioned, just forget it.
1234 		 */
1235 		cell_defer_no_holder(tc, cell);
1236 		bio_endio(bio, 0);
1237 		break;
1238 
1239 	default:
1240 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1241 			    __func__, r);
1242 		cell_defer_no_holder(tc, cell);
1243 		bio_io_error(bio);
1244 		break;
1245 	}
1246 }
1247 
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_cell_key * key,struct dm_thin_lookup_result * lookup_result,struct dm_bio_prison_cell * cell)1248 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1249 			  struct dm_cell_key *key,
1250 			  struct dm_thin_lookup_result *lookup_result,
1251 			  struct dm_bio_prison_cell *cell)
1252 {
1253 	int r;
1254 	dm_block_t data_block;
1255 	struct pool *pool = tc->pool;
1256 
1257 	r = alloc_data_block(tc, &data_block);
1258 	switch (r) {
1259 	case 0:
1260 		schedule_internal_copy(tc, block, lookup_result->block,
1261 				       data_block, cell, bio);
1262 		break;
1263 
1264 	case -ENOSPC:
1265 		retry_bios_on_resume(pool, cell);
1266 		break;
1267 
1268 	default:
1269 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1270 			    __func__, r);
1271 		cell_error(pool, cell);
1272 		break;
1273 	}
1274 }
1275 
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result)1276 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1277 			       dm_block_t block,
1278 			       struct dm_thin_lookup_result *lookup_result)
1279 {
1280 	struct dm_bio_prison_cell *cell;
1281 	struct pool *pool = tc->pool;
1282 	struct dm_cell_key key;
1283 
1284 	/*
1285 	 * If cell is already occupied, then sharing is already in the process
1286 	 * of being broken so we have nothing further to do here.
1287 	 */
1288 	build_data_key(tc->td, lookup_result->block, &key);
1289 	if (bio_detain(pool, &key, bio, &cell))
1290 		return;
1291 
1292 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1293 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1294 	else {
1295 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1296 
1297 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1298 		inc_all_io_entry(pool, bio);
1299 		cell_defer_no_holder(tc, cell);
1300 
1301 		remap_and_issue(tc, bio, lookup_result->block);
1302 	}
1303 }
1304 
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_bio_prison_cell * cell)1305 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1306 			    struct dm_bio_prison_cell *cell)
1307 {
1308 	int r;
1309 	dm_block_t data_block;
1310 	struct pool *pool = tc->pool;
1311 
1312 	/*
1313 	 * Remap empty bios (flushes) immediately, without provisioning.
1314 	 */
1315 	if (!bio->bi_iter.bi_size) {
1316 		inc_all_io_entry(pool, bio);
1317 		cell_defer_no_holder(tc, cell);
1318 
1319 		remap_and_issue(tc, bio, 0);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * Fill read bios with zeroes and complete them immediately.
1325 	 */
1326 	if (bio_data_dir(bio) == READ) {
1327 		zero_fill_bio(bio);
1328 		cell_defer_no_holder(tc, cell);
1329 		bio_endio(bio, 0);
1330 		return;
1331 	}
1332 
1333 	r = alloc_data_block(tc, &data_block);
1334 	switch (r) {
1335 	case 0:
1336 		if (tc->origin_dev)
1337 			schedule_external_copy(tc, block, data_block, cell, bio);
1338 		else
1339 			schedule_zero(tc, block, data_block, cell, bio);
1340 		break;
1341 
1342 	case -ENOSPC:
1343 		retry_bios_on_resume(pool, cell);
1344 		break;
1345 
1346 	default:
1347 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1348 			    __func__, r);
1349 		cell_error(pool, cell);
1350 		break;
1351 	}
1352 }
1353 
process_bio(struct thin_c * tc,struct bio * bio)1354 static void process_bio(struct thin_c *tc, struct bio *bio)
1355 {
1356 	int r;
1357 	struct pool *pool = tc->pool;
1358 	dm_block_t block = get_bio_block(tc, bio);
1359 	struct dm_bio_prison_cell *cell;
1360 	struct dm_cell_key key;
1361 	struct dm_thin_lookup_result lookup_result;
1362 
1363 	/*
1364 	 * If cell is already occupied, then the block is already
1365 	 * being provisioned so we have nothing further to do here.
1366 	 */
1367 	build_virtual_key(tc->td, block, &key);
1368 	if (bio_detain(pool, &key, bio, &cell))
1369 		return;
1370 
1371 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1372 	switch (r) {
1373 	case 0:
1374 		if (lookup_result.shared) {
1375 			process_shared_bio(tc, bio, block, &lookup_result);
1376 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1377 		} else {
1378 			inc_all_io_entry(pool, bio);
1379 			cell_defer_no_holder(tc, cell);
1380 
1381 			remap_and_issue(tc, bio, lookup_result.block);
1382 		}
1383 		break;
1384 
1385 	case -ENODATA:
1386 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1387 			inc_all_io_entry(pool, bio);
1388 			cell_defer_no_holder(tc, cell);
1389 
1390 			if (bio_end_sector(bio) <= tc->origin_size)
1391 				remap_to_origin_and_issue(tc, bio);
1392 
1393 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1394 				zero_fill_bio(bio);
1395 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1396 				remap_to_origin_and_issue(tc, bio);
1397 
1398 			} else {
1399 				zero_fill_bio(bio);
1400 				bio_endio(bio, 0);
1401 			}
1402 		} else
1403 			provision_block(tc, bio, block, cell);
1404 		break;
1405 
1406 	default:
1407 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1408 			    __func__, r);
1409 		cell_defer_no_holder(tc, cell);
1410 		bio_io_error(bio);
1411 		break;
1412 	}
1413 }
1414 
process_bio_read_only(struct thin_c * tc,struct bio * bio)1415 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1416 {
1417 	int r;
1418 	int rw = bio_data_dir(bio);
1419 	dm_block_t block = get_bio_block(tc, bio);
1420 	struct dm_thin_lookup_result lookup_result;
1421 
1422 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1423 	switch (r) {
1424 	case 0:
1425 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1426 			handle_unserviceable_bio(tc->pool, bio);
1427 		else {
1428 			inc_all_io_entry(tc->pool, bio);
1429 			remap_and_issue(tc, bio, lookup_result.block);
1430 		}
1431 		break;
1432 
1433 	case -ENODATA:
1434 		if (rw != READ) {
1435 			handle_unserviceable_bio(tc->pool, bio);
1436 			break;
1437 		}
1438 
1439 		if (tc->origin_dev) {
1440 			inc_all_io_entry(tc->pool, bio);
1441 			remap_to_origin_and_issue(tc, bio);
1442 			break;
1443 		}
1444 
1445 		zero_fill_bio(bio);
1446 		bio_endio(bio, 0);
1447 		break;
1448 
1449 	default:
1450 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1451 			    __func__, r);
1452 		bio_io_error(bio);
1453 		break;
1454 	}
1455 }
1456 
process_bio_success(struct thin_c * tc,struct bio * bio)1457 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1458 {
1459 	bio_endio(bio, 0);
1460 }
1461 
process_bio_fail(struct thin_c * tc,struct bio * bio)1462 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1463 {
1464 	bio_io_error(bio);
1465 }
1466 
1467 /*
1468  * FIXME: should we also commit due to size of transaction, measured in
1469  * metadata blocks?
1470  */
need_commit_due_to_time(struct pool * pool)1471 static int need_commit_due_to_time(struct pool *pool)
1472 {
1473 	return jiffies < pool->last_commit_jiffies ||
1474 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1475 }
1476 
1477 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1478 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1479 
__thin_bio_rb_add(struct thin_c * tc,struct bio * bio)1480 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1481 {
1482 	struct rb_node **rbp, *parent;
1483 	struct dm_thin_endio_hook *pbd;
1484 	sector_t bi_sector = bio->bi_iter.bi_sector;
1485 
1486 	rbp = &tc->sort_bio_list.rb_node;
1487 	parent = NULL;
1488 	while (*rbp) {
1489 		parent = *rbp;
1490 		pbd = thin_pbd(parent);
1491 
1492 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1493 			rbp = &(*rbp)->rb_left;
1494 		else
1495 			rbp = &(*rbp)->rb_right;
1496 	}
1497 
1498 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1499 	rb_link_node(&pbd->rb_node, parent, rbp);
1500 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1501 }
1502 
__extract_sorted_bios(struct thin_c * tc)1503 static void __extract_sorted_bios(struct thin_c *tc)
1504 {
1505 	struct rb_node *node;
1506 	struct dm_thin_endio_hook *pbd;
1507 	struct bio *bio;
1508 
1509 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1510 		pbd = thin_pbd(node);
1511 		bio = thin_bio(pbd);
1512 
1513 		bio_list_add(&tc->deferred_bio_list, bio);
1514 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1515 	}
1516 
1517 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1518 }
1519 
__sort_thin_deferred_bios(struct thin_c * tc)1520 static void __sort_thin_deferred_bios(struct thin_c *tc)
1521 {
1522 	struct bio *bio;
1523 	struct bio_list bios;
1524 
1525 	bio_list_init(&bios);
1526 	bio_list_merge(&bios, &tc->deferred_bio_list);
1527 	bio_list_init(&tc->deferred_bio_list);
1528 
1529 	/* Sort deferred_bio_list using rb-tree */
1530 	while ((bio = bio_list_pop(&bios)))
1531 		__thin_bio_rb_add(tc, bio);
1532 
1533 	/*
1534 	 * Transfer the sorted bios in sort_bio_list back to
1535 	 * deferred_bio_list to allow lockless submission of
1536 	 * all bios.
