• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23 
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "ar9003_mac.h"
27 #include "ar9003_mci.h"
28 #include "ar9003_phy.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
ath9k_hw_set_clockrate(struct ath_hw * ah)38 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
39 {
40 	struct ath_common *common = ath9k_hw_common(ah);
41 	struct ath9k_channel *chan = ah->curchan;
42 	unsigned int clockrate;
43 
44 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
45 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
46 		clockrate = 117;
47 	else if (!chan) /* should really check for CCK instead */
48 		clockrate = ATH9K_CLOCK_RATE_CCK;
49 	else if (IS_CHAN_2GHZ(chan))
50 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
51 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
52 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
53 	else
54 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
55 
56 	if (chan) {
57 		if (IS_CHAN_HT40(chan))
58 			clockrate *= 2;
59 		if (IS_CHAN_HALF_RATE(chan))
60 			clockrate /= 2;
61 		if (IS_CHAN_QUARTER_RATE(chan))
62 			clockrate /= 4;
63 	}
64 
65 	common->clockrate = clockrate;
66 }
67 
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)68 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
69 {
70 	struct ath_common *common = ath9k_hw_common(ah);
71 
72 	return usecs * common->clockrate;
73 }
74 
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)75 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
76 {
77 	int i;
78 
79 	BUG_ON(timeout < AH_TIME_QUANTUM);
80 
81 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
82 		if ((REG_READ(ah, reg) & mask) == val)
83 			return true;
84 
85 		udelay(AH_TIME_QUANTUM);
86 	}
87 
88 	ath_dbg(ath9k_hw_common(ah), ANY,
89 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
90 		timeout, reg, REG_READ(ah, reg), mask, val);
91 
92 	return false;
93 }
94 EXPORT_SYMBOL(ath9k_hw_wait);
95 
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)96 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
97 			  int hw_delay)
98 {
99 	hw_delay /= 10;
100 
101 	if (IS_CHAN_HALF_RATE(chan))
102 		hw_delay *= 2;
103 	else if (IS_CHAN_QUARTER_RATE(chan))
104 		hw_delay *= 4;
105 
106 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
107 }
108 
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)109 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
110 			  int column, unsigned int *writecnt)
111 {
112 	int r;
113 
114 	ENABLE_REGWRITE_BUFFER(ah);
115 	for (r = 0; r < array->ia_rows; r++) {
116 		REG_WRITE(ah, INI_RA(array, r, 0),
117 			  INI_RA(array, r, column));
118 		DO_DELAY(*writecnt);
119 	}
120 	REGWRITE_BUFFER_FLUSH(ah);
121 }
122 
ath9k_hw_reverse_bits(u32 val,u32 n)123 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
124 {
125 	u32 retval;
126 	int i;
127 
128 	for (i = 0, retval = 0; i < n; i++) {
129 		retval = (retval << 1) | (val & 1);
130 		val >>= 1;
131 	}
132 	return retval;
133 }
134 
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)135 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
136 			   u8 phy, int kbps,
137 			   u32 frameLen, u16 rateix,
138 			   bool shortPreamble)
139 {
140 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
141 
142 	if (kbps == 0)
143 		return 0;
144 
145 	switch (phy) {
146 	case WLAN_RC_PHY_CCK:
147 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
148 		if (shortPreamble)
149 			phyTime >>= 1;
150 		numBits = frameLen << 3;
151 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
152 		break;
153 	case WLAN_RC_PHY_OFDM:
154 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
155 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
156 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
157 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
158 			txTime = OFDM_SIFS_TIME_QUARTER
159 				+ OFDM_PREAMBLE_TIME_QUARTER
160 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
161 		} else if (ah->curchan &&
162 			   IS_CHAN_HALF_RATE(ah->curchan)) {
163 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
164 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
165 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166 			txTime = OFDM_SIFS_TIME_HALF +
167 				OFDM_PREAMBLE_TIME_HALF
168 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
169 		} else {
170 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
171 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
174 				+ (numSymbols * OFDM_SYMBOL_TIME);
175 		}
176 		break;
177 	default:
178 		ath_err(ath9k_hw_common(ah),
179 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
180 		txTime = 0;
181 		break;
182 	}
183 
184 	return txTime;
185 }
186 EXPORT_SYMBOL(ath9k_hw_computetxtime);
187 
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)188 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
189 				  struct ath9k_channel *chan,
190 				  struct chan_centers *centers)
191 {
192 	int8_t extoff;
193 
194 	if (!IS_CHAN_HT40(chan)) {
195 		centers->ctl_center = centers->ext_center =
196 			centers->synth_center = chan->channel;
197 		return;
198 	}
199 
200 	if (IS_CHAN_HT40PLUS(chan)) {
201 		centers->synth_center =
202 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
203 		extoff = 1;
204 	} else {
205 		centers->synth_center =
206 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
207 		extoff = -1;
208 	}
209 
210 	centers->ctl_center =
211 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
212 	/* 25 MHz spacing is supported by hw but not on upper layers */
213 	centers->ext_center =
214 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
215 }
216 
217 /******************/
218 /* Chip Revisions */
219 /******************/
220 
ath9k_hw_read_revisions(struct ath_hw * ah)221 static void ath9k_hw_read_revisions(struct ath_hw *ah)
222 {
223 	u32 val;
224 
225 	if (ah->get_mac_revision)
226 		ah->hw_version.macRev = ah->get_mac_revision();
227 
228 	switch (ah->hw_version.devid) {
229 	case AR5416_AR9100_DEVID:
230 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
231 		break;
232 	case AR9300_DEVID_AR9330:
233 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
234 		if (!ah->get_mac_revision) {
235 			val = REG_READ(ah, AR_SREV);
236 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
237 		}
238 		return;
239 	case AR9300_DEVID_AR9340:
240 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
241 		return;
242 	case AR9300_DEVID_QCA955X:
243 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
244 		return;
245 	case AR9300_DEVID_AR953X:
246 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
247 		return;
248 	}
249 
250 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
251 
252 	if (val == 0xFF) {
253 		val = REG_READ(ah, AR_SREV);
254 		ah->hw_version.macVersion =
255 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
256 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
257 
258 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
259 			ah->is_pciexpress = true;
260 		else
261 			ah->is_pciexpress = (val &
262 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 	} else {
264 		if (!AR_SREV_9100(ah))
265 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266 
267 		ah->hw_version.macRev = val & AR_SREV_REVISION;
268 
269 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 			ah->is_pciexpress = true;
271 	}
272 }
273 
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277 
ath9k_hw_disablepcie(struct ath_hw * ah)278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 	if (!AR_SREV_5416(ah))
281 		return;
282 
283 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292 
293 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295 
296 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0 };
301 	u32 regHold[2];
302 	static const u32 patternData[4] = {
303 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 	};
305 	int i, j, loop_max;
306 
307 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 		loop_max = 2;
309 		regAddr[1] = AR_PHY_BASE + (8 << 2);
310 	} else
311 		loop_max = 1;
312 
313 	for (i = 0; i < loop_max; i++) {
314 		u32 addr = regAddr[i];
315 		u32 wrData, rdData;
316 
317 		regHold[i] = REG_READ(ah, addr);
318 		for (j = 0; j < 0x100; j++) {
319 			wrData = (j << 16) | j;
320 			REG_WRITE(ah, addr, wrData);
321 			rdData = REG_READ(ah, addr);
322 			if (rdData != wrData) {
323 				ath_err(common,
324 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 					addr, wrData, rdData);
326 				return false;
327 			}
328 		}
329 		for (j = 0; j < 4; j++) {
330 			wrData = patternData[j];
331 			REG_WRITE(ah, addr, wrData);
332 			rdData = REG_READ(ah, addr);
333 			if (wrData != rdData) {
334 				ath_err(common,
335 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 					addr, wrData, rdData);
337 				return false;
338 			}
339 		}
340 		REG_WRITE(ah, regAddr[i], regHold[i]);
341 	}
342 	udelay(100);
343 
344 	return true;
345 }
346 
ath9k_hw_init_config(struct ath_hw * ah)347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 	struct ath_common *common = ath9k_hw_common(ah);
350 
351 	ah->config.dma_beacon_response_time = 1;
352 	ah->config.sw_beacon_response_time = 6;
353 	ah->config.cwm_ignore_extcca = 0;
354 	ah->config.analog_shiftreg = 1;
355 
356 	ah->config.rx_intr_mitigation = true;
357 
358 	if (AR_SREV_9300_20_OR_LATER(ah)) {
359 		ah->config.rimt_last = 500;
360 		ah->config.rimt_first = 2000;
361 	} else {
362 		ah->config.rimt_last = 250;
363 		ah->config.rimt_first = 700;
364 	}
365 
366 	/*
367 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
368 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
369 	 * This means we use it for all AR5416 devices, and the few
370 	 * minor PCI AR9280 devices out there.
371 	 *
372 	 * Serialization is required because these devices do not handle
373 	 * well the case of two concurrent reads/writes due to the latency
374 	 * involved. During one read/write another read/write can be issued
375 	 * on another CPU while the previous read/write may still be working
376 	 * on our hardware, if we hit this case the hardware poops in a loop.
377 	 * We prevent this by serializing reads and writes.
378 	 *
379 	 * This issue is not present on PCI-Express devices or pre-AR5416
380 	 * devices (legacy, 802.11abg).
381 	 */
382 	if (num_possible_cpus() > 1)
383 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
384 
385 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
386 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
387 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
388 		     !ah->is_pciexpress)) {
389 			ah->config.serialize_regmode = SER_REG_MODE_ON;
390 		} else {
391 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
392 		}
393 	}
394 
395 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
396 		ah->config.serialize_regmode);
397 
398 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
399 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
400 	else
401 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
402 }
403 
ath9k_hw_init_defaults(struct ath_hw * ah)404 static void ath9k_hw_init_defaults(struct ath_hw *ah)
405 {
406 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
407 
408 	regulatory->country_code = CTRY_DEFAULT;
409 	regulatory->power_limit = MAX_RATE_POWER;
410 
411 	ah->hw_version.magic = AR5416_MAGIC;
412 	ah->hw_version.subvendorid = 0;
413 
414 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
415 			       AR_STA_ID1_MCAST_KSRCH;
416 	if (AR_SREV_9100(ah))
417 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
418 
419 	ah->slottime = ATH9K_SLOT_TIME_9;
420 	ah->globaltxtimeout = (u32) -1;
421 	ah->power_mode = ATH9K_PM_UNDEFINED;
422 	ah->htc_reset_init = true;
423 
424 	ah->ani_function = ATH9K_ANI_ALL;
425 	if (!AR_SREV_9300_20_OR_LATER(ah))
426 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
427 
428 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
429 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
430 	else
431 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
432 }
433 
ath9k_hw_init_macaddr(struct ath_hw * ah)434 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
435 {
436 	struct ath_common *common = ath9k_hw_common(ah);
437 	u32 sum;
438 	int i;
439 	u16 eeval;
440 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
441 
442 	sum = 0;
443 	for (i = 0; i < 3; i++) {
444 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
445 		sum += eeval;
446 		common->macaddr[2 * i] = eeval >> 8;
447 		common->macaddr[2 * i + 1] = eeval & 0xff;
448 	}
449 	if (sum == 0 || sum == 0xffff * 3)
450 		return -EADDRNOTAVAIL;
451 
452 	return 0;
453 }
454 
ath9k_hw_post_init(struct ath_hw * ah)455 static int ath9k_hw_post_init(struct ath_hw *ah)
456 {
457 	struct ath_common *common = ath9k_hw_common(ah);
458 	int ecode;
459 
460 	if (common->bus_ops->ath_bus_type != ATH_USB) {
461 		if (!ath9k_hw_chip_test(ah))
462 			return -ENODEV;
463 	}
464 
465 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
466 		ecode = ar9002_hw_rf_claim(ah);
467 		if (ecode != 0)
468 			return ecode;
469 	}
470 
471 	ecode = ath9k_hw_eeprom_init(ah);
472 	if (ecode != 0)
473 		return ecode;
474 
475 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
476 		ah->eep_ops->get_eeprom_ver(ah),
477 		ah->eep_ops->get_eeprom_rev(ah));
478 
479 	ath9k_hw_ani_init(ah);
480 
481 	/*
482 	 * EEPROM needs to be initialized before we do this.
