1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21
22 #include <asm/pgtable.h>
23
24 /*
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list.
27 */
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .set_page_dirty = swap_set_page_dirty,
31 #ifdef CONFIG_MIGRATION
32 .migratepage = migrate_page,
33 #endif
34 };
35
36 static struct backing_dev_info swap_backing_dev_info = {
37 .name = "swap",
38 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
39 };
40
41 struct address_space swapper_spaces[MAX_SWAPFILES] = {
42 [0 ... MAX_SWAPFILES - 1] = {
43 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
44 .i_mmap_writable = ATOMIC_INIT(0),
45 .a_ops = &swap_aops,
46 .backing_dev_info = &swap_backing_dev_info,
47 }
48 };
49
50 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
51
52 static struct {
53 unsigned long add_total;
54 unsigned long del_total;
55 unsigned long find_success;
56 unsigned long find_total;
57 } swap_cache_info;
58
total_swapcache_pages(void)59 unsigned long total_swapcache_pages(void)
60 {
61 int i;
62 unsigned long ret = 0;
63
64 for (i = 0; i < MAX_SWAPFILES; i++)
65 ret += swapper_spaces[i].nrpages;
66 return ret;
67 }
68
69 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
70
show_swap_cache_info(void)71 void show_swap_cache_info(void)
72 {
73 printk("%lu pages in swap cache\n", total_swapcache_pages());
74 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
75 swap_cache_info.add_total, swap_cache_info.del_total,
76 swap_cache_info.find_success, swap_cache_info.find_total);
77 printk("Free swap = %ldkB\n",
78 get_nr_swap_pages() << (PAGE_SHIFT - 10));
79 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
80 }
81
82 /*
83 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
84 * but sets SwapCache flag and private instead of mapping and index.
85 */
__add_to_swap_cache(struct page * page,swp_entry_t entry)86 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
87 {
88 int error;
89 struct address_space *address_space;
90
91 VM_BUG_ON_PAGE(!PageLocked(page), page);
92 VM_BUG_ON_PAGE(PageSwapCache(page), page);
93 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
94
95 page_cache_get(page);
96 SetPageSwapCache(page);
97 set_page_private(page, entry.val);
98
99 address_space = swap_address_space(entry);
100 spin_lock_irq(&address_space->tree_lock);
101 error = radix_tree_insert(&address_space->page_tree,
102 entry.val, page);
103 if (likely(!error)) {
104 address_space->nrpages++;
105 __inc_zone_page_state(page, NR_FILE_PAGES);
106 INC_CACHE_INFO(add_total);
107 }
108 spin_unlock_irq(&address_space->tree_lock);
109
110 if (unlikely(error)) {
111 /*
112 * Only the context which have set SWAP_HAS_CACHE flag
113 * would call add_to_swap_cache().
114 * So add_to_swap_cache() doesn't returns -EEXIST.
115 */
116 VM_BUG_ON(error == -EEXIST);
117 set_page_private(page, 0UL);
118 ClearPageSwapCache(page);
119 page_cache_release(page);
120 }
121
122 return error;
123 }
124
125
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp_mask)126 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
127 {
128 int error;
129
130 error = radix_tree_maybe_preload(gfp_mask);
131 if (!error) {
132 error = __add_to_swap_cache(page, entry);
133 radix_tree_preload_end();
134 }
135 return error;
136 }
137
138 /*
139 * This must be called only on pages that have
140 * been verified to be in the swap cache.
141 */
__delete_from_swap_cache(struct page * page)142 void __delete_from_swap_cache(struct page *page)
143 {
144 swp_entry_t entry;
145 struct address_space *address_space;
146
147 VM_BUG_ON_PAGE(!PageLocked(page), page);
148 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
149 VM_BUG_ON_PAGE(PageWriteback(page), page);
150
151 entry.val = page_private(page);
152 address_space = swap_address_space(entry);
153 radix_tree_delete(&address_space->page_tree, page_private(page));
154 set_page_private(page, 0);
155 ClearPageSwapCache(page);
156 address_space->nrpages--;
157 __dec_zone_page_state(page, NR_FILE_PAGES);
158 INC_CACHE_INFO(del_total);
159 }
160
161 /**
162 * add_to_swap - allocate swap space for a page
163 * @page: page we want to move to swap
164 *
165 * Allocate swap space for the page and add the page to the
166 * swap cache. Caller needs to hold the page lock.
167 */
add_to_swap(struct page * page,struct list_head * list)168 int add_to_swap(struct page *page, struct list_head *list)
169 {
170 swp_entry_t entry;
171 int err;
172
173 VM_BUG_ON_PAGE(!PageLocked(page), page);
174 VM_BUG_ON_PAGE(!PageUptodate(page), page);
175
176 entry = get_swap_page();
177 if (!entry.val)
178 return 0;
179
180 if (unlikely(PageTransHuge(page)))
181 if (unlikely(split_huge_page_to_list(page, list))) {
182 swapcache_free(entry);
183 return 0;
184 }
185
186 /*
187 * Radix-tree node allocations from PF_MEMALLOC contexts could
188 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189 * stops emergency reserves from being allocated.