1537 	 */
1538 	__extract_sorted_bios(tc);
1539 }
1540 
process_thin_deferred_bios(struct thin_c * tc)1541 static void process_thin_deferred_bios(struct thin_c *tc)
1542 {
1543 	struct pool *pool = tc->pool;
1544 	unsigned long flags;
1545 	struct bio *bio;
1546 	struct bio_list bios;
1547 	struct blk_plug plug;
1548 
1549 	if (tc->requeue_mode) {
1550 		requeue_bio_list(tc, &tc->deferred_bio_list);
1551 		return;
1552 	}
1553 
1554 	bio_list_init(&bios);
1555 
1556 	spin_lock_irqsave(&tc->lock, flags);
1557 
1558 	if (bio_list_empty(&tc->deferred_bio_list)) {
1559 		spin_unlock_irqrestore(&tc->lock, flags);
1560 		return;
1561 	}
1562 
1563 	__sort_thin_deferred_bios(tc);
1564 
1565 	bio_list_merge(&bios, &tc->deferred_bio_list);
1566 	bio_list_init(&tc->deferred_bio_list);
1567 
1568 	spin_unlock_irqrestore(&tc->lock, flags);
1569 
1570 	blk_start_plug(&plug);
1571 	while ((bio = bio_list_pop(&bios))) {
1572 		/*
1573 		 * If we've got no free new_mapping structs, and processing
1574 		 * this bio might require one, we pause until there are some
1575 		 * prepared mappings to process.
1576 		 */
1577 		if (ensure_next_mapping(pool)) {
1578 			spin_lock_irqsave(&tc->lock, flags);
1579 			bio_list_add(&tc->deferred_bio_list, bio);
1580 			bio_list_merge(&tc->deferred_bio_list, &bios);
1581 			spin_unlock_irqrestore(&tc->lock, flags);
1582 			break;
1583 		}
1584 
1585 		if (bio->bi_rw & REQ_DISCARD)
1586 			pool->process_discard(tc, bio);
1587 		else
1588 			pool->process_bio(tc, bio);
1589 	}
1590 	blk_finish_plug(&plug);
1591 }
1592 
1593 static void thin_get(struct thin_c *tc);
1594 static void thin_put(struct thin_c *tc);
1595 
1596 /*
1597  * We can't hold rcu_read_lock() around code that can block.  So we
1598  * find a thin with the rcu lock held; bump a refcount; then drop
1599  * the lock.
1600  */
get_first_thin(struct pool * pool)1601 static struct thin_c *get_first_thin(struct pool *pool)
1602 {
1603 	struct thin_c *tc = NULL;
1604 
1605 	rcu_read_lock();
1606 	if (!list_empty(&pool->active_thins)) {
1607 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1608 		thin_get(tc);
1609 	}
1610 	rcu_read_unlock();
1611 
1612 	return tc;
1613 }
1614 
get_next_thin(struct pool * pool,struct thin_c * tc)1615 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1616 {
1617 	struct thin_c *old_tc = tc;
1618 
1619 	rcu_read_lock();
1620 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1621 		thin_get(tc);
1622 		thin_put(old_tc);
1623 		rcu_read_unlock();
1624 		return tc;
1625 	}
1626 	thin_put(old_tc);
1627 	rcu_read_unlock();
1628 
1629 	return NULL;
1630 }
1631 
process_deferred_bios(struct pool * pool)1632 static void process_deferred_bios(struct pool *pool)
1633 {
1634 	unsigned long flags;
1635 	struct bio *bio;
1636 	struct bio_list bios;
1637 	struct thin_c *tc;
1638 
1639 	tc = get_first_thin(pool);
1640 	while (tc) {
1641 		process_thin_deferred_bios(tc);
1642 		tc = get_next_thin(pool, tc);
1643 	}
1644 
1645 	/*
1646 	 * If there are any deferred flush bios, we must commit
1647 	 * the metadata before issuing them.
1648 	 */
1649 	bio_list_init(&bios);
1650 	spin_lock_irqsave(&pool->lock, flags);
1651 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1652 	bio_list_init(&pool->deferred_flush_bios);
1653 	spin_unlock_irqrestore(&pool->lock, flags);
1654 
1655 	if (bio_list_empty(&bios) &&
1656 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1657 		return;
1658 
1659 	if (commit(pool)) {
1660 		while ((bio = bio_list_pop(&bios)))
1661 			bio_io_error(bio);
1662 		return;
1663 	}
1664 	pool->last_commit_jiffies = jiffies;
1665 
1666 	while ((bio = bio_list_pop(&bios)))
1667 		generic_make_request(bio);
1668 }
1669 
do_worker(struct work_struct * ws)1670 static void do_worker(struct work_struct *ws)
1671 {
1672 	struct pool *pool = container_of(ws, struct pool, worker);
1673 
1674 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1675 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1676 	process_deferred_bios(pool);
1677 }
1678 
1679 /*
1680  * We want to commit periodically so that not too much
1681  * unwritten data builds up.
1682  */
do_waker(struct work_struct * ws)1683 static void do_waker(struct work_struct *ws)
1684 {
1685 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1686 	wake_worker(pool);
1687 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1688 }
1689 
1690 /*
1691  * We're holding onto IO to allow userland time to react.  After the
1692  * timeout either the pool will have been resized (and thus back in
1693  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1694  */
do_no_space_timeout(struct work_struct * ws)1695 static void do_no_space_timeout(struct work_struct *ws)
1696 {
1697 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1698 					 no_space_timeout);
1699 
1700 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1701 		set_pool_mode(pool, PM_READ_ONLY);
1702 }
1703 
1704 /*----------------------------------------------------------------*/
1705 
1706 struct pool_work {
1707 	struct work_struct worker;
1708 	struct completion complete;
1709 };
1710 
to_pool_work(struct work_struct * ws)1711 static struct pool_work *to_pool_work(struct work_struct *ws)
1712 {
1713 	return container_of(ws, struct pool_work, worker);
1714 }
1715 
pool_work_complete(struct pool_work * pw)1716 static void pool_work_complete(struct pool_work *pw)
1717 {
1718 	complete(&pw->complete);
1719 }
1720 
pool_work_wait(struct pool_work * pw,struct pool * pool,void (* fn)(struct work_struct *))1721 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
1722 			   void (*fn)(struct work_struct *))
1723 {
1724 	INIT_WORK_ONSTACK(&pw->worker, fn);
1725 	init_completion(&pw->complete);
1726 	queue_work(pool->wq, &pw->worker);
1727 	wait_for_completion(&pw->complete);
1728 }
1729 
1730 /*----------------------------------------------------------------*/
1731 
1732 struct noflush_work {
1733 	struct pool_work pw;
1734 	struct thin_c *tc;
1735 };
1736 
to_noflush(struct work_struct * ws)1737 static struct noflush_work *to_noflush(struct work_struct *ws)
1738 {
1739 	return container_of(to_pool_work(ws), struct noflush_work, pw);
1740 }
1741 
do_noflush_start(struct work_struct * ws)1742 static void do_noflush_start(struct work_struct *ws)
1743 {
1744 	struct noflush_work *w = to_noflush(ws);
1745 	w->tc->requeue_mode = true;
1746 	requeue_io(w->tc);
1747 	pool_work_complete(&w->pw);
1748 }
1749 
do_noflush_stop(struct work_struct * ws)1750 static void do_noflush_stop(struct work_struct *ws)
1751 {
1752 	struct noflush_work *w = to_noflush(ws);
1753 	w->tc->requeue_mode = false;
1754 	pool_work_complete(&w->pw);
1755 }
1756 
noflush_work(struct thin_c * tc,void (* fn)(struct work_struct *))1757 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1758 {
1759 	struct noflush_work w;
1760 
1761 	w.tc = tc;
1762 	pool_work_wait(&w.pw, tc->pool, fn);
1763 }
1764 
1765 /*----------------------------------------------------------------*/
1766 
get_pool_mode(struct pool * pool)1767 static enum pool_mode get_pool_mode(struct pool *pool)
1768 {
1769 	return pool->pf.mode;
1770 }
1771 
notify_of_pool_mode_change(struct pool * pool,const char * new_mode)1772 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1773 {
1774 	dm_table_event(pool->ti->table);
1775 	DMINFO("%s: switching pool to %s mode",
1776 	       dm_device_name(pool->pool_md), new_mode);
1777 }
1778 
set_pool_mode(struct pool * pool,enum pool_mode new_mode)1779 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1780 {
1781 	struct pool_c *pt = pool->ti->private;
1782 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1783 	enum pool_mode old_mode = get_pool_mode(pool);
1784 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1785 
1786 	/*
1787 	 * Never allow the pool to transition to PM_WRITE mode if user
1788 	 * intervention is required to verify metadata and data consistency.
1789 	 */
1790 	if (new_mode == PM_WRITE && needs_check) {
1791 		DMERR("%s: unable to switch pool to write mode until repaired.",
1792 		      dm_device_name(pool->pool_md));
1793 		if (old_mode != new_mode)
1794 			new_mode = old_mode;
1795 		else
1796 			new_mode = PM_READ_ONLY;
1797 	}
1798 	/*
1799 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1800 	 * not going to recover without a thin_repair.	So we never let the
1801 	 * pool move out of the old mode.
