1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "ar9003_mac.h"
27 #include "ar9003_mci.h"
28 #include "ar9003_phy.h"
29 #include "ath9k.h"
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37
ath9k_hw_set_clockrate(struct ath_hw * ah)38 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
39 {
40 struct ath_common *common = ath9k_hw_common(ah);
41 struct ath9k_channel *chan = ah->curchan;
42 unsigned int clockrate;
43
44 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
45 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
46 clockrate = 117;
47 else if (!chan) /* should really check for CCK instead */
48 clockrate = ATH9K_CLOCK_RATE_CCK;
49 else if (IS_CHAN_2GHZ(chan))
50 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
51 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
52 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
53 else
54 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
55
56 if (chan) {
57 if (IS_CHAN_HT40(chan))
58 clockrate *= 2;
59 if (IS_CHAN_HALF_RATE(chan))
60 clockrate /= 2;
61 if (IS_CHAN_QUARTER_RATE(chan))
62 clockrate /= 4;
63 }
64
65 common->clockrate = clockrate;
66 }
67
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)68 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
69 {
70 struct ath_common *common = ath9k_hw_common(ah);
71
72 return usecs * common->clockrate;
73 }
74
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)75 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
76 {
77 int i;
78
79 BUG_ON(timeout < AH_TIME_QUANTUM);
80
81 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
82 if ((REG_READ(ah, reg) & mask) == val)
83 return true;
84
85 udelay(AH_TIME_QUANTUM);
86 }
87
88 ath_dbg(ath9k_hw_common(ah), ANY,
89 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
90 timeout, reg, REG_READ(ah, reg), mask, val);
91
92 return false;
93 }
94 EXPORT_SYMBOL(ath9k_hw_wait);
95
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)96 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
97 int hw_delay)
98 {
99 hw_delay /= 10;
100
101 if (IS_CHAN_HALF_RATE(chan))
102 hw_delay *= 2;
103 else if (IS_CHAN_QUARTER_RATE(chan))
104 hw_delay *= 4;
105
106 udelay(hw_delay + BASE_ACTIVATE_DELAY);
107 }
108
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)109 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
110 int column, unsigned int *writecnt)
111 {
112 int r;
113
114 ENABLE_REGWRITE_BUFFER(ah);
115 for (r = 0; r < array->ia_rows; r++) {
116 REG_WRITE(ah, INI_RA(array, r, 0),
117 INI_RA(array, r, column));
118 DO_DELAY(*writecnt);
119 }
120 REGWRITE_BUFFER_FLUSH(ah);
121 }
122
ath9k_hw_reverse_bits(u32 val,u32 n)123 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
124 {
125 u32 retval;
126 int i;
127
128 for (i = 0, retval = 0; i < n; i++) {
129 retval = (retval << 1) | (val & 1);
130 val >>= 1;
131 }
132 return retval;
133 }
134
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)135 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
136 u8 phy, int kbps,
137 u32 frameLen, u16 rateix,
138 bool shortPreamble)
139 {
140 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
141
142 if (kbps == 0)
143 return 0;
144
145 switch (phy) {
146 case WLAN_RC_PHY_CCK:
147 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
148 if (shortPreamble)
149 phyTime >>= 1;
150 numBits = frameLen << 3;
151 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
152 break;
153 case WLAN_RC_PHY_OFDM:
154 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
155 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
156 numBits = OFDM_PLCP_BITS + (frameLen << 3);
157 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
158 txTime = OFDM_SIFS_TIME_QUARTER
159 + OFDM_PREAMBLE_TIME_QUARTER
160 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
161 } else if (ah->curchan &&
162 IS_CHAN_HALF_RATE(ah->curchan)) {
163 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
164 numBits = OFDM_PLCP_BITS + (frameLen << 3);
165 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166 txTime = OFDM_SIFS_TIME_HALF +
167 OFDM_PREAMBLE_TIME_HALF
168 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
169 } else {
170 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
171 numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
174 + (numSymbols * OFDM_SYMBOL_TIME);
175 }
176 break;
177 default:
178 ath_err(ath9k_hw_common(ah),
179 "Unknown phy %u (rate ix %u)\n", phy, rateix);
180 txTime = 0;
181 break;
182 }
183
184 return txTime;
185 }
186 EXPORT_SYMBOL(ath9k_hw_computetxtime);
187
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)188 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
189 struct ath9k_channel *chan,
190 struct chan_centers *centers)
191 {
192 int8_t extoff;
193
194 if (!IS_CHAN_HT40(chan)) {
195 centers->ctl_center = centers->ext_center =
196 centers->synth_center = chan->channel;
197 return;
198 }
199
200 if (IS_CHAN_HT40PLUS(chan)) {
201 centers->synth_center =
202 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
203 extoff = 1;
204 } else {
205 centers->synth_center =
206 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
207 extoff = -1;
208 }
209
210 centers->ctl_center =
211 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
212 /* 25 MHz spacing is supported by hw but not on upper layers */
213 centers->ext_center =
214 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
215 }
216
217 /******************/
218 /* Chip Revisions */
219 /******************/
220
ath9k_hw_read_revisions(struct ath_hw * ah)221 static void ath9k_hw_read_revisions(struct ath_hw *ah)
222 {
223 u32 val;
224
225 if (ah->get_mac_revision)
226 ah->hw_version.macRev = ah->get_mac_revision();
227
228 switch (ah->hw_version.devid) {
229 case AR5416_AR9100_DEVID:
230 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
231 break;
232 case AR9300_DEVID_AR9330:
233 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
234 if (!ah->get_mac_revision) {
235 val = REG_READ(ah, AR_SREV);
236 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
237 }
238 return;
239 case AR9300_DEVID_AR9340:
240 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
241 return;
242 case AR9300_DEVID_QCA955X:
243 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
244 return;
245 case AR9300_DEVID_AR953X:
246 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
247 return;
248 }
249
250 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
251
252 if (val == 0xFF) {
253 val = REG_READ(ah, AR_SREV);
254 ah->hw_version.macVersion =
255 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
256 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
257
258 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
259 ah->is_pciexpress = true;
260 else
261 ah->is_pciexpress = (val &
262 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 } else {
264 if (!AR_SREV_9100(ah))
265 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266
267 ah->hw_version.macRev = val & AR_SREV_REVISION;
268
269 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 ah->is_pciexpress = true;
271 }
272 }
273
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277
ath9k_hw_disablepcie(struct ath_hw * ah)278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 if (!AR_SREV_5416(ah))
281 return;
282
283 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292
293 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295
296 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 struct ath_common *common = ath9k_hw_common(ah);
300 u32 regAddr[2] = { AR_STA_ID0 };
301 u32 regHold[2];
302 static const u32 patternData[4] = {
303 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 };
305 int i, j, loop_max;
306
307 if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 loop_max = 2;
309 regAddr[1] = AR_PHY_BASE + (8 << 2);
310 } else
311 loop_max = 1;
312
313 for (i = 0; i < loop_max; i++) {
314 u32 addr = regAddr[i];
315 u32 wrData, rdData;
316
317 regHold[i] = REG_READ(ah, addr);
318 for (j = 0; j < 0x100; j++) {
319 wrData = (j << 16) | j;
320 REG_WRITE(ah, addr, wrData);
321 rdData = REG_READ(ah, addr);
322 if (rdData != wrData) {
323 ath_err(common,
324 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 addr, wrData, rdData);
326 return false;
327 }
328 }
329 for (j = 0; j < 4; j++) {
330 wrData = patternData[j];
331 REG_WRITE(ah, addr, wrData);
332 rdData = REG_READ(ah, addr);
333 if (wrData != rdData) {
334 ath_err(common,
335 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 addr, wrData, rdData);
337 return false;
338 }
339 }
340 REG_WRITE(ah, regAddr[i], regHold[i]);
341 }
342 udelay(100);
343
344 return true;
345 }
346
ath9k_hw_init_config(struct ath_hw * ah)347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 struct ath_common *common = ath9k_hw_common(ah);
350
351 ah->config.dma_beacon_response_time = 1;
352 ah->config.sw_beacon_response_time = 6;
353 ah->config.cwm_ignore_extcca = 0;
354 ah->config.analog_shiftreg = 1;
355
356 ah->config.rx_intr_mitigation = true;
357
358 if (AR_SREV_9300_20_OR_LATER(ah)) {
359 ah->config.rimt_last = 500;
360 ah->config.rimt_first = 2000;
361 } else {
362 ah->config.rimt_last = 250;
363 ah->config.rimt_first = 700;
364 }
365
366 /*
367 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
368 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
369 * This means we use it for all AR5416 devices, and the few
370 * minor PCI AR9280 devices out there.
371 *
372 * Serialization is required because these devices do not handle
373 * well the case of two concurrent reads/writes due to the latency
374 * involved. During one read/write another read/write can be issued
375 * on another CPU while the previous read/write may still be working
376 * on our hardware, if we hit this case the hardware poops in a loop.
377 * We prevent this by serializing reads and writes.
378 *
379 * This issue is not present on PCI-Express devices or pre-AR5416
380 * devices (legacy, 802.11abg).
381 */
382 if (num_possible_cpus() > 1)
383 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
384
385 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
386 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
387 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
388 !ah->is_pciexpress)) {
389 ah->config.serialize_regmode = SER_REG_MODE_ON;
390 } else {
391 ah->config.serialize_regmode = SER_REG_MODE_OFF;
392 }
393 }
394
395 ath_dbg(common, RESET, "serialize_regmode is %d\n",
396 ah->config.serialize_regmode);
397
398 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
399 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
400 else
401 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
402 }
403
ath9k_hw_init_defaults(struct ath_hw * ah)404 static void ath9k_hw_init_defaults(struct ath_hw *ah)
405 {
406 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
407
408 regulatory->country_code = CTRY_DEFAULT;
409 regulatory->power_limit = MAX_RATE_POWER;
410
411 ah->hw_version.magic = AR5416_MAGIC;
412 ah->hw_version.subvendorid = 0;
413
414 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
415 AR_STA_ID1_MCAST_KSRCH;
416 if (AR_SREV_9100(ah))
417 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
418
419 ah->slottime = ATH9K_SLOT_TIME_9;
420 ah->globaltxtimeout = (u32) -1;
421 ah->power_mode = ATH9K_PM_UNDEFINED;
422 ah->htc_reset_init = true;
423
424 ah->ani_function = ATH9K_ANI_ALL;
425 if (!AR_SREV_9300_20_OR_LATER(ah))
426 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
427
428 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
429 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
430 else
431 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
432 }
433
ath9k_hw_init_macaddr(struct ath_hw * ah)434 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
435 {
436 struct ath_common *common = ath9k_hw_common(ah);
437 u32 sum;
438 int i;
439 u16 eeval;
440 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
441
442 sum = 0;
443 for (i = 0; i < 3; i++) {
444 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
445 sum += eeval;
446 common->macaddr[2 * i] = eeval >> 8;
447 common->macaddr[2 * i + 1] = eeval & 0xff;
448 }
449 if (sum == 0 || sum == 0xffff * 3)
450 return -EADDRNOTAVAIL;
451
452 return 0;
453 }
454
ath9k_hw_post_init(struct ath_hw * ah)455 static int ath9k_hw_post_init(struct ath_hw *ah)
456 {
457 struct ath_common *common = ath9k_hw_common(ah);
458 int ecode;
459
460 if (common->bus_ops->ath_bus_type != ATH_USB) {
461 if (!ath9k_hw_chip_test(ah))
462 return -ENODEV;
463 }
464
465 if (!AR_SREV_9300_20_OR_LATER(ah)) {
466 ecode = ar9002_hw_rf_claim(ah);
467 if (ecode != 0)
468 return ecode;
469 }
470
471 ecode = ath9k_hw_eeprom_init(ah);
472 if (ecode != 0)
473 return ecode;
474
475 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
476 ah->eep_ops->get_eeprom_ver(ah),
477 ah->eep_ops->get_eeprom_rev(ah));
478
479 ath9k_hw_ani_init(ah);
480
481 /*
482 * EEPROM needs to be initialized before we do this.
