1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43
44 #include "mtdcore.h"
45
46 /*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 .capabilities = BDI_CAP_MAP_COPY,
52 };
53
54 /*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63
64 /*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 BDI_CAP_WRITE_MAP),
73 };
74
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77
78 static struct class mtd_class = {
79 .name = "mtd",
80 .owner = THIS_MODULE,
81 .suspend = mtd_cls_suspend,
82 .resume = mtd_cls_resume,
83 };
84
85 static DEFINE_IDR(mtd_idr);
86
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91
__mtd_next_device(int i)92 struct mtd_info *__mtd_next_device(int i)
93 {
94 return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97
98 static LIST_HEAD(mtd_notifiers);
99
100
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
mtd_release(struct device * dev)106 static void mtd_release(struct device *dev)
107 {
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 dev_t index = MTD_DEVT(mtd->index);
110
111 /* remove /dev/mtdXro node */
112 device_destroy(&mtd_class, index + 1);
113 }
114
mtd_cls_suspend(struct device * dev,pm_message_t state)115 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
116 {
117 struct mtd_info *mtd = dev_get_drvdata(dev);
118
119 return mtd ? mtd_suspend(mtd) : 0;
120 }
121
mtd_cls_resume(struct device * dev)122 static int mtd_cls_resume(struct device *dev)
123 {
124 struct mtd_info *mtd = dev_get_drvdata(dev);
125
126 if (mtd)
127 mtd_resume(mtd);
128 return 0;
129 }
130
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)131 static ssize_t mtd_type_show(struct device *dev,
132 struct device_attribute *attr, char *buf)
133 {
134 struct mtd_info *mtd = dev_get_drvdata(dev);
135 char *type;
136
137 switch (mtd->type) {
138 case MTD_ABSENT:
139 type = "absent";
140 break;
141 case MTD_RAM:
142 type = "ram";
143 break;
144 case MTD_ROM:
145 type = "rom";
146 break;
147 case MTD_NORFLASH:
148 type = "nor";
149 break;
150 case MTD_NANDFLASH:
151 type = "nand";
152 break;
153 case MTD_DATAFLASH:
154 type = "dataflash";
155 break;
156 case MTD_UBIVOLUME:
157 type = "ubi";
158 break;
159 case MTD_MLCNANDFLASH:
160 type = "mlc-nand";
161 break;
162 default:
163 type = "unknown";
164 }
165
166 return snprintf(buf, PAGE_SIZE, "%s\n", type);
167 }
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)170 static ssize_t mtd_flags_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 struct mtd_info *mtd = dev_get_drvdata(dev);
174
175 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177 }
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_size_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)mtd->size);
187
188 }
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t mtd_erasesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195
196 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct mtd_info *mtd = dev_get_drvdata(dev);
205
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208 }
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 struct mtd_info *mtd = dev_get_drvdata(dev);
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219 }
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)222 static ssize_t mtd_oobsize_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224 {
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229 }
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234 {
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239 }
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 NULL);
242
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)243 static ssize_t mtd_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250 }
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)253 static ssize_t mtd_ecc_strength_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255 {
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257
258 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259 }
260 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)262 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263 struct device_attribute *attr,
264 char *buf)
265 {
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267
268 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269 }
270
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)271 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272 struct device_attribute *attr,
273 const char *buf, size_t count)
274 {
275 struct mtd_info *mtd = dev_get_drvdata(dev);
276 unsigned int bitflip_threshold;
277 int retval;
278
279 retval = kstrtouint(buf, 0, &bitflip_threshold);
280 if (retval)
281 return retval;
282
283 mtd->bitflip_threshold = bitflip_threshold;
284 return count;
285 }
286 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287 mtd_bitflip_threshold_show,
288 mtd_bitflip_threshold_store);
289
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)290 static ssize_t mtd_ecc_step_size_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292 {
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294
295 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
296
297 }
298 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
299