483 	 * This is required for regulatory compliance.
484 	 */
485 	if (AR_SREV_9300_20_OR_LATER(ah)) {
486 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
487 		if ((regdmn & 0xF0) == CTL_FCC) {
488 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
489 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
490 		}
491 	}
492 
493 	return 0;
494 }
495 
ath9k_hw_attach_ops(struct ath_hw * ah)496 static int ath9k_hw_attach_ops(struct ath_hw *ah)
497 {
498 	if (!AR_SREV_9300_20_OR_LATER(ah))
499 		return ar9002_hw_attach_ops(ah);
500 
501 	ar9003_hw_attach_ops(ah);
502 	return 0;
503 }
504 
505 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)506 static int __ath9k_hw_init(struct ath_hw *ah)
507 {
508 	struct ath_common *common = ath9k_hw_common(ah);
509 	int r = 0;
510 
511 	ath9k_hw_read_revisions(ah);
512 
513 	switch (ah->hw_version.macVersion) {
514 	case AR_SREV_VERSION_5416_PCI:
515 	case AR_SREV_VERSION_5416_PCIE:
516 	case AR_SREV_VERSION_9160:
517 	case AR_SREV_VERSION_9100:
518 	case AR_SREV_VERSION_9280:
519 	case AR_SREV_VERSION_9285:
520 	case AR_SREV_VERSION_9287:
521 	case AR_SREV_VERSION_9271:
522 	case AR_SREV_VERSION_9300:
523 	case AR_SREV_VERSION_9330:
524 	case AR_SREV_VERSION_9485:
525 	case AR_SREV_VERSION_9340:
526 	case AR_SREV_VERSION_9462:
527 	case AR_SREV_VERSION_9550:
528 	case AR_SREV_VERSION_9565:
529 	case AR_SREV_VERSION_9531:
530 		break;
531 	default:
532 		ath_err(common,
533 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
534 			ah->hw_version.macVersion, ah->hw_version.macRev);
535 		return -EOPNOTSUPP;
536 	}
537 
538 	/*
539 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
540 	 * We need to do this to avoid RMW of this register. We cannot
541 	 * read the reg when chip is asleep.
542 	 */
543 	if (AR_SREV_9300_20_OR_LATER(ah)) {
544 		ah->WARegVal = REG_READ(ah, AR_WA);
545 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
546 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
547 	}
548 
549 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
550 		ath_err(common, "Couldn't reset chip\n");
551 		return -EIO;
552 	}
553 
554 	if (AR_SREV_9565(ah)) {
555 		ah->WARegVal |= AR_WA_BIT22;
556 		REG_WRITE(ah, AR_WA, ah->WARegVal);
557 	}
558 
559 	ath9k_hw_init_defaults(ah);
560 	ath9k_hw_init_config(ah);
561 
562 	r = ath9k_hw_attach_ops(ah);
563 	if (r)
564 		return r;
565 
566 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
567 		ath_err(common, "Couldn't wakeup chip\n");
568 		return -EIO;
569 	}
570 
571 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
572 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
573 		ah->is_pciexpress = false;
574 
575 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
576 	ath9k_hw_init_cal_settings(ah);
577 
578 	if (!ah->is_pciexpress)
579 		ath9k_hw_disablepcie(ah);
580 
581 	r = ath9k_hw_post_init(ah);
582 	if (r)
583 		return r;
584 
585 	ath9k_hw_init_mode_gain_regs(ah);
586 	r = ath9k_hw_fill_cap_info(ah);
587 	if (r)
588 		return r;
589 
590 	r = ath9k_hw_init_macaddr(ah);
591 	if (r) {
592 		ath_err(common, "Failed to initialize MAC address\n");
593 		return r;
594 	}
595 
596 	ath9k_hw_init_hang_checks(ah);
597 
598 	common->state = ATH_HW_INITIALIZED;
599 
600 	return 0;
601 }
602 
ath9k_hw_init(struct ath_hw * ah)603 int ath9k_hw_init(struct ath_hw *ah)
604 {
605 	int ret;
606 	struct ath_common *common = ath9k_hw_common(ah);
607 
608 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
609 	switch (ah->hw_version.devid) {
610 	case AR5416_DEVID_PCI:
611 	case AR5416_DEVID_PCIE:
612 	case AR5416_AR9100_DEVID:
613 	case AR9160_DEVID_PCI:
614 	case AR9280_DEVID_PCI:
615 	case AR9280_DEVID_PCIE:
616 	case AR9285_DEVID_PCIE:
617 	case AR9287_DEVID_PCI:
618 	case AR9287_DEVID_PCIE:
619 	case AR2427_DEVID_PCIE:
620 	case AR9300_DEVID_PCIE:
621 	case AR9300_DEVID_AR9485_PCIE:
622 	case AR9300_DEVID_AR9330:
623 	case AR9300_DEVID_AR9340:
624 	case AR9300_DEVID_QCA955X:
625 	case AR9300_DEVID_AR9580:
626 	case AR9300_DEVID_AR9462:
627 	case AR9485_DEVID_AR1111:
628 	case AR9300_DEVID_AR9565:
629 	case AR9300_DEVID_AR953X:
630 		break;
631 	default:
632 		if (common->bus_ops->ath_bus_type == ATH_USB)
633 			break;
634 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
635 			ah->hw_version.devid);
636 		return -EOPNOTSUPP;
637 	}
638 
639 	ret = __ath9k_hw_init(ah);
640 	if (ret) {
641 		ath_err(common,
642 			"Unable to initialize hardware; initialization status: %d\n",
643 			ret);
644 		return ret;
645 	}
646 
647 	ath_dynack_init(ah);
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ath9k_hw_init);
652 
ath9k_hw_init_qos(struct ath_hw * ah)653 static void ath9k_hw_init_qos(struct ath_hw *ah)
654 {
655 	ENABLE_REGWRITE_BUFFER(ah);
656 
657 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
658 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
659 
660 	REG_WRITE(ah, AR_QOS_NO_ACK,
661 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
662 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
663 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
664 
665 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
666 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
667 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
668 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
670 
671 	REGWRITE_BUFFER_FLUSH(ah);
672 }
673 
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)674 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
675 {
676 	struct ath_common *common = ath9k_hw_common(ah);
677 	int i = 0;
678 
679 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
680 	udelay(100);
681 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
682 
683 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
684 
685 		udelay(100);
686 
687 		if (WARN_ON_ONCE(i >= 100)) {
688 			ath_err(common, "PLL4 meaurement not done\n");
689 			break;
690 		}
691 
692 		i++;
693 	}
694 
695 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
696 }
697 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
698 
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)699 static void ath9k_hw_init_pll(struct ath_hw *ah,
700 			      struct ath9k_channel *chan)
701 {
702 	u32 pll;
703 
704 	pll = ath9k_hw_compute_pll_control(ah, chan);
705 
706 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
707 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
708 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
710 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711 			      AR_CH0_DPLL2_KD, 0x40);
712 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
713 			      AR_CH0_DPLL2_KI, 0x4);
714 
715 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
716 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
717 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
718 			      AR_CH0_BB_DPLL1_NINI, 0x58);
719 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
720 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
721 
722 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
724 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
725 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
726 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
727 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
728 
729 		/* program BB PLL phase_shift to 0x6 */
730 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
731 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
732 
733 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
735 		udelay(1000);
736 	} else if (AR_SREV_9330(ah)) {
737 		u32 ddr_dpll2, pll_control2, kd;
738 
739 		if (ah->is_clk_25mhz) {
740 			ddr_dpll2 = 0x18e82f01;
741 			pll_control2 = 0xe04a3d;
742 			kd = 0x1d;
743 		} else {
744 			ddr_dpll2 = 0x19e82f01;
745 			pll_control2 = 0x886666;
746 			kd = 0x3d;
747 		}
748 
749 		/* program DDR PLL ki and kd value */
750 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
751 
752 		/* program DDR PLL phase_shift */
753 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
754 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
755 
756 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
757 			  pll | AR_RTC_9300_PLL_BYPASS);
758 		udelay(1000);
759 
760 		/* program refdiv, nint, frac to RTC register */
761 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
762 
763 		/* program BB PLL kd and ki value */
764 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
766 
767 		/* program BB PLL phase_shift */
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
769 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
770 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
771 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
772 
773 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
774 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
775 		udelay(1000);
776 
777 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
778 		udelay(100);
779 
780 		if (ah->is_clk_25mhz) {
781 			if (AR_SREV_9531(ah)) {
782 				pll2_divint = 0x1c;
783 				pll2_divfrac = 0xa3d2;
784 				refdiv = 1;
785 			} else {
786 				pll2_divint = 0x54;
787 				pll2_divfrac = 0x1eb85;
788 				refdiv = 3;
789 			}
790 		} else {
791 			if (AR_SREV_9340(ah)) {
792 				pll2_divint = 88;
793 				pll2_divfrac = 0;
794 				refdiv = 5;
795 			} else {
796 				pll2_divint = 0x11;
797 				pll2_divfrac =
798 					AR_SREV_9531(ah) ? 0x26665 : 0x26666;
799 				refdiv = 1;
800 			}
801 		}
802 
803 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
804 		if (AR_SREV_9531(ah))
805 			regval |= (0x1 << 22);
806 		else
807 			regval |= (0x1 << 16);
808 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
809 		udelay(100);
810 
811 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
812 			  (pll2_divint << 18) | pll2_divfrac);
813 		udelay(100);
814 
815 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
816 		if (AR_SREV_9340(ah))
817 			regval = (regval & 0x80071fff) |
818 				(0x1 << 30) |
819 				(0x1 << 13) |
820 				(0x4 << 26) |
821 				(0x18 << 19);
822 		else if (AR_SREV_9531(ah))
823 			regval = (regval & 0x01c00fff) |
824 				(0x1 << 31) |
825 				(0x2 << 29) |
826 				(0xa << 25) |
827 				(0x1 << 19) |
828 				(0x6 << 12);
829 		else
830 			regval = (regval & 0x80071fff) |
831 				(0x3 << 30) |
832 				(0x1 << 13) |
833 				(0x4 << 26) |
834 				(0x60 << 19);
835 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836 
837 		if (AR_SREV_9531(ah))
838 			REG_WRITE(ah, AR_PHY_PLL_MODE,
839 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
840 		else
841 			REG_WRITE(ah, AR_PHY_PLL_MODE,
842 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
843 
844 		udelay(1000);
845 	}
846 
847 	if (AR_SREV_9565(ah))
848 		pll |= 0x40000;
849 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
850 
851 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
852 	    AR_SREV_9550(ah))
853 		udelay(1000);
854 
855 	/* Switch the core clock for ar9271 to 117Mhz */
856 	if (AR_SREV_9271(ah)) {
857 		udelay(500);
858 		REG_WRITE(ah, 0x50040, 0x304);
859 	}
860 
861 	udelay(RTC_PLL_SETTLE_DELAY);
862 
863 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
864 }
865 
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)866 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