483 * This is required for regulatory compliance.
484 */
485 if (AR_SREV_9300_20_OR_LATER(ah)) {
486 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
487 if ((regdmn & 0xF0) == CTL_FCC) {
488 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
489 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
490 }
491 }
492
493 return 0;
494 }
495
ath9k_hw_attach_ops(struct ath_hw * ah)496 static int ath9k_hw_attach_ops(struct ath_hw *ah)
497 {
498 if (!AR_SREV_9300_20_OR_LATER(ah))
499 return ar9002_hw_attach_ops(ah);
500
501 ar9003_hw_attach_ops(ah);
502 return 0;
503 }
504
505 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)506 static int __ath9k_hw_init(struct ath_hw *ah)
507 {
508 struct ath_common *common = ath9k_hw_common(ah);
509 int r = 0;
510
511 ath9k_hw_read_revisions(ah);
512
513 switch (ah->hw_version.macVersion) {
514 case AR_SREV_VERSION_5416_PCI:
515 case AR_SREV_VERSION_5416_PCIE:
516 case AR_SREV_VERSION_9160:
517 case AR_SREV_VERSION_9100:
518 case AR_SREV_VERSION_9280:
519 case AR_SREV_VERSION_9285:
520 case AR_SREV_VERSION_9287:
521 case AR_SREV_VERSION_9271:
522 case AR_SREV_VERSION_9300:
523 case AR_SREV_VERSION_9330:
524 case AR_SREV_VERSION_9485:
525 case AR_SREV_VERSION_9340:
526 case AR_SREV_VERSION_9462:
527 case AR_SREV_VERSION_9550:
528 case AR_SREV_VERSION_9565:
529 case AR_SREV_VERSION_9531:
530 break;
531 default:
532 ath_err(common,
533 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
534 ah->hw_version.macVersion, ah->hw_version.macRev);
535 return -EOPNOTSUPP;
536 }
537
538 /*
539 * Read back AR_WA into a permanent copy and set bits 14 and 17.
540 * We need to do this to avoid RMW of this register. We cannot
541 * read the reg when chip is asleep.
542 */
543 if (AR_SREV_9300_20_OR_LATER(ah)) {
544 ah->WARegVal = REG_READ(ah, AR_WA);
545 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
546 AR_WA_ASPM_TIMER_BASED_DISABLE);
547 }
548
549 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
550 ath_err(common, "Couldn't reset chip\n");
551 return -EIO;
552 }
553
554 if (AR_SREV_9565(ah)) {
555 ah->WARegVal |= AR_WA_BIT22;
556 REG_WRITE(ah, AR_WA, ah->WARegVal);
557 }
558
559 ath9k_hw_init_defaults(ah);
560 ath9k_hw_init_config(ah);
561
562 r = ath9k_hw_attach_ops(ah);
563 if (r)
564 return r;
565
566 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
567 ath_err(common, "Couldn't wakeup chip\n");
568 return -EIO;
569 }
570
571 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
572 AR_SREV_9330(ah) || AR_SREV_9550(ah))
573 ah->is_pciexpress = false;
574
575 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
576 ath9k_hw_init_cal_settings(ah);
577
578 if (!ah->is_pciexpress)
579 ath9k_hw_disablepcie(ah);
580
581 r = ath9k_hw_post_init(ah);
582 if (r)
583 return r;
584
585 ath9k_hw_init_mode_gain_regs(ah);
586 r = ath9k_hw_fill_cap_info(ah);
587 if (r)
588 return r;
589
590 r = ath9k_hw_init_macaddr(ah);
591 if (r) {
592 ath_err(common, "Failed to initialize MAC address\n");
593 return r;
594 }
595
596 ath9k_hw_init_hang_checks(ah);
597
598 common->state = ATH_HW_INITIALIZED;
599
600 return 0;
601 }
602
ath9k_hw_init(struct ath_hw * ah)603 int ath9k_hw_init(struct ath_hw *ah)
604 {
605 int ret;
606 struct ath_common *common = ath9k_hw_common(ah);
607
608 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
609 switch (ah->hw_version.devid) {
610 case AR5416_DEVID_PCI:
611 case AR5416_DEVID_PCIE:
612 case AR5416_AR9100_DEVID:
613 case AR9160_DEVID_PCI:
614 case AR9280_DEVID_PCI:
615 case AR9280_DEVID_PCIE:
616 case AR9285_DEVID_PCIE:
617 case AR9287_DEVID_PCI:
618 case AR9287_DEVID_PCIE:
619 case AR2427_DEVID_PCIE:
620 case AR9300_DEVID_PCIE:
621 case AR9300_DEVID_AR9485_PCIE:
622 case AR9300_DEVID_AR9330:
623 case AR9300_DEVID_AR9340:
624 case AR9300_DEVID_QCA955X:
625 case AR9300_DEVID_AR9580:
626 case AR9300_DEVID_AR9462:
627 case AR9485_DEVID_AR1111:
628 case AR9300_DEVID_AR9565:
629 case AR9300_DEVID_AR953X:
630 break;
631 default:
632 if (common->bus_ops->ath_bus_type == ATH_USB)
633 break;
634 ath_err(common, "Hardware device ID 0x%04x not supported\n",
635 ah->hw_version.devid);
636 return -EOPNOTSUPP;
637 }
638
639 ret = __ath9k_hw_init(ah);
640 if (ret) {
641 ath_err(common,
642 "Unable to initialize hardware; initialization status: %d\n",
643 ret);
644 return ret;
645 }
646
647 ath_dynack_init(ah);
648
649 return 0;
650 }
651 EXPORT_SYMBOL(ath9k_hw_init);
652
ath9k_hw_init_qos(struct ath_hw * ah)653 static void ath9k_hw_init_qos(struct ath_hw *ah)
654 {
655 ENABLE_REGWRITE_BUFFER(ah);
656
657 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
658 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
659
660 REG_WRITE(ah, AR_QOS_NO_ACK,
661 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
662 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
663 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
664
665 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
666 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
667 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
668 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
669 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
670
671 REGWRITE_BUFFER_FLUSH(ah);
672 }
673
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)674 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
675 {
676 struct ath_common *common = ath9k_hw_common(ah);
677 int i = 0;
678
679 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
680 udelay(100);
681 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
682
683 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
684
685 udelay(100);
686
687 if (WARN_ON_ONCE(i >= 100)) {
688 ath_err(common, "PLL4 meaurement not done\n");
689 break;
690 }
691
692 i++;
693 }
694
695 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
696 }
697 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
698
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)699 static void ath9k_hw_init_pll(struct ath_hw *ah,
700 struct ath9k_channel *chan)
701 {
702 u32 pll;
703
704 pll = ath9k_hw_compute_pll_control(ah, chan);
705
706 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
707 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
708 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
710 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711 AR_CH0_DPLL2_KD, 0x40);
712 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
713 AR_CH0_DPLL2_KI, 0x4);
714
715 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
716 AR_CH0_BB_DPLL1_REFDIV, 0x5);
717 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
718 AR_CH0_BB_DPLL1_NINI, 0x58);
719 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
720 AR_CH0_BB_DPLL1_NFRAC, 0x0);
721
722 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
724 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
725 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
726 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
727 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
728
729 /* program BB PLL phase_shift to 0x6 */
730 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
731 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
732
733 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
735 udelay(1000);
736 } else if (AR_SREV_9330(ah)) {
737 u32 ddr_dpll2, pll_control2, kd;
738
739 if (ah->is_clk_25mhz) {
740 ddr_dpll2 = 0x18e82f01;
741 pll_control2 = 0xe04a3d;
742 kd = 0x1d;
743 } else {
744 ddr_dpll2 = 0x19e82f01;
745 pll_control2 = 0x886666;
746 kd = 0x3d;
747 }
748
749 /* program DDR PLL ki and kd value */
750 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
751
752 /* program DDR PLL phase_shift */
753 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
754 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
755
756 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
757 pll | AR_RTC_9300_PLL_BYPASS);
758 udelay(1000);
759
760 /* program refdiv, nint, frac to RTC register */
761 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
762
763 /* program BB PLL kd and ki value */
764 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
765 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
766
767 /* program BB PLL phase_shift */
768 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
769 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
770 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
771 u32 regval, pll2_divint, pll2_divfrac, refdiv;
772
773 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
774 pll | AR_RTC_9300_SOC_PLL_BYPASS);
775 udelay(1000);
776
777 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
778 udelay(100);
779
780 if (ah->is_clk_25mhz) {
781 if (AR_SREV_9531(ah)) {
782 pll2_divint = 0x1c;
783 pll2_divfrac = 0xa3d2;
784 refdiv = 1;
785 } else {
786 pll2_divint = 0x54;
787 pll2_divfrac = 0x1eb85;
788 refdiv = 3;
789 }
790 } else {
791 if (AR_SREV_9340(ah)) {
792 pll2_divint = 88;
793 pll2_divfrac = 0;
794 refdiv = 5;
795 } else {
796 pll2_divint = 0x11;
797 pll2_divfrac =
798 AR_SREV_9531(ah) ? 0x26665 : 0x26666;
799 refdiv = 1;
800 }
801 }
802
803 regval = REG_READ(ah, AR_PHY_PLL_MODE);
804 if (AR_SREV_9531(ah))
805 regval |= (0x1 << 22);
806 else
807 regval |= (0x1 << 16);
808 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
809 udelay(100);
810
811 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
812 (pll2_divint << 18) | pll2_divfrac);
813 udelay(100);
814
815 regval = REG_READ(ah, AR_PHY_PLL_MODE);
816 if (AR_SREV_9340(ah))
817 regval = (regval & 0x80071fff) |
818 (0x1 << 30) |
819 (0x1 << 13) |
820 (0x4 << 26) |
821 (0x18 << 19);
822 else if (AR_SREV_9531(ah))
823 regval = (regval & 0x01c00fff) |
824 (0x1 << 31) |
825 (0x2 << 29) |
826 (0xa << 25) |
827 (0x1 << 19) |
828 (0x6 << 12);
829 else
830 regval = (regval & 0x80071fff) |
831 (0x3 << 30) |
832 (0x1 << 13) |
833 (0x4 << 26) |
834 (0x60 << 19);
835 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836
837 if (AR_SREV_9531(ah))
838 REG_WRITE(ah, AR_PHY_PLL_MODE,
839 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
840 else
841 REG_WRITE(ah, AR_PHY_PLL_MODE,
842 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
843
844 udelay(1000);
845 }
846
847 if (AR_SREV_9565(ah))
848 pll |= 0x40000;
849 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
850
851 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
852 AR_SREV_9550(ah))
853 udelay(1000);
854
855 /* Switch the core clock for ar9271 to 117Mhz */
856 if (AR_SREV_9271(ah)) {
857 udelay(500);
858 REG_WRITE(ah, 0x50040, 0x304);
859 }
860
861 udelay(RTC_PLL_SETTLE_DELAY);
862
863 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
864 }
865
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)866 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
867 enum nl80211_iftype opmode)
