1 /*
2 * linux/kernel/panic.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
10 */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27
28 #define PANIC_TIMER_STEP 100
29 #define PANIC_BLINK_SPD 18
30
31 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
32 static unsigned long tainted_mask;
33 static int pause_on_oops;
34 static int pause_on_oops_flag;
35 static DEFINE_SPINLOCK(pause_on_oops_lock);
36 static bool crash_kexec_post_notifiers;
37
38 int panic_timeout = CONFIG_PANIC_TIMEOUT;
39 EXPORT_SYMBOL_GPL(panic_timeout);
40
41 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
42
43 EXPORT_SYMBOL(panic_notifier_list);
44
no_blink(int state)45 static long no_blink(int state)
46 {
47 return 0;
48 }
49
50 /* Returns how long it waited in ms */
51 long (*panic_blink)(int state);
52 EXPORT_SYMBOL(panic_blink);
53
54 /*
55 * Stop ourself in panic -- architecture code may override this
56 */
panic_smp_self_stop(void)57 void __weak panic_smp_self_stop(void)
58 {
59 while (1)
60 cpu_relax();
61 }
62
63 /**
64 * panic - halt the system
65 * @fmt: The text string to print
66 *
67 * Display a message, then perform cleanups.
68 *
69 * This function never returns.
70 */
panic(const char * fmt,...)71 void panic(const char *fmt, ...)
72 {
73 static DEFINE_SPINLOCK(panic_lock);
74 static char buf[1024];
75 va_list args;
76 long i, i_next = 0;
77 int state = 0;
78
79 /*
80 * Disable local interrupts. This will prevent panic_smp_self_stop
81 * from deadlocking the first cpu that invokes the panic, since
82 * there is nothing to prevent an interrupt handler (that runs
83 * after the panic_lock is acquired) from invoking panic again.
84 */
85 local_irq_disable();
86
87 /*
88 * It's possible to come here directly from a panic-assertion and
89 * not have preempt disabled. Some functions called from here want
90 * preempt to be disabled. No point enabling it later though...
91 *
92 * Only one CPU is allowed to execute the panic code from here. For
93 * multiple parallel invocations of panic, all other CPUs either
94 * stop themself or will wait until they are stopped by the 1st CPU
95 * with smp_send_stop().
96 */
97 if (!spin_trylock(&panic_lock))
98 panic_smp_self_stop();
99
100 console_verbose();
101 bust_spinlocks(1);
102 va_start(args, fmt);
103 vsnprintf(buf, sizeof(buf), fmt, args);
104 va_end(args);
105 pr_emerg("Kernel panic - not syncing: %s\n", buf);
106 #ifdef CONFIG_DEBUG_BUGVERBOSE
107 /*
108 * Avoid nested stack-dumping if a panic occurs during oops processing
109 */
110 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
111 dump_stack();
112 #endif
113
114 /*
115 * If we have crashed and we have a crash kernel loaded let it handle
116 * everything else.
117 * If we want to run this after calling panic_notifiers, pass
118 * the "crash_kexec_post_notifiers" option to the kernel.
119 */
120 if (!crash_kexec_post_notifiers)
121 crash_kexec(NULL);
122
123 /*
124 * Note smp_send_stop is the usual smp shutdown function, which
125 * unfortunately means it may not be hardened to work in a panic
126 * situation.
127 */
128 smp_send_stop();
129
130 /*
131 * Run any panic handlers, including those that might need to
132 * add information to the kmsg dump output.
133 */
134 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
135
136 kmsg_dump(KMSG_DUMP_PANIC);
137
138 /*
139 * If you doubt kdump always works fine in any situation,
140 * "crash_kexec_post_notifiers" offers you a chance to run
141 * panic_notifiers and dumping kmsg before kdump.
142 * Note: since some panic_notifiers can make crashed kernel
143 * more unstable, it can increase risks of the kdump failure too.