867 					  enum nl80211_iftype opmode)
868 {
869 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
870 	u32 imr_reg = AR_IMR_TXERR |
871 		AR_IMR_TXURN |
872 		AR_IMR_RXERR |
873 		AR_IMR_RXORN |
874 		AR_IMR_BCNMISC;
875 
876 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
877 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
878 
879 	if (AR_SREV_9300_20_OR_LATER(ah)) {
880 		imr_reg |= AR_IMR_RXOK_HP;
881 		if (ah->config.rx_intr_mitigation)
882 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
883 		else
884 			imr_reg |= AR_IMR_RXOK_LP;
885 
886 	} else {
887 		if (ah->config.rx_intr_mitigation)
888 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
889 		else
890 			imr_reg |= AR_IMR_RXOK;
891 	}
892 
893 	if (ah->config.tx_intr_mitigation)
894 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
895 	else
896 		imr_reg |= AR_IMR_TXOK;
897 
898 	ENABLE_REGWRITE_BUFFER(ah);
899 
900 	REG_WRITE(ah, AR_IMR, imr_reg);
901 	ah->imrs2_reg |= AR_IMR_S2_GTT;
902 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
903 
904 	if (!AR_SREV_9100(ah)) {
905 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
906 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
907 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
908 	}
909 
910 	REGWRITE_BUFFER_FLUSH(ah);
911 
912 	if (AR_SREV_9300_20_OR_LATER(ah)) {
913 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
914 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
915 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
916 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
917 	}
918 }
919 
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)920 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
921 {
922 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
923 	val = min(val, (u32) 0xFFFF);
924 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
925 }
926 
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)927 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
928 {
929 	u32 val = ath9k_hw_mac_to_clks(ah, us);
930 	val = min(val, (u32) 0xFFFF);
931 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
932 }
933 
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)934 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
935 {
936 	u32 val = ath9k_hw_mac_to_clks(ah, us);
937 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
938 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
939 }
940 
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)941 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
942 {
943 	u32 val = ath9k_hw_mac_to_clks(ah, us);
944 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
945 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
946 }
947 
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)948 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
949 {
950 	if (tu > 0xFFFF) {
951 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
952 			tu);
953 		ah->globaltxtimeout = (u32) -1;
954 		return false;
955 	} else {
956 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
957 		ah->globaltxtimeout = tu;
958 		return true;
959 	}
960 }
961 
ath9k_hw_init_global_settings(struct ath_hw * ah)962 void ath9k_hw_init_global_settings(struct ath_hw *ah)
963 {
964 	struct ath_common *common = ath9k_hw_common(ah);
965 	const struct ath9k_channel *chan = ah->curchan;
966 	int acktimeout, ctstimeout, ack_offset = 0;
967 	int slottime;
968 	int sifstime;
969 	int rx_lat = 0, tx_lat = 0, eifs = 0;
970 	u32 reg;
971 
972 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
973 		ah->misc_mode);
974 
975 	if (!chan)
976 		return;
977 
978 	if (ah->misc_mode != 0)
979 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
980 
981 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
982 		rx_lat = 41;
983 	else
984 		rx_lat = 37;
985 	tx_lat = 54;
986 
987 	if (IS_CHAN_5GHZ(chan))
988 		sifstime = 16;
989 	else
990 		sifstime = 10;
991 
992 	if (IS_CHAN_HALF_RATE(chan)) {
993 		eifs = 175;
994 		rx_lat *= 2;
995 		tx_lat *= 2;
996 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
997 		    tx_lat += 11;
998 
999 		sifstime = 32;
1000 		ack_offset = 16;
1001 		slottime = 13;
1002 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1003 		eifs = 340;
1004 		rx_lat = (rx_lat * 4) - 1;
1005 		tx_lat *= 4;
1006 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007 		    tx_lat += 22;
1008 
1009 		sifstime = 64;
1010 		ack_offset = 32;
1011 		slottime = 21;
1012 	} else {
1013 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1014 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1015 			reg = AR_USEC_ASYNC_FIFO;
1016 		} else {
1017 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1018 				common->clockrate;
1019 			reg = REG_READ(ah, AR_USEC);
1020 		}
1021 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1022 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1023 
1024 		slottime = ah->slottime;
1025 	}
1026 
1027 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1028 	slottime += 3 * ah->coverage_class;
1029 	acktimeout = slottime + sifstime + ack_offset;
1030 	ctstimeout = acktimeout;
1031 
1032 	/*
1033 	 * Workaround for early ACK timeouts, add an offset to match the
1034 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1035 	 * This was initially only meant to work around an issue with delayed
1036 	 * BA frames in some implementations, but it has been found to fix ACK
1037 	 * timeout issues in other cases as well.
1038 	 */
1039 	if (IS_CHAN_2GHZ(chan) &&
1040 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1041 		acktimeout += 64 - sifstime - ah->slottime;
1042 		ctstimeout += 48 - sifstime - ah->slottime;
1043 	}
1044 
1045 	if (ah->dynack.enabled) {
1046 		acktimeout = ah->dynack.ackto;
1047 		ctstimeout = acktimeout;
1048 		slottime = (acktimeout - 3) / 2;
1049 	} else {
1050 		ah->dynack.ackto = acktimeout;
1051 	}
1052 
1053 	ath9k_hw_set_sifs_time(ah, sifstime);
1054 	ath9k_hw_setslottime(ah, slottime);
1055 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1056 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1057 	if (ah->globaltxtimeout != (u32) -1)
1058 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1059 
1060 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1061 	REG_RMW(ah, AR_USEC,
1062 		(common->clockrate - 1) |
1063 		SM(rx_lat, AR_USEC_RX_LAT) |
1064 		SM(tx_lat, AR_USEC_TX_LAT),
1065 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1066 
1067 }
1068 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1069 
ath9k_hw_deinit(struct ath_hw * ah)1070 void ath9k_hw_deinit(struct ath_hw *ah)
1071 {
1072 	struct ath_common *common = ath9k_hw_common(ah);
1073 
1074 	if (common->state < ATH_HW_INITIALIZED)
1075 		return;
1076 
1077 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1078 }
1079 EXPORT_SYMBOL(ath9k_hw_deinit);
1080 
1081 /*******/
1082 /* INI */
1083 /*******/
1084 
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1085 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1086 {
1087 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1088 
1089 	if (IS_CHAN_2GHZ(chan))
1090 		ctl |= CTL_11G;
1091 	else
1092 		ctl |= CTL_11A;
1093 
1094 	return ctl;
1095 }
1096 
1097 /****************************************/
1098 /* Reset and Channel Switching Routines */
1099 /****************************************/
1100 
ath9k_hw_set_dma(struct ath_hw * ah)1101 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1102 {
1103 	struct ath_common *common = ath9k_hw_common(ah);
1104 	int txbuf_size;
1105 
1106 	ENABLE_REGWRITE_BUFFER(ah);
1107 
1108 	/*
1109 	 * set AHB_MODE not to do cacheline prefetches
1110 	*/
1111 	if (!AR_SREV_9300_20_OR_LATER(ah))
1112 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1113 
1114 	/*
1115 	 * let mac dma reads be in 128 byte chunks
1116 	 */
1117 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1118 
1119 	REGWRITE_BUFFER_FLUSH(ah);
1120 
1121 	/*
1122 	 * Restore TX Trigger Level to its pre-reset value.
1123 	 * The initial value depends on whether aggregation is enabled, and is
1124 	 * adjusted whenever underruns are detected.
1125 	 */
1126 	if (!AR_SREV_9300_20_OR_LATER(ah))
1127 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1128 
1129 	ENABLE_REGWRITE_BUFFER(ah);
1130 
1131 	/*
1132 	 * let mac dma writes be in 128 byte chunks
1133 	 */
1134 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1135 
1136 	/*
1137 	 * Setup receive FIFO threshold to hold off TX activities
1138 	 */
1139 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1140 
1141 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1142 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1143 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1144 
1145 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1146 			ah->caps.rx_status_len);
1147 	}
1148 
1149 	/*
1150 	 * reduce the number of usable entries in PCU TXBUF to avoid
1151 	 * wrap around issues.
1152 	 */
1153 	if (AR_SREV_9285(ah)) {
1154 		/* For AR9285 the number of Fifos are reduced to half.
1155 		 * So set the usable tx buf size also to half to
1156 		 * avoid data/delimiter underruns
1157 		 */
1158 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1159 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1160 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1161 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1162 	} else {
1163 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1164 	}
1165 
1166 	if (!AR_SREV_9271(ah))
1167 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1168 
1169 	REGWRITE_BUFFER_FLUSH(ah);
1170 
1171 	if (AR_SREV_9300_20_OR_LATER(ah))
1172 		ath9k_hw_reset_txstatus_ring(ah);
1173 }
1174 
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1175 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1176 {
1177 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1178 	u32 set = AR_STA_ID1_KSRCH_MODE;
1179 
1180 	switch (opmode) {
1181 	case NL80211_IFTYPE_ADHOC:
1182 		if (!AR_SREV_9340_13(ah)) {
1183 			set |= AR_STA_ID1_ADHOC;
1184 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1185 			break;
1186 		}
1187 		/* fall through */
1188 	case NL80211_IFTYPE_MESH_POINT:
1189 	case NL80211_IFTYPE_AP:
1190 		set |= AR_STA_ID1_STA_AP;
1191 		/* fall through */
1192 	case NL80211_IFTYPE_STATION:
1193 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1194 		break;
1195 	default:
1196 		if (!ah->is_monitoring)
1197 			set = 0;
1198 		break;
1199 	}
1200 	REG_RMW(ah, AR_STA_ID1, set, mask);
1201 }
1202 
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1203 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1204 				   u32 *coef_mantissa, u32 *coef_exponent)
1205 {
1206 	u32 coef_exp, coef_man;
1207 
1208 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1209 		if ((coef_scaled >> coef_exp) & 0x1)
1210 			break;
1211 
1212 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1213 
1214 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1215 
1216 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1217 	*coef_exponent = coef_exp - 16;
1218 }
1219 
1220 /* AR9330 WAR:
1221  * call external reset function to reset WMAC if:
1222  * - doing a cold reset
1223  * - we have pending frames in the TX queues.