mtd_ecc_stats_corrected_show(struct device * dev,struct device_attribute * attr,char * buf)300 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302 {
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
307 }
308 static DEVICE_ATTR(corrected_bits, S_IRUGO,
309 mtd_ecc_stats_corrected_show, NULL);
310
mtd_ecc_stats_errors_show(struct device * dev,struct device_attribute * attr,char * buf)311 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
318 }
319 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
320
mtd_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)321 static ssize_t mtd_badblocks_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323 {
324 struct mtd_info *mtd = dev_get_drvdata(dev);
325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326
327 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
328 }
329 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
330
mtd_bbtblocks_show(struct device * dev,struct device_attribute * attr,char * buf)331 static ssize_t mtd_bbtblocks_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
333 {
334 struct mtd_info *mtd = dev_get_drvdata(dev);
335 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
336
337 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
338 }
339 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
340
341 static struct attribute *mtd_attrs[] = {
342 &dev_attr_type.attr,
343 &dev_attr_flags.attr,
344 &dev_attr_size.attr,
345 &dev_attr_erasesize.attr,
346 &dev_attr_writesize.attr,
347 &dev_attr_subpagesize.attr,
348 &dev_attr_oobsize.attr,
349 &dev_attr_numeraseregions.attr,
350 &dev_attr_name.attr,
351 &dev_attr_ecc_strength.attr,
352 &dev_attr_ecc_step_size.attr,
353 &dev_attr_corrected_bits.attr,
354 &dev_attr_ecc_failures.attr,
355 &dev_attr_bad_blocks.attr,
356 &dev_attr_bbt_blocks.attr,
357 &dev_attr_bitflip_threshold.attr,
358 NULL,
359 };
360 ATTRIBUTE_GROUPS(mtd);
361
362 static struct device_type mtd_devtype = {
363 .name = "mtd",
364 .groups = mtd_groups,
365 .release = mtd_release,
366 };
367
368 /**
369 * add_mtd_device - register an MTD device
370 * @mtd: pointer to new MTD device info structure
371 *
372 * Add a device to the list of MTD devices present in the system, and
373 * notify each currently active MTD 'user' of its arrival. Returns
374 * zero on success or 1 on failure, which currently will only happen
375 * if there is insufficient memory or a sysfs error.
376 */
377
add_mtd_device(struct mtd_info * mtd)378 int add_mtd_device(struct mtd_info *mtd)
379 {
380 struct mtd_notifier *not;
381 int i, error;
382
383 if (!mtd->backing_dev_info) {
384 switch (mtd->type) {
385 case MTD_RAM:
386 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
387 break;
388 case MTD_ROM:
389 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
390 break;
391 default:
392 mtd->backing_dev_info = &mtd_bdi_unmappable;
393 break;
394 }
395 }
396
397 BUG_ON(mtd->writesize == 0);
398 mutex_lock(&mtd_table_mutex);
399
400 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
401 if (i < 0)
402 goto fail_locked;
403
404 mtd->index = i;
405 mtd->usecount = 0;
406
407 /* default value if not set by driver */
408 if (mtd->bitflip_threshold == 0)
409 mtd->bitflip_threshold = mtd->ecc_strength;
410
411 if (is_power_of_2(mtd->erasesize))
412 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
413 else
414 mtd->erasesize_shift = 0;
415
416 if (is_power_of_2(mtd->writesize))
417 mtd->writesize_shift = ffs(mtd->writesize) - 1;
418 else
419 mtd->writesize_shift = 0;
420
421 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
422 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
423
424 /* Some chips always power up locked. Unlock them now */
425 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
426 error = mtd_unlock(mtd, 0, mtd->size);
427 if (error && error != -EOPNOTSUPP)
428 printk(KERN_WARNING
429 "%s: unlock failed, writes may not work\n",
430 mtd->name);
431 }
432
433 /* Caller should have set dev.parent to match the
434 * physical device.
435 */
436 mtd->dev.type = &mtd_devtype;
437 mtd->dev.class = &mtd_class;
438 mtd->dev.devt = MTD_DEVT(i);
439 dev_set_name(&mtd->dev, "mtd%d", i);
440 dev_set_drvdata(&mtd->dev, mtd);
441 if (device_register(&mtd->dev) != 0)
442 goto fail_added;
443
444 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
445 "mtd%dro", i);
446
447 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
448 /* No need to get a refcount on the module containing
449 the notifier, since we hold the mtd_table_mutex */
450 list_for_each_entry(not, &mtd_notifiers, list)
451 not->add(mtd);
452
453 mutex_unlock(&mtd_table_mutex);
454 /* We _know_ we aren't being removed, because
455 our caller is still holding us here. So none
456 of this try_ nonsense, and no bitching about it
457 either. :) */
458 __module_get(THIS_MODULE);
459 return 0;
460
461 fail_added:
462 idr_remove(&mtd_idr, i);
463 fail_locked:
464 mutex_unlock(&mtd_table_mutex);
465 return 1;
466 }
467
468 /**
469 * del_mtd_device - unregister an MTD device
470 * @mtd: pointer to MTD device info structure
471 *
472 * Remove a device from the list of MTD devices present in the system,
473 * and notify each currently active MTD 'user' of its departure.