1802 	 */
1803 	if (old_mode == PM_FAIL)
1804 		new_mode = old_mode;
1805 
1806 	switch (new_mode) {
1807 	case PM_FAIL:
1808 		if (old_mode != new_mode)
1809 			notify_of_pool_mode_change(pool, "failure");
1810 		dm_pool_metadata_read_only(pool->pmd);
1811 		pool->process_bio = process_bio_fail;
1812 		pool->process_discard = process_bio_fail;
1813 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1814 		pool->process_prepared_discard = process_prepared_discard_fail;
1815 
1816 		error_retry_list(pool);
1817 		break;
1818 
1819 	case PM_READ_ONLY:
1820 		if (old_mode != new_mode)
1821 			notify_of_pool_mode_change(pool, "read-only");
1822 		dm_pool_metadata_read_only(pool->pmd);
1823 		pool->process_bio = process_bio_read_only;
1824 		pool->process_discard = process_bio_success;
1825 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1826 		pool->process_prepared_discard = process_prepared_discard_passdown;
1827 
1828 		error_retry_list(pool);
1829 		break;
1830 
1831 	case PM_OUT_OF_DATA_SPACE:
1832 		/*
1833 		 * Ideally we'd never hit this state; the low water mark
1834 		 * would trigger userland to extend the pool before we
1835 		 * completely run out of data space.  However, many small
1836 		 * IOs to unprovisioned space can consume data space at an
1837 		 * alarming rate.  Adjust your low water mark if you're
1838 		 * frequently seeing this mode.
1839 		 */
1840 		if (old_mode != new_mode)
1841 			notify_of_pool_mode_change(pool, "out-of-data-space");
1842 		pool->process_bio = process_bio_read_only;
1843 		pool->process_discard = process_discard;
1844 		pool->process_prepared_mapping = process_prepared_mapping;
1845 		pool->process_prepared_discard = process_prepared_discard;
1846 
1847 		if (!pool->pf.error_if_no_space && no_space_timeout)
1848 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1849 		break;
1850 
1851 	case PM_WRITE:
1852 		if (old_mode != new_mode)
1853 			notify_of_pool_mode_change(pool, "write");
1854 		dm_pool_metadata_read_write(pool->pmd);
1855 		pool->process_bio = process_bio;
1856 		pool->process_discard = process_discard;
1857 		pool->process_prepared_mapping = process_prepared_mapping;
1858 		pool->process_prepared_discard = process_prepared_discard;
1859 		break;
1860 	}
1861 
1862 	pool->pf.mode = new_mode;
1863 	/*
1864 	 * The pool mode may have changed, sync it so bind_control_target()
1865 	 * doesn't cause an unexpected mode transition on resume.
1866 	 */
1867 	pt->adjusted_pf.mode = new_mode;
1868 }
1869 
abort_transaction(struct pool * pool)1870 static void abort_transaction(struct pool *pool)
1871 {
1872 	const char *dev_name = dm_device_name(pool->pool_md);
1873 
1874 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1875 	if (dm_pool_abort_metadata(pool->pmd)) {
1876 		DMERR("%s: failed to abort metadata transaction", dev_name);
1877 		set_pool_mode(pool, PM_FAIL);
1878 	}
1879 
1880 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1881 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1882 		set_pool_mode(pool, PM_FAIL);
1883 	}
1884 }
1885 
metadata_operation_failed(struct pool * pool,const char * op,int r)1886 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1887 {
1888 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1889 		    dm_device_name(pool->pool_md), op, r);
1890 
1891 	abort_transaction(pool);
1892 	set_pool_mode(pool, PM_READ_ONLY);
1893 }
1894 
1895 /*----------------------------------------------------------------*/
1896 
1897 /*
1898  * Mapping functions.
1899  */
1900 
1901 /*
1902  * Called only while mapping a thin bio to hand it over to the workqueue.
1903  */
thin_defer_bio(struct thin_c * tc,struct bio * bio)1904 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1905 {
1906 	unsigned long flags;
1907 	struct pool *pool = tc->pool;
1908 
1909 	spin_lock_irqsave(&tc->lock, flags);
1910 	bio_list_add(&tc->deferred_bio_list, bio);
1911 	spin_unlock_irqrestore(&tc->lock, flags);
1912 
1913 	wake_worker(pool);
1914 }
1915 
thin_hook_bio(struct thin_c * tc,struct bio * bio)1916 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1917 {
1918 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1919 
1920 	h->tc = tc;
1921 	h->shared_read_entry = NULL;
1922 	h->all_io_entry = NULL;
1923 	h->overwrite_mapping = NULL;
1924 }
1925 
1926 /*
1927  * Non-blocking function called from the thin target's map function.
1928  */
thin_bio_map(struct dm_target * ti,struct bio * bio)1929 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1930 {
1931 	int r;
1932 	struct thin_c *tc = ti->private;
1933 	dm_block_t block = get_bio_block(tc, bio);
1934 	struct dm_thin_device *td = tc->td;
1935 	struct dm_thin_lookup_result result;
1936 	struct dm_bio_prison_cell cell1, cell2;
1937 	struct dm_bio_prison_cell *cell_result;
1938 	struct dm_cell_key key;
1939 
1940 	thin_hook_bio(tc, bio);
1941 
1942 	if (tc->requeue_mode) {
1943 		bio_endio(bio, DM_ENDIO_REQUEUE);
1944 		return DM_MAPIO_SUBMITTED;
1945 	}
1946 
1947 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1948 		bio_io_error(bio);
1949 		return DM_MAPIO_SUBMITTED;
1950 	}
1951 
1952 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1953 		thin_defer_bio(tc, bio);
1954 		return DM_MAPIO_SUBMITTED;
1955 	}
1956 
1957 	/*
1958 	 * We must hold the virtual cell before doing the lookup, otherwise
1959 	 * there's a race with discard.
1960 	 */
1961 	build_virtual_key(tc->td, block, &key);
1962 	if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1963 		return DM_MAPIO_SUBMITTED;
1964 
1965 	r = dm_thin_find_block(td, block, 0, &result);
1966 
1967 	/*
1968 	 * Note that we defer readahead too.
1969 	 */
1970 	switch (r) {
1971 	case 0:
1972 		if (unlikely(result.shared)) {
1973 			/*
1974 			 * We have a race condition here between the
1975 			 * result.shared value returned by the lookup and
1976 			 * snapshot creation, which may cause new
1977 			 * sharing.
1978 			 *
1979 			 * To avoid this always quiesce the origin before
1980 			 * taking the snap.  You want to do this anyway to
1981 			 * ensure a consistent application view
1982 			 * (i.e. lockfs).
1983 			 *
1984 			 * More distant ancestors are irrelevant. The
1985 			 * shared flag will be set in their case.
1986 			 */
1987 			thin_defer_bio(tc, bio);
1988 			cell_defer_no_holder_no_free(tc, &cell1);
1989 			return DM_MAPIO_SUBMITTED;
1990 		}
1991 
1992 		build_data_key(tc->td, result.block, &key);
1993 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1994 			cell_defer_no_holder_no_free(tc, &cell1);
1995 			return DM_MAPIO_SUBMITTED;
1996 		}
1997 
1998 		inc_all_io_entry(tc->pool, bio);
1999 		cell_defer_no_holder_no_free(tc, &cell2);
2000 		cell_defer_no_holder_no_free(tc, &cell1);
2001 
2002 		remap(tc, bio, result.block);
2003 		return DM_MAPIO_REMAPPED;
2004 
2005 	case -ENODATA:
2006 	case -EWOULDBLOCK:
2007 		/*
2008 		 * In future, the failed dm_thin_find_block above could
2009 		 * provide the hint to load the metadata into cache.
2010 		 */
2011 		thin_defer_bio(tc, bio);
2012 		cell_defer_no_holder_no_free(tc, &cell1);
2013 		return DM_MAPIO_SUBMITTED;
2014 
2015 	default:
2016 		/*
2017 		 * Must always call bio_io_error on failure.
2018 		 * dm_thin_find_block can fail with -EINVAL if the
2019 		 * pool is switched to fail-io mode.
2020 		 */
2021 		bio_io_error(bio);
2022 		cell_defer_no_holder_no_free(tc, &cell1);
2023 		return DM_MAPIO_SUBMITTED;
2024 	}
2025 }
2026 
pool_is_congested(struct dm_target_callbacks * cb,int bdi_bits)2027 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2028 {
2029 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2030 	struct request_queue *q;
2031 
2032 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2033 		return 1;
2034 
2035 	q = bdev_get_queue(pt->data_dev->bdev);
2036 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2037 }
2038 
requeue_bios(struct pool * pool)2039 static void requeue_bios(struct pool *pool)
2040 {
2041 	unsigned long flags;
2042 	struct thin_c *tc;
2043 
2044 	rcu_read_lock();
2045 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2046 		spin_lock_irqsave(&tc->lock, flags);
2047 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2048 		bio_list_init(&tc->retry_on_resume_list);
2049 		spin_unlock_irqrestore(&tc->lock, flags);
2050 	}
2051 	rcu_read_unlock();
2052 }
2053 
2054 /*----------------------------------------------------------------
2055  * Binding of control targets to a pool object
2056  *--------------------------------------------------------------*/
data_dev_supports_discard(struct pool_c * pt)2057 static bool data_dev_supports_discard(struct pool_c *pt)
2058 {
2059 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2060 
2061 	return q && blk_queue_discard(q);
2062 }
2063 
is_factor(sector_t block_size,uint32_t n)2064 static bool is_factor(sector_t block_size, uint32_t n)
2065 {
2066 	return !sector_div(block_size, n);
2067 }
2068 
2069 /*
2070  * If discard_passdown was enabled verify that the data device
2071  * supports discards.  Disable discard_passdown if not.