190 *
191 * TODO: this could cause a theoretical memory reclaim
192 * deadlock in the swap out path.
193 */
194 /*
195 * Add it to the swap cache and mark it dirty
196 */
197 err = add_to_swap_cache(page, entry,
198 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
199
200 if (!err) { /* Success */
201 SetPageDirty(page);
202 return 1;
203 } else { /* -ENOMEM radix-tree allocation failure */
204 /*
205 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 * clear SWAP_HAS_CACHE flag.
207 */
208 swapcache_free(entry);
209 return 0;
210 }
211 }
212
213 /*
214 * This must be called only on pages that have
215 * been verified to be in the swap cache and locked.
216 * It will never put the page into the free list,
217 * the caller has a reference on the page.
218 */
delete_from_swap_cache(struct page * page)219 void delete_from_swap_cache(struct page *page)
220 {
221 swp_entry_t entry;
222 struct address_space *address_space;
223
224 entry.val = page_private(page);
225
226 address_space = swap_address_space(entry);
227 spin_lock_irq(&address_space->tree_lock);
228 __delete_from_swap_cache(page);
229 spin_unlock_irq(&address_space->tree_lock);
230
231 swapcache_free(entry);
232 page_cache_release(page);
233 }
234
235 /*
236 * If we are the only user, then try to free up the swap cache.
237 *
238 * Its ok to check for PageSwapCache without the page lock
239 * here because we are going to recheck again inside
240 * try_to_free_swap() _with_ the lock.
241 * - Marcelo
242 */
free_swap_cache(struct page * page)243 static inline void free_swap_cache(struct page *page)
244 {
245 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
246 try_to_free_swap(page);
247 unlock_page(page);
248 }
249 }
250
251 /*
252 * Perform a free_page(), also freeing any swap cache associated with
253 * this page if it is the last user of the page.
254 */
free_page_and_swap_cache(struct page * page)255 void free_page_and_swap_cache(struct page *page)
256 {
257 free_swap_cache(page);
258 page_cache_release(page);
259 }
260
261 /*
262 * Passed an array of pages, drop them all from swapcache and then release
263 * them. They are removed from the LRU and freed if this is their last use.
264 */
free_pages_and_swap_cache(struct page ** pages,int nr)265 void free_pages_and_swap_cache(struct page **pages, int nr)
266 {
267 struct page **pagep = pages;
268 int i;
269
270 lru_add_drain();
271 for (i = 0; i < nr; i++)
272 free_swap_cache(pagep[i]);
273 release_pages(pagep, nr, false);
274 }
275
276 /*
277 * Lookup a swap entry in the swap cache. A found page will be returned
278 * unlocked and with its refcount incremented - we rely on the kernel
279 * lock getting page table operations atomic even if we drop the page
280 * lock before returning.
281 */
lookup_swap_cache(swp_entry_t entry)282 struct page * lookup_swap_cache(swp_entry_t entry)
283 {
284 struct page *page;
285
286 page = find_get_page(swap_address_space(entry), entry.val);
287
288 if (page) {
289 INC_CACHE_INFO(find_success);
290 if (TestClearPageReadahead(page))
291 atomic_inc(&swapin_readahead_hits);
292 }
293
294 INC_CACHE_INFO(find_total);
295 return page;
296 }
297
298 /*
299 * Locate a page of swap in physical memory, reserving swap cache space
300 * and reading the disk if it is not already cached.
301 * A failure return means that either the page allocation failed or that
302 * the swap entry is no longer in use.
303 */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)304 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
305 struct vm_area_struct *vma, unsigned long addr)
306 {
307 struct page *found_page, *new_page = NULL;
308 int err;
309
310 do {
311 /*
312 * First check the swap cache. Since this is normally
313 * called after lookup_swap_cache() failed, re-calling
314 * that would confuse statistics.
315 */
316 found_page = find_get_page(swap_address_space(entry),
317 entry.val);
318 if (found_page)
319 break;
320
321 /*
322 * Get a new page to read into from swap.
323 */
324 if (!new_page) {
325 new_page = alloc_page_vma(gfp_mask, vma, addr);
326 if (!new_page)
327 break; /* Out of memory */
328 }
329
330 /*
331 * call radix_tree_preload() while we can wait.
332 */
333 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
334 if (err)
335 break;
336
337 /*
338 * Swap entry may have been freed since our caller observed it.
339 */
340 err = swapcache_prepare(entry);
341 if (err == -EEXIST) {
342 radix_tree_preload_end();
343 /*
344 * We might race against get_swap_page() and stumble
345 * across a SWAP_HAS_CACHE swap_map entry whose page
346 * has not been brought into the swapcache yet, while
347 * the other end is scheduled away waiting on discard
348 * I/O completion at scan_swap_map().