474 * Returns zero on success or 1 on failure, which currently will happen
475 * if the requested device does not appear to be present in the list.
476 */
477
del_mtd_device(struct mtd_info * mtd)478 int del_mtd_device(struct mtd_info *mtd)
479 {
480 int ret;
481 struct mtd_notifier *not;
482
483 mutex_lock(&mtd_table_mutex);
484
485 if (idr_find(&mtd_idr, mtd->index) != mtd) {
486 ret = -ENODEV;
487 goto out_error;
488 }
489
490 /* No need to get a refcount on the module containing
491 the notifier, since we hold the mtd_table_mutex */
492 list_for_each_entry(not, &mtd_notifiers, list)
493 not->remove(mtd);
494
495 if (mtd->usecount) {
496 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
497 mtd->index, mtd->name, mtd->usecount);
498 ret = -EBUSY;
499 } else {
500 device_unregister(&mtd->dev);
501
502 idr_remove(&mtd_idr, mtd->index);
503
504 module_put(THIS_MODULE);
505 ret = 0;
506 }
507
508 out_error:
509 mutex_unlock(&mtd_table_mutex);
510 return ret;
511 }
512
513 /**
514 * mtd_device_parse_register - parse partitions and register an MTD device.
515 *
516 * @mtd: the MTD device to register
517 * @types: the list of MTD partition probes to try, see
518 * 'parse_mtd_partitions()' for more information
519 * @parser_data: MTD partition parser-specific data
520 * @parts: fallback partition information to register, if parsing fails;
521 * only valid if %nr_parts > %0
522 * @nr_parts: the number of partitions in parts, if zero then the full
523 * MTD device is registered if no partition info is found
524 *
525 * This function aggregates MTD partitions parsing (done by
526 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
527 * basically follows the most common pattern found in many MTD drivers:
528 *
529 * * It first tries to probe partitions on MTD device @mtd using parsers
530 * specified in @types (if @types is %NULL, then the default list of parsers
531 * is used, see 'parse_mtd_partitions()' for more information). If none are
532 * found this functions tries to fallback to information specified in
533 * @parts/@nr_parts.
534 * * If any partitioning info was found, this function registers the found
535 * partitions.
536 * * If no partitions were found this function just registers the MTD device
537 * @mtd and exits.
538 *
539 * Returns zero in case of success and a negative error code in case of failure.
540 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)541 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
542 struct mtd_part_parser_data *parser_data,
543 const struct mtd_partition *parts,
544 int nr_parts)
545 {
546 int err;
547 struct mtd_partition *real_parts;
548
549 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
550 if (err <= 0 && nr_parts && parts) {
551 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
552 GFP_KERNEL);
553 if (!real_parts)
554 err = -ENOMEM;
555 else
556 err = nr_parts;
557 }
558
559 if (err > 0) {
560 err = add_mtd_partitions(mtd, real_parts, err);
561 kfree(real_parts);
562 } else if (err == 0) {
563 err = add_mtd_device(mtd);
564 if (err == 1)
565 err = -ENODEV;
566 }
567
568 return err;
569 }
570 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
571
572 /**
573 * mtd_device_unregister - unregister an existing MTD device.
574 *
575 * @master: the MTD device to unregister. This will unregister both the master
576 * and any partitions if registered.
577 */
mtd_device_unregister(struct mtd_info * master)578 int mtd_device_unregister(struct mtd_info *master)
579 {
580 int err;
581
582 err = del_mtd_partitions(master);
583 if (err)
584 return err;
585
586 if (!device_is_registered(&master->dev))
587 return 0;
588
589 return del_mtd_device(master);
590 }
591 EXPORT_SYMBOL_GPL(mtd_device_unregister);
592
593 /**
594 * register_mtd_user - register a 'user' of MTD devices.