2072  */
disable_passdown_if_not_supported(struct pool_c * pt)2073 static void disable_passdown_if_not_supported(struct pool_c *pt)
2074 {
2075 	struct pool *pool = pt->pool;
2076 	struct block_device *data_bdev = pt->data_dev->bdev;
2077 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2078 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2079 	const char *reason = NULL;
2080 	char buf[BDEVNAME_SIZE];
2081 
2082 	if (!pt->adjusted_pf.discard_passdown)
2083 		return;
2084 
2085 	if (!data_dev_supports_discard(pt))
2086 		reason = "discard unsupported";
2087 
2088 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2089 		reason = "max discard sectors smaller than a block";
2090 
2091 	else if (data_limits->discard_granularity > block_size)
2092 		reason = "discard granularity larger than a block";
2093 
2094 	else if (!is_factor(block_size, data_limits->discard_granularity))
2095 		reason = "discard granularity not a factor of block size";
2096 
2097 	if (reason) {
2098 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2099 		pt->adjusted_pf.discard_passdown = false;
2100 	}
2101 }
2102 
bind_control_target(struct pool * pool,struct dm_target * ti)2103 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2104 {
2105 	struct pool_c *pt = ti->private;
2106 
2107 	/*
2108 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2109 	 */
2110 	enum pool_mode old_mode = get_pool_mode(pool);
2111 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2112 
2113 	/*
2114 	 * Don't change the pool's mode until set_pool_mode() below.
2115 	 * Otherwise the pool's process_* function pointers may
2116 	 * not match the desired pool mode.
2117 	 */
2118 	pt->adjusted_pf.mode = old_mode;
2119 
2120 	pool->ti = ti;
2121 	pool->pf = pt->adjusted_pf;
2122 	pool->low_water_blocks = pt->low_water_blocks;
2123 
2124 	set_pool_mode(pool, new_mode);
2125 
2126 	return 0;
2127 }
2128 
unbind_control_target(struct pool * pool,struct dm_target * ti)2129 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2130 {
2131 	if (pool->ti == ti)
2132 		pool->ti = NULL;
2133 }
2134 
2135 /*----------------------------------------------------------------
2136  * Pool creation
2137  *--------------------------------------------------------------*/
2138 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)2139 static void pool_features_init(struct pool_features *pf)
2140 {
2141 	pf->mode = PM_WRITE;
2142 	pf->zero_new_blocks = true;
2143 	pf->discard_enabled = true;
2144 	pf->discard_passdown = true;
2145 	pf->error_if_no_space = false;
2146 }
2147 
__pool_destroy(struct pool * pool)2148 static void __pool_destroy(struct pool *pool)
2149 {
2150 	__pool_table_remove(pool);
2151 
2152 	if (dm_pool_metadata_close(pool->pmd) < 0)
2153 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2154 
2155 	dm_bio_prison_destroy(pool->prison);
2156 	dm_kcopyd_client_destroy(pool->copier);
2157 
2158 	if (pool->wq)
2159 		destroy_workqueue(pool->wq);
2160 
2161 	if (pool->next_mapping)
2162 		mempool_free(pool->next_mapping, pool->mapping_pool);
2163 	mempool_destroy(pool->mapping_pool);
2164 	dm_deferred_set_destroy(pool->shared_read_ds);
2165 	dm_deferred_set_destroy(pool->all_io_ds);
2166 	kfree(pool);
2167 }
2168 
2169 static struct kmem_cache *_new_mapping_cache;
2170 
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error)2171 static struct pool *pool_create(struct mapped_device *pool_md,
2172 				struct block_device *metadata_dev,
2173 				unsigned long block_size,
2174 				int read_only, char **error)
2175 {
2176 	int r;
2177 	void *err_p;
2178 	struct pool *pool;
2179 	struct dm_pool_metadata *pmd;
2180 	bool format_device = read_only ? false : true;
2181 
2182 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2183 	if (IS_ERR(pmd)) {
2184 		*error = "Error creating metadata object";
2185 		return (struct pool *)pmd;
2186 	}
2187 
2188 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2189 	if (!pool) {
2190 		*error = "Error allocating memory for pool";
2191 		err_p = ERR_PTR(-ENOMEM);
2192 		goto bad_pool;
2193 	}
2194 
2195 	pool->pmd = pmd;
2196 	pool->sectors_per_block = block_size;
2197 	if (block_size & (block_size - 1))
2198 		pool->sectors_per_block_shift = -1;
2199 	else
2200 		pool->sectors_per_block_shift = __ffs(block_size);
2201 	pool->low_water_blocks = 0;
2202 	pool_features_init(&pool->pf);
2203 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2204 	if (!pool->prison) {
2205 		*error = "Error creating pool's bio prison";
2206 		err_p = ERR_PTR(-ENOMEM);
2207 		goto bad_prison;
2208 	}
2209 
2210 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2211 	if (IS_ERR(pool->copier)) {
2212 		r = PTR_ERR(pool->copier);
2213 		*error = "Error creating pool's kcopyd client";
2214 		err_p = ERR_PTR(r);
2215 		goto bad_kcopyd_client;
2216 	}
2217 
2218 	/*
2219 	 * Create singlethreaded workqueue that will service all devices
2220 	 * that use this metadata.
2221 	 */
2222 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2223 	if (!pool->wq) {
2224 		*error = "Error creating pool's workqueue";
2225 		err_p = ERR_PTR(-ENOMEM);
2226 		goto bad_wq;
2227 	}
2228 
2229 	INIT_WORK(&pool->worker, do_worker);
2230 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2231 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2232 	spin_lock_init(&pool->lock);
2233 	bio_list_init(&pool->deferred_flush_bios);
2234 	INIT_LIST_HEAD(&pool->prepared_mappings);
2235 	INIT_LIST_HEAD(&pool->prepared_discards);
2236 	INIT_LIST_HEAD(&pool->active_thins);
2237 	pool->low_water_triggered = false;
2238 
2239 	pool->shared_read_ds = dm_deferred_set_create();
2240 	if (!pool->shared_read_ds) {
2241 		*error = "Error creating pool's shared read deferred set";
2242 		err_p = ERR_PTR(-ENOMEM);
2243 		goto bad_shared_read_ds;
2244 	}
2245 
2246 	pool->all_io_ds = dm_deferred_set_create();
2247 	if (!pool->all_io_ds) {
2248 		*error = "Error creating pool's all io deferred set";
2249 		err_p = ERR_PTR(-ENOMEM);
2250 		goto bad_all_io_ds;
2251 	}
2252 
2253 	pool->next_mapping = NULL;
2254 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2255 						      _new_mapping_cache);
2256 	if (!pool->mapping_pool) {
2257 		*error = "Error creating pool's mapping mempool";
2258 		err_p = ERR_PTR(-ENOMEM);
2259 		goto bad_mapping_pool;
2260 	}
2261 
2262 	pool->ref_count = 1;
2263 	pool->last_commit_jiffies = jiffies;
2264 	pool->pool_md = pool_md;
2265 	pool->md_dev = metadata_dev;
2266 	__pool_table_insert(pool);
2267 
2268 	return pool;
2269 
2270 bad_mapping_pool:
2271 	dm_deferred_set_destroy(pool->all_io_ds);
2272 bad_all_io_ds:
2273 	dm_deferred_set_destroy(pool->shared_read_ds);
2274 bad_shared_read_ds:
2275 	destroy_workqueue(pool->wq);
2276 bad_wq:
2277 	dm_kcopyd_client_destroy(pool->copier);
2278 bad_kcopyd_client:
2279 	dm_bio_prison_destroy(pool->prison);
2280 bad_prison:
2281 	kfree(pool);
2282 bad_pool:
2283 	if (dm_pool_metadata_close(pmd))
2284 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2285 
2286 	return err_p;
2287 }
2288 
__pool_inc(struct pool * pool)2289 static void __pool_inc(struct pool *pool)
2290 {
2291 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2292 	pool->ref_count++;
2293 }
2294 
__pool_dec(struct pool * pool)2295 static void __pool_dec(struct pool *pool)
2296 {
2297 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2298 	BUG_ON(!pool->ref_count);
2299 	if (!--pool->ref_count)
2300 		__pool_destroy(pool);
2301 }
2302 
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,int read_only,char ** error,int * created)2303 static struct pool *__pool_find(struct mapped_device *pool_md,
2304 				struct block_device *metadata_dev,
2305 				unsigned long block_size, int read_only,
2306 				char **error, int *created)
2307 {
2308 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2309 
2310 	if (pool) {
2311 		if (pool->pool_md != pool_md) {
2312 			*error = "metadata device already in use by a pool";
2313 			return ERR_PTR(-EBUSY);
2314 		}
2315 		__pool_inc(pool);
2316 
2317 	} else {
2318 		pool = __pool_table_lookup(pool_md);
2319 		if (pool) {
2320 			if (pool->md_dev != metadata_dev) {
2321 				*error = "different pool cannot replace a pool";
2322 				return ERR_PTR(-EINVAL);
2323 			}
2324 			__pool_inc(pool);
2325 
2326 		} else {
2327 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2328 			*created = 1;
2329 		}
2330 	}
2331 
2332 	return pool;
2333 }
2334 
2335 /*----------------------------------------------------------------
2336  * Pool target methods
2337  *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)2338 static void pool_dtr(struct dm_target *ti)
2339 {
2340 	struct pool_c *pt = ti->private;
2341 
2342 	mutex_lock(&dm_thin_pool_table.mutex);
2343 
2344 	unbind_control_target(pt->pool, ti);
2345 	__pool_dec(pt->pool);
2346 	dm_put_device(ti, pt->metadata_dev);
2347 	dm_put_device(ti, pt->data_dev);
2348 	kfree(pt);
2349 
2350 	mutex_unlock(&dm_thin_pool_table.mutex);
2351 }
2352 
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)2353 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2354 			       struct dm_target *ti)
2355 {
2356 	int r;
2357 	unsigned argc;
2358 	const char *arg_name;
2359 
2360 	static struct dm_arg _args[] = {
2361 		{0, 4, "Invalid number of pool feature arguments"},
2362 	};
2363 
2364 	/*
2365 	 * No feature arguments supplied.