1224  */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1225 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1226 {
1227 	int i, npend = 0;
1228 
1229 	for (i = 0; i < AR_NUM_QCU; i++) {
1230 		npend = ath9k_hw_numtxpending(ah, i);
1231 		if (npend)
1232 			break;
1233 	}
1234 
1235 	if (ah->external_reset &&
1236 	    (npend || type == ATH9K_RESET_COLD)) {
1237 		int reset_err = 0;
1238 
1239 		ath_dbg(ath9k_hw_common(ah), RESET,
1240 			"reset MAC via external reset\n");
1241 
1242 		reset_err = ah->external_reset();
1243 		if (reset_err) {
1244 			ath_err(ath9k_hw_common(ah),
1245 				"External reset failed, err=%d\n",
1246 				reset_err);
1247 			return false;
1248 		}
1249 
1250 		REG_WRITE(ah, AR_RTC_RESET, 1);
1251 	}
1252 
1253 	return true;
1254 }
1255 
ath9k_hw_set_reset(struct ath_hw * ah,int type)1256 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1257 {
1258 	u32 rst_flags;
1259 	u32 tmpReg;
1260 
1261 	if (AR_SREV_9100(ah)) {
1262 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1263 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1264 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1265 	}
1266 
1267 	ENABLE_REGWRITE_BUFFER(ah);
1268 
1269 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1270 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1271 		udelay(10);
1272 	}
1273 
1274 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1275 		  AR_RTC_FORCE_WAKE_ON_INT);
1276 
1277 	if (AR_SREV_9100(ah)) {
1278 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1279 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1280 	} else {
1281 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1282 		if (AR_SREV_9340(ah))
1283 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1284 		else
1285 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1286 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1287 
1288 		if (tmpReg) {
1289 			u32 val;
1290 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1291 
1292 			val = AR_RC_HOSTIF;
1293 			if (!AR_SREV_9300_20_OR_LATER(ah))
1294 				val |= AR_RC_AHB;
1295 			REG_WRITE(ah, AR_RC, val);
1296 
1297 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1298 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1299 
1300 		rst_flags = AR_RTC_RC_MAC_WARM;
1301 		if (type == ATH9K_RESET_COLD)
1302 			rst_flags |= AR_RTC_RC_MAC_COLD;
1303 	}
1304 
1305 	if (AR_SREV_9330(ah)) {
1306 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1307 			return false;
1308 	}
1309 
1310 	if (ath9k_hw_mci_is_enabled(ah))
1311 		ar9003_mci_check_gpm_offset(ah);
1312 
1313 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1314 
1315 	REGWRITE_BUFFER_FLUSH(ah);
1316 
1317 	if (AR_SREV_9300_20_OR_LATER(ah))
1318 		udelay(50);
1319 	else if (AR_SREV_9100(ah))
1320 		mdelay(10);
1321 	else
1322 		udelay(100);
1323 
1324 	REG_WRITE(ah, AR_RTC_RC, 0);
1325 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1326 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1327 		return false;
1328 	}
1329 
1330 	if (!AR_SREV_9100(ah))
1331 		REG_WRITE(ah, AR_RC, 0);
1332 
1333 	if (AR_SREV_9100(ah))
1334 		udelay(50);
1335 
1336 	return true;
1337 }
1338 
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1339 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1340 {
1341 	ENABLE_REGWRITE_BUFFER(ah);
1342 
1343 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1344 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1345 		udelay(10);
1346 	}
1347 
1348 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1349 		  AR_RTC_FORCE_WAKE_ON_INT);
1350 
1351 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1352 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353 
1354 	REG_WRITE(ah, AR_RTC_RESET, 0);
1355 
1356 	REGWRITE_BUFFER_FLUSH(ah);
1357 
1358 	udelay(2);
1359 
1360 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1361 		REG_WRITE(ah, AR_RC, 0);
1362 
1363 	REG_WRITE(ah, AR_RTC_RESET, 1);
1364 
1365 	if (!ath9k_hw_wait(ah,
1366 			   AR_RTC_STATUS,
1367 			   AR_RTC_STATUS_M,
1368 			   AR_RTC_STATUS_ON,
1369 			   AH_WAIT_TIMEOUT)) {
1370 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1371 		return false;
1372 	}
1373 
1374 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1375 }
1376 
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1377 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1378 {
1379 	bool ret = false;
1380 
1381 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1382 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1383 		udelay(10);
1384 	}
1385 
1386 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1387 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1388 
1389 	if (!ah->reset_power_on)
1390 		type = ATH9K_RESET_POWER_ON;
1391 
1392 	switch (type) {
1393 	case ATH9K_RESET_POWER_ON:
1394 		ret = ath9k_hw_set_reset_power_on(ah);
1395 		if (ret)
1396 			ah->reset_power_on = true;
1397 		break;
1398 	case ATH9K_RESET_WARM:
1399 	case ATH9K_RESET_COLD:
1400 		ret = ath9k_hw_set_reset(ah, type);
1401 		break;
1402 	default:
1403 		break;
1404 	}
1405 
1406 	return ret;
1407 }
1408 
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1409 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1410 				struct ath9k_channel *chan)
1411 {
1412 	int reset_type = ATH9K_RESET_WARM;
1413 
1414 	if (AR_SREV_9280(ah)) {
1415 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1416 			reset_type = ATH9K_RESET_POWER_ON;
1417 		else
1418 			reset_type = ATH9K_RESET_COLD;
1419 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1420 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1421 		reset_type = ATH9K_RESET_COLD;
1422 
1423 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1424 		return false;
1425 
1426 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1427 		return false;
1428 
1429 	ah->chip_fullsleep = false;
1430 
1431 	if (AR_SREV_9330(ah))
1432 		ar9003_hw_internal_regulator_apply(ah);
1433 	ath9k_hw_init_pll(ah, chan);
1434 
1435 	return true;
1436 }
1437 
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1438 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1439 				    struct ath9k_channel *chan)
1440 {
1441 	struct ath_common *common = ath9k_hw_common(ah);
1442 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1443 	bool band_switch = false, mode_diff = false;
1444 	u8 ini_reloaded = 0;
1445 	u32 qnum;
1446 	int r;
1447 
1448 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1449 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1450 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1451 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1452 	}
1453 
1454 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1455 		if (ath9k_hw_numtxpending(ah, qnum)) {
1456 			ath_dbg(common, QUEUE,
1457 				"Transmit frames pending on queue %d\n", qnum);
1458 			return false;
1459 		}
1460 	}
1461 
1462 	if (!ath9k_hw_rfbus_req(ah)) {
1463 		ath_err(common, "Could not kill baseband RX\n");
1464 		return false;
1465 	}
1466 
1467 	if (band_switch || mode_diff) {
1468 		ath9k_hw_mark_phy_inactive(ah);
1469 		udelay(5);
1470 
1471 		if (band_switch)
1472 			ath9k_hw_init_pll(ah, chan);
1473 
1474 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1475 			ath_err(common, "Failed to do fast channel change\n");
1476 			return false;
1477 		}
1478 	}
1479 
1480 	ath9k_hw_set_channel_regs(ah, chan);
1481 
1482 	r = ath9k_hw_rf_set_freq(ah, chan);
1483 	if (r) {
1484 		ath_err(common, "Failed to set channel\n");
1485 		return false;
1486 	}
1487 	ath9k_hw_set_clockrate(ah);
1488 	ath9k_hw_apply_txpower(ah, chan, false);
1489 
1490 	ath9k_hw_set_delta_slope(ah, chan);
1491 	ath9k_hw_spur_mitigate_freq(ah, chan);
1492 
1493 	if (band_switch || ini_reloaded)
1494 		ah->eep_ops->set_board_values(ah, chan);
1495 
1496 	ath9k_hw_init_bb(ah, chan);
1497 	ath9k_hw_rfbus_done(ah);
1498 
1499 	if (band_switch || ini_reloaded) {
1500 		ah->ah_flags |= AH_FASTCC;
1501 		ath9k_hw_init_cal(ah, chan);
1502 		ah->ah_flags &= ~AH_FASTCC;
1503 	}
1504 
1505 	return true;
1506 }
1507 
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1508 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1509 {
1510 	u32 gpio_mask = ah->gpio_mask;
1511 	int i;
1512 
1513 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1514 		if (!(gpio_mask & 1))
1515 			continue;
1516 
1517 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1518 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1519 	}
1520 }
1521 
ath9k_hw_check_nav(struct ath_hw * ah)1522 void ath9k_hw_check_nav(struct ath_hw *ah)
1523 {
1524 	struct ath_common *common = ath9k_hw_common(ah);
1525 	u32 val;
1526 
1527 	val = REG_READ(ah, AR_NAV);
1528 	if (val != 0xdeadbeef && val > 0x7fff) {
1529 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1530 		REG_WRITE(ah, AR_NAV, 0);
1531 	}
1532 }
1533 EXPORT_SYMBOL(ath9k_hw_check_nav);
1534 
ath9k_hw_check_alive(struct ath_hw * ah)1535 bool ath9k_hw_check_alive(struct ath_hw *ah)
1536 {
1537 	int count = 50;
1538 	u32 reg, last_val;
1539 
1540 	if (AR_SREV_9300(ah))
1541 		return !ath9k_hw_detect_mac_hang(ah);
1542 
1543 	if (AR_SREV_9285_12_OR_LATER(ah))
1544 		return true;
1545 
1546 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1547 	do {
1548 		reg = REG_READ(ah, AR_OBS_BUS_1);
1549 		if (reg != last_val)
1550 			return true;
1551 
1552 		udelay(1);
1553 		last_val = reg;
1554 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1555 			continue;
1556 
1557 		switch (reg & 0x7E000B00) {
1558 		case 0x1E000000:
1559 		case 0x52000B00:
1560 		case 0x18000B00:
1561 			continue;
1562 		default:
1563 			return true;
1564 		}
1565 	} while (count-- > 0);
1566 
1567 	return false;
1568 }
1569 EXPORT_SYMBOL(ath9k_hw_check_alive);
1570 
ath9k_hw_init_mfp(struct ath_hw * ah)1571 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1572 {
1573 	/* Setup MFP options for CCMP */
1574 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576 		 * frames when constructing CCMP AAD. */
1577 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578 			      0xc7ff);
1579 		ah->sw_mgmt_crypto = false;
1580 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581 		/* Disable hardware crypto for management frames */
1582 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586 		ah->sw_mgmt_crypto = true;
1587 	} else {
1588 		ah->sw_mgmt_crypto = true;
1589 	}
1590 }
1591 
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1592 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1593 				  u32 macStaId1, u32 saveDefAntenna)
1594 {
1595 	struct ath_common *common = ath9k_hw_common(ah);
1596 
1597 	ENABLE_REGWRITE_BUFFER(ah);
1598 
1599 	REG_RMW(ah, AR_STA_ID1, macStaId1
1600 		  | AR_STA_ID1_RTS_USE_DEF
1601 		  | ah->sta_id1_defaults,
1602 		  ~AR_STA_ID1_SADH_MASK);
1603 	ath_hw_setbssidmask(common);
1604 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1605 	ath9k_hw_write_associd(ah);
1606 	REG_WRITE(ah, AR_ISR, ~0);
1607 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1608 
1609 	REGWRITE_BUFFER_FLUSH(ah);
1610 
1611 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1612 }
1613 
ath9k_hw_init_queues(struct ath_hw * ah)1614 static void ath9k_hw_init_queues(struct ath_hw *ah)
1615 {
1616 	int i;
1617 
1618 	ENABLE_REGWRITE_BUFFER(ah);
1619 
1620 	for (i = 0; i < AR_NUM_DCU; i++)
1621 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1622 
1623 	REGWRITE_BUFFER_FLUSH(ah);
1624 
1625 	ah->intr_txqs = 0;
1626 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1627 		ath9k_hw_resettxqueue(ah, i);
1628 }
1629 
1630 /*
1631  * For big endian systems turn on swapping for descriptors
1632  */
ath9k_hw_init_desc(struct ath_hw * ah)1633 static void ath9k_hw_init_desc(struct ath_hw *ah)
1634 {
1635 	struct ath_common *common = ath9k_hw_common(ah);
1636 
1637 	if (AR_SREV_9100(ah)) {
1638 		u32 mask;
1639 		mask = REG_READ(ah, AR_CFG);
1640 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1641 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1642 				mask);
1643 		} else {
1644 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1645 			REG_WRITE(ah, AR_CFG, mask);
1646 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1647 				REG_READ(ah, AR_CFG));
1648 		}
1649 	} else {
1650 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1651 			/* Configure AR9271 target WLAN */
1652 			if (AR_SREV_9271(ah))
1653 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1654 			else
1655 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1656 		}
1657 #ifdef __BIG_ENDIAN
1658 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1659 			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1660 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1661 		else
1662 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1663 #endif
1664 	}
1665 }
1666 
1667 /*
1668  * Fast channel change:
1669  * (Change synthesizer based on channel freq without resetting chip)
1670  */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1671 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1672 {
1673 	struct ath_common *common = ath9k_hw_common(ah);
1674 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1675 	int ret;
1676 
1677 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1678 		goto fail;
1679 
1680 	if (ah->chip_fullsleep)
1681 		goto fail;
1682 
1683 	if (!ah->curchan)
1684 		goto fail;
1685 
1686 	if (chan->channel == ah->curchan->channel)
1687 		goto fail;
1688 
1689 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1690 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1691 		goto fail;
1692 
1693 	/*
1694 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1695 	 */
1696 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1697 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1698 		goto fail;
1699 
1700 	if (!ath9k_hw_check_alive(ah))
1701 		goto fail;
1702 
1703 	/*
1704 	 * For AR9462, make sure that calibration data for
1705 	 * re-using are present.