595 * @new: pointer to notifier info structure
596 *
597 * Registers a pair of callbacks function to be called upon addition
598 * or removal of MTD devices. Causes the 'add' callback to be immediately
599 * invoked for each MTD device currently present in the system.
600 */
register_mtd_user(struct mtd_notifier * new)601 void register_mtd_user (struct mtd_notifier *new)
602 {
603 struct mtd_info *mtd;
604
605 mutex_lock(&mtd_table_mutex);
606
607 list_add(&new->list, &mtd_notifiers);
608
609 __module_get(THIS_MODULE);
610
611 mtd_for_each_device(mtd)
612 new->add(mtd);
613
614 mutex_unlock(&mtd_table_mutex);
615 }
616 EXPORT_SYMBOL_GPL(register_mtd_user);
617
618 /**
619 * unregister_mtd_user - unregister a 'user' of MTD devices.
620 * @old: pointer to notifier info structure
621 *
622 * Removes a callback function pair from the list of 'users' to be
623 * notified upon addition or removal of MTD devices. Causes the
624 * 'remove' callback to be immediately invoked for each MTD device
625 * currently present in the system.
626 */
unregister_mtd_user(struct mtd_notifier * old)627 int unregister_mtd_user (struct mtd_notifier *old)
628 {
629 struct mtd_info *mtd;
630
631 mutex_lock(&mtd_table_mutex);
632
633 module_put(THIS_MODULE);
634
635 mtd_for_each_device(mtd)
636 old->remove(mtd);
637
638 list_del(&old->list);
639 mutex_unlock(&mtd_table_mutex);
640 return 0;
641 }
642 EXPORT_SYMBOL_GPL(unregister_mtd_user);
643
644 /**
645 * get_mtd_device - obtain a validated handle for an MTD device
646 * @mtd: last known address of the required MTD device
647 * @num: internal device number of the required MTD device
648 *
649 * Given a number and NULL address, return the num'th entry in the device
650 * table, if any. Given an address and num == -1, search the device table
651 * for a device with that address and return if it's still present. Given
652 * both, return the num'th driver only if its address matches. Return
653 * error code if not.
654 */
get_mtd_device(struct mtd_info * mtd,int num)655 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
656 {
657 struct mtd_info *ret = NULL, *other;
658 int err = -ENODEV;
659
660 mutex_lock(&mtd_table_mutex);
661
662 if (num == -1) {
663 mtd_for_each_device(other) {
664 if (other == mtd) {
665 ret = mtd;
666 break;
667 }
668 }
669 } else if (num >= 0) {
670 ret = idr_find(&mtd_idr, num);
671 if (mtd && mtd != ret)
672 ret = NULL;
673 }
674
675 if (!ret) {
676 ret = ERR_PTR(err);
677 goto out;
678 }
679
680 err = __get_mtd_device(ret);
681 if (err)
682 ret = ERR_PTR(err);
683 out:
684 mutex_unlock(&mtd_table_mutex);
685 return ret;
686 }
687 EXPORT_SYMBOL_GPL(get_mtd_device);
688
689
__get_mtd_device(struct mtd_info * mtd)690 int __get_mtd_device(struct mtd_info *mtd)
691 {
692 int err;
693
694 if (!try_module_get(mtd->owner))
695 return -ENODEV;
696
697 if (mtd->_get_device) {
698 err = mtd->_get_device(mtd);
699
700 if (err) {
701 module_put(mtd->owner);
702 return err;
703 }
704 }
705 mtd->usecount++;
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(__get_mtd_device);
709
710 /**
711 * get_mtd_device_nm - obtain a validated handle for an MTD device by
712 * device name
713 * @name: MTD device name to open
714 *
715 * This function returns MTD device description structure in case of
716 * success and an error code in case of failure.