2366 	 */
2367 	if (!as->argc)
2368 		return 0;
2369 
2370 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2371 	if (r)
2372 		return -EINVAL;
2373 
2374 	while (argc && !r) {
2375 		arg_name = dm_shift_arg(as);
2376 		argc--;
2377 
2378 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2379 			pf->zero_new_blocks = false;
2380 
2381 		else if (!strcasecmp(arg_name, "ignore_discard"))
2382 			pf->discard_enabled = false;
2383 
2384 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2385 			pf->discard_passdown = false;
2386 
2387 		else if (!strcasecmp(arg_name, "read_only"))
2388 			pf->mode = PM_READ_ONLY;
2389 
2390 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2391 			pf->error_if_no_space = true;
2392 
2393 		else {
2394 			ti->error = "Unrecognised pool feature requested";
2395 			r = -EINVAL;
2396 			break;
2397 		}
2398 	}
2399 
2400 	return r;
2401 }
2402 
metadata_low_callback(void * context)2403 static void metadata_low_callback(void *context)
2404 {
2405 	struct pool *pool = context;
2406 
2407 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2408 	       dm_device_name(pool->pool_md));
2409 
2410 	dm_table_event(pool->ti->table);
2411 }
2412 
get_dev_size(struct block_device * bdev)2413 static sector_t get_dev_size(struct block_device *bdev)
2414 {
2415 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2416 }
2417 
warn_if_metadata_device_too_big(struct block_device * bdev)2418 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2419 {
2420 	sector_t metadata_dev_size = get_dev_size(bdev);
2421 	char buffer[BDEVNAME_SIZE];
2422 
2423 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2424 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2425 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2426 }
2427 
get_metadata_dev_size(struct block_device * bdev)2428 static sector_t get_metadata_dev_size(struct block_device *bdev)
2429 {
2430 	sector_t metadata_dev_size = get_dev_size(bdev);
2431 
2432 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2433 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2434 
2435 	return metadata_dev_size;
2436 }
2437 
get_metadata_dev_size_in_blocks(struct block_device * bdev)2438 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2439 {
2440 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2441 
2442 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2443 
2444 	return metadata_dev_size;
2445 }
2446 
2447 /*
2448  * When a metadata threshold is crossed a dm event is triggered, and
2449  * userland should respond by growing the metadata device.  We could let
2450  * userland set the threshold, like we do with the data threshold, but I'm
2451  * not sure they know enough to do this well.
2452  */
calc_metadata_threshold(struct pool_c * pt)2453 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2454 {
2455 	/*
2456 	 * 4M is ample for all ops with the possible exception of thin
2457 	 * device deletion which is harmless if it fails (just retry the
2458 	 * delete after you've grown the device).
2459 	 */
2460 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2461 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2462 }
2463 
2464 /*
2465  * thin-pool <metadata dev> <data dev>
2466  *	     <data block size (sectors)>
2467  *	     <low water mark (blocks)>
2468  *	     [<#feature args> [<arg>]*]
2469  *
2470  * Optional feature arguments are:
2471  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2472  *	     ignore_discard: disable discard
2473  *	     no_discard_passdown: don't pass discards down to the data device
2474  *	     read_only: Don't allow any changes to be made to the pool metadata.
2475  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2476  */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)2477 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2478 {
2479 	int r, pool_created = 0;
2480 	struct pool_c *pt;
2481 	struct pool *pool;
2482 	struct pool_features pf;
2483 	struct dm_arg_set as;
2484 	struct dm_dev *data_dev;
2485 	unsigned long block_size;
2486 	dm_block_t low_water_blocks;
2487 	struct dm_dev *metadata_dev;
2488 	fmode_t metadata_mode;
2489 
2490 	/*
2491 	 * FIXME Remove validation from scope of lock.
2492 	 */
2493 	mutex_lock(&dm_thin_pool_table.mutex);
2494 
2495 	if (argc < 4) {
2496 		ti->error = "Invalid argument count";
2497 		r = -EINVAL;
2498 		goto out_unlock;
2499 	}
2500 
2501 	as.argc = argc;
2502 	as.argv = argv;
2503 
2504 	/*
2505 	 * Set default pool features.
2506 	 */
2507 	pool_features_init(&pf);
2508 
2509 	dm_consume_args(&as, 4);
2510 	r = parse_pool_features(&as, &pf, ti);
2511 	if (r)
2512 		goto out_unlock;
2513 
2514 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2515 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2516 	if (r) {
2517 		ti->error = "Error opening metadata block device";
2518 		goto out_unlock;
2519 	}
2520 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2521 
2522 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2523 	if (r) {
2524 		ti->error = "Error getting data device";
2525 		goto out_metadata;
2526 	}
2527 
2528 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2529 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2530 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2531 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2532 		ti->error = "Invalid block size";
2533 		r = -EINVAL;
2534 		goto out;
2535 	}
2536 
2537 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2538 		ti->error = "Invalid low water mark";
2539 		r = -EINVAL;
2540 		goto out;
2541 	}
2542 
2543 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2544 	if (!pt) {
2545 		r = -ENOMEM;
2546 		goto out;
2547 	}
2548 
2549 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2550 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2551 	if (IS_ERR(pool)) {
2552 		r = PTR_ERR(pool);
2553 		goto out_free_pt;
2554 	}
2555 
2556 	/*
2557 	 * 'pool_created' reflects whether this is the first table load.
2558 	 * Top level discard support is not allowed to be changed after
2559 	 * initial load.  This would require a pool reload to trigger thin
2560 	 * device changes.
2561 	 */
2562 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2563 		ti->error = "Discard support cannot be disabled once enabled";
2564 		r = -EINVAL;
2565 		goto out_flags_changed;
2566 	}
2567 
2568 	pt->pool = pool;
2569 	pt->ti = ti;
2570 	pt->metadata_dev = metadata_dev;
2571 	pt->data_dev = data_dev;
2572 	pt->low_water_blocks = low_water_blocks;
2573 	pt->adjusted_pf = pt->requested_pf = pf;
2574 	ti->num_flush_bios = 1;
2575 
2576 	/*
2577 	 * Only need to enable discards if the pool should pass
2578 	 * them down to the data device.  The thin device's discard
2579 	 * processing will cause mappings to be removed from the btree.
2580 	 */
2581 	ti->discard_zeroes_data_unsupported = true;
2582 	if (pf.discard_enabled && pf.discard_passdown) {
2583 		ti->num_discard_bios = 1;
2584 
2585 		/*
2586 		 * Setting 'discards_supported' circumvents the normal
2587 		 * stacking of discard limits (this keeps the pool and
2588 		 * thin devices' discard limits consistent).
2589 		 */
2590 		ti->discards_supported = true;
2591 	}
2592 	ti->private = pt;
2593 
2594 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2595 						calc_metadata_threshold(pt),
2596 						metadata_low_callback,
2597 						pool);
2598 	if (r)
2599 		goto out_flags_changed;
2600 
2601 	pt->callbacks.congested_fn = pool_is_congested;
2602 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2603 
2604 	mutex_unlock(&dm_thin_pool_table.mutex);
2605 
2606 	return 0;
2607 
2608 out_flags_changed:
2609 	__pool_dec(pool);
2610 out_free_pt:
2611 	kfree(pt);
2612 out:
2613 	dm_put_device(ti, data_dev);
2614 out_metadata:
2615 	dm_put_device(ti, metadata_dev);
2616 out_unlock:
2617 	mutex_unlock(&dm_thin_pool_table.mutex);
2618 
2619 	return r;
2620 }
2621 
pool_map(struct dm_target * ti,struct bio * bio)2622 static int pool_map(struct dm_target *ti, struct bio *bio)
2623 {
2624 	int r;
2625 	struct pool_c *pt = ti->private;
2626 	struct pool *pool = pt->pool;
2627 	unsigned long flags;
2628 
2629 	/*
2630 	 * As this is a singleton target, ti->begin is always zero.