144 */
145 crash_kexec(NULL);
146
147 bust_spinlocks(0);
148
149 /*
150 * We may have ended up stopping the CPU holding the lock (in
151 * smp_send_stop()) while still having some valuable data in the console
152 * buffer. Try to acquire the lock then release it regardless of the
153 * result. The release will also print the buffers out. Locks debug
154 * should be disabled to avoid reporting bad unlock balance when
155 * panic() is not being callled from OOPS.
156 */
157 debug_locks_off();
158 console_flush_on_panic();
159
160 if (!panic_blink)
161 panic_blink = no_blink;
162
163 if (panic_timeout > 0) {
164 /*
165 * Delay timeout seconds before rebooting the machine.
166 * We can't use the "normal" timers since we just panicked.
167 */
168 pr_emerg("Rebooting in %d seconds..", panic_timeout);
169
170 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
171 touch_nmi_watchdog();
172 if (i >= i_next) {
173 i += panic_blink(state ^= 1);
174 i_next = i + 3600 / PANIC_BLINK_SPD;
175 }
176 mdelay(PANIC_TIMER_STEP);
177 }
178 }
179 if (panic_timeout != 0) {
180 /*
181 * This will not be a clean reboot, with everything
182 * shutting down. But if there is a chance of
183 * rebooting the system it will be rebooted.
184 */
185 emergency_restart();
186 }
187 #ifdef __sparc__
188 {
189 extern int stop_a_enabled;
190 /* Make sure the user can actually press Stop-A (L1-A) */
191 stop_a_enabled = 1;
192 pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
193 }
194 #endif
195 #if defined(CONFIG_S390)
196 {
197 unsigned long caller;
198
199 caller = (unsigned long)__builtin_return_address(0);
200 disabled_wait(caller);
201 }
202 #endif
203 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
204 local_irq_enable();
205 for (i = 0; ; i += PANIC_TIMER_STEP) {
206 touch_softlockup_watchdog();
207 if (i >= i_next) {
208 i += panic_blink(state ^= 1);
209 i_next = i + 3600 / PANIC_BLINK_SPD;
210 }
211 mdelay(PANIC_TIMER_STEP);
212 }
213 }
214
215 EXPORT_SYMBOL(panic);
216
217
218 struct tnt {
219 u8 bit;
220 char true;
221 char false;
222 };
223
224 static const struct tnt tnts[] = {
225 { TAINT_PROPRIETARY_MODULE, 'P', 'G' },
226 { TAINT_FORCED_MODULE, 'F', ' ' },
227 { TAINT_CPU_OUT_OF_SPEC, 'S', ' ' },
228 { TAINT_FORCED_RMMOD, 'R', ' ' },
229 { TAINT_MACHINE_CHECK, 'M', ' ' },
230 { TAINT_BAD_PAGE, 'B', ' ' },
231 { TAINT_USER, 'U', ' ' },
232 { TAINT_DIE, 'D', ' ' },
233 { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' },
234 { TAINT_WARN, 'W', ' ' },
235 { TAINT_CRAP, 'C', ' ' },
236 { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' },
237 { TAINT_OOT_MODULE, 'O', ' ' },
238 { TAINT_UNSIGNED_MODULE, 'E', ' ' },
239 { TAINT_SOFTLOCKUP, 'L', ' ' },
240 };
241
242 /**
243 * print_tainted - return a string to represent the kernel taint state.
244 *
245 * 'P' - Proprietary module has been loaded.
246 * 'F' - Module has been forcibly loaded.
247 * 'S' - SMP with CPUs not designed for SMP.
248 * 'R' - User forced a module unload.
249 * 'M' - System experienced a machine check exception.
250 * 'B' - System has hit bad_page.
251 * 'U' - Userspace-defined naughtiness.
252 * 'D' - Kernel has oopsed before
253 * 'A' - ACPI table overridden.
254 * 'W' - Taint on warning.
255 * 'C' - modules from drivers/staging are loaded.
256 * 'I' - Working around severe firmware bug.
257 * 'O' - Out-of-tree module has been loaded.
258 * 'E' - Unsigned module has been loaded.
259 * 'L' - A soft lockup has previously occurred.
260 *
261 * The string is overwritten by the next call to print_tainted().