868 {
869 u32 sync_default = AR_INTR_SYNC_DEFAULT;
870 u32 imr_reg = AR_IMR_TXERR |
871 AR_IMR_TXURN |
872 AR_IMR_RXERR |
873 AR_IMR_RXORN |
874 AR_IMR_BCNMISC;
875
876 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
877 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
878
879 if (AR_SREV_9300_20_OR_LATER(ah)) {
880 imr_reg |= AR_IMR_RXOK_HP;
881 if (ah->config.rx_intr_mitigation)
882 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
883 else
884 imr_reg |= AR_IMR_RXOK_LP;
885
886 } else {
887 if (ah->config.rx_intr_mitigation)
888 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
889 else
890 imr_reg |= AR_IMR_RXOK;
891 }
892
893 if (ah->config.tx_intr_mitigation)
894 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
895 else
896 imr_reg |= AR_IMR_TXOK;
897
898 ENABLE_REGWRITE_BUFFER(ah);
899
900 REG_WRITE(ah, AR_IMR, imr_reg);
901 ah->imrs2_reg |= AR_IMR_S2_GTT;
902 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
903
904 if (!AR_SREV_9100(ah)) {
905 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
906 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
907 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
908 }
909
910 REGWRITE_BUFFER_FLUSH(ah);
911
912 if (AR_SREV_9300_20_OR_LATER(ah)) {
913 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
914 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
915 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
916 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
917 }
918 }
919
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)920 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
921 {
922 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
923 val = min(val, (u32) 0xFFFF);
924 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
925 }
926
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)927 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
928 {
929 u32 val = ath9k_hw_mac_to_clks(ah, us);
930 val = min(val, (u32) 0xFFFF);
931 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
932 }
933
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)934 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
935 {
936 u32 val = ath9k_hw_mac_to_clks(ah, us);
937 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
938 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
939 }
940
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)941 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
942 {
943 u32 val = ath9k_hw_mac_to_clks(ah, us);
944 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
945 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
946 }
947
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)948 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
949 {
950 if (tu > 0xFFFF) {
951 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
952 tu);
953 ah->globaltxtimeout = (u32) -1;
954 return false;
955 } else {
956 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
957 ah->globaltxtimeout = tu;
958 return true;
959 }
960 }
961
ath9k_hw_init_global_settings(struct ath_hw * ah)962 void ath9k_hw_init_global_settings(struct ath_hw *ah)
963 {
964 struct ath_common *common = ath9k_hw_common(ah);
965 const struct ath9k_channel *chan = ah->curchan;
966 int acktimeout, ctstimeout, ack_offset = 0;
967 int slottime;
968 int sifstime;
969 int rx_lat = 0, tx_lat = 0, eifs = 0;
970 u32 reg;
971
972 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
973 ah->misc_mode);
974
975 if (!chan)
976 return;
977
978 if (ah->misc_mode != 0)
979 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
980
981 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
982 rx_lat = 41;
983 else
984 rx_lat = 37;
985 tx_lat = 54;
986
987 if (IS_CHAN_5GHZ(chan))
988 sifstime = 16;
989 else
990 sifstime = 10;
991
992 if (IS_CHAN_HALF_RATE(chan)) {
993 eifs = 175;
994 rx_lat *= 2;
995 tx_lat *= 2;
996 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
997 tx_lat += 11;
998
999 sifstime = 32;
1000 ack_offset = 16;
1001 slottime = 13;
1002 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1003 eifs = 340;
1004 rx_lat = (rx_lat * 4) - 1;
1005 tx_lat *= 4;
1006 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007 tx_lat += 22;
1008
1009 sifstime = 64;
1010 ack_offset = 32;
1011 slottime = 21;
1012 } else {
1013 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1014 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1015 reg = AR_USEC_ASYNC_FIFO;
1016 } else {
1017 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1018 common->clockrate;
1019 reg = REG_READ(ah, AR_USEC);
1020 }
1021 rx_lat = MS(reg, AR_USEC_RX_LAT);
1022 tx_lat = MS(reg, AR_USEC_TX_LAT);
1023
1024 slottime = ah->slottime;
1025 }
1026
1027 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1028 slottime += 3 * ah->coverage_class;
1029 acktimeout = slottime + sifstime + ack_offset;
1030 ctstimeout = acktimeout;
1031
1032 /*
1033 * Workaround for early ACK timeouts, add an offset to match the
1034 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1035 * This was initially only meant to work around an issue with delayed
1036 * BA frames in some implementations, but it has been found to fix ACK
1037 * timeout issues in other cases as well.
1038 */
1039 if (IS_CHAN_2GHZ(chan) &&
1040 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1041 acktimeout += 64 - sifstime - ah->slottime;
1042 ctstimeout += 48 - sifstime - ah->slottime;
1043 }
1044
1045 if (ah->dynack.enabled) {
1046 acktimeout = ah->dynack.ackto;
1047 ctstimeout = acktimeout;
1048 slottime = (acktimeout - 3) / 2;
1049 } else {
1050 ah->dynack.ackto = acktimeout;
1051 }
1052
1053 ath9k_hw_set_sifs_time(ah, sifstime);
1054 ath9k_hw_setslottime(ah, slottime);
1055 ath9k_hw_set_ack_timeout(ah, acktimeout);
1056 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1057 if (ah->globaltxtimeout != (u32) -1)
1058 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1059
1060 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1061 REG_RMW(ah, AR_USEC,
1062 (common->clockrate - 1) |
1063 SM(rx_lat, AR_USEC_RX_LAT) |
1064 SM(tx_lat, AR_USEC_TX_LAT),
1065 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1066
1067 }
1068 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1069
ath9k_hw_deinit(struct ath_hw * ah)1070 void ath9k_hw_deinit(struct ath_hw *ah)
1071 {
1072 struct ath_common *common = ath9k_hw_common(ah);
1073
1074 if (common->state < ATH_HW_INITIALIZED)
1075 return;
1076
1077 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1078 }
1079 EXPORT_SYMBOL(ath9k_hw_deinit);
1080
1081 /*******/
1082 /* INI */
1083 /*******/
1084
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1085 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1086 {
1087 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1088
1089 if (IS_CHAN_2GHZ(chan))
1090 ctl |= CTL_11G;
1091 else
1092 ctl |= CTL_11A;
1093
1094 return ctl;
1095 }
1096
1097 /****************************************/
1098 /* Reset and Channel Switching Routines */
1099 /****************************************/
1100
ath9k_hw_set_dma(struct ath_hw * ah)1101 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1102 {
1103 struct ath_common *common = ath9k_hw_common(ah);
1104 int txbuf_size;
1105
1106 ENABLE_REGWRITE_BUFFER(ah);
1107
1108 /*
1109 * set AHB_MODE not to do cacheline prefetches
1110 */
1111 if (!AR_SREV_9300_20_OR_LATER(ah))
1112 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1113
1114 /*
1115 * let mac dma reads be in 128 byte chunks
1116 */
1117 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1118
1119 REGWRITE_BUFFER_FLUSH(ah);
1120
1121 /*
1122 * Restore TX Trigger Level to its pre-reset value.
1123 * The initial value depends on whether aggregation is enabled, and is
1124 * adjusted whenever underruns are detected.
1125 */
1126 if (!AR_SREV_9300_20_OR_LATER(ah))
1127 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1128
1129 ENABLE_REGWRITE_BUFFER(ah);
1130
1131 /*
1132 * let mac dma writes be in 128 byte chunks
1133 */
1134 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1135
1136 /*
1137 * Setup receive FIFO threshold to hold off TX activities
1138 */
1139 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1140
1141 if (AR_SREV_9300_20_OR_LATER(ah)) {
1142 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1143 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1144
1145 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1146 ah->caps.rx_status_len);
1147 }
1148
1149 /*
1150 * reduce the number of usable entries in PCU TXBUF to avoid
1151 * wrap around issues.
1152 */
1153 if (AR_SREV_9285(ah)) {
1154 /* For AR9285 the number of Fifos are reduced to half.
1155 * So set the usable tx buf size also to half to
1156 * avoid data/delimiter underruns
1157 */
1158 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1159 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1160 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1161 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1162 } else {
1163 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1164 }
1165
1166 if (!AR_SREV_9271(ah))
1167 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1168
1169 REGWRITE_BUFFER_FLUSH(ah);
1170
1171 if (AR_SREV_9300_20_OR_LATER(ah))
1172 ath9k_hw_reset_txstatus_ring(ah);
1173 }
1174
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1175 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1176 {
1177 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1178 u32 set = AR_STA_ID1_KSRCH_MODE;
1179
1180 switch (opmode) {
1181 case NL80211_IFTYPE_ADHOC:
1182 if (!AR_SREV_9340_13(ah)) {
1183 set |= AR_STA_ID1_ADHOC;
1184 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1185 break;
1186 }
1187 /* fall through */
1188 case NL80211_IFTYPE_MESH_POINT:
1189 case NL80211_IFTYPE_AP:
1190 set |= AR_STA_ID1_STA_AP;
1191 /* fall through */
1192 case NL80211_IFTYPE_STATION:
1193 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1194 break;
1195 default:
1196 if (!ah->is_monitoring)
1197 set = 0;
1198 break;
1199 }
1200 REG_RMW(ah, AR_STA_ID1, set, mask);
1201 }
1202
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1203 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1204 u32 *coef_mantissa, u32 *coef_exponent)
1205 {
1206 u32 coef_exp, coef_man;
1207
1208 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1209 if ((coef_scaled >> coef_exp) & 0x1)
1210 break;
1211
1212 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1213
1214 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1215
1216 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1217 *coef_exponent = coef_exp - 16;
1218 }
1219
1220 /* AR9330 WAR:
1221 * call external reset function to reset WMAC if:
1222 * - doing a cold reset
1223 * - we have pending frames in the TX queues.