2631 	 */
2632 	spin_lock_irqsave(&pool->lock, flags);
2633 	bio->bi_bdev = pt->data_dev->bdev;
2634 	r = DM_MAPIO_REMAPPED;
2635 	spin_unlock_irqrestore(&pool->lock, flags);
2636 
2637 	return r;
2638 }
2639 
maybe_resize_data_dev(struct dm_target * ti,bool * need_commit)2640 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2641 {
2642 	int r;
2643 	struct pool_c *pt = ti->private;
2644 	struct pool *pool = pt->pool;
2645 	sector_t data_size = ti->len;
2646 	dm_block_t sb_data_size;
2647 
2648 	*need_commit = false;
2649 
2650 	(void) sector_div(data_size, pool->sectors_per_block);
2651 
2652 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2653 	if (r) {
2654 		DMERR("%s: failed to retrieve data device size",
2655 		      dm_device_name(pool->pool_md));
2656 		return r;
2657 	}
2658 
2659 	if (data_size < sb_data_size) {
2660 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2661 		      dm_device_name(pool->pool_md),
2662 		      (unsigned long long)data_size, sb_data_size);
2663 		return -EINVAL;
2664 
2665 	} else if (data_size > sb_data_size) {
2666 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2667 			DMERR("%s: unable to grow the data device until repaired.",
2668 			      dm_device_name(pool->pool_md));
2669 			return 0;
2670 		}
2671 
2672 		if (sb_data_size)
2673 			DMINFO("%s: growing the data device from %llu to %llu blocks",
2674 			       dm_device_name(pool->pool_md),
2675 			       sb_data_size, (unsigned long long)data_size);
2676 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2677 		if (r) {
2678 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2679 			return r;
2680 		}
2681 
2682 		*need_commit = true;
2683 	}
2684 
2685 	return 0;
2686 }
2687 
maybe_resize_metadata_dev(struct dm_target * ti,bool * need_commit)2688 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2689 {
2690 	int r;
2691 	struct pool_c *pt = ti->private;
2692 	struct pool *pool = pt->pool;
2693 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2694 
2695 	*need_commit = false;
2696 
2697 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2698 
2699 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2700 	if (r) {
2701 		DMERR("%s: failed to retrieve metadata device size",
2702 		      dm_device_name(pool->pool_md));
2703 		return r;
2704 	}
2705 
2706 	if (metadata_dev_size < sb_metadata_dev_size) {
2707 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2708 		      dm_device_name(pool->pool_md),
2709 		      metadata_dev_size, sb_metadata_dev_size);
2710 		return -EINVAL;
2711 
2712 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2713 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2714 			DMERR("%s: unable to grow the metadata device until repaired.",
2715 			      dm_device_name(pool->pool_md));
2716 			return 0;
2717 		}
2718 
2719 		warn_if_metadata_device_too_big(pool->md_dev);
2720 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2721 		       dm_device_name(pool->pool_md),
2722 		       sb_metadata_dev_size, metadata_dev_size);
2723 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2724 		if (r) {
2725 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2726 			return r;
2727 		}
2728 
2729 		*need_commit = true;
2730 	}
2731 
2732 	return 0;
2733 }
2734 
2735 /*
2736  * Retrieves the number of blocks of the data device from
2737  * the superblock and compares it to the actual device size,
2738  * thus resizing the data device in case it has grown.
2739  *
2740  * This both copes with opening preallocated data devices in the ctr
2741  * being followed by a resume
2742  * -and-
2743  * calling the resume method individually after userspace has
2744  * grown the data device in reaction to a table event.
2745  */
pool_preresume(struct dm_target * ti)2746 static int pool_preresume(struct dm_target *ti)
2747 {
2748 	int r;
2749 	bool need_commit1, need_commit2;
2750 	struct pool_c *pt = ti->private;
2751 	struct pool *pool = pt->pool;
2752 
2753 	/*
2754 	 * Take control of the pool object.
2755 	 */
2756 	r = bind_control_target(pool, ti);
2757 	if (r)
2758 		return r;
2759 
2760 	r = maybe_resize_data_dev(ti, &need_commit1);
2761 	if (r)
2762 		return r;
2763 
2764 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2765 	if (r)
2766 		return r;
2767 
2768 	if (need_commit1 || need_commit2)
2769 		(void) commit(pool);
2770 
2771 	return 0;
2772 }
2773 
pool_resume(struct dm_target * ti)2774 static void pool_resume(struct dm_target *ti)
2775 {
2776 	struct pool_c *pt = ti->private;
2777 	struct pool *pool = pt->pool;
2778 	unsigned long flags;
2779 
2780 	spin_lock_irqsave(&pool->lock, flags);
2781 	pool->low_water_triggered = false;
2782 	spin_unlock_irqrestore(&pool->lock, flags);
2783 	requeue_bios(pool);
2784 
2785 	do_waker(&pool->waker.work);
2786 }
2787 
pool_postsuspend(struct dm_target * ti)2788 static void pool_postsuspend(struct dm_target *ti)
2789 {
2790 	struct pool_c *pt = ti->private;
2791 	struct pool *pool = pt->pool;
2792 
2793 	cancel_delayed_work_sync(&pool->waker);
2794 	cancel_delayed_work_sync(&pool->no_space_timeout);
2795 	flush_workqueue(pool->wq);
2796 	(void) commit(pool);
2797 }
2798 
check_arg_count(unsigned argc,unsigned args_required)2799 static int check_arg_count(unsigned argc, unsigned args_required)
2800 {
2801 	if (argc != args_required) {
2802 		DMWARN("Message received with %u arguments instead of %u.",
2803 		       argc, args_required);
2804 		return -EINVAL;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)2810 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2811 {
2812 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2813 	    *dev_id <= MAX_DEV_ID)
2814 		return 0;
2815 
2816 	if (warning)
2817 		DMWARN("Message received with invalid device id: %s", arg);
2818 
2819 	return -EINVAL;
2820 }
2821 
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)2822 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2823 {
2824 	dm_thin_id dev_id;
2825 	int r;
2826 
2827 	r = check_arg_count(argc, 2);
2828 	if (r)
2829 		return r;
2830 
2831 	r = read_dev_id(argv[1], &dev_id, 1);
2832 	if (r)
2833 		return r;
2834 
2835 	r = dm_pool_create_thin(pool->pmd, dev_id);
2836 	if (r) {
2837 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2838 		       argv[1]);
2839 		return r;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2845 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2846 {
2847 	dm_thin_id dev_id;
2848 	dm_thin_id origin_dev_id;
2849 	int r;
2850 
2851 	r = check_arg_count(argc, 3);
2852 	if (r)
2853 		return r;
2854 
2855 	r = read_dev_id(argv[1], &dev_id, 1);
2856 	if (r)
2857 		return r;
2858 
2859 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2860 	if (r)
2861 		return r;
2862 
2863 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2864 	if (r) {
2865 		DMWARN("Creation of new snapshot %s of device %s failed.",
2866 		       argv[1], argv[2]);
2867 		return r;
2868 	}
2869 
2870 	return 0;
2871 }
2872 
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)2873 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2874 {
2875 	dm_thin_id dev_id;
2876 	int r;
2877 
2878 	r = check_arg_count(argc, 2);
2879 	if (r)
2880 		return r;
2881 
2882 	r = read_dev_id(argv[1], &dev_id, 1);
2883 	if (r)
2884 		return r;
2885 
2886 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2887 	if (r)
2888 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2889 
2890 	return r;
2891 }
2892 
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)2893 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2894 {
2895 	dm_thin_id old_id, new_id;
2896 	int r;
2897 
2898 	r = check_arg_count(argc, 3);
2899 	if (r)
2900 		return r;
2901 
2902 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2903 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2904 		return -EINVAL;
2905 	}
2906 
2907 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2908 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2909 		return -EINVAL;
2910 	}
2911 
2912 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2913 	if (r) {
2914 		DMWARN("Failed to change transaction id from %s to %s.",
2915 		       argv[1], argv[2]);
2916 		return r;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
process_reserve_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2922 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2923 {
2924 	int r;
2925 
2926 	r = check_arg_count(argc, 1);
2927 	if (r)
2928 		return r;
2929 
2930 	(void) commit(pool);
2931 
2932 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2933 	if (r)
2934 		DMWARN("reserve_metadata_snap message failed.");
2935 
2936 	return r;
2937 }
2938 
process_release_metadata_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2939 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2940 {
2941 	int r;
2942 
2943 	r = check_arg_count(argc, 1);
2944 	if (r)
2945 		return r;
2946 
2947 	r = dm_pool_release_metadata_snap(pool->pmd);
2948 	if (r)
2949 		DMWARN("release_metadata_snap message failed.");
2950 
2951 	return r;
2952 }
2953 
2954 /*
2955  * Messages supported:
2956  *   create_thin	<dev_id>
2957  *   create_snap	<dev_id> <origin_id>
2958  *   delete		<dev_id>
2959  *   trim		<dev_id> <new_size_in_sectors>
2960  *   set_transaction_id <current_trans_id> <new_trans_id>
2961  *   reserve_metadata_snap
2962  *   release_metadata_snap
2963  */
pool_message(struct dm_target * ti,unsigned argc,char ** argv)2964 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2965 {
2966 	int r = -EINVAL;
2967 	struct pool_c *pt = ti->private;
2968 	struct pool *pool = pt->pool;
2969 
2970 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
2971 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
2972 		      dm_device_name(pool->pool_md));
2973 		return -EINVAL;
2974 	}
2975 
2976 	if (!strcasecmp(argv[0], "create_thin"))
2977 		r = process_create_thin_mesg(argc, argv, pool);
2978 
2979 	else if (!strcasecmp(argv[0], "create_snap"))
2980 		r = process_create_snap_mesg(argc, argv, pool);
2981 
2982 	else if (!strcasecmp(argv[0], "delete"))