1706 	 */
1707 	if (AR_SREV_9462(ah) && (ah->caldata &&
1708 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1709 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1710 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1711 		goto fail;
1712 
1713 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1714 		ah->curchan->channel, chan->channel);
1715 
1716 	ret = ath9k_hw_channel_change(ah, chan);
1717 	if (!ret)
1718 		goto fail;
1719 
1720 	if (ath9k_hw_mci_is_enabled(ah))
1721 		ar9003_mci_2g5g_switch(ah, false);
1722 
1723 	ath9k_hw_loadnf(ah, ah->curchan);
1724 	ath9k_hw_start_nfcal(ah, true);
1725 
1726 	if (AR_SREV_9271(ah))
1727 		ar9002_hw_load_ani_reg(ah, chan);
1728 
1729 	return 0;
1730 fail:
1731 	return -EINVAL;
1732 }
1733 
ath9k_hw_get_tsf_offset(struct timespec * last,struct timespec * cur)1734 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1735 {
1736 	struct timespec ts;
1737 	s64 usec;
1738 
1739 	if (!cur) {
1740 		getrawmonotonic(&ts);
1741 		cur = &ts;
1742 	}
1743 
1744 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1745 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1746 
1747 	return (u32) usec;
1748 }
1749 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1750 
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1751 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1752 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1753 {
1754 	struct ath_common *common = ath9k_hw_common(ah);
1755 	u32 saveLedState;
1756 	u32 saveDefAntenna;
1757 	u32 macStaId1;
1758 	u64 tsf = 0;
1759 	s64 usec = 0;
1760 	int r;
1761 	bool start_mci_reset = false;
1762 	bool save_fullsleep = ah->chip_fullsleep;
1763 
1764 	if (ath9k_hw_mci_is_enabled(ah)) {
1765 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1766 		if (start_mci_reset)
1767 			return 0;
1768 	}
1769 
1770 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1771 		return -EIO;
1772 
1773 	if (ah->curchan && !ah->chip_fullsleep)
1774 		ath9k_hw_getnf(ah, ah->curchan);
1775 
1776 	ah->caldata = caldata;
1777 	if (caldata && (chan->channel != caldata->channel ||
1778 			chan->channelFlags != caldata->channelFlags)) {
1779 		/* Operating channel changed, reset channel calibration data */
1780 		memset(caldata, 0, sizeof(*caldata));
1781 		ath9k_init_nfcal_hist_buffer(ah, chan);
1782 	} else if (caldata) {
1783 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1784 	}
1785 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1786 
1787 	if (fastcc) {
1788 		r = ath9k_hw_do_fastcc(ah, chan);
1789 		if (!r)
1790 			return r;
1791 	}
1792 
1793 	if (ath9k_hw_mci_is_enabled(ah))
1794 		ar9003_mci_stop_bt(ah, save_fullsleep);
1795 
1796 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1797 	if (saveDefAntenna == 0)
1798 		saveDefAntenna = 1;
1799 
1800 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1801 
1802 	/* Save TSF before chip reset, a cold reset clears it */
1803 	tsf = ath9k_hw_gettsf64(ah);
1804 	usec = ktime_to_us(ktime_get_raw());
1805 
1806 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1807 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1808 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1809 
1810 	ath9k_hw_mark_phy_inactive(ah);
1811 
1812 	ah->paprd_table_write_done = false;
1813 
1814 	/* Only required on the first reset */
1815 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1816 		REG_WRITE(ah,
1817 			  AR9271_RESET_POWER_DOWN_CONTROL,
1818 			  AR9271_RADIO_RF_RST);
1819 		udelay(50);
1820 	}
1821 
1822 	if (!ath9k_hw_chip_reset(ah, chan)) {
1823 		ath_err(common, "Chip reset failed\n");
1824 		return -EINVAL;
1825 	}
1826 
1827 	/* Only required on the first reset */
1828 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1829 		ah->htc_reset_init = false;
1830 		REG_WRITE(ah,
1831 			  AR9271_RESET_POWER_DOWN_CONTROL,
1832 			  AR9271_GATE_MAC_CTL);
1833 		udelay(50);
1834 	}
1835 
1836 	/* Restore TSF */
1837 	usec = ktime_to_us(ktime_get_raw()) - usec;
1838 	ath9k_hw_settsf64(ah, tsf + usec);
1839 
1840 	if (AR_SREV_9280_20_OR_LATER(ah))
1841 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1842 
1843 	if (!AR_SREV_9300_20_OR_LATER(ah))
1844 		ar9002_hw_enable_async_fifo(ah);
1845 
1846 	r = ath9k_hw_process_ini(ah, chan);
1847 	if (r)
1848 		return r;
1849 
1850 	ath9k_hw_set_rfmode(ah, chan);
1851 
1852 	if (ath9k_hw_mci_is_enabled(ah))
1853 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1854 
1855 	/*
1856 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1857 	 * right after the chip reset. When that happens, write a new
1858 	 * value after the initvals have been applied, with an offset
1859 	 * based on measured time difference
1860 	 */
1861 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1862 		tsf += 1500;
1863 		ath9k_hw_settsf64(ah, tsf);
1864 	}
1865 
1866 	ath9k_hw_init_mfp(ah);
1867 
1868 	ath9k_hw_set_delta_slope(ah, chan);
1869 	ath9k_hw_spur_mitigate_freq(ah, chan);
1870 	ah->eep_ops->set_board_values(ah, chan);
1871 
1872 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1873 
1874 	r = ath9k_hw_rf_set_freq(ah, chan);
1875 	if (r)
1876 		return r;
1877 
1878 	ath9k_hw_set_clockrate(ah);
1879 
1880 	ath9k_hw_init_queues(ah);
1881 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1882 	ath9k_hw_ani_cache_ini_regs(ah);
1883 	ath9k_hw_init_qos(ah);
1884 
1885 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1886 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1887 
1888 	ath9k_hw_init_global_settings(ah);
1889 
1890 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1891 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1892 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1893 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1894 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1895 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1896 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1897 	}
1898 
1899 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1900 
1901 	ath9k_hw_set_dma(ah);
1902 
1903 	if (!ath9k_hw_mci_is_enabled(ah))
1904 		REG_WRITE(ah, AR_OBS, 8);
1905 
1906 	if (ah->config.rx_intr_mitigation) {
1907 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1908 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1909 	}
1910 
1911 	if (ah->config.tx_intr_mitigation) {
1912 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1913 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1914 	}
1915 
1916 	ath9k_hw_init_bb(ah, chan);
1917 
1918 	if (caldata) {
1919 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1920 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1921 	}
1922 	if (!ath9k_hw_init_cal(ah, chan))
1923 		return -EIO;
1924 
1925 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1926 		return -EIO;
1927 
1928 	ENABLE_REGWRITE_BUFFER(ah);
1929 
1930 	ath9k_hw_restore_chainmask(ah);
1931 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1932 
1933 	REGWRITE_BUFFER_FLUSH(ah);
1934 
1935 	ath9k_hw_init_desc(ah);
1936 
1937 	if (ath9k_hw_btcoex_is_enabled(ah))
1938 		ath9k_hw_btcoex_enable(ah);
1939 
1940 	if (ath9k_hw_mci_is_enabled(ah))
1941 		ar9003_mci_check_bt(ah);
1942 
1943 	ath9k_hw_loadnf(ah, chan);
1944 	ath9k_hw_start_nfcal(ah, true);
1945 
1946 	if (AR_SREV_9300_20_OR_LATER(ah))
1947 		ar9003_hw_bb_watchdog_config(ah);
1948 
1949 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1950 		ar9003_hw_disable_phy_restart(ah);
1951 
1952 	ath9k_hw_apply_gpio_override(ah);
1953 
1954 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1955 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1956 
1957 	if (ah->hw->conf.radar_enabled) {
1958 		/* set HW specific DFS configuration */
1959 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1960 		ath9k_hw_set_radar_params(ah);
1961 	}
1962 
1963 	return 0;
1964 }
1965 EXPORT_SYMBOL(ath9k_hw_reset);
1966 
1967 /******************************/
1968 /* Power Management (Chipset) */
1969 /******************************/
1970 
1971 /*
1972  * Notify Power Mgt is disabled in self-generated frames.