1224 */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1225 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1226 {
1227 int i, npend = 0;
1228
1229 for (i = 0; i < AR_NUM_QCU; i++) {
1230 npend = ath9k_hw_numtxpending(ah, i);
1231 if (npend)
1232 break;
1233 }
1234
1235 if (ah->external_reset &&
1236 (npend || type == ATH9K_RESET_COLD)) {
1237 int reset_err = 0;
1238
1239 ath_dbg(ath9k_hw_common(ah), RESET,
1240 "reset MAC via external reset\n");
1241
1242 reset_err = ah->external_reset();
1243 if (reset_err) {
1244 ath_err(ath9k_hw_common(ah),
1245 "External reset failed, err=%d\n",
1246 reset_err);
1247 return false;
1248 }
1249
1250 REG_WRITE(ah, AR_RTC_RESET, 1);
1251 }
1252
1253 return true;
1254 }
1255
ath9k_hw_set_reset(struct ath_hw * ah,int type)1256 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1257 {
1258 u32 rst_flags;
1259 u32 tmpReg;
1260
1261 if (AR_SREV_9100(ah)) {
1262 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1263 AR_RTC_DERIVED_CLK_PERIOD, 1);
1264 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1265 }
1266
1267 ENABLE_REGWRITE_BUFFER(ah);
1268
1269 if (AR_SREV_9300_20_OR_LATER(ah)) {
1270 REG_WRITE(ah, AR_WA, ah->WARegVal);
1271 udelay(10);
1272 }
1273
1274 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1275 AR_RTC_FORCE_WAKE_ON_INT);
1276
1277 if (AR_SREV_9100(ah)) {
1278 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1279 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1280 } else {
1281 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1282 if (AR_SREV_9340(ah))
1283 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1284 else
1285 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1286 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1287
1288 if (tmpReg) {
1289 u32 val;
1290 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1291
1292 val = AR_RC_HOSTIF;
1293 if (!AR_SREV_9300_20_OR_LATER(ah))
1294 val |= AR_RC_AHB;
1295 REG_WRITE(ah, AR_RC, val);
1296
1297 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1298 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1299
1300 rst_flags = AR_RTC_RC_MAC_WARM;
1301 if (type == ATH9K_RESET_COLD)
1302 rst_flags |= AR_RTC_RC_MAC_COLD;
1303 }
1304
1305 if (AR_SREV_9330(ah)) {
1306 if (!ath9k_hw_ar9330_reset_war(ah, type))
1307 return false;
1308 }
1309
1310 if (ath9k_hw_mci_is_enabled(ah))
1311 ar9003_mci_check_gpm_offset(ah);
1312
1313 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1314
1315 REGWRITE_BUFFER_FLUSH(ah);
1316
1317 if (AR_SREV_9300_20_OR_LATER(ah))
1318 udelay(50);
1319 else if (AR_SREV_9100(ah))
1320 mdelay(10);
1321 else
1322 udelay(100);
1323
1324 REG_WRITE(ah, AR_RTC_RC, 0);
1325 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1326 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1327 return false;
1328 }
1329
1330 if (!AR_SREV_9100(ah))
1331 REG_WRITE(ah, AR_RC, 0);
1332
1333 if (AR_SREV_9100(ah))
1334 udelay(50);
1335
1336 return true;
1337 }
1338
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1339 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1340 {
1341 ENABLE_REGWRITE_BUFFER(ah);
1342
1343 if (AR_SREV_9300_20_OR_LATER(ah)) {
1344 REG_WRITE(ah, AR_WA, ah->WARegVal);
1345 udelay(10);
1346 }
1347
1348 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1349 AR_RTC_FORCE_WAKE_ON_INT);
1350
1351 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1352 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353
1354 REG_WRITE(ah, AR_RTC_RESET, 0);
1355
1356 REGWRITE_BUFFER_FLUSH(ah);
1357
1358 udelay(2);
1359
1360 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1361 REG_WRITE(ah, AR_RC, 0);
1362
1363 REG_WRITE(ah, AR_RTC_RESET, 1);
1364
1365 if (!ath9k_hw_wait(ah,
1366 AR_RTC_STATUS,
1367 AR_RTC_STATUS_M,
1368 AR_RTC_STATUS_ON,
1369 AH_WAIT_TIMEOUT)) {
1370 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1371 return false;
1372 }
1373
1374 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1375 }
1376
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1377 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1378 {
1379 bool ret = false;
1380
1381 if (AR_SREV_9300_20_OR_LATER(ah)) {
1382 REG_WRITE(ah, AR_WA, ah->WARegVal);
1383 udelay(10);
1384 }
1385
1386 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1387 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1388
1389 if (!ah->reset_power_on)
1390 type = ATH9K_RESET_POWER_ON;
1391
1392 switch (type) {
1393 case ATH9K_RESET_POWER_ON:
1394 ret = ath9k_hw_set_reset_power_on(ah);
1395 if (ret)
1396 ah->reset_power_on = true;
1397 break;
1398 case ATH9K_RESET_WARM:
1399 case ATH9K_RESET_COLD:
1400 ret = ath9k_hw_set_reset(ah, type);
1401 break;
1402 default:
1403 break;
1404 }
1405
1406 return ret;
1407 }
1408
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1409 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1410 struct ath9k_channel *chan)
1411 {
1412 int reset_type = ATH9K_RESET_WARM;
1413
1414 if (AR_SREV_9280(ah)) {
1415 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1416 reset_type = ATH9K_RESET_POWER_ON;
1417 else
1418 reset_type = ATH9K_RESET_COLD;
1419 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1420 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1421 reset_type = ATH9K_RESET_COLD;
1422
1423 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1424 return false;
1425
1426 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1427 return false;
1428
1429 ah->chip_fullsleep = false;
1430
1431 if (AR_SREV_9330(ah))
1432 ar9003_hw_internal_regulator_apply(ah);
1433 ath9k_hw_init_pll(ah, chan);
1434
1435 return true;
1436 }
1437
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1438 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1439 struct ath9k_channel *chan)
1440 {
1441 struct ath_common *common = ath9k_hw_common(ah);
1442 struct ath9k_hw_capabilities *pCap = &ah->caps;
1443 bool band_switch = false, mode_diff = false;
1444 u8 ini_reloaded = 0;
1445 u32 qnum;
1446 int r;
1447
1448 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1449 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1450 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1451 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1452 }
1453
1454 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1455 if (ath9k_hw_numtxpending(ah, qnum)) {
1456 ath_dbg(common, QUEUE,
1457 "Transmit frames pending on queue %d\n", qnum);
1458 return false;
1459 }
1460 }
1461
1462 if (!ath9k_hw_rfbus_req(ah)) {
1463 ath_err(common, "Could not kill baseband RX\n");
1464 return false;
1465 }
1466
1467 if (band_switch || mode_diff) {
1468 ath9k_hw_mark_phy_inactive(ah);
1469 udelay(5);
1470
1471 if (band_switch)
1472 ath9k_hw_init_pll(ah, chan);
1473
1474 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1475 ath_err(common, "Failed to do fast channel change\n");
1476 return false;
1477 }
1478 }
1479
1480 ath9k_hw_set_channel_regs(ah, chan);
1481
1482 r = ath9k_hw_rf_set_freq(ah, chan);
1483 if (r) {
1484 ath_err(common, "Failed to set channel\n");
1485 return false;
1486 }
1487 ath9k_hw_set_clockrate(ah);
1488 ath9k_hw_apply_txpower(ah, chan, false);
1489
1490 ath9k_hw_set_delta_slope(ah, chan);
1491 ath9k_hw_spur_mitigate_freq(ah, chan);
1492
1493 if (band_switch || ini_reloaded)
1494 ah->eep_ops->set_board_values(ah, chan);
1495
1496 ath9k_hw_init_bb(ah, chan);
1497 ath9k_hw_rfbus_done(ah);
1498
1499 if (band_switch || ini_reloaded) {
1500 ah->ah_flags |= AH_FASTCC;
1501 ath9k_hw_init_cal(ah, chan);
1502 ah->ah_flags &= ~AH_FASTCC;
1503 }
1504
1505 return true;
1506 }
1507
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1508 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1509 {
1510 u32 gpio_mask = ah->gpio_mask;
1511 int i;
1512
1513 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1514 if (!(gpio_mask & 1))
1515 continue;
1516
1517 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1518 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1519 }
1520 }
1521
ath9k_hw_check_nav(struct ath_hw * ah)1522 void ath9k_hw_check_nav(struct ath_hw *ah)
1523 {
1524 struct ath_common *common = ath9k_hw_common(ah);
1525 u32 val;
1526
1527 val = REG_READ(ah, AR_NAV);
1528 if (val != 0xdeadbeef && val > 0x7fff) {
1529 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1530 REG_WRITE(ah, AR_NAV, 0);
1531 }
1532 }
1533 EXPORT_SYMBOL(ath9k_hw_check_nav);
1534
ath9k_hw_check_alive(struct ath_hw * ah)1535 bool ath9k_hw_check_alive(struct ath_hw *ah)
1536 {
1537 int count = 50;
1538 u32 reg, last_val;
1539
1540 if (AR_SREV_9300(ah))
1541 return !ath9k_hw_detect_mac_hang(ah);
1542
1543 if (AR_SREV_9285_12_OR_LATER(ah))
1544 return true;
1545
1546 last_val = REG_READ(ah, AR_OBS_BUS_1);
1547 do {
1548 reg = REG_READ(ah, AR_OBS_BUS_1);
1549 if (reg != last_val)
1550 return true;
1551
1552 udelay(1);
1553 last_val = reg;
1554 if ((reg & 0x7E7FFFEF) == 0x00702400)
1555 continue;
1556
1557 switch (reg & 0x7E000B00) {
1558 case 0x1E000000:
1559 case 0x52000B00:
1560 case 0x18000B00:
1561 continue;
1562 default:
1563 return true;
1564 }
1565 } while (count-- > 0);
1566
1567 return false;
1568 }
1569 EXPORT_SYMBOL(ath9k_hw_check_alive);
1570
ath9k_hw_init_mfp(struct ath_hw * ah)1571 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1572 {
1573 /* Setup MFP options for CCMP */
1574 if (AR_SREV_9280_20_OR_LATER(ah)) {
1575 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576 * frames when constructing CCMP AAD. */
1577 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578 0xc7ff);
1579 ah->sw_mgmt_crypto = false;
1580 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581 /* Disable hardware crypto for management frames */
1582 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586 ah->sw_mgmt_crypto = true;
1587 } else {
1588 ah->sw_mgmt_crypto = true;
1589 }
1590 }
1591
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1592 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1593 u32 macStaId1, u32 saveDefAntenna)
1594 {
1595 struct ath_common *common = ath9k_hw_common(ah);
1596
1597 ENABLE_REGWRITE_BUFFER(ah);
1598
1599 REG_RMW(ah, AR_STA_ID1, macStaId1
1600 | AR_STA_ID1_RTS_USE_DEF
1601 | ah->sta_id1_defaults,
1602 ~AR_STA_ID1_SADH_MASK);
1603 ath_hw_setbssidmask(common);
1604 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1605 ath9k_hw_write_associd(ah);
1606 REG_WRITE(ah, AR_ISR, ~0);
1607 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1608
1609 REGWRITE_BUFFER_FLUSH(ah);
1610
1611 ath9k_hw_set_operating_mode(ah, ah->opmode);
1612 }
1613
ath9k_hw_init_queues(struct ath_hw * ah)1614 static void ath9k_hw_init_queues(struct ath_hw *ah)
1615 {
1616 int i;
1617
1618 ENABLE_REGWRITE_BUFFER(ah);
1619
1620 for (i = 0; i < AR_NUM_DCU; i++)
1621 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1622
1623 REGWRITE_BUFFER_FLUSH(ah);
1624
1625 ah->intr_txqs = 0;
1626 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1627 ath9k_hw_resettxqueue(ah, i);
1628 }
1629
1630 /*
1631 * For big endian systems turn on swapping for descriptors
1632 */
ath9k_hw_init_desc(struct ath_hw * ah)1633 static void ath9k_hw_init_desc(struct ath_hw *ah)
1634 {
1635 struct ath_common *common = ath9k_hw_common(ah);
1636
1637 if (AR_SREV_9100(ah)) {
1638 u32 mask;
1639 mask = REG_READ(ah, AR_CFG);
1640 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1641 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1642 mask);
1643 } else {
1644 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1645 REG_WRITE(ah, AR_CFG, mask);
1646 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1647 REG_READ(ah, AR_CFG));
1648 }
1649 } else {
1650 if (common->bus_ops->ath_bus_type == ATH_USB) {
1651 /* Configure AR9271 target WLAN */
1652 if (AR_SREV_9271(ah))
1653 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1654 else
1655 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1656 }
1657 #ifdef __BIG_ENDIAN
1658 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1659 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1660 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1661 else
1662 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1663 #endif
1664 }
1665 }
1666
1667 /*
1668 * Fast channel change:
1669 * (Change synthesizer based on channel freq without resetting chip)
1670 */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1671 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1672 {
1673 struct ath_common *common = ath9k_hw_common(ah);
1674 struct ath9k_hw_capabilities *pCap = &ah->caps;
1675 int ret;
1676
1677 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1678 goto fail;
1679
1680 if (ah->chip_fullsleep)
1681 goto fail;
1682
1683 if (!ah->curchan)
1684 goto fail;
1685
1686 if (chan->channel == ah->curchan->channel)
1687 goto fail;
1688
1689 if ((ah->curchan->channelFlags | chan->channelFlags) &
1690 (CHANNEL_HALF | CHANNEL_QUARTER))
1691 goto fail;
1692
1693 /*
1694 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1695 */
1696 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1697 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1698 goto fail;
1699
1700 if (!ath9k_hw_check_alive(ah))
1701 goto fail;
1702
1703 /*
1704 * For AR9462, make sure that calibration data for
1705 * re-using are present.