717 */
get_mtd_device_nm(const char * name)718 struct mtd_info *get_mtd_device_nm(const char *name)
719 {
720 int err = -ENODEV;
721 struct mtd_info *mtd = NULL, *other;
722
723 mutex_lock(&mtd_table_mutex);
724
725 mtd_for_each_device(other) {
726 if (!strcmp(name, other->name)) {
727 mtd = other;
728 break;
729 }
730 }
731
732 if (!mtd)
733 goto out_unlock;
734
735 err = __get_mtd_device(mtd);
736 if (err)
737 goto out_unlock;
738
739 mutex_unlock(&mtd_table_mutex);
740 return mtd;
741
742 out_unlock:
743 mutex_unlock(&mtd_table_mutex);
744 return ERR_PTR(err);
745 }
746 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
747
put_mtd_device(struct mtd_info * mtd)748 void put_mtd_device(struct mtd_info *mtd)
749 {
750 mutex_lock(&mtd_table_mutex);
751 __put_mtd_device(mtd);
752 mutex_unlock(&mtd_table_mutex);
753
754 }
755 EXPORT_SYMBOL_GPL(put_mtd_device);
756
__put_mtd_device(struct mtd_info * mtd)757 void __put_mtd_device(struct mtd_info *mtd)
758 {
759 --mtd->usecount;
760 BUG_ON(mtd->usecount < 0);
761
762 if (mtd->_put_device)
763 mtd->_put_device(mtd);
764
765 module_put(mtd->owner);
766 }
767 EXPORT_SYMBOL_GPL(__put_mtd_device);
768
769 /*
770 * Erase is an asynchronous operation. Device drivers are supposed
771 * to call instr->callback() whenever the operation completes, even
772 * if it completes with a failure.
773 * Callers are supposed to pass a callback function and wait for it
774 * to be called before writing to the block.
775 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)776 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
777 {
778 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
779 return -EINVAL;
780 if (!(mtd->flags & MTD_WRITEABLE))
781 return -EROFS;
782 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
783 if (!instr->len) {
784 instr->state = MTD_ERASE_DONE;
785 mtd_erase_callback(instr);
786 return 0;
787 }
788 return mtd->_erase(mtd, instr);
789 }
790 EXPORT_SYMBOL_GPL(mtd_erase);
791
792 /*
793 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
794 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)795 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
796 void **virt, resource_size_t *phys)
797 {
798 *retlen = 0;
799 *virt = NULL;
800 if (phys)
801 *phys = 0;
802 if (!mtd->_point)
803 return -EOPNOTSUPP;
804 if (from < 0 || from >= mtd->size || len > mtd->size - from)
805 return -EINVAL;
806 if (!len)
807 return 0;
808 return mtd->_point(mtd, from, len, retlen, virt, phys);
809 }
810 EXPORT_SYMBOL_GPL(mtd_point);
811
812 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)813 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
814 {
815 if (!mtd->_point)
816 return -EOPNOTSUPP;
817 if (from < 0 || from >= mtd->size || len > mtd->size - from)
818 return -EINVAL;
819 if (!len)
820 return 0;
821 return mtd->_unpoint(mtd, from, len);
822 }
823 EXPORT_SYMBOL_GPL(mtd_unpoint);
824
825 /*
826 * Allow NOMMU mmap() to directly map the device (if not NULL)
827 * - return the address to which the offset maps
828 * - return -ENOSYS to indicate refusal to do the mapping
829 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)830 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
831 unsigned long offset, unsigned long flags)
832 {
833 if (!mtd->_get_unmapped_area)
834 return -EOPNOTSUPP;
835 if (offset >= mtd->size || len > mtd->size - offset)
836 return -EINVAL;
837 return mtd->_get_unmapped_area(mtd, len, offset, flags);
838 }
839 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
840
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)841 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
842 u_char *buf)
843 {
844 int ret_code;
845 *retlen = 0;
846 if (from < 0 || from >= mtd->size || len > mtd->size - from)
847 return -EINVAL;
848 if (!len)
849 return 0;
850
851 /*
852 * In the absence of an error, drivers return a non-negative integer
853 * representing the maximum number of bitflips that were corrected on
854 * any one ecc region (if applicable; zero otherwise).