2983 		r = process_delete_mesg(argc, argv, pool);
2984 
2985 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2986 		r = process_set_transaction_id_mesg(argc, argv, pool);
2987 
2988 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2989 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2990 
2991 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2992 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2993 
2994 	else
2995 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2996 
2997 	if (!r)
2998 		(void) commit(pool);
2999 
3000 	return r;
3001 }
3002 
emit_flags(struct pool_features * pf,char * result,unsigned sz,unsigned maxlen)3003 static void emit_flags(struct pool_features *pf, char *result,
3004 		       unsigned sz, unsigned maxlen)
3005 {
3006 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3007 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3008 		pf->error_if_no_space;
3009 	DMEMIT("%u ", count);
3010 
3011 	if (!pf->zero_new_blocks)
3012 		DMEMIT("skip_block_zeroing ");
3013 
3014 	if (!pf->discard_enabled)
3015 		DMEMIT("ignore_discard ");
3016 
3017 	if (!pf->discard_passdown)
3018 		DMEMIT("no_discard_passdown ");
3019 
3020 	if (pf->mode == PM_READ_ONLY)
3021 		DMEMIT("read_only ");
3022 
3023 	if (pf->error_if_no_space)
3024 		DMEMIT("error_if_no_space ");
3025 }
3026 
3027 /*
3028  * Status line is:
3029  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3030  *    <used data sectors>/<total data sectors> <held metadata root>
3031  */
pool_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3032 static void pool_status(struct dm_target *ti, status_type_t type,
3033 			unsigned status_flags, char *result, unsigned maxlen)
3034 {
3035 	int r;
3036 	unsigned sz = 0;
3037 	uint64_t transaction_id;
3038 	dm_block_t nr_free_blocks_data;
3039 	dm_block_t nr_free_blocks_metadata;
3040 	dm_block_t nr_blocks_data;
3041 	dm_block_t nr_blocks_metadata;
3042 	dm_block_t held_root;
3043 	char buf[BDEVNAME_SIZE];
3044 	char buf2[BDEVNAME_SIZE];
3045 	struct pool_c *pt = ti->private;
3046 	struct pool *pool = pt->pool;
3047 
3048 	switch (type) {
3049 	case STATUSTYPE_INFO:
3050 		if (get_pool_mode(pool) == PM_FAIL) {
3051 			DMEMIT("Fail");
3052 			break;
3053 		}
3054 
3055 		/* Commit to ensure statistics aren't out-of-date */
3056 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3057 			(void) commit(pool);
3058 
3059 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3060 		if (r) {
3061 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3062 			      dm_device_name(pool->pool_md), r);
3063 			goto err;
3064 		}
3065 
3066 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3067 		if (r) {
3068 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3069 			      dm_device_name(pool->pool_md), r);
3070 			goto err;
3071 		}
3072 
3073 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3074 		if (r) {
3075 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3076 			      dm_device_name(pool->pool_md), r);
3077 			goto err;
3078 		}
3079 
3080 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3081 		if (r) {
3082 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3083 			      dm_device_name(pool->pool_md), r);
3084 			goto err;
3085 		}
3086 
3087 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3088 		if (r) {
3089 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3090 			      dm_device_name(pool->pool_md), r);
3091 			goto err;
3092 		}
3093 
3094 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3095 		if (r) {
3096 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3097 			      dm_device_name(pool->pool_md), r);
3098 			goto err;
3099 		}
3100 
3101 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3102 		       (unsigned long long)transaction_id,
3103 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3104 		       (unsigned long long)nr_blocks_metadata,
3105 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3106 		       (unsigned long long)nr_blocks_data);
3107 
3108 		if (held_root)
3109 			DMEMIT("%llu ", held_root);
3110 		else
3111 			DMEMIT("- ");
3112 
3113 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3114 			DMEMIT("out_of_data_space ");
3115 		else if (pool->pf.mode == PM_READ_ONLY)
3116 			DMEMIT("ro ");
3117 		else
3118 			DMEMIT("rw ");
3119 
3120 		if (!pool->pf.discard_enabled)
3121 			DMEMIT("ignore_discard ");
3122 		else if (pool->pf.discard_passdown)
3123 			DMEMIT("discard_passdown ");
3124 		else
3125 			DMEMIT("no_discard_passdown ");
3126 
3127 		if (pool->pf.error_if_no_space)
3128 			DMEMIT("error_if_no_space ");
3129 		else
3130 			DMEMIT("queue_if_no_space ");
3131 
3132 		break;
3133 
3134 	case STATUSTYPE_TABLE:
3135 		DMEMIT("%s %s %lu %llu ",
3136 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3137 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3138 		       (unsigned long)pool->sectors_per_block,
3139 		       (unsigned long long)pt->low_water_blocks);
3140 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3141 		break;
3142 	}
3143 	return;
3144 
3145 err:
3146 	DMEMIT("Error");
3147 }
3148 
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3149 static int pool_iterate_devices(struct dm_target *ti,
3150 				iterate_devices_callout_fn fn, void *data)
3151 {
3152 	struct pool_c *pt = ti->private;
3153 
3154 	return fn(ti, pt->data_dev, 0, ti->len, data);
3155 }
3156 
pool_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)3157 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3158 		      struct bio_vec *biovec, int max_size)
3159 {
3160 	struct pool_c *pt = ti->private;
3161 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3162 
3163 	if (!q->merge_bvec_fn)
3164 		return max_size;
3165 
3166 	bvm->bi_bdev = pt->data_dev->bdev;
3167 
3168 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3169 }
3170 
set_discard_limits(struct pool_c * pt,struct queue_limits * limits)3171 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3172 {
3173 	struct pool *pool = pt->pool;
3174 	struct queue_limits *data_limits;
3175 
3176 	limits->max_discard_sectors = pool->sectors_per_block;
3177 
3178 	/*
3179 	 * discard_granularity is just a hint, and not enforced.
3180 	 */
3181 	if (pt->adjusted_pf.discard_passdown) {
3182 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3183 		limits->discard_granularity = max(data_limits->discard_granularity,
3184 						  pool->sectors_per_block << SECTOR_SHIFT);
3185 	} else
3186 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3187 }
3188 
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)3189 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3190 {
3191 	struct pool_c *pt = ti->private;
3192 	struct pool *pool = pt->pool;
3193 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3194 
3195 	/*
3196 	 * If the system-determined stacked limits are compatible with the
3197 	 * pool's blocksize (io_opt is a factor) do not override them.
3198 	 */
3199 	if (io_opt_sectors < pool->sectors_per_block ||
3200 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3201 		blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3202 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3203 	}
3204 
3205 	/*
3206 	 * pt->adjusted_pf is a staging area for the actual features to use.
3207 	 * They get transferred to the live pool in bind_control_target()
3208 	 * called from pool_preresume().
3209 	 */
3210 	if (!pt->adjusted_pf.discard_enabled) {
3211 		/*
3212 		 * Must explicitly disallow stacking discard limits otherwise the
3213 		 * block layer will stack them if pool's data device has support.
3214 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3215 		 * user to see that, so make sure to set all discard limits to 0.
3216 		 */
3217 		limits->discard_granularity = 0;
3218 		return;
3219 	}
3220 
3221 	disable_passdown_if_not_supported(pt);
3222 
3223 	set_discard_limits(pt, limits);
3224 }
3225 
3226 static struct target_type pool_target = {
3227 	.name = "thin-pool",
3228 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3229 		    DM_TARGET_IMMUTABLE,
3230 	.version = {1, 13, 0},
3231 	.module = THIS_MODULE,
3232 	.ctr = pool_ctr,
3233 	.dtr = pool_dtr,
3234 	.map = pool_map,
3235 	.postsuspend = pool_postsuspend,
3236 	.preresume = pool_preresume,
3237 	.resume = pool_resume,
3238 	.message = pool_message,
3239 	.status = pool_status,
3240 	.merge = pool_merge,
3241 	.iterate_devices = pool_iterate_devices,
3242 	.io_hints = pool_io_hints,
3243 };
3244 
3245 /*----------------------------------------------------------------
3246  * Thin target methods
3247  *--------------------------------------------------------------*/
thin_get(struct thin_c * tc)3248 static void thin_get(struct thin_c *tc)
3249 {
3250 	atomic_inc(&tc->refcount);
3251 }
3252 
thin_put(struct thin_c * tc)3253 static void thin_put(struct thin_c *tc)
3254 {
3255 	if (atomic_dec_and_test(&tc->refcount))
3256 		complete(&tc->can_destroy);
3257 }
3258 
thin_dtr(struct dm_target * ti)3259 static void thin_dtr(struct dm_target *ti)
3260 {
3261 	struct thin_c *tc = ti->private;
3262 	unsigned long flags;
3263 
3264 	spin_lock_irqsave(&tc->pool->lock, flags);
3265 	list_del_rcu(&tc->list);
3266 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3267 	synchronize_rcu();
3268 
3269 	thin_put(tc);
3270 	wait_for_completion(&tc->can_destroy);
3271 
3272 	mutex_lock(&dm_thin_pool_table.mutex);
3273 
3274 	__pool_dec(tc->pool);
3275 	dm_pool_close_thin_device(tc->td);
3276 	dm_put_device(ti, tc->pool_dev);
3277 	if (tc->origin_dev)
3278 		dm_put_device(ti, tc->origin_dev);
3279 	kfree(tc);
3280 
3281 	mutex_unlock(&dm_thin_pool_table.mutex);
3282 }
3283 
3284 /*
3285  * Thin target parameters:
3286  *
3287  * <pool_dev> <dev_id> [origin_dev]
3288  *
3289  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3290  * dev_id: the internal device identifier
3291  * origin_dev: a device external to the pool that should act as the origin
3292  *
3293  * If the pool device has discards disabled, they get disabled for the thin
3294  * device as well.