349 *
350 * In order to avoid turning this transitory state
351 * into a permanent loop around this -EEXIST case
352 * if !CONFIG_PREEMPT and the I/O completion happens
353 * to be waiting on the CPU waitqueue where we are now
354 * busy looping, we just conditionally invoke the
355 * scheduler here, if there are some more important
356 * tasks to run.
357 */
358 cond_resched();
359 continue;
360 }
361 if (err) { /* swp entry is obsolete ? */
362 radix_tree_preload_end();
363 break;
364 }
365
366 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
367 __set_page_locked(new_page);
368 SetPageSwapBacked(new_page);
369 err = __add_to_swap_cache(new_page, entry);
370 if (likely(!err)) {
371 radix_tree_preload_end();
372 /*
373 * Initiate read into locked page and return.
374 */
375 lru_cache_add_anon(new_page);
376 swap_readpage(new_page);
377 return new_page;
378 }
379 radix_tree_preload_end();
380 ClearPageSwapBacked(new_page);
381 __clear_page_locked(new_page);
382 /*
383 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
384 * clear SWAP_HAS_CACHE flag.
385 */
386 swapcache_free(entry);
387 } while (err != -ENOMEM);
388
389 if (new_page)
390 page_cache_release(new_page);
391 return found_page;
392 }
393
swapin_nr_pages(unsigned long offset)394 static unsigned long swapin_nr_pages(unsigned long offset)
395 {
396 static unsigned long prev_offset;
397 unsigned int pages, max_pages, last_ra;
398 static atomic_t last_readahead_pages;
399
400 max_pages = 1 << ACCESS_ONCE(page_cluster);
401 if (max_pages <= 1)
402 return 1;
403
404 /*
405 * This heuristic has been found to work well on both sequential and
406 * random loads, swapping to hard disk or to SSD: please don't ask
407 * what the "+ 2" means, it just happens to work well, that's all.
408 */
409 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
410 if (pages == 2) {
411 /*
412 * We can have no readahead hits to judge by: but must not get
413 * stuck here forever, so check for an adjacent offset instead
414 * (and don't even bother to check whether swap type is same).
415 */
416 if (offset != prev_offset + 1 && offset != prev_offset - 1)
417 pages = 1;
418 prev_offset = offset;
419 } else {
420 unsigned int roundup = 4;
421 while (roundup < pages)
422 roundup <<= 1;
423 pages = roundup;
424 }
425
426 if (pages > max_pages)
427 pages = max_pages;
428
429 /* Don't shrink readahead too fast */
430 last_ra = atomic_read(&last_readahead_pages) / 2;
431 if (pages < last_ra)
432 pages = last_ra;
433 atomic_set(&last_readahead_pages, pages);
434
435 return pages;
436 }
437
438 /**
439 * swapin_readahead - swap in pages in hope we need them soon
440 * @entry: swap entry of this memory
441 * @gfp_mask: memory allocation flags
442 * @vma: user vma this address belongs to
443 * @addr: target address for mempolicy
444 *
445 * Returns the struct page for entry and addr, after queueing swapin.
446 *
447 * Primitive swap readahead code. We simply read an aligned block of
448 * (1 << page_cluster) entries in the swap area. This method is chosen
449 * because it doesn't cost us any seek time. We also make sure to queue
450 * the 'original' request together with the readahead ones...
451 *
452 * This has been extended to use the NUMA policies from the mm triggering
453 * the readahead.
454 *
455 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
456 */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr)457 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
458 struct vm_area_struct *vma, unsigned long addr)
459 {
460 struct page *page;
461 unsigned long entry_offset = swp_offset(entry);
462 unsigned long offset = entry_offset;
463 unsigned long start_offset, end_offset;
464 unsigned long mask;
465 struct blk_plug plug;
466
467 mask = swapin_nr_pages(offset) - 1;
468 if (!mask)
469 goto skip;
470
471 /* Read a page_cluster sized and aligned cluster around offset. */
472 start_offset = offset & ~mask;
473 end_offset = offset | mask;
474 if (!start_offset) /* First page is swap header. */
475 start_offset++;
476
477 blk_start_plug(&plug);
478 for (offset = start_offset; offset <= end_offset ; offset++) {
479 /* Ok, do the async read-ahead now */
480 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
481 gfp_mask, vma, addr);
482 if (!page)
483 continue;
484 if (offset != entry_offset)
485 SetPageReadahead(page);
486 page_cache_release(page);
487 }
488 blk_finish_plug(&plug);
489
490 lru_add_drain(); /* Push any new pages onto the LRU now */
491 skip:
492 return read_swap_cache_async(entry, gfp_mask, vma, addr);
493 }
494