855 */
856 ret_code = mtd->_read(mtd, from, len, retlen, buf);
857 if (unlikely(ret_code < 0))
858 return ret_code;
859 if (mtd->ecc_strength == 0)
860 return 0; /* device lacks ecc */
861 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
862 }
863 EXPORT_SYMBOL_GPL(mtd_read);
864
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)865 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
866 const u_char *buf)
867 {
868 *retlen = 0;
869 if (to < 0 || to >= mtd->size || len > mtd->size - to)
870 return -EINVAL;
871 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
872 return -EROFS;
873 if (!len)
874 return 0;
875 return mtd->_write(mtd, to, len, retlen, buf);
876 }
877 EXPORT_SYMBOL_GPL(mtd_write);
878
879 /*
880 * In blackbox flight recorder like scenarios we want to make successful writes
881 * in interrupt context. panic_write() is only intended to be called when its
882 * known the kernel is about to panic and we need the write to succeed. Since
883 * the kernel is not going to be running for much longer, this function can
884 * break locks and delay to ensure the write succeeds (but not sleep).
885 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)886 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
887 const u_char *buf)
888 {
889 *retlen = 0;
890 if (!mtd->_panic_write)
891 return -EOPNOTSUPP;
892 if (to < 0 || to >= mtd->size || len > mtd->size - to)
893 return -EINVAL;
894 if (!(mtd->flags & MTD_WRITEABLE))
895 return -EROFS;
896 if (!len)
897 return 0;
898 return mtd->_panic_write(mtd, to, len, retlen, buf);
899 }
900 EXPORT_SYMBOL_GPL(mtd_panic_write);
901
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)902 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
903 {
904 int ret_code;
905 ops->retlen = ops->oobretlen = 0;
906 if (!mtd->_read_oob)
907 return -EOPNOTSUPP;
908 /*
909 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
910 * similar to mtd->_read(), returning a non-negative integer
911 * representing max bitflips. In other cases, mtd->_read_oob() may
912 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
913 */
914 ret_code = mtd->_read_oob(mtd, from, ops);
915 if (unlikely(ret_code < 0))
916 return ret_code;
917 if (mtd->ecc_strength == 0)
918 return 0; /* device lacks ecc */
919 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
920 }
921 EXPORT_SYMBOL_GPL(mtd_read_oob);
922
923 /*
924 * Method to access the protection register area, present in some flash
925 * devices. The user data is one time programmable but the factory data is read
926 * only.
927 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)928 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
929 struct otp_info *buf)
930 {
931 if (!mtd->_get_fact_prot_info)
932 return -EOPNOTSUPP;
933 if (!len)
934 return 0;
935 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
936 }
937 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
938
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)939 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
940 size_t *retlen, u_char *buf)
941 {
942 *retlen = 0;
943 if (!mtd->_read_fact_prot_reg)
944 return -EOPNOTSUPP;
945 if (!len)
946 return 0;
947 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
948 }
949 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
950
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)951 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
952 struct otp_info *buf)
953 {
954 if (!mtd->_get_user_prot_info)
955 return -EOPNOTSUPP;
956 if (!len)
957 return 0;
958 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
959 }
960 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
961
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)962 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
963 size_t *retlen, u_char *buf)
964 {
965 *retlen = 0;
966 if (!mtd->_read_user_prot_reg)
967 return -EOPNOTSUPP;
968 if (!len)
969 return 0;
970 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
971 }
972 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
973
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)974 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
975 size_t *retlen, u_char *buf)
976 {
977 int ret;
978
979 *retlen = 0;
980 if (!mtd->_write_user_prot_reg)
981 return -EOPNOTSUPP;
982 if (!len)
983 return 0;
984 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
985 if (ret)
986 return ret;
987
988 /*
989 * If no data could be written at all, we are out of memory and
990 * must return -ENOSPC.