262 */
print_tainted(void)263 const char *print_tainted(void)
264 {
265 static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
266
267 if (tainted_mask) {
268 char *s;
269 int i;
270
271 s = buf + sprintf(buf, "Tainted: ");
272 for (i = 0; i < ARRAY_SIZE(tnts); i++) {
273 const struct tnt *t = &tnts[i];
274 *s++ = test_bit(t->bit, &tainted_mask) ?
275 t->true : t->false;
276 }
277 *s = 0;
278 } else
279 snprintf(buf, sizeof(buf), "Not tainted");
280
281 return buf;
282 }
283
test_taint(unsigned flag)284 int test_taint(unsigned flag)
285 {
286 return test_bit(flag, &tainted_mask);
287 }
288 EXPORT_SYMBOL(test_taint);
289
get_taint(void)290 unsigned long get_taint(void)
291 {
292 return tainted_mask;
293 }
294
295 /**
296 * add_taint: add a taint flag if not already set.
297 * @flag: one of the TAINT_* constants.
298 * @lockdep_ok: whether lock debugging is still OK.
299 *
300 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
301 * some notewortht-but-not-corrupting cases, it can be set to true.
302 */
add_taint(unsigned flag,enum lockdep_ok lockdep_ok)303 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
304 {
305 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
306 pr_warn("Disabling lock debugging due to kernel taint\n");
307
308 set_bit(flag, &tainted_mask);
309 }
310 EXPORT_SYMBOL(add_taint);
311
spin_msec(int msecs)312 static void spin_msec(int msecs)
313 {
314 int i;
315
316 for (i = 0; i < msecs; i++) {
317 touch_nmi_watchdog();
318 mdelay(1);
319 }
320 }
321
322 /*
323 * It just happens that oops_enter() and oops_exit() are identically
324 * implemented...
325 */
do_oops_enter_exit(void)326 static void do_oops_enter_exit(void)
327 {
328 unsigned long flags;
329 static int spin_counter;
330
331 if (!pause_on_oops)
332 return;
333
334 spin_lock_irqsave(&pause_on_oops_lock, flags);
335 if (pause_on_oops_flag == 0) {
336 /* This CPU may now print the oops message */
337 pause_on_oops_flag = 1;
338 } else {
339 /* We need to stall this CPU */
340 if (!spin_counter) {
341 /* This CPU gets to do the counting */
342 spin_counter = pause_on_oops;
343 do {
344 spin_unlock(&pause_on_oops_lock);
345 spin_msec(MSEC_PER_SEC);
346 spin_lock(&pause_on_oops_lock);
347 } while (--spin_counter);
348 pause_on_oops_flag = 0;
349 } else {
350 /* This CPU waits for a different one */
351 while (spin_counter) {
352 spin_unlock(&pause_on_oops_lock);
353 spin_msec(1);
354 spin_lock(&pause_on_oops_lock);
355 }
356 }
357 }
358 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
359 }
360
361 /*
362 * Return true if the calling CPU is allowed to print oops-related info.
363 * This is a bit racy..
364 */
oops_may_print(void)365 int oops_may_print(void)
366 {
367 return pause_on_oops_flag == 0;
368 }
369
370 /*
371 * Called when the architecture enters its oops handler, before it prints
372 * anything. If this is the first CPU to oops, and it's oopsing the first
373 * time then let it proceed.
374 *
375 * This is all enabled by the pause_on_oops kernel boot option. We do all
376 * this to ensure that oopses don't scroll off the screen. It has the
377 * side-effect of preventing later-oopsing CPUs from mucking up the display,
378 * too.
379 *
380 * It turns out that the CPU which is allowed to print ends up pausing for
381 * the right duration, whereas all the other CPUs pause for twice as long:
382 * once in oops_enter(), once in oops_exit().