3295  */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)3296 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3297 {
3298 	int r;
3299 	struct thin_c *tc;
3300 	struct dm_dev *pool_dev, *origin_dev;
3301 	struct mapped_device *pool_md;
3302 	unsigned long flags;
3303 
3304 	mutex_lock(&dm_thin_pool_table.mutex);
3305 
3306 	if (argc != 2 && argc != 3) {
3307 		ti->error = "Invalid argument count";
3308 		r = -EINVAL;
3309 		goto out_unlock;
3310 	}
3311 
3312 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3313 	if (!tc) {
3314 		ti->error = "Out of memory";
3315 		r = -ENOMEM;
3316 		goto out_unlock;
3317 	}
3318 	spin_lock_init(&tc->lock);
3319 	bio_list_init(&tc->deferred_bio_list);
3320 	bio_list_init(&tc->retry_on_resume_list);
3321 	tc->sort_bio_list = RB_ROOT;
3322 
3323 	if (argc == 3) {
3324 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3325 		if (r) {
3326 			ti->error = "Error opening origin device";
3327 			goto bad_origin_dev;
3328 		}
3329 		tc->origin_dev = origin_dev;
3330 	}
3331 
3332 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3333 	if (r) {
3334 		ti->error = "Error opening pool device";
3335 		goto bad_pool_dev;
3336 	}
3337 	tc->pool_dev = pool_dev;
3338 
3339 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3340 		ti->error = "Invalid device id";
3341 		r = -EINVAL;
3342 		goto bad_common;
3343 	}
3344 
3345 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3346 	if (!pool_md) {
3347 		ti->error = "Couldn't get pool mapped device";
3348 		r = -EINVAL;
3349 		goto bad_common;
3350 	}
3351 
3352 	tc->pool = __pool_table_lookup(pool_md);
3353 	if (!tc->pool) {
3354 		ti->error = "Couldn't find pool object";
3355 		r = -EINVAL;
3356 		goto bad_pool_lookup;
3357 	}
3358 	__pool_inc(tc->pool);
3359 
3360 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3361 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3362 		r = -EINVAL;
3363 		goto bad_thin_open;
3364 	}
3365 
3366 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3367 	if (r) {
3368 		ti->error = "Couldn't open thin internal device";
3369 		goto bad_thin_open;
3370 	}
3371 
3372 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3373 	if (r)
3374 		goto bad_target_max_io_len;
3375 
3376 	ti->num_flush_bios = 1;
3377 	ti->flush_supported = true;
3378 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3379 
3380 	/* In case the pool supports discards, pass them on. */
3381 	ti->discard_zeroes_data_unsupported = true;
3382 	if (tc->pool->pf.discard_enabled) {
3383 		ti->discards_supported = true;
3384 		ti->num_discard_bios = 1;
3385 		/* Discard bios must be split on a block boundary */
3386 		ti->split_discard_bios = true;
3387 	}
3388 
3389 	dm_put(pool_md);
3390 
3391 	mutex_unlock(&dm_thin_pool_table.mutex);
3392 
3393 	atomic_set(&tc->refcount, 1);
3394 	init_completion(&tc->can_destroy);
3395 
3396 	spin_lock_irqsave(&tc->pool->lock, flags);
3397 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3398 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3399 	/*
3400 	 * This synchronize_rcu() call is needed here otherwise we risk a
3401 	 * wake_worker() call finding no bios to process (because the newly
3402 	 * added tc isn't yet visible).  So this reduces latency since we
3403 	 * aren't then dependent on the periodic commit to wake_worker().
3404 	 */
3405 	synchronize_rcu();
3406 
3407 	return 0;
3408 
3409 bad_target_max_io_len:
3410 	dm_pool_close_thin_device(tc->td);
3411 bad_thin_open:
3412 	__pool_dec(tc->pool);
3413 bad_pool_lookup:
3414 	dm_put(pool_md);
3415 bad_common:
3416 	dm_put_device(ti, tc->pool_dev);
3417 bad_pool_dev:
3418 	if (tc->origin_dev)
3419 		dm_put_device(ti, tc->origin_dev);
3420 bad_origin_dev:
3421 	kfree(tc);
3422 out_unlock:
3423 	mutex_unlock(&dm_thin_pool_table.mutex);
3424 
3425 	return r;
3426 }
3427 
thin_map(struct dm_target * ti,struct bio * bio)3428 static int thin_map(struct dm_target *ti, struct bio *bio)
3429 {
3430 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3431 
3432 	return thin_bio_map(ti, bio);
3433 }
3434 
thin_endio(struct dm_target * ti,struct bio * bio,int err)3435 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3436 {
3437 	unsigned long flags;
3438 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3439 	struct list_head work;
3440 	struct dm_thin_new_mapping *m, *tmp;
3441 	struct pool *pool = h->tc->pool;
3442 
3443 	if (h->shared_read_entry) {
3444 		INIT_LIST_HEAD(&work);
3445 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3446 
3447 		spin_lock_irqsave(&pool->lock, flags);
3448 		list_for_each_entry_safe(m, tmp, &work, list) {
3449 			list_del(&m->list);
3450 			__complete_mapping_preparation(m);
3451 		}
3452 		spin_unlock_irqrestore(&pool->lock, flags);
3453 	}
3454 
3455 	if (h->all_io_entry) {
3456 		INIT_LIST_HEAD(&work);
3457 		dm_deferred_entry_dec(h->all_io_entry, &work);
3458 		if (!list_empty(&work)) {
3459 			spin_lock_irqsave(&pool->lock, flags);
3460 			list_for_each_entry_safe(m, tmp, &work, list)
3461 				list_add_tail(&m->list, &pool->prepared_discards);
3462 			spin_unlock_irqrestore(&pool->lock, flags);
3463 			wake_worker(pool);
3464 		}
3465 	}
3466 
3467 	return 0;
3468 }
3469 
thin_presuspend(struct dm_target * ti)3470 static void thin_presuspend(struct dm_target *ti)
3471 {
3472 	struct thin_c *tc = ti->private;
3473 
3474 	if (dm_noflush_suspending(ti))
3475 		noflush_work(tc, do_noflush_start);
3476 }
3477 
thin_postsuspend(struct dm_target * ti)3478 static void thin_postsuspend(struct dm_target *ti)
3479 {
3480 	struct thin_c *tc = ti->private;
3481 
3482 	/*
3483 	 * The dm_noflush_suspending flag has been cleared by now, so
3484 	 * unfortunately we must always run this.
3485 	 */
3486 	noflush_work(tc, do_noflush_stop);
3487 }
3488 
thin_preresume(struct dm_target * ti)3489 static int thin_preresume(struct dm_target *ti)
3490 {
3491 	struct thin_c *tc = ti->private;
3492 
3493 	if (tc->origin_dev)
3494 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3495 
3496 	return 0;
3497 }
3498 
3499 /*
3500  * <nr mapped sectors> <highest mapped sector>
3501  */
thin_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3502 static void thin_status(struct dm_target *ti, status_type_t type,
3503 			unsigned status_flags, char *result, unsigned maxlen)
3504 {
3505 	int r;
3506 	ssize_t sz = 0;
3507 	dm_block_t mapped, highest;
3508 	char buf[BDEVNAME_SIZE];
3509 	struct thin_c *tc = ti->private;
3510 
3511 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3512 		DMEMIT("Fail");
3513 		return;
3514 	}
3515 
3516 	if (!tc->td)
3517 		DMEMIT("-");
3518 	else {
3519 		switch (type) {
3520 		case STATUSTYPE_INFO:
3521 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3522 			if (r) {
3523 				DMERR("dm_thin_get_mapped_count returned %d", r);
3524 				goto err;
3525 			}
3526 
3527 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3528 			if (r < 0) {
3529 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3530 				goto err;
3531 			}
3532 
3533 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3534 			if (r)
3535 				DMEMIT("%llu", ((highest + 1) *
3536 						tc->pool->sectors_per_block) - 1);
3537 			else
3538 				DMEMIT("-");
3539 			break;
3540 
3541 		case STATUSTYPE_TABLE:
3542 			DMEMIT("%s %lu",
3543 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3544 			       (unsigned long) tc->dev_id);
3545 			if (tc->origin_dev)
3546 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3547 			break;
3548 		}
3549 	}
3550 
3551 	return;
3552 
3553 err:
3554 	DMEMIT("Error");
3555 }
3556 
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3557 static int thin_iterate_devices(struct dm_target *ti,
3558 				iterate_devices_callout_fn fn, void *data)
3559 {
3560 	sector_t blocks;
3561 	struct thin_c *tc = ti->private;
3562 	struct pool *pool = tc->pool;
3563 
3564 	/*
3565 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3566 	 * we follow a more convoluted path through to the pool's target.
3567 	 */
3568 	if (!pool->ti)
3569 		return 0;	/* nothing is bound */
3570 
3571 	blocks = pool->ti->len;
3572 	(void) sector_div(blocks, pool->sectors_per_block);
3573 	if (blocks)
3574 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3575 
3576 	return 0;
3577 }
3578 
3579 static struct target_type thin_target = {
3580 	.name = "thin",
3581 	.version = {1, 13, 0},
3582 	.module	= THIS_MODULE,
3583 	.ctr = thin_ctr,
3584 	.dtr = thin_dtr,
3585 	.map = thin_map,
3586 	.end_io = thin_endio,
3587 	.preresume = thin_preresume,
3588 	.presuspend = thin_presuspend,
3589 	.postsuspend = thin_postsuspend,
3590 	.status = thin_status,
3591 	.iterate_devices = thin_iterate_devices,
3592 };
3593 
3594 /*----------------------------------------------------------------*/
3595 
dm_thin_init(void)3596 static int __init dm_thin_init(void)
3597 {
3598 	int r;
3599 
3600 	pool_table_init();
3601 
3602 	r = dm_register_target(&thin_target);
3603 	if (r)
3604 		return r;
3605 
3606 	r = dm_register_target(&pool_target);
3607 	if (r)
3608 		goto bad_pool_target;
3609 
3610 	r = -ENOMEM;
3611 
3612 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3613 	if (!_new_mapping_cache)
3614 		goto bad_new_mapping_cache;
3615 
3616 	return 0;
3617 
3618 bad_new_mapping_cache:
3619 	dm_unregister_target(&pool_target);
3620 bad_pool_target:
3621 	dm_unregister_target(&thin_target);
3622 
3623 	return r;
3624 }
3625 
dm_thin_exit(void)3626 static void dm_thin_exit(void)
3627 {
3628 	dm_unregister_target(&thin_target);
3629 	dm_unregister_target(&pool_target);
3630 
3631 	kmem_cache_destroy(_new_mapping_cache);
3632 }
3633 
3634 module_init(dm_thin_init);
3635 module_exit(dm_thin_exit);
3636 
3637 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3638 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3639 
3640 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3641 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3642 MODULE_LICENSE("GPL");
3643