1706 */
1707 if (AR_SREV_9462(ah) && (ah->caldata &&
1708 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1709 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1710 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1711 goto fail;
1712
1713 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1714 ah->curchan->channel, chan->channel);
1715
1716 ret = ath9k_hw_channel_change(ah, chan);
1717 if (!ret)
1718 goto fail;
1719
1720 if (ath9k_hw_mci_is_enabled(ah))
1721 ar9003_mci_2g5g_switch(ah, false);
1722
1723 ath9k_hw_loadnf(ah, ah->curchan);
1724 ath9k_hw_start_nfcal(ah, true);
1725
1726 if (AR_SREV_9271(ah))
1727 ar9002_hw_load_ani_reg(ah, chan);
1728
1729 return 0;
1730 fail:
1731 return -EINVAL;
1732 }
1733
ath9k_hw_get_tsf_offset(struct timespec * last,struct timespec * cur)1734 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1735 {
1736 struct timespec ts;
1737 s64 usec;
1738
1739 if (!cur) {
1740 getrawmonotonic(&ts);
1741 cur = &ts;
1742 }
1743
1744 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1745 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1746
1747 return (u32) usec;
1748 }
1749 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1750
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1751 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1752 struct ath9k_hw_cal_data *caldata, bool fastcc)
1753 {
1754 struct ath_common *common = ath9k_hw_common(ah);
1755 u32 saveLedState;
1756 u32 saveDefAntenna;
1757 u32 macStaId1;
1758 u64 tsf = 0;
1759 s64 usec = 0;
1760 int r;
1761 bool start_mci_reset = false;
1762 bool save_fullsleep = ah->chip_fullsleep;
1763
1764 if (ath9k_hw_mci_is_enabled(ah)) {
1765 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1766 if (start_mci_reset)
1767 return 0;
1768 }
1769
1770 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1771 return -EIO;
1772
1773 if (ah->curchan && !ah->chip_fullsleep)
1774 ath9k_hw_getnf(ah, ah->curchan);
1775
1776 ah->caldata = caldata;
1777 if (caldata && (chan->channel != caldata->channel ||
1778 chan->channelFlags != caldata->channelFlags)) {
1779 /* Operating channel changed, reset channel calibration data */
1780 memset(caldata, 0, sizeof(*caldata));
1781 ath9k_init_nfcal_hist_buffer(ah, chan);
1782 } else if (caldata) {
1783 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1784 }
1785 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1786
1787 if (fastcc) {
1788 r = ath9k_hw_do_fastcc(ah, chan);
1789 if (!r)
1790 return r;
1791 }
1792
1793 if (ath9k_hw_mci_is_enabled(ah))
1794 ar9003_mci_stop_bt(ah, save_fullsleep);
1795
1796 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1797 if (saveDefAntenna == 0)
1798 saveDefAntenna = 1;
1799
1800 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1801
1802 /* Save TSF before chip reset, a cold reset clears it */
1803 tsf = ath9k_hw_gettsf64(ah);
1804 usec = ktime_to_us(ktime_get_raw());
1805
1806 saveLedState = REG_READ(ah, AR_CFG_LED) &
1807 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1808 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1809
1810 ath9k_hw_mark_phy_inactive(ah);
1811
1812 ah->paprd_table_write_done = false;
1813
1814 /* Only required on the first reset */
1815 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1816 REG_WRITE(ah,
1817 AR9271_RESET_POWER_DOWN_CONTROL,
1818 AR9271_RADIO_RF_RST);
1819 udelay(50);
1820 }
1821
1822 if (!ath9k_hw_chip_reset(ah, chan)) {
1823 ath_err(common, "Chip reset failed\n");
1824 return -EINVAL;
1825 }
1826
1827 /* Only required on the first reset */
1828 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1829 ah->htc_reset_init = false;
1830 REG_WRITE(ah,
1831 AR9271_RESET_POWER_DOWN_CONTROL,
1832 AR9271_GATE_MAC_CTL);
1833 udelay(50);
1834 }
1835
1836 /* Restore TSF */
1837 usec = ktime_to_us(ktime_get_raw()) - usec;
1838 ath9k_hw_settsf64(ah, tsf + usec);
1839
1840 if (AR_SREV_9280_20_OR_LATER(ah))
1841 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1842
1843 if (!AR_SREV_9300_20_OR_LATER(ah))
1844 ar9002_hw_enable_async_fifo(ah);
1845
1846 r = ath9k_hw_process_ini(ah, chan);
1847 if (r)
1848 return r;
1849
1850 ath9k_hw_set_rfmode(ah, chan);
1851
1852 if (ath9k_hw_mci_is_enabled(ah))
1853 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1854
1855 /*
1856 * Some AR91xx SoC devices frequently fail to accept TSF writes
1857 * right after the chip reset. When that happens, write a new
1858 * value after the initvals have been applied, with an offset
1859 * based on measured time difference
1860 */
1861 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1862 tsf += 1500;
1863 ath9k_hw_settsf64(ah, tsf);
1864 }
1865
1866 ath9k_hw_init_mfp(ah);
1867
1868 ath9k_hw_set_delta_slope(ah, chan);
1869 ath9k_hw_spur_mitigate_freq(ah, chan);
1870 ah->eep_ops->set_board_values(ah, chan);
1871
1872 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1873
1874 r = ath9k_hw_rf_set_freq(ah, chan);
1875 if (r)
1876 return r;
1877
1878 ath9k_hw_set_clockrate(ah);
1879
1880 ath9k_hw_init_queues(ah);
1881 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1882 ath9k_hw_ani_cache_ini_regs(ah);
1883 ath9k_hw_init_qos(ah);
1884
1885 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1886 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1887
1888 ath9k_hw_init_global_settings(ah);
1889
1890 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1891 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1892 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1893 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1894 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1895 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1896 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1897 }
1898
1899 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1900
1901 ath9k_hw_set_dma(ah);
1902
1903 if (!ath9k_hw_mci_is_enabled(ah))
1904 REG_WRITE(ah, AR_OBS, 8);
1905
1906 if (ah->config.rx_intr_mitigation) {
1907 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1908 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1909 }
1910
1911 if (ah->config.tx_intr_mitigation) {
1912 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1913 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1914 }
1915
1916 ath9k_hw_init_bb(ah, chan);
1917
1918 if (caldata) {
1919 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1920 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1921 }
1922 if (!ath9k_hw_init_cal(ah, chan))
1923 return -EIO;
1924
1925 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1926 return -EIO;
1927
1928 ENABLE_REGWRITE_BUFFER(ah);
1929
1930 ath9k_hw_restore_chainmask(ah);
1931 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1932
1933 REGWRITE_BUFFER_FLUSH(ah);
1934
1935 ath9k_hw_init_desc(ah);
1936
1937 if (ath9k_hw_btcoex_is_enabled(ah))
1938 ath9k_hw_btcoex_enable(ah);
1939
1940 if (ath9k_hw_mci_is_enabled(ah))
1941 ar9003_mci_check_bt(ah);
1942
1943 ath9k_hw_loadnf(ah, chan);
1944 ath9k_hw_start_nfcal(ah, true);
1945
1946 if (AR_SREV_9300_20_OR_LATER(ah))
1947 ar9003_hw_bb_watchdog_config(ah);
1948
1949 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1950 ar9003_hw_disable_phy_restart(ah);
1951
1952 ath9k_hw_apply_gpio_override(ah);
1953
1954 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1955 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1956
1957 if (ah->hw->conf.radar_enabled) {
1958 /* set HW specific DFS configuration */
1959 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1960 ath9k_hw_set_radar_params(ah);
1961 }
1962
1963 return 0;
1964 }
1965 EXPORT_SYMBOL(ath9k_hw_reset);
1966
1967 /******************************/
1968 /* Power Management (Chipset) */
1969 /******************************/
1970
1971 /*
1972 * Notify Power Mgt is disabled in self-generated frames.