1973  * If requested, force chip to sleep.
1974  */
ath9k_set_power_sleep(struct ath_hw * ah)1975 static void ath9k_set_power_sleep(struct ath_hw *ah)
1976 {
1977 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1978 
1979 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1980 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1981 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1982 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1983 		/* xxx Required for WLAN only case ? */
1984 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1985 		udelay(100);
1986 	}
1987 
1988 	/*
1989 	 * Clear the RTC force wake bit to allow the
1990 	 * mac to go to sleep.
1991 	 */
1992 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1993 
1994 	if (ath9k_hw_mci_is_enabled(ah))
1995 		udelay(100);
1996 
1997 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1998 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1999 
2000 	/* Shutdown chip. Active low */
2001 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2002 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2003 		udelay(2);
2004 	}
2005 
2006 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2007 	if (AR_SREV_9300_20_OR_LATER(ah))
2008 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2009 }
2010 
2011 /*
2012  * Notify Power Management is enabled in self-generating
2013  * frames. If request, set power mode of chip to
2014  * auto/normal.  Duration in units of 128us (1/8 TU).
2015  */
ath9k_set_power_network_sleep(struct ath_hw * ah)2016 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2017 {
2018 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2019 
2020 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2021 
2022 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2023 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2024 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2025 			  AR_RTC_FORCE_WAKE_ON_INT);
2026 	} else {
2027 
2028 		/* When chip goes into network sleep, it could be waken
2029 		 * up by MCI_INT interrupt caused by BT's HW messages
2030 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2031 		 * rate (~100us). This will cause chip to leave and
2032 		 * re-enter network sleep mode frequently, which in
2033 		 * consequence will have WLAN MCI HW to generate lots of
2034 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2035 		 * BT CPU to busy to process.
2036 		 */
2037 		if (ath9k_hw_mci_is_enabled(ah))
2038 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2039 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2040 		/*
2041 		 * Clear the RTC force wake bit to allow the
2042 		 * mac to go to sleep.
2043 		 */
2044 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2045 
2046 		if (ath9k_hw_mci_is_enabled(ah))
2047 			udelay(30);
2048 	}
2049 
2050 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2051 	if (AR_SREV_9300_20_OR_LATER(ah))
2052 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2053 }
2054 
ath9k_hw_set_power_awake(struct ath_hw * ah)2055 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2056 {
2057 	u32 val;
2058 	int i;
2059 
2060 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2061 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2062 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2063 		udelay(10);
2064 	}
2065 
2066 	if ((REG_READ(ah, AR_RTC_STATUS) &
2067 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2068 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2069 			return false;
2070 		}
2071 		if (!AR_SREV_9300_20_OR_LATER(ah))
2072 			ath9k_hw_init_pll(ah, NULL);
2073 	}
2074 	if (AR_SREV_9100(ah))
2075 		REG_SET_BIT(ah, AR_RTC_RESET,
2076 			    AR_RTC_RESET_EN);
2077 
2078 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2079 		    AR_RTC_FORCE_WAKE_EN);
2080 	if (AR_SREV_9100(ah))
2081 		mdelay(10);
2082 	else
2083 		udelay(50);
2084 
2085 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2086 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2087 		if (val == AR_RTC_STATUS_ON)
2088 			break;
2089 		udelay(50);
2090 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2091 			    AR_RTC_FORCE_WAKE_EN);
2092 	}
2093 	if (i == 0) {
2094 		ath_err(ath9k_hw_common(ah),
2095 			"Failed to wakeup in %uus\n",
2096 			POWER_UP_TIME / 20);
2097 		return false;
2098 	}
2099 
2100 	if (ath9k_hw_mci_is_enabled(ah))
2101 		ar9003_mci_set_power_awake(ah);
2102 
2103 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2104 
2105 	return true;
2106 }
2107 
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2108 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2109 {
2110 	struct ath_common *common = ath9k_hw_common(ah);
2111 	int status = true;
2112 	static const char *modes[] = {
2113 		"AWAKE",
2114 		"FULL-SLEEP",
2115 		"NETWORK SLEEP",
2116 		"UNDEFINED"
2117 	};
2118 
2119 	if (ah->power_mode == mode)
2120 		return status;
2121 
2122 	ath_dbg(common, RESET, "%s -> %s\n",
2123 		modes[ah->power_mode], modes[mode]);
2124 
2125 	switch (mode) {
2126 	case ATH9K_PM_AWAKE:
2127 		status = ath9k_hw_set_power_awake(ah);
2128 		break;
2129 	case ATH9K_PM_FULL_SLEEP:
2130 		if (ath9k_hw_mci_is_enabled(ah))
2131 			ar9003_mci_set_full_sleep(ah);
2132 
2133 		ath9k_set_power_sleep(ah);
2134 		ah->chip_fullsleep = true;
2135 		break;
2136 	case ATH9K_PM_NETWORK_SLEEP:
2137 		ath9k_set_power_network_sleep(ah);
2138 		break;
2139 	default:
2140 		ath_err(common, "Unknown power mode %u\n", mode);
2141 		return false;
2142 	}
2143 	ah->power_mode = mode;
2144 
2145 	/*
2146 	 * XXX: If this warning never comes up after a while then
2147 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2148 	 * ath9k_hw_setpower() return type void.
2149 	 */
2150 
2151 	if (!(ah->ah_flags & AH_UNPLUGGED))
2152 		ATH_DBG_WARN_ON_ONCE(!status);
2153 
2154 	return status;
2155 }
2156 EXPORT_SYMBOL(ath9k_hw_setpower);
2157 
2158 /*******************/
2159 /* Beacon Handling */
2160 /*******************/
2161 
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2162 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2163 {
2164 	int flags = 0;
2165 
2166 	ENABLE_REGWRITE_BUFFER(ah);
2167 
2168 	switch (ah->opmode) {
2169 	case NL80211_IFTYPE_ADHOC:
2170 		REG_SET_BIT(ah, AR_TXCFG,
2171 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2172 	case NL80211_IFTYPE_MESH_POINT:
2173 	case NL80211_IFTYPE_AP:
2174 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2175 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2176 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2177 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2178 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2179 		flags |=
2180 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2181 		break;
2182 	default:
2183 		ath_dbg(ath9k_hw_common(ah), BEACON,
2184 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2185 		return;
2186 		break;
2187 	}
2188 
2189 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2190 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2191 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2192 
2193 	REGWRITE_BUFFER_FLUSH(ah);
2194 
2195 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2196 }
2197 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2198 
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2199 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2200 				    const struct ath9k_beacon_state *bs)
2201 {
2202 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2203 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2204 	struct ath_common *common = ath9k_hw_common(ah);
2205 
2206 	ENABLE_REGWRITE_BUFFER(ah);
2207 
2208 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2209 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2210 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2211 
2212 	REGWRITE_BUFFER_FLUSH(ah);
2213 
2214 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2215 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2216 
2217 	beaconintval = bs->bs_intval;
2218 
2219 	if (bs->bs_sleepduration > beaconintval)
2220 		beaconintval = bs->bs_sleepduration;
2221 
2222 	dtimperiod = bs->bs_dtimperiod;
2223 	if (bs->bs_sleepduration > dtimperiod)
2224 		dtimperiod = bs->bs_sleepduration;
2225 
2226 	if (beaconintval == dtimperiod)
2227 		nextTbtt = bs->bs_nextdtim;
2228 	else
2229 		nextTbtt = bs->bs_nexttbtt;
2230 
2231 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2232 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2233 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2234 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2235 
2236 	ENABLE_REGWRITE_BUFFER(ah);
2237 
2238 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2239 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2240 
2241 	REG_WRITE(ah, AR_SLEEP1,
2242 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2243 		  | AR_SLEEP1_ASSUME_DTIM);
2244 
2245 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2246 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2247 	else
2248 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2249 
2250 	REG_WRITE(ah, AR_SLEEP2,
2251 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2252 
2253 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2254 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2255 
2256 	REGWRITE_BUFFER_FLUSH(ah);
2257 
2258 	REG_SET_BIT(ah, AR_TIMER_MODE,
2259 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2260 		    AR_DTIM_TIMER_EN);
2261 
2262 	/* TSF Out of Range Threshold */
2263 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2264 }
2265 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2266 
2267 /*******************/
2268 /* HW Capabilities */
2269 /*******************/
2270 
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2271 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2272 {
2273 	eeprom_chainmask &= chip_chainmask;
2274 	if (eeprom_chainmask)
2275 		return eeprom_chainmask;
2276 	else
2277 		return chip_chainmask;
2278 }
2279 
2280 /**
2281  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2282  * @ah: the atheros hardware data structure
2283  *
2284  * We enable DFS support upstream on chipsets which have passed a series
2285  * of tests. The testing requirements are going to be documented. Desired
2286  * test requirements are documented at:
2287  *
2288  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2289  *
2290  * Once a new chipset gets properly tested an individual commit can be used
2291  * to document the testing for DFS for that chipset.
2292  */
ath9k_hw_dfs_tested(struct ath_hw * ah)2293 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2294 {
2295 
2296 	switch (ah->hw_version.macVersion) {
2297 	/* for temporary testing DFS with 9280 */
2298 	case AR_SREV_VERSION_9280:
2299 	/* AR9580 will likely be our first target to get testing on */
2300 	case AR_SREV_VERSION_9580:
2301 		return true;
2302 	default:
2303 		return false;
2304 	}
2305 }
2306 
ath9k_hw_fill_cap_info(struct ath_hw * ah)2307 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2308 {
2309 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2310 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2311 	struct ath_common *common = ath9k_hw_common(ah);
2312 	unsigned int chip_chainmask;
2313 
2314 	u16 eeval;
2315 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2316 
2317 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2318 	regulatory->current_rd = eeval;
2319 
2320 	if (ah->opmode != NL80211_IFTYPE_AP &&
2321 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2322 		if (regulatory->current_rd == 0x64 ||
2323 		    regulatory->current_rd == 0x65)
2324 			regulatory->current_rd += 5;
2325 		else if (regulatory->current_rd == 0x41)
2326 			regulatory->current_rd = 0x43;
2327 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2328 			regulatory->current_rd);
2329 	}
2330 
2331 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2332 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2333 		ath_err(common,
2334 			"no band has been marked as supported in EEPROM\n");
2335 		return -EINVAL;
2336 	}
2337 
2338 	if (eeval & AR5416_OPFLAGS_11A)
2339 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2340 
2341 	if (eeval & AR5416_OPFLAGS_11G)
2342 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2343 
2344 	if (AR_SREV_9485(ah) ||
2345 	    AR_SREV_9285(ah) ||
2346 	    AR_SREV_9330(ah) ||
2347 	    AR_SREV_9565(ah))
2348 		chip_chainmask = 1;
2349 	else if (AR_SREV_9462(ah))
2350 		chip_chainmask = 3;
2351 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2352 		chip_chainmask = 7;
2353 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2354 		chip_chainmask = 3;
2355 	else
2356 		chip_chainmask = 7;
2357 
2358 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2359 	/*
2360 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2361 	 * the EEPROM.