991 */
992 return (*retlen) ? 0 : -ENOSPC;
993 }
994 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
995
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)996 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
997 {
998 if (!mtd->_lock_user_prot_reg)
999 return -EOPNOTSUPP;
1000 if (!len)
1001 return 0;
1002 return mtd->_lock_user_prot_reg(mtd, from, len);
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1005
1006 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1007 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1008 {
1009 if (!mtd->_lock)
1010 return -EOPNOTSUPP;
1011 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1012 return -EINVAL;
1013 if (!len)
1014 return 0;
1015 return mtd->_lock(mtd, ofs, len);
1016 }
1017 EXPORT_SYMBOL_GPL(mtd_lock);
1018
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1019 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1020 {
1021 if (!mtd->_unlock)
1022 return -EOPNOTSUPP;
1023 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1024 return -EINVAL;
1025 if (!len)
1026 return 0;
1027 return mtd->_unlock(mtd, ofs, len);
1028 }
1029 EXPORT_SYMBOL_GPL(mtd_unlock);
1030
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1031 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1032 {
1033 if (!mtd->_is_locked)
1034 return -EOPNOTSUPP;
1035 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1036 return -EINVAL;
1037 if (!len)
1038 return 0;
1039 return mtd->_is_locked(mtd, ofs, len);
1040 }
1041 EXPORT_SYMBOL_GPL(mtd_is_locked);
1042
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1043 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1044 {
1045 if (ofs < 0 || ofs >= mtd->size)
1046 return -EINVAL;
1047 if (!mtd->_block_isreserved)
1048 return 0;
1049 return mtd->_block_isreserved(mtd, ofs);
1050 }
1051 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1052
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1053 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1054 {
1055 if (ofs < 0 || ofs >= mtd->size)
1056 return -EINVAL;
1057 if (!mtd->_block_isbad)
1058 return 0;
1059 return mtd->_block_isbad(mtd, ofs);
1060 }
1061 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1062
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1063 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1064 {
1065 if (!mtd->_block_markbad)
1066 return -EOPNOTSUPP;
1067 if (ofs < 0 || ofs >= mtd->size)
1068 return -EINVAL;
1069 if (!(mtd->flags & MTD_WRITEABLE))
1070 return -EROFS;
1071 return mtd->_block_markbad(mtd, ofs);
1072 }
1073 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1074
1075 /*
1076 * default_mtd_writev - the default writev method
1077 * @mtd: mtd device description object pointer
1078 * @vecs: the vectors to write
1079 * @count: count of vectors in @vecs
1080 * @to: the MTD device offset to write to
1081 * @retlen: on exit contains the count of bytes written to the MTD device.
1082 *
1083 * This function returns zero in case of success and a negative error code in
1084 * case of failure.
1085 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1086 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1087 unsigned long count, loff_t to, size_t *retlen)
1088 {
1089 unsigned long i;
1090 size_t totlen = 0, thislen;
1091 int ret = 0;
1092
1093 for (i = 0; i < count; i++) {
1094 if (!vecs[i].iov_len)
1095 continue;
1096 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1097 vecs[i].iov_base);
1098 totlen += thislen;
1099 if (ret || thislen != vecs[i].iov_len)
1100 break;
1101 to += vecs[i].iov_len;
1102 }
1103 *retlen = totlen;
1104 return ret;
1105 }
1106
1107 /*
1108 * mtd_writev - the vector-based MTD write method
1109 * @mtd: mtd device description object pointer
1110 * @vecs: the vectors to write
1111 * @count: count of vectors in @vecs
1112 * @to: the MTD device offset to write to
1113 * @retlen: on exit contains the count of bytes written to the MTD device.
1114 *
1115 * This function returns zero in case of success and a negative error code in
1116 * case of failure.
1117 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1118 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1119 unsigned long count, loff_t to, size_t *retlen)
1120 {
1121 *retlen = 0;
1122 if (!(mtd->flags & MTD_WRITEABLE))
1123 return -EROFS;
1124 if (!mtd->_writev)
1125 return default_mtd_writev(mtd, vecs, count, to, retlen);
1126 return mtd->_writev(mtd, vecs, count, to, retlen);
1127 }
1128 EXPORT_SYMBOL_GPL(mtd_writev);
1129
1130 /**
1131 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1132 * @mtd: mtd device description object pointer
1133 * @size: a pointer to the ideal or maximum size of the allocation, points
1134 * to the actual allocation size on success.
1135 *
1136 * This routine attempts to allocate a contiguous kernel buffer up to
1137 * the specified size, backing off the size of the request exponentially
1138 * until the request succeeds or until the allocation size falls below
1139 * the system page size. This attempts to make sure it does not adversely
1140 * impact system performance, so when allocating more than one page, we
1141 * ask the memory allocator to avoid re-trying, swapping, writing back
1142 * or performing I/O.