383 */
oops_enter(void)384 void oops_enter(void)
385 {
386 tracing_off();
387 /* can't trust the integrity of the kernel anymore: */
388 debug_locks_off();
389 do_oops_enter_exit();
390 }
391
392 /*
393 * 64-bit random ID for oopses:
394 */
395 static u64 oops_id;
396
init_oops_id(void)397 static int init_oops_id(void)
398 {
399 if (!oops_id)
400 get_random_bytes(&oops_id, sizeof(oops_id));
401 else
402 oops_id++;
403
404 return 0;
405 }
406 late_initcall(init_oops_id);
407
print_oops_end_marker(void)408 void print_oops_end_marker(void)
409 {
410 init_oops_id();
411 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
412 }
413
414 /*
415 * Called when the architecture exits its oops handler, after printing
416 * everything.
417 */
oops_exit(void)418 void oops_exit(void)
419 {
420 do_oops_enter_exit();
421 print_oops_end_marker();
422 kmsg_dump(KMSG_DUMP_OOPS);
423 }
424
425 #ifdef WANT_WARN_ON_SLOWPATH
426 struct slowpath_args {
427 const char *fmt;
428 va_list args;
429 };
430
warn_slowpath_common(const char * file,int line,void * caller,unsigned taint,struct slowpath_args * args)431 static void warn_slowpath_common(const char *file, int line, void *caller,
432 unsigned taint, struct slowpath_args *args)
433 {
434 disable_trace_on_warning();
435
436 pr_warn("------------[ cut here ]------------\n");
437 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS()\n",
438 raw_smp_processor_id(), current->pid, file, line, caller);
439
440 if (args)
441 vprintk(args->fmt, args->args);
442
443 print_modules();
444 dump_stack();
445 print_oops_end_marker();
446 /* Just a warning, don't kill lockdep. */
447 add_taint(taint, LOCKDEP_STILL_OK);
448 }
449
warn_slowpath_fmt(const char * file,int line,const char * fmt,...)450 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
451 {
452 struct slowpath_args args;
453
454 args.fmt = fmt;
455 va_start(args.args, fmt);
456 warn_slowpath_common(file, line, __builtin_return_address(0),
457 TAINT_WARN, &args);
458 va_end(args.args);
459 }
460 EXPORT_SYMBOL(warn_slowpath_fmt);
461
warn_slowpath_fmt_taint(const char * file,int line,unsigned taint,const char * fmt,...)462 void warn_slowpath_fmt_taint(const char *file, int line,
463 unsigned taint, const char *fmt, ...)
464 {
465 struct slowpath_args args;
466
467 args.fmt = fmt;
468 va_start(args.args, fmt);
469 warn_slowpath_common(file, line, __builtin_return_address(0),
470 taint, &args);
471 va_end(args.args);
472 }
473 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
474
warn_slowpath_null(const char * file,int line)475 void warn_slowpath_null(const char *file, int line)
476 {
477 warn_slowpath_common(file, line, __builtin_return_address(0),
478 TAINT_WARN, NULL);
479 }
480 EXPORT_SYMBOL(warn_slowpath_null);
481 #endif
482
483 #ifdef CONFIG_CC_STACKPROTECTOR
484
485 /*
486 * Called when gcc's -fstack-protector feature is used, and
487 * gcc detects corruption of the on-stack canary value
488 */
__stack_chk_fail(void)489 __visible void __stack_chk_fail(void)
490 {
491 panic("stack-protector: Kernel stack is corrupted in: %p\n",
492 __builtin_return_address(0));
493 }
494 EXPORT_SYMBOL(__stack_chk_fail);
495
496 #endif
497
498 core_param(panic, panic_timeout, int, 0644);
499 core_param(pause_on_oops, pause_on_oops, int, 0644);
500
setup_crash_kexec_post_notifiers(char * s)501 static int __init setup_crash_kexec_post_notifiers(char *s)
502 {
503 crash_kexec_post_notifiers = true;
504 return 0;
505 }
506 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
507
oops_setup(char * s)508 static int __init oops_setup(char *s)
509 {
510 if (!s)
511 return -EINVAL;
512 if (!strcmp(s, "panic"))
513 panic_on_oops = 1;
514 return 0;
515 }
516 early_param("oops", oops_setup);
517