2362 	 */
2363 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2364 	    !(eeval & AR5416_OPFLAGS_11A) &&
2365 	    !(AR_SREV_9271(ah)))
2366 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2367 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2368 	else if (AR_SREV_9100(ah))
2369 		pCap->rx_chainmask = 0x7;
2370 	else
2371 		/* Use rx_chainmask from EEPROM. */
2372 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2373 
2374 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2375 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2376 	ah->txchainmask = pCap->tx_chainmask;
2377 	ah->rxchainmask = pCap->rx_chainmask;
2378 
2379 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2380 
2381 	/* enable key search for every frame in an aggregate */
2382 	if (AR_SREV_9300_20_OR_LATER(ah))
2383 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2384 
2385 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2386 
2387 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2388 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2389 	else
2390 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2391 
2392 	if (AR_SREV_9271(ah))
2393 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2394 	else if (AR_DEVID_7010(ah))
2395 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2396 	else if (AR_SREV_9300_20_OR_LATER(ah))
2397 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2398 	else if (AR_SREV_9287_11_OR_LATER(ah))
2399 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2400 	else if (AR_SREV_9285_12_OR_LATER(ah))
2401 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2402 	else if (AR_SREV_9280_20_OR_LATER(ah))
2403 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2404 	else
2405 		pCap->num_gpio_pins = AR_NUM_GPIO;
2406 
2407 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2408 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2409 	else
2410 		pCap->rts_aggr_limit = (8 * 1024);
2411 
2412 #ifdef CONFIG_ATH9K_RFKILL
2413 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2414 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2415 		ah->rfkill_gpio =
2416 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2417 		ah->rfkill_polarity =
2418 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2419 
2420 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2421 	}
2422 #endif
2423 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2424 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2425 	else
2426 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2427 
2428 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2429 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2430 	else
2431 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2432 
2433 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2434 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2435 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2436 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2437 
2438 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2439 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2440 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2441 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2442 		pCap->txs_len = sizeof(struct ar9003_txs);
2443 	} else {
2444 		pCap->tx_desc_len = sizeof(struct ath_desc);
2445 		if (AR_SREV_9280_20(ah))
2446 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2447 	}
2448 
2449 	if (AR_SREV_9300_20_OR_LATER(ah))
2450 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2451 
2452 	if (AR_SREV_9300_20_OR_LATER(ah))
2453 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2454 
2455 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2456 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2457 
2458 	if (AR_SREV_9285(ah)) {
2459 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2460 			ant_div_ctl1 =
2461 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2462 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2463 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2464 				ath_info(common, "Enable LNA combining\n");
2465 			}
2466 		}
2467 	}
2468 
2469 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2470 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2471 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2472 	}
2473 
2474 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2475 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2476 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2477 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2478 			ath_info(common, "Enable LNA combining\n");
2479 		}
2480 	}
2481 
2482 	if (ath9k_hw_dfs_tested(ah))
2483 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2484 
2485 	tx_chainmask = pCap->tx_chainmask;
2486 	rx_chainmask = pCap->rx_chainmask;
2487 	while (tx_chainmask || rx_chainmask) {
2488 		if (tx_chainmask & BIT(0))
2489 			pCap->max_txchains++;
2490 		if (rx_chainmask & BIT(0))
2491 			pCap->max_rxchains++;
2492 
2493 		tx_chainmask >>= 1;
2494 		rx_chainmask >>= 1;
2495 	}
2496 
2497 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2498 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2499 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2500 
2501 		if (AR_SREV_9462_20_OR_LATER(ah))
2502 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2503 	}
2504 
2505 	if (AR_SREV_9462(ah))
2506 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2507 
2508 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2509 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2510 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2511 
2512 	return 0;
2513 }
2514 
2515 /****************************/
2516 /* GPIO / RFKILL / Antennae */
2517 /****************************/
2518 
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2519 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2520 					 u32 gpio, u32 type)
2521 {
2522 	int addr;
2523 	u32 gpio_shift, tmp;
2524 
2525 	if (gpio > 11)
2526 		addr = AR_GPIO_OUTPUT_MUX3;
2527 	else if (gpio > 5)
2528 		addr = AR_GPIO_OUTPUT_MUX2;
2529 	else
2530 		addr = AR_GPIO_OUTPUT_MUX1;
2531 
2532 	gpio_shift = (gpio % 6) * 5;
2533 
2534 	if (AR_SREV_9280_20_OR_LATER(ah)
2535 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2536 		REG_RMW(ah, addr, (type << gpio_shift),
2537 			(0x1f << gpio_shift));
2538 	} else {
2539 		tmp = REG_READ(ah, addr);
2540 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2541 		tmp &= ~(0x1f << gpio_shift);
2542 		tmp |= (type << gpio_shift);
2543 		REG_WRITE(ah, addr, tmp);
2544 	}
2545 }
2546 
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2547 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2548 {
2549 	u32 gpio_shift;
2550 
2551 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2552 
2553 	if (AR_DEVID_7010(ah)) {
2554 		gpio_shift = gpio;
2555 		REG_RMW(ah, AR7010_GPIO_OE,
2556 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2557 			(AR7010_GPIO_OE_MASK << gpio_shift));
2558 		return;
2559 	}
2560 
2561 	gpio_shift = gpio << 1;
2562 	REG_RMW(ah,
2563 		AR_GPIO_OE_OUT,
2564 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2565 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2566 }
2567 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2568 
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2569 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2570 {
2571 #define MS_REG_READ(x, y) \
2572 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2573 
2574 	if (gpio >= ah->caps.num_gpio_pins)
2575 		return 0xffffffff;
2576 
2577 	if (AR_DEVID_7010(ah)) {
2578 		u32 val;
2579 		val = REG_READ(ah, AR7010_GPIO_IN);
2580 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2581 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2582 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2583 			AR_GPIO_BIT(gpio)) != 0;
2584 	else if (AR_SREV_9271(ah))
2585 		return MS_REG_READ(AR9271, gpio) != 0;
2586 	else if (AR_SREV_9287_11_OR_LATER(ah))
2587 		return MS_REG_READ(AR9287, gpio) != 0;
2588 	else if (AR_SREV_9285_12_OR_LATER(ah))
2589 		return MS_REG_READ(AR9285, gpio) != 0;
2590 	else if (AR_SREV_9280_20_OR_LATER(ah))
2591 		return MS_REG_READ(AR928X, gpio) != 0;
2592 	else
2593 		return MS_REG_READ(AR, gpio) != 0;
2594 }
2595 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2596 
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2597 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2598 			 u32 ah_signal_type)
2599 {
2600 	u32 gpio_shift;
2601 
2602 	if (AR_DEVID_7010(ah)) {
2603 		gpio_shift = gpio;
2604 		REG_RMW(ah, AR7010_GPIO_OE,
2605 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2606 			(AR7010_GPIO_OE_MASK << gpio_shift));
2607 		return;
2608 	}
2609 
2610 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2611 	gpio_shift = 2 * gpio;
2612 	REG_RMW(ah,
2613 		AR_GPIO_OE_OUT,
2614 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2615 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2616 }
2617 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2618 
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2619 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2620 {
2621 	if (AR_DEVID_7010(ah)) {
2622 		val = val ? 0 : 1;
2623 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2624 			AR_GPIO_BIT(gpio));
2625 		return;
2626 	}
2627 
2628 	if (AR_SREV_9271(ah))
2629 		val = ~val;
2630 
2631 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2632 		AR_GPIO_BIT(gpio));
2633 }
2634 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2635 
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2636 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2637 {
2638 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2639 }
2640 EXPORT_SYMBOL(ath9k_hw_setantenna);
2641 
2642 /*********************/
2643 /* General Operation */
2644 /*********************/
2645 
ath9k_hw_getrxfilter(struct ath_hw * ah)2646 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2647 {
2648 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2649 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2650 
2651 	if (phybits & AR_PHY_ERR_RADAR)
2652 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2653 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2654 		bits |= ATH9K_RX_FILTER_PHYERR;
2655 
2656 	return bits;
2657 }
2658 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2659 
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2660 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2661 {
2662 	u32 phybits;
2663 
2664 	ENABLE_REGWRITE_BUFFER(ah);
2665 
2666 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2667 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2668 
2669 	REG_WRITE(ah, AR_RX_FILTER, bits);
2670 
2671 	phybits = 0;
2672 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2673 		phybits |= AR_PHY_ERR_RADAR;
2674 	if (bits & ATH9K_RX_FILTER_PHYERR)
2675 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2676 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2677 
2678 	if (phybits)
2679 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2680 	else
2681 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2682 
2683 	REGWRITE_BUFFER_FLUSH(ah);
2684 }
2685 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2686 
ath9k_hw_phy_disable(struct ath_hw * ah)2687 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2688 {
2689 	if (ath9k_hw_mci_is_enabled(ah))
2690 		ar9003_mci_bt_gain_ctrl(ah);
2691 
2692 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2693 		return false;
2694 
2695 	ath9k_hw_init_pll(ah, NULL);
2696 	ah->htc_reset_init = true;
2697 	return true;
2698 }
2699 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2700 
ath9k_hw_disable(struct ath_hw * ah)2701 bool ath9k_hw_disable(struct ath_hw *ah)
2702 {
2703 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2704 		return false;
2705 
2706 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2707 		return false;
2708 
2709 	ath9k_hw_init_pll(ah, NULL);
2710 	return true;
2711 }
2712 EXPORT_SYMBOL(ath9k_hw_disable);
2713 
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2714 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2715 {
2716 	enum eeprom_param gain_param;
2717 
2718 	if (IS_CHAN_2GHZ(chan))
2719 		gain_param = EEP_ANTENNA_GAIN_2G;
2720 	else
2721 		gain_param = EEP_ANTENNA_GAIN_5G;
2722 
2723 	return ah->eep_ops->get_eeprom(ah, gain_param);
2724 }
2725 
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2726 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2727 			    bool test)
2728 {
2729 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2730 	struct ieee80211_channel *channel;
2731 	int chan_pwr, new_pwr, max_gain;
2732 	int ant_gain, ant_reduction = 0;
2733 
2734 	if (!chan)
2735 		return;
2736 
2737 	channel = chan->chan;
2738 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2739 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2740 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2741 
2742 	ant_gain = get_antenna_gain(ah, chan);
2743 	if (ant_gain > max_gain)
2744 		ant_reduction = ant_gain - max_gain;
2745 
2746 	ah->eep_ops->set_txpower(ah, chan,
2747 				 ath9k_regd_get_ctl(reg, chan),
2748 				 ant_reduction, new_pwr, test);
2749 }
2750 
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2751 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2752 {