1143 *
1144 * Note, this function also makes sure that the allocated buffer is aligned to
1145 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1146 *
1147 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1148 * to handle smaller (i.e. degraded) buffer allocations under low- or
1149 * fragmented-memory situations where such reduced allocations, from a
1150 * requested ideal, are allowed.
1151 *
1152 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1153 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1154 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1155 {
1156 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1157 __GFP_NORETRY | __GFP_NO_KSWAPD;
1158 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1159 void *kbuf;
1160
1161 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1162
1163 while (*size > min_alloc) {
1164 kbuf = kmalloc(*size, flags);
1165 if (kbuf)
1166 return kbuf;
1167
1168 *size >>= 1;
1169 *size = ALIGN(*size, mtd->writesize);
1170 }
1171
1172 /*
1173 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1174 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1175 */
1176 return kmalloc(*size, GFP_KERNEL);
1177 }
1178 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1179
1180 #ifdef CONFIG_PROC_FS
1181
1182 /*====================================================================*/
1183 /* Support for /proc/mtd */
1184
mtd_proc_show(struct seq_file * m,void * v)1185 static int mtd_proc_show(struct seq_file *m, void *v)
1186 {
1187 struct mtd_info *mtd;
1188
1189 seq_puts(m, "dev: size erasesize name\n");
1190 mutex_lock(&mtd_table_mutex);
1191 mtd_for_each_device(mtd) {
1192 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1193 mtd->index, (unsigned long long)mtd->size,
1194 mtd->erasesize, mtd->name);
1195 }
1196 mutex_unlock(&mtd_table_mutex);
1197 return 0;
1198 }
1199
mtd_proc_open(struct inode * inode,struct file * file)1200 static int mtd_proc_open(struct inode *inode, struct file *file)
1201 {
1202 return single_open(file, mtd_proc_show, NULL);
1203 }
1204
1205 static const struct file_operations mtd_proc_ops = {
1206 .open = mtd_proc_open,
1207 .read = seq_read,
1208 .llseek = seq_lseek,
1209 .release = single_release,
1210 };
1211 #endif /* CONFIG_PROC_FS */
1212
1213 /*====================================================================*/
1214 /* Init code */
1215
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1216 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1217 {
1218 int ret;
1219
1220 ret = bdi_init(bdi);
1221 if (!ret)
1222 ret = bdi_register(bdi, NULL, "%s", name);
1223
1224 if (ret)
1225 bdi_destroy(bdi);
1226
1227 return ret;
1228 }
1229
1230 static struct proc_dir_entry *proc_mtd;
1231
init_mtd(void)1232 static int __init init_mtd(void)
1233 {
1234 int ret;
1235
1236 ret = class_register(&mtd_class);
1237 if (ret)
1238 goto err_reg;
1239
1240 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1241 if (ret)
1242 goto err_bdi1;
1243
1244 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1245 if (ret)
1246 goto err_bdi2;
1247
1248 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1249 if (ret)
1250 goto err_bdi3;
1251
1252 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1253
1254 ret = init_mtdchar();
1255 if (ret)
1256 goto out_procfs;
1257
1258 return 0;
1259
1260 out_procfs:
1261 if (proc_mtd)
1262 remove_proc_entry("mtd", NULL);
1263 err_bdi3:
1264 bdi_destroy(&mtd_bdi_ro_mappable);
1265 err_bdi2:
1266 bdi_destroy(&mtd_bdi_unmappable);
1267 err_bdi1:
1268 class_unregister(&mtd_class);
1269 err_reg:
1270 pr_err("Error registering mtd class or bdi: %d\n", ret);
1271 return ret;
1272 }
1273
cleanup_mtd(void)1274 static void __exit cleanup_mtd(void)
1275 {
1276 cleanup_mtdchar();
1277 if (proc_mtd)
1278 remove_proc_entry("mtd", NULL);
1279 class_unregister(&mtd_class);
1280 bdi_destroy(&mtd_bdi_unmappable);
1281 bdi_destroy(&mtd_bdi_ro_mappable);
1282 bdi_destroy(&mtd_bdi_rw_mappable);
1283 }
1284
1285 module_init(init_mtd);
1286 module_exit(cleanup_mtd);
1287
1288 MODULE_LICENSE("GPL");
1289 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1290 MODULE_DESCRIPTION("Core MTD registration and access routines");
1291