1973 * If requested, force chip to sleep.
1974 */
ath9k_set_power_sleep(struct ath_hw * ah)1975 static void ath9k_set_power_sleep(struct ath_hw *ah)
1976 {
1977 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1978
1979 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1980 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1981 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1982 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1983 /* xxx Required for WLAN only case ? */
1984 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1985 udelay(100);
1986 }
1987
1988 /*
1989 * Clear the RTC force wake bit to allow the
1990 * mac to go to sleep.
1991 */
1992 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1993
1994 if (ath9k_hw_mci_is_enabled(ah))
1995 udelay(100);
1996
1997 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1998 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1999
2000 /* Shutdown chip. Active low */
2001 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2002 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2003 udelay(2);
2004 }
2005
2006 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2007 if (AR_SREV_9300_20_OR_LATER(ah))
2008 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2009 }
2010
2011 /*
2012 * Notify Power Management is enabled in self-generating
2013 * frames. If request, set power mode of chip to
2014 * auto/normal. Duration in units of 128us (1/8 TU).
2015 */
ath9k_set_power_network_sleep(struct ath_hw * ah)2016 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2017 {
2018 struct ath9k_hw_capabilities *pCap = &ah->caps;
2019
2020 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2021
2022 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2023 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2024 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2025 AR_RTC_FORCE_WAKE_ON_INT);
2026 } else {
2027
2028 /* When chip goes into network sleep, it could be waken
2029 * up by MCI_INT interrupt caused by BT's HW messages
2030 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2031 * rate (~100us). This will cause chip to leave and
2032 * re-enter network sleep mode frequently, which in
2033 * consequence will have WLAN MCI HW to generate lots of
2034 * SYS_WAKING and SYS_SLEEPING messages which will make
2035 * BT CPU to busy to process.
2036 */
2037 if (ath9k_hw_mci_is_enabled(ah))
2038 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2039 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2040 /*
2041 * Clear the RTC force wake bit to allow the
2042 * mac to go to sleep.
2043 */
2044 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2045
2046 if (ath9k_hw_mci_is_enabled(ah))
2047 udelay(30);
2048 }
2049
2050 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2051 if (AR_SREV_9300_20_OR_LATER(ah))
2052 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2053 }
2054
ath9k_hw_set_power_awake(struct ath_hw * ah)2055 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2056 {
2057 u32 val;
2058 int i;
2059
2060 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2061 if (AR_SREV_9300_20_OR_LATER(ah)) {
2062 REG_WRITE(ah, AR_WA, ah->WARegVal);
2063 udelay(10);
2064 }
2065
2066 if ((REG_READ(ah, AR_RTC_STATUS) &
2067 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2068 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2069 return false;
2070 }
2071 if (!AR_SREV_9300_20_OR_LATER(ah))
2072 ath9k_hw_init_pll(ah, NULL);
2073 }
2074 if (AR_SREV_9100(ah))
2075 REG_SET_BIT(ah, AR_RTC_RESET,
2076 AR_RTC_RESET_EN);
2077
2078 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2079 AR_RTC_FORCE_WAKE_EN);
2080 if (AR_SREV_9100(ah))
2081 mdelay(10);
2082 else
2083 udelay(50);
2084
2085 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2086 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2087 if (val == AR_RTC_STATUS_ON)
2088 break;
2089 udelay(50);
2090 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2091 AR_RTC_FORCE_WAKE_EN);
2092 }
2093 if (i == 0) {
2094 ath_err(ath9k_hw_common(ah),
2095 "Failed to wakeup in %uus\n",
2096 POWER_UP_TIME / 20);
2097 return false;
2098 }
2099
2100 if (ath9k_hw_mci_is_enabled(ah))
2101 ar9003_mci_set_power_awake(ah);
2102
2103 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2104
2105 return true;
2106 }
2107
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2108 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2109 {
2110 struct ath_common *common = ath9k_hw_common(ah);
2111 int status = true;
2112 static const char *modes[] = {
2113 "AWAKE",
2114 "FULL-SLEEP",
2115 "NETWORK SLEEP",
2116 "UNDEFINED"
2117 };
2118
2119 if (ah->power_mode == mode)
2120 return status;
2121
2122 ath_dbg(common, RESET, "%s -> %s\n",
2123 modes[ah->power_mode], modes[mode]);
2124
2125 switch (mode) {
2126 case ATH9K_PM_AWAKE:
2127 status = ath9k_hw_set_power_awake(ah);
2128 break;
2129 case ATH9K_PM_FULL_SLEEP:
2130 if (ath9k_hw_mci_is_enabled(ah))
2131 ar9003_mci_set_full_sleep(ah);
2132
2133 ath9k_set_power_sleep(ah);
2134 ah->chip_fullsleep = true;
2135 break;
2136 case ATH9K_PM_NETWORK_SLEEP:
2137 ath9k_set_power_network_sleep(ah);
2138 break;
2139 default:
2140 ath_err(common, "Unknown power mode %u\n", mode);
2141 return false;
2142 }
2143 ah->power_mode = mode;
2144
2145 /*
2146 * XXX: If this warning never comes up after a while then
2147 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2148 * ath9k_hw_setpower() return type void.
2149 */
2150
2151 if (!(ah->ah_flags & AH_UNPLUGGED))
2152 ATH_DBG_WARN_ON_ONCE(!status);
2153
2154 return status;
2155 }
2156 EXPORT_SYMBOL(ath9k_hw_setpower);
2157
2158 /*******************/
2159 /* Beacon Handling */
2160 /*******************/
2161
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2162 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2163 {
2164 int flags = 0;
2165
2166 ENABLE_REGWRITE_BUFFER(ah);
2167
2168 switch (ah->opmode) {
2169 case NL80211_IFTYPE_ADHOC:
2170 REG_SET_BIT(ah, AR_TXCFG,
2171 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2172 case NL80211_IFTYPE_MESH_POINT:
2173 case NL80211_IFTYPE_AP:
2174 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2175 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2176 TU_TO_USEC(ah->config.dma_beacon_response_time));
2177 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2178 TU_TO_USEC(ah->config.sw_beacon_response_time));
2179 flags |=
2180 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2181 break;
2182 default:
2183 ath_dbg(ath9k_hw_common(ah), BEACON,
2184 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2185 return;
2186 break;
2187 }
2188
2189 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2190 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2191 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2192
2193 REGWRITE_BUFFER_FLUSH(ah);
2194
2195 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2196 }
2197 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2198
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2199 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2200 const struct ath9k_beacon_state *bs)
2201 {
2202 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2203 struct ath9k_hw_capabilities *pCap = &ah->caps;
2204 struct ath_common *common = ath9k_hw_common(ah);
2205
2206 ENABLE_REGWRITE_BUFFER(ah);
2207
2208 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2209 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2210 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2211
2212 REGWRITE_BUFFER_FLUSH(ah);
2213
2214 REG_RMW_FIELD(ah, AR_RSSI_THR,
2215 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2216
2217 beaconintval = bs->bs_intval;
2218
2219 if (bs->bs_sleepduration > beaconintval)
2220 beaconintval = bs->bs_sleepduration;
2221
2222 dtimperiod = bs->bs_dtimperiod;
2223 if (bs->bs_sleepduration > dtimperiod)
2224 dtimperiod = bs->bs_sleepduration;
2225
2226 if (beaconintval == dtimperiod)
2227 nextTbtt = bs->bs_nextdtim;
2228 else
2229 nextTbtt = bs->bs_nexttbtt;
2230
2231 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2232 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2233 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2234 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2235
2236 ENABLE_REGWRITE_BUFFER(ah);
2237
2238 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2239 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2240
2241 REG_WRITE(ah, AR_SLEEP1,
2242 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2243 | AR_SLEEP1_ASSUME_DTIM);
2244
2245 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2246 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2247 else
2248 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2249
2250 REG_WRITE(ah, AR_SLEEP2,
2251 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2252
2253 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2254 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2255
2256 REGWRITE_BUFFER_FLUSH(ah);
2257
2258 REG_SET_BIT(ah, AR_TIMER_MODE,
2259 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2260 AR_DTIM_TIMER_EN);
2261
2262 /* TSF Out of Range Threshold */
2263 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2264 }
2265 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2266
2267 /*******************/
2268 /* HW Capabilities */
2269 /*******************/
2270
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2271 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2272 {
2273 eeprom_chainmask &= chip_chainmask;
2274 if (eeprom_chainmask)
2275 return eeprom_chainmask;
2276 else
2277 return chip_chainmask;
2278 }
2279
2280 /**
2281 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2282 * @ah: the atheros hardware data structure
2283 *
2284 * We enable DFS support upstream on chipsets which have passed a series
2285 * of tests. The testing requirements are going to be documented. Desired
2286 * test requirements are documented at:
2287 *
2288 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2289 *
2290 * Once a new chipset gets properly tested an individual commit can be used
2291 * to document the testing for DFS for that chipset.
2292 */
ath9k_hw_dfs_tested(struct ath_hw * ah)2293 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2294 {
2295
2296 switch (ah->hw_version.macVersion) {
2297 /* for temporary testing DFS with 9280 */
2298 case AR_SREV_VERSION_9280:
2299 /* AR9580 will likely be our first target to get testing on */
2300 case AR_SREV_VERSION_9580:
2301 return true;
2302 default:
2303 return false;
2304 }
2305 }
2306
ath9k_hw_fill_cap_info(struct ath_hw * ah)2307 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2308 {
2309 struct ath9k_hw_capabilities *pCap = &ah->caps;
2310 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2311 struct ath_common *common = ath9k_hw_common(ah);
2312 unsigned int chip_chainmask;
2313
2314 u16 eeval;
2315 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2316
2317 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2318 regulatory->current_rd = eeval;
2319
2320 if (ah->opmode != NL80211_IFTYPE_AP &&
2321 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2322 if (regulatory->current_rd == 0x64 ||
2323 regulatory->current_rd == 0x65)
2324 regulatory->current_rd += 5;
2325 else if (regulatory->current_rd == 0x41)
2326 regulatory->current_rd = 0x43;
2327 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2328 regulatory->current_rd);
2329 }
2330
2331 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2332 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2333 ath_err(common,
2334 "no band has been marked as supported in EEPROM\n");
2335 return -EINVAL;
2336 }
2337
2338 if (eeval & AR5416_OPFLAGS_11A)
2339 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2340
2341 if (eeval & AR5416_OPFLAGS_11G)
2342 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2343
2344 if (AR_SREV_9485(ah) ||
2345 AR_SREV_9285(ah) ||
2346 AR_SREV_9330(ah) ||
2347 AR_SREV_9565(ah))
2348 chip_chainmask = 1;
2349 else if (AR_SREV_9462(ah))
2350 chip_chainmask = 3;
2351 else if (!AR_SREV_9280_20_OR_LATER(ah))
2352 chip_chainmask = 7;
2353 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2354 chip_chainmask = 3;
2355 else
2356 chip_chainmask = 7;
2357
2358 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2359 /*
2360 * For AR9271 we will temporarilly uses the rx chainmax as read from
2361 * the EEPROM.