2753 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2754 	struct ath9k_channel *chan = ah->curchan;
2755 	struct ieee80211_channel *channel = chan->chan;
2756 
2757 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2758 	if (test)
2759 		channel->max_power = MAX_RATE_POWER / 2;
2760 
2761 	ath9k_hw_apply_txpower(ah, chan, test);
2762 
2763 	if (test)
2764 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2765 }
2766 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2767 
ath9k_hw_setopmode(struct ath_hw * ah)2768 void ath9k_hw_setopmode(struct ath_hw *ah)
2769 {
2770 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2771 }
2772 EXPORT_SYMBOL(ath9k_hw_setopmode);
2773 
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2774 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2775 {
2776 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2777 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2778 }
2779 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2780 
ath9k_hw_write_associd(struct ath_hw * ah)2781 void ath9k_hw_write_associd(struct ath_hw *ah)
2782 {
2783 	struct ath_common *common = ath9k_hw_common(ah);
2784 
2785 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2786 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2787 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2788 }
2789 EXPORT_SYMBOL(ath9k_hw_write_associd);
2790 
2791 #define ATH9K_MAX_TSF_READ 10
2792 
ath9k_hw_gettsf64(struct ath_hw * ah)2793 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2794 {
2795 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2796 	int i;
2797 
2798 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2799 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2800 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2801 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2802 		if (tsf_upper2 == tsf_upper1)
2803 			break;
2804 		tsf_upper1 = tsf_upper2;
2805 	}
2806 
2807 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2808 
2809 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2810 }
2811 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2812 
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2813 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2814 {
2815 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2816 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_settsf64);
2819 
ath9k_hw_reset_tsf(struct ath_hw * ah)2820 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2821 {
2822 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2823 			   AH_TSF_WRITE_TIMEOUT))
2824 		ath_dbg(ath9k_hw_common(ah), RESET,
2825 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2826 
2827 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2828 }
2829 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2830 
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)2831 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2832 {
2833 	if (set)
2834 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2835 	else
2836 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2837 }
2838 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2839 
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)2840 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2841 {
2842 	u32 macmode;
2843 
2844 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2845 		macmode = AR_2040_JOINED_RX_CLEAR;
2846 	else
2847 		macmode = 0;
2848 
2849 	REG_WRITE(ah, AR_2040_MODE, macmode);
2850 }
2851 
2852 /* HW Generic timers configuration */
2853 
2854 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2855 {
2856 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2857 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2858 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2859 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2860 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2861 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2862 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2863 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2864 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2865 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2866 				AR_NDP2_TIMER_MODE, 0x0002},
2867 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2868 				AR_NDP2_TIMER_MODE, 0x0004},
2869 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2870 				AR_NDP2_TIMER_MODE, 0x0008},
2871 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2872 				AR_NDP2_TIMER_MODE, 0x0010},
2873 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2874 				AR_NDP2_TIMER_MODE, 0x0020},
2875 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2876 				AR_NDP2_TIMER_MODE, 0x0040},
2877 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2878 				AR_NDP2_TIMER_MODE, 0x0080}
2879 };
2880 
2881 /* HW generic timer primitives */
2882 
ath9k_hw_gettsf32(struct ath_hw * ah)2883 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2884 {
2885 	return REG_READ(ah, AR_TSF_L32);
2886 }
2887 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2888 
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)2889 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2890 					  void (*trigger)(void *),
2891 					  void (*overflow)(void *),
2892 					  void *arg,
2893 					  u8 timer_index)
2894 {
2895 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2896 	struct ath_gen_timer *timer;
2897 
2898 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2899 		(timer_index >= ATH_MAX_GEN_TIMER))
2900 		return NULL;
2901 
2902 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2903 	if (timer == NULL)
2904 		return NULL;
2905 
2906 	/* allocate a hardware generic timer slot */
2907 	timer_table->timers[timer_index] = timer;
2908 	timer->index = timer_index;
2909 	timer->trigger = trigger;
2910 	timer->overflow = overflow;
2911 	timer->arg = arg;
2912 
2913 	return timer;
2914 }
2915 EXPORT_SYMBOL(ath_gen_timer_alloc);
2916 
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)2917 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2918 			      struct ath_gen_timer *timer,
2919 			      u32 timer_next,
2920 			      u32 timer_period)
2921 {
2922 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2923 	u32 mask = 0;
2924 
2925 	timer_table->timer_mask |= BIT(timer->index);
2926 
2927 	/*
2928 	 * Program generic timer registers
2929 	 */
2930 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2931 		 timer_next);
2932 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2933 		  timer_period);
2934 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2935 		    gen_tmr_configuration[timer->index].mode_mask);
2936 
2937 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2938 		/*
2939 		 * Starting from AR9462, each generic timer can select which tsf
2940 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2941 		 * 8 - 15  use tsf2.
2942 		 */
2943 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2944 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2945 				       (1 << timer->index));
2946 		else
2947 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2948 				       (1 << timer->index));
2949 	}
2950 
2951 	if (timer->trigger)
2952 		mask |= SM(AR_GENTMR_BIT(timer->index),
2953 			   AR_IMR_S5_GENTIMER_TRIG);
2954 	if (timer->overflow)
2955 		mask |= SM(AR_GENTMR_BIT(timer->index),
2956 			   AR_IMR_S5_GENTIMER_THRESH);
2957 
2958 	REG_SET_BIT(ah, AR_IMR_S5, mask);
2959 
2960 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2961 		ah->imask |= ATH9K_INT_GENTIMER;
2962 		ath9k_hw_set_interrupts(ah);
2963 	}
2964 }
2965 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2966 
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)2967 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2968 {
2969 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2970 
2971 	/* Clear generic timer enable bits. */
2972 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2973 			gen_tmr_configuration[timer->index].mode_mask);
2974 
2975 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2976 		/*
2977 		 * Need to switch back to TSF if it was using TSF2.
2978 		 */
2979 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2980 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2981 				    (1 << timer->index));
2982 		}
2983 	}
2984 
2985 	/* Disable both trigger and thresh interrupt masks */
2986 	REG_CLR_BIT(ah, AR_IMR_S5,
2987 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2988 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2989 
2990 	timer_table->timer_mask &= ~BIT(timer->index);
2991 
2992 	if (timer_table->timer_mask == 0) {
2993 		ah->imask &= ~ATH9K_INT_GENTIMER;
2994 		ath9k_hw_set_interrupts(ah);
2995 	}
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2998 
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)2999 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3000 {
3001 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3002 
3003 	/* free the hardware generic timer slot */
3004 	timer_table->timers[timer->index] = NULL;
3005 	kfree(timer);
3006 }
3007 EXPORT_SYMBOL(ath_gen_timer_free);
3008 
3009 /*
3010  * Generic Timer Interrupts handling
3011  */
ath_gen_timer_isr(struct ath_hw * ah)3012 void ath_gen_timer_isr(struct ath_hw *ah)
3013 {
3014 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3015 	struct ath_gen_timer *timer;
3016 	unsigned long trigger_mask, thresh_mask;
3017 	unsigned int index;
3018 
3019 	/* get hardware generic timer interrupt status */
3020 	trigger_mask = ah->intr_gen_timer_trigger;
3021 	thresh_mask = ah->intr_gen_timer_thresh;
3022 	trigger_mask &= timer_table->timer_mask;
3023 	thresh_mask &= timer_table->timer_mask;
3024 
3025 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3026 		timer = timer_table->timers[index];
3027 		if (!timer)
3028 		    continue;
3029 		if (!timer->overflow)
3030 		    continue;
3031 
3032 		trigger_mask &= ~BIT(index);
3033 		timer->overflow(timer->arg);
3034 	}
3035 
3036 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3037 		timer = timer_table->timers[index];
3038 		if (!timer)
3039 		    continue;
3040 		if (!timer->trigger)
3041 		    continue;
3042 		timer->trigger(timer->arg);
3043 	}
3044 }
3045 EXPORT_SYMBOL(ath_gen_timer_isr);
3046 
3047 /********/
3048 /* HTC  */
3049 /********/
3050 
3051 static struct {
3052 	u32 version;
3053 	const char * name;
3054 } ath_mac_bb_names[] = {
3055 	/* Devices with external radios */
3056 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3057 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3058 	{ AR_SREV_VERSION_9100,		"9100" },
3059 	{ AR_SREV_VERSION_9160,		"9160" },
3060 	/* Single-chip solutions */
3061 	{ AR_SREV_VERSION_9280,		"9280" },
3062 	{ AR_SREV_VERSION_9285,		"9285" },
3063 	{ AR_SREV_VERSION_9287,         "9287" },
3064 	{ AR_SREV_VERSION_9271,         "9271" },
3065 	{ AR_SREV_VERSION_9300,         "9300" },
3066 	{ AR_SREV_VERSION_9330,         "9330" },
3067 	{ AR_SREV_VERSION_9340,		"9340" },
3068 	{ AR_SREV_VERSION_9485,         "9485" },
3069 	{ AR_SREV_VERSION_9462,         "9462" },
3070 	{ AR_SREV_VERSION_9550,         "9550" },
3071 	{ AR_SREV_VERSION_9565,         "9565" },
3072 	{ AR_SREV_VERSION_9531,         "9531" },
3073 };
3074 
3075 /* For devices with external radios */
3076 static struct {
3077 	u16 version;
3078 	const char * name;
3079 } ath_rf_names[] = {
3080 	{ 0,				"5133" },
3081 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3082 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3083 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3084 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3085 };
3086 
3087 /*
3088  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3089  */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3090 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3091 {
3092 	int i;
3093 
3094 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3095 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3096 			return ath_mac_bb_names[i].name;
3097 		}
3098 	}
3099 
3100 	return "????";
3101 }
3102 
3103 /*
3104  * Return the RF name. "????" is returned if the RF is unknown.
3105  * Used for devices with external radios.
3106  */
ath9k_hw_rf_name(u16 rf_version)3107 static const char *ath9k_hw_rf_name(u16 rf_version)
3108 {
3109 	int i;
3110 
3111 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3112 		if (ath_rf_names[i].version == rf_version) {
3113 			return ath_rf_names[i].name;
3114 		}
3115 	}
3116 
3117 	return "????";
3118 }
3119 
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3120 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3121 {
3122 	int used;
3123 
3124 	/* chipsets >= AR9280 are single-chip */
3125 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3126 		used = scnprintf(hw_name, len,
3127 				 "Atheros AR%s Rev:%x",
3128 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3129 				 ah->hw_version.macRev);
3130 	}
3131 	else {
3132 		used = scnprintf(hw_name, len,
3133 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3134 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3135 				 ah->hw_version.macRev,
3136 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3137 						  & AR_RADIO_SREV_MAJOR)),
3138 				 ah->hw_version.phyRev);
3139 	}
3140 
3141 	hw_name[used] = '\0';
3142 }
3143 EXPORT_SYMBOL(ath9k_hw_name);
3144