2362 */
2363 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2364 !(eeval & AR5416_OPFLAGS_11A) &&
2365 !(AR_SREV_9271(ah)))
2366 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2367 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2368 else if (AR_SREV_9100(ah))
2369 pCap->rx_chainmask = 0x7;
2370 else
2371 /* Use rx_chainmask from EEPROM. */
2372 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2373
2374 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2375 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2376 ah->txchainmask = pCap->tx_chainmask;
2377 ah->rxchainmask = pCap->rx_chainmask;
2378
2379 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2380
2381 /* enable key search for every frame in an aggregate */
2382 if (AR_SREV_9300_20_OR_LATER(ah))
2383 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2384
2385 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2386
2387 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2388 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2389 else
2390 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2391
2392 if (AR_SREV_9271(ah))
2393 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2394 else if (AR_DEVID_7010(ah))
2395 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2396 else if (AR_SREV_9300_20_OR_LATER(ah))
2397 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2398 else if (AR_SREV_9287_11_OR_LATER(ah))
2399 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2400 else if (AR_SREV_9285_12_OR_LATER(ah))
2401 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2402 else if (AR_SREV_9280_20_OR_LATER(ah))
2403 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2404 else
2405 pCap->num_gpio_pins = AR_NUM_GPIO;
2406
2407 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2408 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2409 else
2410 pCap->rts_aggr_limit = (8 * 1024);
2411
2412 #ifdef CONFIG_ATH9K_RFKILL
2413 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2414 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2415 ah->rfkill_gpio =
2416 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2417 ah->rfkill_polarity =
2418 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2419
2420 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2421 }
2422 #endif
2423 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2424 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2425 else
2426 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2427
2428 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2429 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2430 else
2431 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2432
2433 if (AR_SREV_9300_20_OR_LATER(ah)) {
2434 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2435 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2436 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2437
2438 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2439 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2440 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2441 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2442 pCap->txs_len = sizeof(struct ar9003_txs);
2443 } else {
2444 pCap->tx_desc_len = sizeof(struct ath_desc);
2445 if (AR_SREV_9280_20(ah))
2446 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2447 }
2448
2449 if (AR_SREV_9300_20_OR_LATER(ah))
2450 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2451
2452 if (AR_SREV_9300_20_OR_LATER(ah))
2453 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2454
2455 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2456 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2457
2458 if (AR_SREV_9285(ah)) {
2459 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2460 ant_div_ctl1 =
2461 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2462 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2463 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2464 ath_info(common, "Enable LNA combining\n");
2465 }
2466 }
2467 }
2468
2469 if (AR_SREV_9300_20_OR_LATER(ah)) {
2470 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2471 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2472 }
2473
2474 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2475 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2476 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2477 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2478 ath_info(common, "Enable LNA combining\n");
2479 }
2480 }
2481
2482 if (ath9k_hw_dfs_tested(ah))
2483 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2484
2485 tx_chainmask = pCap->tx_chainmask;
2486 rx_chainmask = pCap->rx_chainmask;
2487 while (tx_chainmask || rx_chainmask) {
2488 if (tx_chainmask & BIT(0))
2489 pCap->max_txchains++;
2490 if (rx_chainmask & BIT(0))
2491 pCap->max_rxchains++;
2492
2493 tx_chainmask >>= 1;
2494 rx_chainmask >>= 1;
2495 }
2496
2497 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2498 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2499 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2500
2501 if (AR_SREV_9462_20_OR_LATER(ah))
2502 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2503 }
2504
2505 if (AR_SREV_9462(ah))
2506 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2507
2508 if (AR_SREV_9300_20_OR_LATER(ah) &&
2509 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2510 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2511
2512 return 0;
2513 }
2514
2515 /****************************/
2516 /* GPIO / RFKILL / Antennae */
2517 /****************************/
2518
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2519 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2520 u32 gpio, u32 type)
2521 {
2522 int addr;
2523 u32 gpio_shift, tmp;
2524
2525 if (gpio > 11)
2526 addr = AR_GPIO_OUTPUT_MUX3;
2527 else if (gpio > 5)
2528 addr = AR_GPIO_OUTPUT_MUX2;
2529 else
2530 addr = AR_GPIO_OUTPUT_MUX1;
2531
2532 gpio_shift = (gpio % 6) * 5;
2533
2534 if (AR_SREV_9280_20_OR_LATER(ah)
2535 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2536 REG_RMW(ah, addr, (type << gpio_shift),
2537 (0x1f << gpio_shift));
2538 } else {
2539 tmp = REG_READ(ah, addr);
2540 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2541 tmp &= ~(0x1f << gpio_shift);
2542 tmp |= (type << gpio_shift);
2543 REG_WRITE(ah, addr, tmp);
2544 }
2545 }
2546
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2547 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2548 {
2549 u32 gpio_shift;
2550
2551 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2552
2553 if (AR_DEVID_7010(ah)) {
2554 gpio_shift = gpio;
2555 REG_RMW(ah, AR7010_GPIO_OE,
2556 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2557 (AR7010_GPIO_OE_MASK << gpio_shift));
2558 return;
2559 }
2560
2561 gpio_shift = gpio << 1;
2562 REG_RMW(ah,
2563 AR_GPIO_OE_OUT,
2564 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2565 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2566 }
2567 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2568
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2569 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2570 {
2571 #define MS_REG_READ(x, y) \
2572 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2573
2574 if (gpio >= ah->caps.num_gpio_pins)
2575 return 0xffffffff;
2576
2577 if (AR_DEVID_7010(ah)) {
2578 u32 val;
2579 val = REG_READ(ah, AR7010_GPIO_IN);
2580 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2581 } else if (AR_SREV_9300_20_OR_LATER(ah))
2582 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2583 AR_GPIO_BIT(gpio)) != 0;
2584 else if (AR_SREV_9271(ah))
2585 return MS_REG_READ(AR9271, gpio) != 0;
2586 else if (AR_SREV_9287_11_OR_LATER(ah))
2587 return MS_REG_READ(AR9287, gpio) != 0;
2588 else if (AR_SREV_9285_12_OR_LATER(ah))
2589 return MS_REG_READ(AR9285, gpio) != 0;
2590 else if (AR_SREV_9280_20_OR_LATER(ah))
2591 return MS_REG_READ(AR928X, gpio) != 0;
2592 else
2593 return MS_REG_READ(AR, gpio) != 0;
2594 }
2595 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2596
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2597 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2598 u32 ah_signal_type)
2599 {
2600 u32 gpio_shift;
2601
2602 if (AR_DEVID_7010(ah)) {
2603 gpio_shift = gpio;
2604 REG_RMW(ah, AR7010_GPIO_OE,
2605 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2606 (AR7010_GPIO_OE_MASK << gpio_shift));
2607 return;
2608 }
2609
2610 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2611 gpio_shift = 2 * gpio;
2612 REG_RMW(ah,
2613 AR_GPIO_OE_OUT,
2614 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2615 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2616 }
2617 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2618
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2619 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2620 {
2621 if (AR_DEVID_7010(ah)) {
2622 val = val ? 0 : 1;
2623 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2624 AR_GPIO_BIT(gpio));
2625 return;
2626 }
2627
2628 if (AR_SREV_9271(ah))
2629 val = ~val;
2630
2631 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2632 AR_GPIO_BIT(gpio));
2633 }
2634 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2635
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2636 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2637 {
2638 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2639 }
2640 EXPORT_SYMBOL(ath9k_hw_setantenna);
2641
2642 /*********************/
2643 /* General Operation */
2644 /*********************/
2645
ath9k_hw_getrxfilter(struct ath_hw * ah)2646 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2647 {
2648 u32 bits = REG_READ(ah, AR_RX_FILTER);
2649 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2650
2651 if (phybits & AR_PHY_ERR_RADAR)
2652 bits |= ATH9K_RX_FILTER_PHYRADAR;
2653 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2654 bits |= ATH9K_RX_FILTER_PHYERR;
2655
2656 return bits;
2657 }
2658 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2659
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2660 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2661 {
2662 u32 phybits;
2663
2664 ENABLE_REGWRITE_BUFFER(ah);
2665
2666 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2667 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2668
2669 REG_WRITE(ah, AR_RX_FILTER, bits);
2670
2671 phybits = 0;
2672 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2673 phybits |= AR_PHY_ERR_RADAR;
2674 if (bits & ATH9K_RX_FILTER_PHYERR)
2675 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2676 REG_WRITE(ah, AR_PHY_ERR, phybits);
2677
2678 if (phybits)
2679 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2680 else
2681 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2682
2683 REGWRITE_BUFFER_FLUSH(ah);
2684 }
2685 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2686
ath9k_hw_phy_disable(struct ath_hw * ah)2687 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2688 {
2689 if (ath9k_hw_mci_is_enabled(ah))
2690 ar9003_mci_bt_gain_ctrl(ah);
2691
2692 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2693 return false;
2694
2695 ath9k_hw_init_pll(ah, NULL);
2696 ah->htc_reset_init = true;
2697 return true;
2698 }
2699 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2700
ath9k_hw_disable(struct ath_hw * ah)2701 bool ath9k_hw_disable(struct ath_hw *ah)
2702 {
2703 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2704 return false;
2705
2706 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2707 return false;
2708
2709 ath9k_hw_init_pll(ah, NULL);
2710 return true;
2711 }
2712 EXPORT_SYMBOL(ath9k_hw_disable);
2713
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2714 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2715 {
2716 enum eeprom_param gain_param;
2717
2718 if (IS_CHAN_2GHZ(chan))
2719 gain_param = EEP_ANTENNA_GAIN_2G;
2720 else
2721 gain_param = EEP_ANTENNA_GAIN_5G;
2722
2723 return ah->eep_ops->get_eeprom(ah, gain_param);
2724 }
2725
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2726 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2727 bool test)
2728 {
2729 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2730 struct ieee80211_channel *channel;
2731 int chan_pwr, new_pwr, max_gain;
2732 int ant_gain, ant_reduction = 0;
2733
2734 if (!chan)
2735 return;
2736
2737 channel = chan->chan;
2738 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2739 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2740 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2741
2742 ant_gain = get_antenna_gain(ah, chan);
2743 if (ant_gain > max_gain)
2744 ant_reduction = ant_gain - max_gain;
2745
2746 ah->eep_ops->set_txpower(ah, chan,
2747 ath9k_regd_get_ctl(reg, chan),
2748 ant_reduction, new_pwr, test);
2749 }
2750
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2751 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2752 {
2753 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2754 struct ath9k_channel *chan = ah->curchan;
2755 struct ieee80211_channel *channel = chan->chan;
2756
2757 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2758 if (test)
2759 channel->max_power = MAX_RATE_POWER / 2;
2760
2761 ath9k_hw_apply_txpower(ah, chan, test);
2762
2763 if (test)
2764 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2765 }
2766 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2767
ath9k_hw_setopmode(struct ath_hw * ah)2768 void ath9k_hw_setopmode(struct ath_hw *ah)
2769 {
2770 ath9k_hw_set_operating_mode(ah, ah->opmode);
2771 }
2772 EXPORT_SYMBOL(ath9k_hw_setopmode);
2773
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2774 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2775 {
2776 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2777 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2778 }
2779 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2780
ath9k_hw_write_associd(struct ath_hw * ah)2781 void ath9k_hw_write_associd(struct ath_hw *ah)
2782 {
2783 struct ath_common *common = ath9k_hw_common(ah);
2784
2785 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2786 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2787 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2788 }
2789 EXPORT_SYMBOL(ath9k_hw_write_associd);
2790
2791 #define ATH9K_MAX_TSF_READ 10
2792
ath9k_hw_gettsf64(struct ath_hw * ah)2793 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2794 {
2795 u32 tsf_lower, tsf_upper1, tsf_upper2;
2796 int i;
2797
2798 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2799 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2800 tsf_lower = REG_READ(ah, AR_TSF_L32);
2801 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2802 if (tsf_upper2 == tsf_upper1)
2803 break;
2804 tsf_upper1 = tsf_upper2;
2805 }
2806
2807 WARN_ON( i == ATH9K_MAX_TSF_READ );
2808
2809 return (((u64)tsf_upper1 << 32) | tsf_lower);
2810 }
2811 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2812
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2813 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2814 {
2815 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2816 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_settsf64);
2819
ath9k_hw_reset_tsf(struct ath_hw * ah)2820 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2821 {
2822 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2823 AH_TSF_WRITE_TIMEOUT))
2824 ath_dbg(ath9k_hw_common(ah), RESET,
2825 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2826
2827 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2828 }
2829 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2830
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)2831 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2832 {
2833 if (set)
2834 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2835 else
2836 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2837 }
2838 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2839
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)2840 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2841 {
2842 u32 macmode;
2843
2844 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2845 macmode = AR_2040_JOINED_RX_CLEAR;
2846 else
2847 macmode = 0;
2848
2849 REG_WRITE(ah, AR_2040_MODE, macmode);
2850 }
2851
2852 /* HW Generic timers configuration */
2853
2854 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2855 {
2856 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2857 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2858 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2859 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2860 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2861 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2862 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2863 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2864 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2865 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2866 AR_NDP2_TIMER_MODE, 0x0002},
2867 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2868 AR_NDP2_TIMER_MODE, 0x0004},
2869 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2870 AR_NDP2_TIMER_MODE, 0x0008},
2871 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2872 AR_NDP2_TIMER_MODE, 0x0010},
2873 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2874 AR_NDP2_TIMER_MODE, 0x0020},
2875 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2876 AR_NDP2_TIMER_MODE, 0x0040},
2877 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2878 AR_NDP2_TIMER_MODE, 0x0080}
2879 };
2880
2881 /* HW generic timer primitives */
2882
ath9k_hw_gettsf32(struct ath_hw * ah)2883 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2884 {
2885 return REG_READ(ah, AR_TSF_L32);
2886 }
2887 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2888
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)2889 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2890 void (*trigger)(void *),
2891 void (*overflow)(void *),
2892 void *arg,
2893 u8 timer_index)
2894 {
2895 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2896 struct ath_gen_timer *timer;
2897
2898 if ((timer_index < AR_FIRST_NDP_TIMER) ||
2899 (timer_index >= ATH_MAX_GEN_TIMER))
2900 return NULL;
2901
2902 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2903 if (timer == NULL)
2904 return NULL;
2905
2906 /* allocate a hardware generic timer slot */
2907 timer_table->timers[timer_index] = timer;
2908 timer->index = timer_index;
2909 timer->trigger = trigger;
2910 timer->overflow = overflow;
2911 timer->arg = arg;
2912
2913 return timer;
2914 }
2915 EXPORT_SYMBOL(ath_gen_timer_alloc);
2916
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)2917 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2918 struct ath_gen_timer *timer,
2919 u32 timer_next,
2920 u32 timer_period)
2921 {
2922 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2923 u32 mask = 0;
2924
2925 timer_table->timer_mask |= BIT(timer->index);
2926
2927 /*
2928 * Program generic timer registers
2929 */
2930 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2931 timer_next);
2932 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2933 timer_period);
2934 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2935 gen_tmr_configuration[timer->index].mode_mask);
2936
2937 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2938 /*
2939 * Starting from AR9462, each generic timer can select which tsf
2940 * to use. But we still follow the old rule, 0 - 7 use tsf and
2941 * 8 - 15 use tsf2.
2942 */
2943 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2944 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2945 (1 << timer->index));
2946 else
2947 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2948 (1 << timer->index));
2949 }
2950
2951 if (timer->trigger)
2952 mask |= SM(AR_GENTMR_BIT(timer->index),
2953 AR_IMR_S5_GENTIMER_TRIG);
2954 if (timer->overflow)
2955 mask |= SM(AR_GENTMR_BIT(timer->index),
2956 AR_IMR_S5_GENTIMER_THRESH);
2957
2958 REG_SET_BIT(ah, AR_IMR_S5, mask);
2959
2960 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2961 ah->imask |= ATH9K_INT_GENTIMER;
2962 ath9k_hw_set_interrupts(ah);
2963 }
2964 }
2965 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2966
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)2967 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2968 {
2969 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2970
2971 /* Clear generic timer enable bits. */
2972 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2973 gen_tmr_configuration[timer->index].mode_mask);
2974
2975 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2976 /*
2977 * Need to switch back to TSF if it was using TSF2.
2978 */
2979 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2980 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2981 (1 << timer->index));
2982 }
2983 }
2984
2985 /* Disable both trigger and thresh interrupt masks */
2986 REG_CLR_BIT(ah, AR_IMR_S5,
2987 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2988 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2989
2990 timer_table->timer_mask &= ~BIT(timer->index);
2991
2992 if (timer_table->timer_mask == 0) {
2993 ah->imask &= ~ATH9K_INT_GENTIMER;
2994 ath9k_hw_set_interrupts(ah);
2995 }
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2998
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)2999 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3000 {
3001 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3002
3003 /* free the hardware generic timer slot */
3004 timer_table->timers[timer->index] = NULL;
3005 kfree(timer);
3006 }
3007 EXPORT_SYMBOL(ath_gen_timer_free);
3008
3009 /*
3010 * Generic Timer Interrupts handling
3011 */
ath_gen_timer_isr(struct ath_hw * ah)3012 void ath_gen_timer_isr(struct ath_hw *ah)
3013 {
3014 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3015 struct ath_gen_timer *timer;
3016 unsigned long trigger_mask, thresh_mask;
3017 unsigned int index;
3018
3019 /* get hardware generic timer interrupt status */
3020 trigger_mask = ah->intr_gen_timer_trigger;
3021 thresh_mask = ah->intr_gen_timer_thresh;
3022 trigger_mask &= timer_table->timer_mask;
3023 thresh_mask &= timer_table->timer_mask;
3024
3025 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3026 timer = timer_table->timers[index];
3027 if (!timer)
3028 continue;
3029 if (!timer->overflow)
3030 continue;
3031
3032 trigger_mask &= ~BIT(index);
3033 timer->overflow(timer->arg);
3034 }
3035
3036 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3037 timer = timer_table->timers[index];
3038 if (!timer)
3039 continue;
3040 if (!timer->trigger)
3041 continue;
3042 timer->trigger(timer->arg);
3043 }
3044 }
3045 EXPORT_SYMBOL(ath_gen_timer_isr);
3046
3047 /********/
3048 /* HTC */
3049 /********/
3050
3051 static struct {
3052 u32 version;
3053 const char * name;
3054 } ath_mac_bb_names[] = {
3055 /* Devices with external radios */
3056 { AR_SREV_VERSION_5416_PCI, "5416" },
3057 { AR_SREV_VERSION_5416_PCIE, "5418" },
3058 { AR_SREV_VERSION_9100, "9100" },
3059 { AR_SREV_VERSION_9160, "9160" },
3060 /* Single-chip solutions */
3061 { AR_SREV_VERSION_9280, "9280" },
3062 { AR_SREV_VERSION_9285, "9285" },
3063 { AR_SREV_VERSION_9287, "9287" },
3064 { AR_SREV_VERSION_9271, "9271" },
3065 { AR_SREV_VERSION_9300, "9300" },
3066 { AR_SREV_VERSION_9330, "9330" },
3067 { AR_SREV_VERSION_9340, "9340" },
3068 { AR_SREV_VERSION_9485, "9485" },
3069 { AR_SREV_VERSION_9462, "9462" },
3070 { AR_SREV_VERSION_9550, "9550" },
3071 { AR_SREV_VERSION_9565, "9565" },
3072 { AR_SREV_VERSION_9531, "9531" },
3073 };
3074
3075 /* For devices with external radios */
3076 static struct {
3077 u16 version;
3078 const char * name;
3079 } ath_rf_names[] = {
3080 { 0, "5133" },
3081 { AR_RAD5133_SREV_MAJOR, "5133" },
3082 { AR_RAD5122_SREV_MAJOR, "5122" },
3083 { AR_RAD2133_SREV_MAJOR, "2133" },
3084 { AR_RAD2122_SREV_MAJOR, "2122" }
3085 };
3086
3087 /*
3088 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3089 */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3090 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3091 {
3092 int i;
3093
3094 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3095 if (ath_mac_bb_names[i].version == mac_bb_version) {
3096 return ath_mac_bb_names[i].name;
3097 }
3098 }
3099
3100 return "????";
3101 }
3102
3103 /*
3104 * Return the RF name. "????" is returned if the RF is unknown.
3105 * Used for devices with external radios.
3106 */
ath9k_hw_rf_name(u16 rf_version)3107 static const char *ath9k_hw_rf_name(u16 rf_version)
3108 {
3109 int i;
3110
3111 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3112 if (ath_rf_names[i].version == rf_version) {
3113 return ath_rf_names[i].name;
3114 }
3115 }
3116
3117 return "????";
3118 }
3119
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3120 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3121 {
3122 int used;
3123
3124 /* chipsets >= AR9280 are single-chip */
3125 if (AR_SREV_9280_20_OR_LATER(ah)) {
3126 used = scnprintf(hw_name, len,
3127 "Atheros AR%s Rev:%x",
3128 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3129 ah->hw_version.macRev);
3130 }
3131 else {
3132 used = scnprintf(hw_name, len,
3133 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3134 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3135 ah->hw_version.macRev,
3136 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3137 & AR_RADIO_SREV_MAJOR)),
3138 ah->hw_version.phyRev);
3139 }
3140
3141 hw_name[used] = '\0';
3142 }
3143 EXPORT_SYMBOL(ath9k_hw_name);
3144